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Abstract

The bi-clustering problem is a common task in data mining, often formulated as a chal-
lenging non-convex optimization problem. In this paper, we address the block bi-clustering
problem using a novel formulation with semi-definite programming (SDP) relaxation and
two low-rank matrix approximation. Our method alternates between optimizing the row and
column membership matrices in a sequential manner, freezing one matrix while solving the
subproblem for the other in each step. We prove that the numerical membership matrices
generated by our algorithm achieve an error in the Frobenius norm bounded by O(1/

√
n)

and O(1/
√

m), ensuring accuracy and scalability as the data dimensions grow. Through
experiments on both simulated and real datasets, we demonstrate that our algorithm per-
forms comparably or better than existing bi-clustering methods in terms of both accuracy
and efficiency.

1 Introduction

Bi-clustering, also known as co-clustering or two-way clustering, is an unsupervised machine learning method
that has attracted significant interest across diverse fields such as bioinformatics, text mining, and recommen-
dation systems José-García et al. (2023); Tanay et al. (2005). Unlike traditional clustering, which clusters
either rows or columns, bi-clustering involves the joint clustering of rows and columns within a data matrix.
The goal of bi-clustering algorithms is to identify subgroups of rows and columns that demonstrate a high
level of similarity within a submatrix. This approach is especially valuable in bioinformatics for gene ex-
pression data analysis, where it seeks to detect groups of genes displaying similar expression patterns under
specific conditions.

Numerous bi-clustering algorithms have been developed, primarily for gene expression data analysis Cheng
& Church (2000); Getz et al. (2000); Maâtouk et al. (2021); Madeira & Oliveira (2004); McLachlan et al.
(2005); Pontes et al. (2015); Tan & Witten (2014). For example, Cheng and Church Cheng & Church
(2000) proposed a bi-clustering method based on the mean squared residue score, while Getz et al. Getz
et al. (2000) introduced coupled two-way clustering for gene microarray analysis. Subsequently, many bi-
clustering algorithms have emerged rapidly; comprehensive reviews and comparisons can be found in Padilha
& Campello (2017). However, identifying biclusters in large-scale datasets is known to be an NP-hard
problem, leading to the widespread use of heuristic approaches in practical applications José-García et al.
(2023). Despite of the practical good performance of various bi-clustering algorithms on different datasets,
most of the existing bi-clustering algorithms lack the theoretical guarantee to yield a correct bi-clustering
under certain assumptions on the input data set, since most models for bi-clustering are typically formulated
as intractable combinatorial optimization problems.

Block bi-clustering is a special form of bi-clustering where the data matrix is partitioned into mutually
exclusive and exhaustive blocks or submatrices. In this model, each row or column is assigned solely to one
specific row or column group, which contrasts with overlapping bi-clustering models where rows or columns
can belong to several groups or none. Each block, known as a bicluster, comprises a selection of rows
and columns, with the data values displaying a similar pattern. The checkerboard pattern in bi-clustering
indicates these non-overlapping blocks.
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To address clustering problems, the semidefinite programming (SDP) relaxation is a powerful technique used
in approximating combinatorial optimization problems Ames (2014); Li et al. (2021); Mixon et al. (2017);
Peng & Wei (2007). SDP is a generalization of linear programming where we optimize a linear objective
function subject to the constraint that an affine combination of symmetric matrices is positive semidefinite.
An advantage of employing SDP is that it can leverage the power of convex optimization to obtain theoretical
guarantees.

Only a few works, such as Ames (2014); Sudoso (2024), explore the algorithmic and theoretical aspects
of SDP relaxation for bi-clustering problem. In Ames (2014), the authors employ the alternate direction
method of multipliers (ADMM) to solve the relaxed SDP, aiming to identify the densest disjoint k biclusters.
Their analysis demonstrates that accurate matrix partitions can be recovered when the underlying biclusters
are sufficiently distinct. However, their general SDP formulation is computationally intensive, limiting its
practical applicability. Meanwhile, Sudoso (2024) focuses on leveraging SDP relaxation to develop a tailored
branch-and-cut algorithm for bi-clustering.

In this work, we formulate the block bicluster problem as the optimization problem for the row and column
membership matrices, and apply the SDP relaxation and the low-rank approximation to construct our
alternative SDP relaxation algorithm. Our main contributions can be summarized as follows.

• We propose a tuning-free non-convex SDP relaxation for the bi-clustering problem, applicable when
the number of row and column clusters is known.

• Our algorithm alternates between clustering rows and columns by solving a convex SDP relaxation
in each step, efficiently identifying the checkerboard structure of the data matrix.

• Our method employs low-rank approximation specifically for the membership matrices, ensuring
that the clustering structure is captured effectively while maintaining computational efficiency.

• On the theoretical side, for data matrices with Gaussian or Bernoulli noise, we prove that the
numerical membership matrices generated by our algorithm achieve an error bound in the Frobenius
norm of O(1/

√
n) and O(1/

√
m), ensuring accuracy and scalability as the data dimensions grow.

• Through the simulation data and the empirical lung cancer dataset, we demonstrate that our algo-
rithm remains robust and accurately identifies the checkerboard structure, even under large noise
levels.

The remainder of this paper is organized as follows. In Section 2, we describe the model for block bi-clustering
problem, and derive the SDP. Then in Section 3, we develop the alternating SDP relaxation algorithm for
solving the block bi-clustering problem. The error analysis is shown in Section 4, and Section 5 contains
numerical experiments.

2 SDP relaxation for bi-clustering problem

2.1 Model for bi-clustering problem

We consider the bi-clustering problem within a block model framework, where each observation is represented
by an n × m matrix X. We assume X admits a decomposition X = M + N , where M = E[X] is the signal
matrix and N represents a noise matrix with independent, zero-mean random entries. For the ground
truth matrix M , we assume that it exhibits a checkerboard pattern after applying specific row and column
permutations defined by the partitions {Ck}, {El} respectively:

{1, . . . , n} =
KR⋃
k=1

Ck, {1, . . . , m} =
KC⋃
l=1

El. (1)

We assume that M is piece-wise constant w.r.t. {Ck}, {El}, i.e.,

Mij = ck,l ∈ (0, 1), ∀ i ∈ Ck, j ∈ El. (2)
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Let nk := |Ck| for 1 ≤ k ≤ KR, denote the number of elements in the index set Ck. We define the following
n-by-n row membership matrix to encode the assignments of rows:

(U⋆)ij =
{

1
nk

, i, j ∈ Ck for some k

0, otherwise,
(3)

which can be interpreted as a transition matrix for the random walk that assigns equal probability to all
states within the same block Ck. Equivalently, if U⋆ is known, the partition {Ck} can be directly recovered
by identifying the row and column indices of the nonzero entries of U⋆.

Likewise, by considering the m columns with KC clusters, we have the m × m column membership matrix

(V ⋆)ij =
{

1
ml

, i, j ∈ El for some l

0, otherwise,
(4)

with ml := |El|, l = 1, 2, . . . , KC .

Note that for the above U⋆ and V ⋆, we have that

U⋆M = M, MV ⋆ = M. (5)

Empirically, the signal matrix M can be recovered from the observation data matrix by the membership
matrices: M ≈ U⋆XV ⋆ since the noise N has the zero mean. In summary, the decomposition of X = M +N
for the ground truth M can be converted to finding the transition matrices U⋆ in equation 3 and V ⋆ in
equation 4.

2.2 SDP relaxation

The fact M = U⋆MV ⋆ motivates us to propose an optimization approach to solve the bi-clustering
problem, by minimizing the Frobenius norm between the data matrix and the averaged matrix UXV ,
minU,V ∥UXV − X∥2

F, within the appropriate family of the unknowns matrices U and V . However, this
non-convex optimization is extremely difficult to solve. Even though (U, V ) 7→ ∥UXV − X∥2

F is convex by
fixing one variable, it is far from being an semi-definite program form. It is also important to specify the
feasible sets for the matrices U and V . We shall offer the solutions to these two challenges below by the SDP
relaxation and give an SDP formulation for the bi-clustering problem.

First of all we observe that U⋆ satisfies U⋆ ⪰ 0 (symmetric and positive definite), U⋆ ≥ 0 (non-negative
entries), U⋆1n = 1n where all entries of the column vector 1n are one, and U⋆ has the rank KR. Similar
properties hold for V ⋆ too. But this family of matrices with the given rank KR is not convex. We apply
the technique of SDP relaxation, which is the process of relaxing a non-convex optimization problem into a
convex SDP problem. This relaxation is done by replacing the hard constraint of rank with a softer convex
constraint of trace. For the application to other problems like K-means, refer to Peng & Wei (2007); Tepper
et al. (2018); Yan et al. (2018).

Therefore, we define the constraint sets SU and SV as follows

SU :=
{

U ∈ Rn×n | U ⪰ 0, U ≥ 0, U1n = 1n, Tr(U) = KR

}
, (6)

SV :=
{

V ∈ Rm×m | V ⪰ 0, V ≥ 0, V 1m = 1m, Tr(V ) = KC

}
, (7)

where “Tr” refer to the trace of a matrix. We numerically look for two matrices U and V to approximate
U⋆ and V ⋆, respectively, by minimizing the F-norm between the data matrix X and the averaged matrix
X = UXV , subject to these two sets:

min
U∈SU ,V ∈SV

∥UXV − X∥2
F. (8)

Secondly, we note that (U⋆)2 = U⋆ and (V ⋆)2 = V ⋆ and propose a surrogate objective function as follow. If
we assume that U2 = U = U⊤ and V 2 = V = V ⊤, then

∥UXV − X∥2
F = Tr(V X⊤U2XV ) − 2 Tr(X⊤UXV ) + ∥X∥2

F = − Tr(X⊤UXV ) + ∥X∥2
F. (9)
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Thus, our surrogate objective function is − Tr
(
X⊤UXV

)
. To conclude, our SDP relaxation for the block

bi-clustering problem takes the form

max
U∈SU ,V ∈SV

F (U, V ) := Tr
(
X⊤UXV

)
, (10)

where SU and SV are defined in equation 6 and equation 7. KR and KC , the number of row clusters and
the column clusters, are two hyper-parameters.

We highlight that even though equation 9 requires the (non-convex) constraint U2 = U and V 2 = V , our
feasible sets SU and SV do not include this requirement. If an optimal solution of equation 8 indeed satisfy
U2 = U and V 2 = V , then it is also an optimal solution of equation 8. If X = M , we know that U⋆ and
V ⋆ are the (global) optimal solution of equation 8 and equation 10, with the optimal objective value being
zero and ∥X∥2

F, respectively. The advantage of equation 10 is the linearity in either U or V . equation 10 is
non-convex jointly in (U, V ), but when fixing one variable in equation 10, one can have the SDP for the other
free variable, while the original problem equation 8 fails to have the SDP as the subproblem. In Section 3,
we solve equation 10 by the idea of applying SDP alternatively for each variable.

2.3 Low-rank approximation

Directly solving the matrix optimization problem equation 10 by searching over two arbitrary matrices is
computationally challenging and expensive. However, we observe that the ground truth matrices U⋆ and V ⋆

have ranks KR and KC , respectively, which are insignificantly smaller than the dimensions of U⋆ and V ⋆.
This low-rank structure enables us to develop a scalable variant of equation 10. Such a low-rank approach
forms the basis of an efficient method for solving the clustering problem, as discussed in Kulis et al. (2007).

Specifically, we assume U = (YU )⊤YU and V = (YV )⊤YV , where YU and YV have the size rU ×n and rV ×m,
respectively. Here n ≥ rU ≥ KR and m ≥ rV ≥ KC . Then the feasible sets SU and SV are restricted to DU

and DV as follows

DU := {U = Y ⊤
U YU ∈ Rn×n | YU ∈ RrU ×m, YU ≥ 0, Y ⊤

U YU 1n = 1n, Tr
(
Y ⊤

U YU

)
= KR}, (11)

DV := {V = Y ⊤
V YV ∈ Rm×m | YV ∈ RrV ×m, YV ≥ 0, Y ⊤

V YV 1m = 1m, Tr
(
Y ⊤

V YV

)
= KC}. (12)

Then equation 10 can be further formulated as the following form of finding two matrices YU and YV :

max
YU ∈RrU ×n,YV ∈RrV ×m

F (Y ⊤
U YU , Y ⊤

V YV )

s.t. YU ≥ 0, Y ⊤
U YU 1n = 1n, Tr(Y ⊤

U YU ) = KR,

YV ≥ 0, Y ⊤
V YV 1m = 1m, Tr(Y ⊤

V YV ) = KC .

(13)

We shall see later that this low-rank formulation is more cost-effective than equation 10.

3 Algoirthm: alternating SDP for block bi-clustering

The optimization problems formulated in equation 10 and equation 13 are non-convex, since both U and V
( YU and YV , respectively) are involved in the objective functions F . We propose to alternatively maximize
one matrix each time to solve equation 10 and equation 13. In the following, we discuss the method for
equation 10 first and the applicability to equation 13 is straightforward.

By freezing one of U or V in equation 10, the maximization of the other is a standard convex SDP as follows:

max
U

f(U) := Tr
(
A⊤

V U
)

, AV = XV X⊤

s.t. U ⪰ 0, U ≥ 0, U1n = 1n, Tr(U) = KR,
(14)

and
max

V
g(V ) := Tr

(
A⊤

U V
)

, AU = X⊤UX

s.t. V ⪰ 0, V ≥ 0, V 1m = 1m, Tr(V ) = KC .
(15)
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Algorithm 1: Alternating SDP for Block Bi-clustering
Input: The n-by-m data matrix X; Positive integers KR and KC ; Parameters: stopping tolerance
tol > 0, maximum number of epochs maxiter.

Output: The row clustering matrix U and the column clustering matrix V ; The estimated block
matrix X.

Program:
1 Initialize V0 by spectral clustering of column vectors or simply by V0 = Im.

2 For p = 1 : maxiter:

(a) Fixing V = Vp−1, solve the SDP problem equation 14 or equation 16 to obtain Up.
(b) Fixing U = Up, solve the SDP problem equation 15 or equation 17 to obtain Vp.
(c) If the difference between F (Up, Vp) and F (Up−1, Vp−1) is smaller than tol, stop the loop and

set U = Up and V = Vp.

3 Compute X = UXV .

In our alternating SDP algorithm, the iterative procedure starts from an initial value of one matrix, namely
V0. Then we solve the subproblem equation 14 associated with this V0 and set the maximizer of this
subproblem as U1, followed by solving the subproblem equation 15 with U = U1 to obtain V1, and so on.
We can select any positive definite matrix as the initial V0, as shown in Section 4.1. For example, one can
initialize V0 by any clustering method applied to column vectors, for instance by the K-means method. A
simpler strategy is to just set V0 as the identity matrix.

Likewise, we apply the same alternative optimization technique to equation 13 in the low-rank setting, by
solving the following two SDP subproblems in the low-rank approximation alternatively:

max
YU ∈RrU ×n

f(Y ⊤
U YU ) = Tr

(
A⊤

V Y ⊤
U YU

)
s.t. YU ≥ 0, Y ⊤

U YU 1n = 1n, Tr(Y ⊤
U YU ) = KR,

(16)

and

max
YV ∈RrV ×m

g(Y ⊤
V YV ) = Tr

(
A⊤

U Y ⊤
V YV

)
s.t. YV ≥ 0, Y ⊤

V YV 1m = 1m, Tr(Y ⊤
V YV ) = KC .

(17)

Problems equation 16 and equation 17 can be solved significantly faster than Problems equation 14 and equa-
tion 15, since it reduces the number of unknowns, respectively, from O(n2) to O(rU n) for solving U with
rU = const · KR (const ≥ 1) in equation 16, and from O(m2) to O(rV m) for solving V with rV = const · KC

(const ≥ 1) in equation 17. If the true maximizers of each subproblems equation 16 and equation 17 do
satisfy the rank no more than rU and rV , respectively, then the two approaches are equivalent.

This alternating iteration method is summarized in Algorithm 1. In principle, any efficient algorithm for the
convex SDP problem can be used here. The detailed numerical methods to solve these SDP subproblems
are to be specified in Section 5.

4 Theoretical properties

We investigate the theoretic properties of our algorithm in this section. Recall that the data matrix is given
by X = M + N ∈ Rn×m. In this section, we assume that the numbers of row clusters and column clusters
used in Algorithm 1 are always the ground truth: KR = K⋆

R and KC = K⋆
C .
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Without loss of generality, we can assume M in the following form throughout the paper

M :=


c1,11n11⊤

m1
· · · c1,KC

1n11⊤
mK⋆

C... . . . ...
cK⋆

R
,11nK⋆

R

1⊤
m1

· · · cK⋆
R

,K⋆
C

1nK⋆
R

1⊤
mK⋆

C

 , (18)

and U⋆, V ⋆ are both block diagonal matrices corresponding to the bi-clustering, respectively:

U⋆ :=


1

n1
1n11⊤

n1
0 · · · 0

0 1
n2

1n21⊤
n2

· · · 0
...

... . . . ...
0 0 · · · 1

nK⋆
R

1nK⋆
R

1⊤
nK⋆

R

 (19)

and

V ⋆ :=


1

m1
1m11⊤

m1
· · · 0

... . . . ...
0 · · · 1

mK⋆
C

1mK⋆
C

1⊤
mK⋆

C

 . (20)

In the following, we denote the solutions Û and V̂ as the output of the Alternating SDP algorithm (i.e.,
Algorithm 1) and will show that they can approximate or equal to the true solutions U⋆ and V ⋆, respectively,
in the norm sense.

The first part is to study the case where X = M , i.e., there is no noise N in the data. The second part is to
generalize the result to the noise case. In this work, we consider two widely used probability models. The
first is the Gaussian model where X = EX + N with

Nij ∼ N (0, σ2), i.i.d. (21)

The second is the Bernoulli model
Xij ∼ B(Mij), i.i.d, (22)

where B(p) is the binary distribution with the mean p ∈ (0, 1).

4.1 Analysis of the case without noise: X = M

In this case of no noise, we will prove that Û and V̂ generated by Algorithm 1 can exactly converge to the
true solutions U⋆ and V ⋆ in one step.
Theorem 1. Suppose that X = M with M defined in equation 18. Write the matrix M in row-wise form as

M⊤ = [(M⊤)1, . . . , (M⊤)n].

Let (U1, V1) be generated by Algorithm 1 with KR = K⋆
R and KC = K⋆

C after one step for solving equation 10
or equation 13 with any given rU ≥ KR and rV ≥ KC .

If the initial V0 ≻ 0, then
U1 = U⋆ and V1 = V ⋆, (23)

where U⋆ and V ⋆ are defined in equation 19 and equation 20, respectively.
Remark 1. Note that U⋆ ∈ DU ⊆ SU and V ⋆ ∈ DV ⊆ SV , then we only need to prove Theorem 1 for the
case of equation 10.

Theorem 1 follows directly from the property established below, which is proved in Appendix A.
Property 1. Assume X = M and write this matrix in column-wise form M = [M1, · · · , Mm] or in row-
wise form M⊤ = [(M⊤)1, . . . , (M⊤)n]. Then U⋆ is an optimal solution of the sub-problem equation 14 with
KR = K⋆

R for any n × n matrix V ⪰ 0, and V ⋆ is an optimal solution of the sub-problem equation 15 with
KC = K⋆

C for any m × m matrix U ⪰ 0. The uniqueness is given in the following.
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1. If V further satisfies (
(M⊤)j − (M⊤)i

)⊤
V

(
(M⊤)j − (M⊤)i

)
> 0

for any i ∈ Ck, j ∈ Cl, k ̸= l, then U⋆ is the unique optimal solution of Problem equation 14.

2. If U further satisfies
(Mj − Mi)⊤U(Mj − Mi) > 0 (24)

for any i ∈ Ek, j ∈ El, k ̸= l, then V ⋆ is the unique optimal solution of Problem equation 15.

4.2 Analysis of the case with noise: X = M + N

This section analyzes the Frobenius norm error between the numerical membership matrices computed by
Algorithm 1 and the true solution (U⋆, V ⋆) in the presence of iid noise for the data X = M + N . Our proof
focuses on the case of Gaussian noise, as the analysis for other noise distributions follows a similar derivation;
see Remark 5.

4.2.1 One step error

Theorem 2. Suppose that X = M + N with Nij ∼ N (0, σ2). If U1 is the optimal solution of Prob-
lem equation 14 with KR = K⋆

R and V = I, or if U1 = (YU )⊤
1 (YU )1, where (YU )1 is the optimal solution of

Problem equation 16 with KR = K⋆
R and V = I, then for any 0 < η < 1, with the probability ≥ 1 − η, U1

satisfies:

∥U⋆ − U1∥F ≤ α0
δr√

n

with

∆r := min
i ̸=j

max
t=1,...,KC

|ci,t − cj,t|,

δr := σ

∆2
r

max
(

max
k=1,...,KR;l=1,...,KC

|ck,l|, σ

)
,

α0 := 4
√

mn

(√
n +

√
m +

√
2 ln 2

η

) (
3
√

n +
√

m +
√

2 ln 2
η

)
/ (nmin · mmin) ,

nmin := min
i=1,...,KR

ni, mmin := min
i=1,...,KC

mi.

Remark 2. When m/mmin = Θ(1), n/nmin = Θ(1), n/m = Θ(1) and set ln(2/η) = O(
√

mn ), then we also
have that α0 = Θ(1). Thus, Theorem 2 implies that

∥U⋆ − U1∥F = O

(
1√
n

)
.

Note that Theorem 2 implies the conclusion in Theorem 1 in the special case of no noise in the data matrix
X, i.e., σ = 0. In addition, we also have the similar result for the error of V .

Proof. See Appendix B.

4.2.2 p-step error

The bound in Theorem 2 is the error for one step if the other variable is frozen as the identity matrix,
which typically scales as O(1/n). Now we consider the error after p iterations to investigate the effect of
maximizing surrogate loss F (U, V ) = Tr

(
X⊤UXV

)
in equation 10, alternatively.

Let Up and Vp (p = 1, 2, . . .) denote the sequence of matrices generated by Algorithm 1, with KR = K⋆
R and

KC = K⋆
C , initialized at V0 = I. Specifically, Up and Vp are the optimal solutions to Problem equation 14

7
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(or equation 16) with V = Vp−1, and Problem equation 15 (or equation 17) with U = Up, respectively. Then
for p ≥ 1,

F (Up, Vp) ≥ F (Up, Vp−1) ≥ F (Up−1, Vp−1). (25)
As a result, Fp := F (Up, Vp) is a monotonic decreasing sequence as p increases.

Our main result is the following theorem with the proof given in Appendix C.
Theorem 3. Under the same assumptions of Theorem 2, we have that for any η > 0, with probability
≥ 1 − η,

∥U⋆ − Up∥F ≤ 2
(

F (U⋆, V ⋆) − F (Up, Vp−1)
nmin · mmin · ∆2

r

+ αU

n
δrδc

) 1
2

+ βU√
n

δr, ∀ p ≥ 2 (26)

and

∥V ⋆ − Vp∥F ≤ 2
(

F (U⋆, V ⋆) − F (Up, Vp)
nmin · mmin · ∆2

c

+ αV

m
δrδc

) 1
2

+ βV√
m

δc, ∀ p ≥ 1 (27)

with

∆c := min
i ̸=j

max
t=1,...,KR

|ct,i − ct,j | ,

δc := σ

∆2
c

max
(

max
k=1,...,KR;l=1,...,KC

|ck,l|, σ

)
,

where αU , αV , βU and βV are functions of m/mmin, n/nmin, n/m, η, δr/δc, and also δc/δr.
Remark 3. If m/mmin = Θ(1), n/nmin = Θ(1), n/m = Θ(1), ln(2/η) = O(

√
mn), δr/δc = Θ(1), and

δc/δr = Θ(1), then αU , αV , βU and βV are all Θ(1). Then

∥U⋆ − Up∥F = O

(
1√
n

)
, ∥V ⋆ − Vp∥F = O

(
1√
m

)
.

Remark 4. As p increases, both Tr(XV ⋆X⊤U⋆) − Tr(XVpX⊤Up) and Tr(XV ⋆X⊤U⋆) − Tr(XVp−1X⊤Up)
decrease monotonically, since the sequence Fp is decreasing in p. Theorem 3 indicates that (Up, Vp) get
closer to (U⋆, V ⋆) as p increases until Tr(XVpX⊤Up) saturates, which justifies the stopping criterion used
in Algorithm 1. However, the error terms of δc and δr due to the noise is still O(1/

√
n) regardless of p.

Remark 5. In the above proof of Theorem 3 in Appendix C, to handle the noise matrix N , we only need an
estimate of ∥N∥2 in terms of its size n and m, which takes the form equation 53 when N is Gaussian. If we
consider the other type of noise, the proof still follows with if the similar estimate is provided. For example,
if N follows the Bernoulli distribution, then by changing the estimate for Gaussian noise in (Vershynin,
2012, Corollary 5.35), to that for Bernoulli noise in (Vershynin, 2012, Theorem 5.37), we still have ∥N∥2 ≤
O (

√
n +

√
m) with high probability, then it follows that the conclusion

∥U⋆ − Up∥F ≤ O

(
1√
n

)
, ∥V ⋆ − Vp∥F ≤ O

(
1√
m

)
still holds as in Remark 3.

5 Numerical implementation and results

In this section, we provide numerical implementation details for the SDP solvers used in Algorithm 1 and
demonstrate the feasibility and efficiency of the alternating SDP framework for bi-clustering through several
illustrative examples.

The practical performance of Algorithm 1 depends on the efficiency of the convex SDP solver for the sub-
problems. To solve equation 14 and equation 15 via alternating iteration, we employ the alternating direction
dual augmented Lagrangian method Wen et al. (2010), which is robust, efficient, and provably convergent;
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see Appendix D for a brief review and implementation details. For large-scale problems with very large
n and m, we recommend the low-rank SDP technique to solve equation 16 and equation 17. To this end,
we adopt the low-rank SDP framework from Kulis et al. (2007) for the subproblems; its implementation is
described in Appendix E. This low-rank SDP solver is significantly faster, much more scalable, and often
yields better numerical results compared to applying Wen et al. (2010) directly.

To recover the partitions C and E defined in equation 1 for the bi-clustering problem, we apply K-means
clustering to the n columns of the obtained membership matrix Up (using K = KR) and the m columns of
Vp (using K = KC), respectively. The resulting cluster assignments yield the estimated partitions Ĉ and Ê,
which are then compared with the outputs of other bi-clustering methods for the clustering accuracy. To
minimize the impact of initialization in K-means method, we repeat ten times of K-means and report the
averaged clustering accuracy as the final clustering accuracy of our algorithm.

To demonstrate the practical applicability of our method relative to mainstream non-SDP approaches, we
compare it with three established bi-clustering algorithms: sparseBC Tan & Witten (2014), COBRA Chi
et al. (2017), and SSVD Lee et al. (2010). We evaluate performance on both simulated data and a real-world
lung cancer gene dataset using bi-clustering accuracy as the primary metric. For the simulated data, the true
membership matrices U⋆ and V ⋆ are known, allowing us to compute the Frobenius norm error ∥U − U⋆∥F.
We use this error to validate Theorem 3 by progressively increasing the sample size n or m.

We set the stopping tolerance tol = 10−4 and the maximum iteration number maxiter = 5 in Algo-
rithm 1. It is observed that the numerical error can actually reach this tolerance within fewer than five
iterations in all tested examples. All experiments were conducted on an MacBook Pro laptop (macOS Ven-
tura 13.5.2), with six 2.2 GHz Intel Core i7 CPUs and 16 GB RAM. The codes are publicly available at
https://github.com/Yuxin-LAA-HPC/Alternating-SDP-for-bi-clustering.

5.1 Simulated data

We generate the n-by-m data matrices X = M + N with the checkerboard structure. M is a piece-wise
constant matrix on KR × KC pieces, as shown in equation 18. N is a noise matrix with Nij ∼ N (0, σ2). We
repeat the test ten times by sampling the noise matrix N ten times, and then we report the results based
on the mean and confidence interval (error bars) from these ten outputs.

5.1.1 Behaviors of the Alternative SDP algorithm

We provide the numerical evidence to support that the error bound in Theorem 3 is tight. To generate M ,
we set K⋆

R = 2 with n1 = n2 = 0.5 · n and K⋆
C = 3 with m1 = m2 = 0.3 · m, m3 = 0.4 · m. The value of cij

in M is specified as

c1,1 = 0.2, c2,1 = 0.1, c1,2 = 0.3, c2,2 = 0.4, c1,3 = 0.5, c2,3 = 0.6. (28)

To generate N with Nij ∼ N (0, σ2), we vary the noise level σ from {0.28, 0.30, 0.32, . . . , 0.46, 0.48}. The size
of the data matrices varies as follows:

n = 120 + 12i, m = 100 + 10i, i = 1, 2, . . . , 10.

Figure 1 confirms that the error ∥U − U⋆∥2
F ∼ O(1/n), regardless of the different level of noise, where U is

the solution computed by Algorithm 1. This is consistent with Theorem 3 and also suggests that the upper
bound is tight on the order of 1/n.

Moreover, we examine how the alternative iteration (p > 1) performs better than the one-step method
(p = 1) when dealing with noisy data. Figure 2 shows the similar error plot to Figure 1, by using the blue
lines to represent the iterative scheme and the red lines for the one-step scheme. Since all blue lines are
lower than the red lines in the same color, we observe that the effectiveness of iteration for the alternative
SDP algorithm.

Next, we demonstrate how various parameters, such as the selection of (KR, KC), the dimension n = m, and
the noise level, affect the convergence of Algorithm 1 in terms of the objective function F in equation 10

9
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Figure 3: The (rescaled) objective objective function Fp in Algorithm 1 and the errors of Up and Vp with
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∥V ⋆∥F

.

and the errors of U , V . We generate M by setting K⋆
R = 4 with n1 = n2 = 0.2 · n, n3 = n4 = 0.3 · n and

K⋆
C = 3 with m1 = m2 = 0.3 · m, m3 = 0.4 · m. The value of M is set as

c1,1 = 0.2, c2,1 = 0.1, c3,1 = 0.3, c4,1 = 0.4, c1,2 = 0.3, c2,2 = 0.4,

c3,2 = 0.5, c4,2 = 0.2, c1,3 = 0.6, c2,3 = 0.5, c3,3 = 0.4, c4,3 = 0.3.
(29)

Figure 3 shows the relative value for the objective function F (Up, Vp) along with the Frobenius norm of Up

and Vp. For the lower noise level σ = 0.2 ( compared with σ = 0.4) and with the correct choice of KR, we
observe that the one-step iteration already yields results very close to those obtained after three steps (p = 1
vs. p = 3), and the errors in the membership matrices are also very small. When the noise is larger and
KR is misspecified, additional alternating iterations further improve the minimization of F and reduce the
estimation errors..

5.1.2 Comparison with other algorithms

We compared Algorithm 1, which employs the parameters KR = 2 and KC = 3, with the other three
bi-clustering algorithms:

1. sparseBC algorithm: The algorithm proposed by Tan & Witten (2014) is implemented in the R
package sparseBC with the parameters k = 2, r = 3 and λ chosen from {0, 1, . . . , 10}.

2. COBRA: This algorithm proposed by Chi et al. (2017), is implemented in the R package cvxbiclustr
to solve a convex bi-clustering problem.

3. SSVD: This algorithm is proposed by Lee et al. (2010) based on the singular value decomposition
and is implemented in the R package s4vd with the parameter about the layer K = 10.

Tests of accuracy We first generate M as in equation 28, fix the noise level σ = 0.8, and change the size
of X to n = m = 100 · i for i = 1, 2, . . . , 10 in order to compare the different algorithms. As seen in Figure 4,
Alternating SDP algorithm outperforms the other three algorithms in terms of clustering accuracy of rows
and columns when n is not too small.

We utilize the same M as presented in equation 29 with K⋆
R = 4 and K⋆

C = 3. The size n = m = 150 is
fixed and σ is set as σ = 0.2 + 0.05 · i for i = 1, 2, . . . , 10 to compare the clustering accuracy of rows and

11
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Figure 4: Bi-clustering accuracy by different algorithms with fixed σ = 0.8: The sub-figures on the left and
right show the accuracy of the clustering of the rows and columns, respectively.
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Figure 5: Bi-clustering accuracy by different algorithms with fixed n = 150 and m = 150: The sub-figures
on the left and right show the accuracy of the clustering of the rows and columns, respectively.

columns using the different algorithms in Figure 5. From these two figures, our algorithm is shown to be
more accurate and stable in most cases.

Tests of performance Next, we compare the performance of Algorithm 1 implemented in Python with
other three algorithms implemented in R for large cases. To ensure fairness, we also present the accuracy.
Table 1 shows that Alternating SDP algorithm is the fastest when X is nearly square.

5.2 Application to Genomics

For the lung cancer data studied by Busygin et al. (2008), , which contains 56 samples and 12,625 genes,
we first select subsets of genes with the highest variance—500, 1000, and 3000 genes, respectively—to form
the data matrices. Since the true clustering of the 56 samples is known (17 normal subjects, 20 pulmonary
carcinoid tumors, 13 colon metastases, and 6 small-cell carcinomas), we have K⋆

C = 4. We apply our
algorithm using KC = K⋆

C = 4 and KR = 10 and report the sample-clustering accuracy in Table 2. The
results show that our method achieves accuracy comparable to that reported in prior studies Tan & Witten
(2014); Chi et al. (2017). Additionally, Figure 6 visualizes the column membership matrix V obtained from
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Table 1: The performance and the clustering accuracy of rows and columns by using different algorithms.

Algo
Size 500 × 500 1000 × 1000 2000 × 500 4000 × 250 2000 × 2000

Runtime (sec)

Alternating SDP 4.33 8.66 25.87 84.38 25.87
sparseBC 5.80 29.66 34.97 33.75 201.03
COBRA 48.16 138.00 131.16 130.90 495.25
SSVD 7.58 13.41 24.02 54.42 31.14

Accuracy of col

Alternating SDP 1 1 1 0.9985 1
sparseBC 1 1 1 0.9985 1
COBRA 1 0.681 0.6525 0.73825 1
SSVD 0.552 0.582 0.7655 0.6965 0.919

Accuracy of row

Alternating SDP 1 1 1 1 1
sparseBC 1 1 1 1 1
COBRA 1 1 1 1 1
SSVD 0.998 1 1 0.592 0.559

Table 2: Clustering accuracy on the lung cancer dataset with different number of genes by Alternating SDP
algorithm.

Number of genes 500 1000 3000
Clustering accuracy 96.4% 98.2% 98.2%

Algorithm 1, and Figure 7 displays the recovered signal matrix UXV representing gene-expression levels.
Both figures further confirm the accuracy and interpretability of our approach.
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Figure 6: The column membership matrix V (after applying the proper column permutation for visualization)
computed by Alternating SDP algorithm.

6 Conclusion

We propose an alternating SDP algorithm to accurately and efficiently solve the bi-clustering problem.
This approach alternates between solving two SDP subproblems, requiring only a mild assumption on the
initial values. A key advantage of this iterative formulation is its guaranteed error bound. By leveraging
the intrinsic low-rank structure of the problem, our numerical method achieves significant improvements in
computational efficiency. Experiments on both simulated and real datasets demonstrate that the accuracy
and efficiency of our algorithm are comparable to or exceed those of mainstream methods for the block
bi-clustering problem.
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Figure 7: The predicted M (i.e., UXV ) with U and V computed by Alternating SDP algorithm.
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A Proof of Property 1

The proofs of the two conclusions are the same. Thus, we only prove the second result. We start with the
KKT conditions of the convex SDP equation 15 at any optimal solution V̂ :

−AU + λ1⊤ + 1λ⊤

2 + µI − S − Z = 0, (30)

S ⪰ 0, (31)
Z ≥ 0, (32)

⟨S, V̂ ⟩ = 0, (33)
⟨Z, V̂ ⟩ = 0, (34)

where the Lagrange multipliers AU , S, Z are m-by-m matrices, λ is a vector with length m, and µ is a
number.

Firstly, we construct a special primal-dual solution which satisfies the above KKT conditions. By U ⪰ 0,
we define A :=

√
UM and write the matrix A in the column form A = [A1, A2, . . . , Am]. Then Ai =

√
UMi

and A⊤A = M⊤UM = AU .

15

https://doi.org/10.1287/ijoc.2024.0683
https://doi.org/10.1287/ijoc.2024.0683


Under review as submission to TMLR

We shall show that the construction

(λ⋆, S⋆ = 0, Z⋆, µ⋆ = 0, V ⋆)

where
λ⋆

i := A⊤
i Ai = M⊤

i UMi, 1 ≤ i ≤ m;

Z⋆
ij :=

{
0, ∃ k, such that i, j ∈ Ek,
∥Ai−Aj∥2

2 ≥ 0, otherwise,
1 ≤ i, j ≤ m

(35)

and V ⋆ defined in equation 20, is a primal-dual solution of equation 15. We only need to show the above
construction defined by equation 35 satisfies the KKT conditions equation 30–equation 34. Since equation 31–
equation 34 are obviously satisfied, we now check equation 30 in the following. By equation 35, we compute
the LHS of equation 30 as

D : = −AU + λ⋆1⊤ + 1(λ⋆)⊤

2 + µ⋆I − S⋆ − Z⋆ = −A⊤A + λ⋆1⊤ + 1(λ⋆)⊤

2 − Z⋆.

Equivalently,

Dij = A⊤
i Aj +

A⊤
i Ai + A⊤

j Aj

2 − Z⋆
ij = M⊤

i UMj +
M⊤

i UMi + M⊤
j UMj

2 − Z⋆
ij . (36)

Consider any index pair (i, j). If they are in the same column cluster k, i.e., i, j ∈ Ek, then Mi = Mj and it
follows that Dij = 0 by the definition of Z⋆ in equation 35. Otherwise, by the definition of Z⋆ in equation 35
again,

Dij = −A⊤
i Aj +

A⊤
i Ai + A⊤

j Aj

2 − ∥Ai − Aj∥2

2 = 0.

Therefore, we have verified that (λ⋆, S⋆, Z⋆, µ⋆, V ⋆) also satisfies equation 30. Therefore, V ⋆ is an optimal
solution of the Problem equation 15.

Secondly, we show V ⋆ is the unique solution of equation 15 for any U satisfying equation 24. The Lagrangian
function for the sub-problem equation 15 (by considering min⟨−AU , V ⟩ ) is given by

L(V, λ, µ, S, Z) = ⟨−AU , V ⟩ + λ⊤(V 1 − 1) + µ(⟨I, V ⟩ − KC) − ⟨S + Z, V ⟩.

Note that for any λ, µ, S, Z and a feasible V ∈ SV , the Lagrangian L(V, λ, µ, S, Z) = −⟨AU +S+Z, V ⟩ by using
the equality constraints in SV . In particular, for the optimal solution (V ⋆, λ⋆, µ⋆, S⋆, Z⋆) we have constructed
to satisfy the KKT conditions equation 31 and equation 34, we have L(V ⋆, λ⋆, µ⋆, S⋆, Z⋆) = −⟨AU , V ⋆⟩.

If there is another optimal solution V̂ of equation 15, then ⟨−AU , V̂ ⟩ ≤ ⟨−AU , V ⋆⟩. We shall show that this
V̂ has to be the same as V ⋆. Since the KKT pair (V ⋆, λ⋆, µ⋆, S⋆, Z⋆) solves the min-max problem for the
Lagrangian function, we have that

−⟨AU , V ⋆⟩ = L(V ⋆, λ⋆, µ⋆, S⋆, Z⋆) ≤ L(V̂ , λ⋆, µ⋆, S⋆, Z⋆) = −⟨AU + S⋆ + Z⋆, V̂ ⟩
≤ −⟨AU , V̂ ⟩ ≤ −⟨AU , V ⋆⟩,

(37)

where we use ⟨S⋆ + Z⋆, V̂ ⟩ ≥ 0 due to equation 31, equation 34 and V̂ ≥ 0, V̂ ⪰ 0.

Equality equation 37 in fact implies that ⟨S⋆ + Z⋆, V̂ ⟩ = 0. From the fact that S⋆ = 0, Z⋆ ≥ 0 and V̂ ⪰ 0,
we have

⟨Z⋆, V̂ ⟩ =
∑

ij

Z⋆
ij V̂ij = 0. (38)

Based on this and the condition equation 24, we show that V̂ = V ⋆ as follows.

Note that the assumption equation 24 can guarantee Z⋆
ij = ∥Ai − Aj∥2/2 > 0 when i ∈ Ek, j ∈ El with

k ̸= l. Thus, equation 38 gives V̂ij = 0, if i ∈ Ek, j ∈ El with k ̸= l, and consequently V̂ is a block diagonal
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matrix of the following form:

V̂ =


V̂1 0 · · · 0
0 V̂2 · · · 0
...

... . . . ...
0 0 · · · V̂KC

 .

Together with V̂ 1 = 1, we have V̂i1 = 1 for any i = 1, 2, . . . , KC . It means that 1 must be an eigenvalue of

V̂i and Tr(V̂i) ≥ 1. Then by Tr(V̂ ) =
KC∑
i=1

Tr(V̂i) = KC , we obtain that the other eigenvalues of V̂i should be

0. Thus, each block V̂i has rank one. Therefore, V̂ has to take the same form as V ⋆, which means that V ⋆

is the unique solution of equation 15.

B Proof of Theorem 2

To prove Theorem 2, we first show the following lemma to estimate the bound of ∥U⋆ − U∥2
F.

Lemma 1. Write the matrix M in row-wise form, M⊤ = [(M⊤)1, . . . , (M⊤)n]. Then

∥U⋆ − U∥2
F ≤ 4

nmin · gap2
r(M)

(
Tr(MV ⋆M⊤U⋆) − Tr(MV M⊤U)

)
(39)

holds for all U ∈ SU and V ∈ SV , where SU and SV are defined in equation 6 and equation 7, and

gapr(M) := min
i∈Ck,j∈Cl,k ̸=l

∥(M⊤)i − (M⊤)j∥2. (40)

Remark 6. We have a similar result for the bound of ∥V − V ⋆∥2
F. Lemma 1 also holds for all U ∈ DU and

V ∈ DV , since DU ⊆ SU and DV ⊆ SV .

Proof. Note that U and U⋆ are positive semidefinite and stochastic matrix whose columns are probability
vectors. It follows by Perron–Frobenius theorem that their eigenvalues all line in [0, 1]. Therefore,

∥U∥2
F =

∑
j

λ2
j ≤

∑
j

λj = Tr(U). (41)

This fact together with (U⋆)2 = U⋆ implies that

∥U⋆ − U∥2
F = ∥U⋆∥2

F + ∥U∥2
F − 2 Tr(UU⋆) ≤ 2KR − 2 Tr(UU⋆) = 2 Tr((U⋆ − U)U⋆). (42)

Let Ω denote the indices of a n × m matrix for the diagonal blocks specified the ground truth, and Ωc

the indices in the off-diagonal blocks, and Ωt denote the indices in the diagonal block for the cluster t. So
Ω = ∪tΩt. For example, we write 11⊤ as the sum of two matrices (11⊤)Ω and (11⊤)Ωc , defined by

(11⊤)Ω :=


1n11⊤

n1
0 · · · 0

0 1n21⊤
n2

· · · 0
...

... . . . ...
0 0 · · · 1nKR

1⊤
nKR


and

(11⊤)Ωc :=


0 1n11⊤

n2
· · · 1n11⊤

nKR

1n21⊤
n1

0 · · · 1n21⊤
nKR...

... . . . ...
1n11⊤

nKR
1n21⊤

nKR
· · · 0

 .
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In addition, (11⊤)Ωt
refers to the matrix in which all elements are zero, apart from the t-th diagonal block

elements which take the value of 1 at each entry. With this notation, the matrix U⋆ is then rewritten as

nminU⋆ = 11⊤ − (11⊤)Ωc −
KR∑
t=1

(1 − nmin

nt
)(11⊤)Ωt

. (43)

Note that (U⋆ − U)(11⊤) = 0 implied by (U⋆ − U)1 = 1 − 1 = 0. This further means that

0 = (U⋆ − U)Ω(11⊤) + (U⋆ − U)Ωc(11⊤) = (U⋆ − U)Ω(11⊤) − UΩc(11⊤).

and thus
(U⋆ − U)Ω(11⊤) = UΩc

(11⊤) ≥ 0,

which implies for each block
(U⋆ − U)Ωt

(11⊤) ≥ 0, ∀t.

From this inequality and equation 43, we have the following bounds for equation 42

∥U⋆ − U∥2
F ≤ 2 Tr((U⋆ − U)U⋆)

= − 2
nmin

Tr
(

(U⋆ − U)
(
(11⊤)Ωc +

KR∑
t=1

(1 − nmin

nt
)(11⊤)Ωt

))
≤ − 2

nmin
Tr((U⋆ − U)(11⊤)Ωc).

(44)

Let R := MM⊤ and write R = D + C, where

D := 1
2r1⊤ + 1

21r⊤ and C := R − D

with the column vector r := diag(R). Note that Cij = Rij − 1
2 (Rii + Rjj) = − 1

2 ∥(M⊤)i − (M⊤)j∥2 ≤ 0,
and C satisfies CΩ = 0 and CΩc = C. Let |C|min denote the minimal absolute value among elements of the
matrix C, then (11⊤)Ωc ≤ − C

|C|min
. By this inequality and the fact that −(U⋆ − U)Ωc = UΩc ≥ 0, we have

that

− Tr((U⋆ − U)Ωc(11⊤)Ωc) ≤ 1
|C|min

Tr((U⋆ − U)ΩcC)

= 1
|C|min

Tr((U⋆ − U)CΩc)

= 1
|C|min

Tr((U⋆ − U)C),

(45)

where the last two equalities are due to the simple fact Tr(ABΩc) = Tr(AΩcB) = Tr(AΩcBΩc) for any two
matrices in Rn×n.

Then by following equation 44, we have that

∥U⋆ − U∥2
F ≤ − 2

nmin
Tr((U⋆ − U)(11⊤)Ωc)

≤ 2
nmin|C|min

Tr((U⋆ − U)C)

= 2
nmin|C|min

Tr((U⋆ − U)R),

(46)

where the last step uses R = C + D and the following property about the matrix D:

2 Tr
(
(U⋆ − U)D

)
= Tr

(
(U⋆ − U)(r1⊤ + 1r⊤)

)
= 2 Tr

(
(U⋆ − U)1r⊤)

= 0,
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since (U⋆ − U)1 = 0.

Lastly, for the right hand side in equation 46, we note that Tr(UR) = Tr(MM⊤U) = Tr(MV ⋆M⊤U).
Therefore, by Property 1 about the optimality of V ⋆ for the sub-problem equation 15 (with X = M), it
holds that

Tr((U⋆ − U)R) = Tr(MV ⋆M⊤U⋆) − Tr(MV ⋆M⊤U)
≤ Tr(MV ⋆M⊤U⋆) − Tr(MV M⊤U)

(47)

for any U ∈ SU and V ∈ SV , which completes the proof in view of equation 46 and that |C|min =
gapr(M)/2.

Now we have prepared to prove Theorem 2.

Proof of Theorem 2. From Lemma 1, we have

∥U⋆ − U1∥2
F ≤ 4

nmin · gap2
r(M)

(
Tr(MV ⋆M⊤U⋆) − Tr(MIM⊤U1)

)
. (48)

The proof is to apply Lemma 1 by first estimating the bound Tr(MV ⋆M⊤U⋆) − Tr(MIM⊤U1).

Note that U1 is the optimal solution of Problem equation 14 or equation 16 corresponding to the initial
V0 = I, we have F (V0, U⋆) ≤ F (V0, U1), i.e., Tr(XIX⊤U⋆) ≤ Tr(XIX⊤U1), which leads to, by using
X = M + N ,

Tr(MM⊤U⋆) − Tr(MM⊤U1) ≤ − Tr(NM⊤U⋆) + Tr(NM⊤U1) − Tr(NN⊤U⋆)
+ Tr(NN⊤U1) − Tr(MN⊤U⋆) + Tr(MN⊤U1).

(49)

Together with the fact MV ⋆ = M , the above inequality gives that

Tr(MV ⋆M⊤U⋆) − Tr(MIM⊤U1) = Tr(MIM⊤U⋆) − Tr(MIM⊤U1)
≤ |Tr(NM⊤(U1 − U⋆)| + |Tr(MN⊤(U1 − U⋆)|

+ |Tr(NN⊤(U1 − U⋆))|
≤ 2∥N∥2∥M∥F∥U1 − U⋆∥F + ∥N∥2

2∥I∥F∥U1 − U⋆∥F

= ∥N∥2
(
2∥M∥F +

√
m∥N∥2

)
∥U1 − U⋆∥F.

(50)

The second inequality above is due to the matrix-norm inequality

Tr(ABC) ≤ ∥AB∥F∥C∥F ≤ ∥A∥2∥B∥F∥C∥F. (51)

Therefore, by equation 48 and equation 50, we have that

∥U⋆ − U1∥F ≤
4∥N∥2

(
2∥M∥F +

√
m∥N∥2

)
nmin · gap2

r(M) . (52)

It remains to show the bounds for ∥N∥2, ∥M∥F, and gap2
r(M).

By the random matrix theory (Vershynin, 2012, Corollary 5.35) for the n × m Gaussian random matrix, we
have that with probability ≥ 1 − η,

∥N∥2 ≤
(√

n +
√

m +
√

2 ln 2
η

)
σ. (53)

In addition,

∥M∥F =
√ ∑

i=1,...,n,j=1,...,m

M2
ij ≤

√
mn max

k=1,...,KR;l=1,...,KC

|ck,l|, (54)
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and
gap2

r(M) = min
i∈Ck,j∈Cl,k ̸=l

∥(M⊤)i − (M⊤)j∥2
2

= min
i∈Ck,j∈Cl,k ̸=l

KC∑
t=1

mt(Mit − Mjt)2

≥ min
i∈Ck,j∈Cl,k ̸=l

(
mmin max

t=1,...,KC

(Mit − Mjt)2)
= mmin∆2

r.

(55)

The conclusion is then proven by combining equation 52, equation 53, equation 54, and equation 55.

C Proof of Theorem 3

To prove Theorem 3, we establish the following lemma.
Lemma 2. For any η > 0, with the probability ≥ 1 − η, it holds that

F (U⋆, V ⋆) − F (Up, Vp−1) ≤ αδrσ2n, p ≥ 2. (56)

Therefore,

F (U⋆, V ⋆) − F (Up, Vp) ≤ F (U⋆, V ⋆) − F (Up, Vp−1) ≤ αδrσ2n (57)

with

α :=
α0(

√
m +

√
KC)

(√
n +

√
m +

√
2 ln 2

η

)2

n
√

n
.

If m/mmin = Θ(1), n/nmin = Θ(1), n/m = Θ(1) and ln(2/η) = O(
√

mn), as in Remark 2, then α0 = Θ(1)
and α = Θ(1).

Proof. Note that U1 is the optimal solution of Problem equation 14 or equation 16 corresponding to the
initial V0 = I. Thus, we have F (V0, U⋆) ≤ F (V0, U1), i.e.,

Tr(XIX⊤U⋆) ≤ Tr(XIX⊤U1). (58)

Similarly, V1 satisfies F (V ⋆, U1) ≤ F (V1, U1), i.e.,

Tr(XV ⋆X⊤U1) ≤ Tr(XV1X⊤U1). (59)

By X = M + N and equation 5, it is easy to verify that for any n-by-n matrix U ,

Tr(XV ⋆X⊤U) = Tr(XIX⊤U) + Tr(NV ⋆N⊤U) − Tr(NIN⊤U). (60)

Then it follows that
F (U⋆, V ⋆) − F (Up, Vp−1)

= Tr(XV ⋆X⊤U⋆) − Tr(XVp−1X⊤Up)
equation 60= Tr(XIX⊤U⋆) − Tr(XVp−1X⊤Up) + Tr(NV ⋆N⊤U⋆) − Tr(NIN⊤U⋆)
equation 58

≤ Tr(XIX⊤U1) − Tr(XVp−1X⊤Up) + Tr(NV ⋆N⊤U⋆) − Tr(NIN⊤U⋆)
equation 60= Tr(XV ⋆X⊤U1) − Tr(XVp−1X⊤Up) + Tr(NV ⋆N⊤(U⋆ − U1))

− Tr(NIN⊤(U⋆ − U1))
equation 59

≤ Tr(XV1X⊤U1) − Tr(XVp−1X⊤Up) + ∥N∥2
2(

√
KC +

√
m) ∥U⋆ − U1∥F

equation 25
≤ ∥N∥2

2(
√

KC +
√

m) ∥U⋆ − U1∥F.

(61)
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The second last inequality uses the matrix norm inequality equation 51, as well as ∥V ⋆∥F =
√

KC and
∥I∥F =

√
m.

With the bound of ∥N∥2 in equation 53 and the bound of ∥U⋆ − U1∥F in Theorem 2, equation 61 completes
the proof.

Proof of Theorem 3. To bound the error E
(U)
p := ∥U⋆ − Up∥F, we use Lemma 1 to have(

E(U)
p

)2 ≤ 4
nmin · gap2

r(M)
(
Tr(MV ⋆M⊤U⋆) − Tr(MVp−1M⊤Up)

)
. (62)

Then we estimate Tr(MV ⋆M⊤U⋆) − Tr(MVp−1M⊤Up). Since Up is an optimal solution of Problem equa-
tion 14 or equation 16 when fixing V = Vp−1, by using M = X − N , we obtain

Tr(MV ⋆M⊤U⋆) − Tr(MVp−1M⊤Up) ≤ e1 + e2 + e3 + F (U⋆, V ⋆) − F (Up, Vp−1), (63)

where
e1 := |Tr(NV ⋆M⊤U⋆) − Tr(NVp−1M⊤Up)|,
e2 := |Tr(MV ⋆N⊤U⋆) − Tr(MVp−1N⊤Up)|,
e3 := |Tr(NV ⋆N⊤U⋆) − Tr(NVp−1N⊤Up)|.

The bounds for the three terms e1, e2, e3 in equation 63 are analyzed below. By using V ⋆M⊤ = M⊤ and
equation 51, we have that

e1 ≤ |Tr(NV ⋆M⊤U⋆) − Tr(NV ⋆M⊤Up)| + |Tr(NV ⋆M⊤Up) − Tr(NVp−1M⊤Up)|

≤ ∥N∥2

(
∥M∥F∥U⋆ − Up∥F + ∥UpM∥F∥V ⋆ − Vp−1∥F

)
≤ ∥N∥2∥M∥F

(
E(U)

p +
√

KR∥V ⋆ − Vp−1∥F

)
.

The last inequality is obtained by ∥Up∥2
F ≤ Tr(Up) = KR from equation 41. Similarly,

e2 ≤ ∥N∥2∥M∥F
(
E(U)

p +
√

KR∥V ⋆ − Vp−1∥F
)

and

e3 ≤ ∥N∥2
2
(√

KCE(U)
p +

√
KR∥V ⋆ − Vp−1∥F

)
.

Therefore, equation 62 leads to the quadratic inequality:

(E(U)
p )2 − aE(U)

p − (bE
(V )
p−1 + cp) ≤ 0 (64)

and similarly
(E(V )

p−1)2 − a′E
(V )
p−1 − (b′E

(U)
p−1 + c′

p−1) ≤ 0, (65)
where a, b, cp, a′, b′, and c′

p−1 are defined as following:

a :=
4
√

n∥N∥2
(
2∥M∥F +

√
KC∥N∥2

)
nminmmin∆2

r

≤ 2αa√
n

δr,

b := 4
√

KR

nminmmin∆2
r

∥N∥2
(
2∥M∥F + ∥N∥2

)
≤ αb√

n
δr,

cp := 4
nminmmin∆2

r

(
F (U⋆, V ⋆) − F (Up, Vp−1)

)
,

a′ :=
4∥N∥2

(
2∥M∥F +

√
KR∥N∥2

)
nminmmin∆2

c

≤ 2βa√
n

δr,

b′ := 4
√

KC

nminmmin∆2
c

∥N∥2
(
2∥M∥F + ∥N∥2

)
≤ βb√

n
δr,

c′
p−1 := 4

nminmmin∆2
c

(
F (U⋆, V ⋆) − F (Up−1, Vp−1)

)
.

(66)
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Here cp and c′
p decrease with p. Furthermore, by Lemma 2, cp and c′

p can be bounded by

cp ≤ c̃ := 4
nminmmin∆2

r

αδrσ2n = α2
c

n
δ2

r , (67)

c′
p−1 ≤ c̃′ := 4

nminmmin∆2
c

αδrσ2n = β2
c

n
δ2

r . (68)

From the quadratic inequality equation 64, E
(U)
p can be bounded by

E(U)
p ≤

a +
√

a2 + 4(bE
(V )
p−1 + cp)

2 . (69)

This means that we only need to bound E
(V )
p−1, which can be bounded by E

(U)
p−1 from equation 68, i.e.,

E
(V )
p−1 ≤

a′ +
√

a′2 + 4(b′E
(U)
p−1 + c̃′)

2 ≤ a′ +
√

b′E
(U)
p−1 +

√
c̃′. (70)

Thus, the problem transfers to bound E
(U)
p−1. From equation 67 and equation 68, we similarly have

E
(U)
p−1 ≤ a +

√
bE

(V )
p−2 +

√
c̃,

E
(V )
p−2 ≤ a′ +

√
b′E

(U)
p−2 +

√
c̃′. (71)

Furthermore, we obtain the relation between E
(U)
p−1 and E

(U)
p−2:

E
(U)
p−1 ≤ a +

√
ba′ + b

√
b′E

(U)
p−2 + b

√
c̃′ +

√
c̃ ≤ a + b

1
2 a′ 1

2 + b
1
2 c̃′ 1

4 + c̃
1
2 + b

1
2 b′ 1

4 (E(U)
p−2) 1

4 . (72)

Then we have the bound of E
(U)
p−1:

E
(U)
p−1 ≤ γU√

n
δr (73)

with γU = 5 max(α0, αa, αb, αc, βa, βb, βc), by induction. Theorem 2 implies that equation 73 holds for p = 2.
Then we aim to prove equation 73 holds for p = i + 1 if assuming equation 73 holds for p = i. Substituting
a, b, c̃, a′, b′, and c̃′ in equation 72 with equation 66, equation 67, and equation 68, it follows that

E
(U)
p−1 ≤ δr√

n

(
αa +

√
αbβa +

√
αbβc + αc +

√
αb

√
βbγU

)
≤ δr√

n
γU ,

which gives the of E
(U)
p together with equation 70 and equation 69. Following a similar way to the bound

∥U⋆ − Up∥F, we can also bound ∥V ⋆ − Vp∥F.

D ADMM for solving (14) and (15)

We present the ADMM algorithm proposed by Wen et al. (2010) to solve equation 14. The solver for equa-
tion 15 is similar. The dual of equation 14 is

min
y∈Rn+1,S∈Sn,Z∈Sn

−b⊤y,

s.t. A∗(y) + S + Z = −AV , S ⪰ 0, Z ≥ 0.
(74)

where b = [1, KR], A∗(y) = 1y⊤
1:n+y1:n1⊤

2 + yn+1In, and Sn is the set of n × n symmetric matrices. The
augmented Lagrangian of its dual problem is defined as

Lµ(U, y, S, Z) = −b⊤y + ⟨U, AV − A∗(y) − S − Z⟩ + 1
2µ

∥AV − A∗(y) − S − Z∥2
F,
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with µ > 0. Then U is computed by performing the following steps:

y(t+1) = argminy∈Rn+1 Lµ(U, y, S, Z), (75)
Z(t+1) = argminZ∈Sn Lµ(U, y, S, Z), Z ≥ 0, (76)
S(t+1) = argminS∈Sn Lµ(U, y, S, Z), S ⪰ 0, (77)

U (t+1) = S(t+1) − W (t+1)

µ
(78)

with W (t+1) = AV − A∗(y(t+1)) − S(t+1) − Z(t+1). y(t+1) can be computed directly from the first-order
optimality conditions for equation 75. The solutions of equation 76 and equation 77 are, respectively,
Z(t+1) = max

(
W (t+1), 0

)
and S(t+1) = Q+Σ+Q⊤

+, where the diagonal matrix Σ+ contains all positive
eigenvalues of W (t+1) and Q+ contains the corresponding eigenvectors.

E ADMM for solving (16) and (17)

We demonstrate the ADMM algorithm proposed by Kulis et al. (2007); Tepper et al. (2018) using equation 16
as a sample case. The solver for equation 17 follows a similar approach. The augmented Lagrangian
of equation 16 is defined as

L(Y ⊤
U YU , µ, λ) = −⟨AV , YU ⟩ + 1

2∥Y ⊤
U YU 1 − 1∥2

2 − λ⊤(Y ⊤
U YU 1 − 1) − µ(Tr(Y ⊤

U YU ) − rU ) + 1
2(Tr(Y ⊤

U YU ) − rU )2,

where µ and λ are Lagrange multipliers. Then YU is computed by performing the following steps:

Y
(t+1)

U = argminYU ≥0 L(YU , µ(t), λ(t)),
λ(t+1) = λ(t) − Y ⊤

U YU 1 + 1,

µ(t+1) = µ(t) − Tr(Y ⊤
U YU ) + rU ,

where the minimization for solving Y
(t+1)

U is computed by the L-BFGS-B algorithm introduced by Byrd
et al. (1995) with constraints 0 ≤ Yij ≤ 1.
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