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Abstract

This paper addresses the challenge of disconti-
nuity in goal-achievement capabilities observed
in Goal-conditioned Reinforcement Learning
(GCRL) algorithms. Through a theoretical analy-
sis, we identify that the reuse of successful trajec-
tories or policies during training can aid in achiev-
ing adjacent goals of achievable goals. How-
ever, the policy discrepancy between achievable
and adjacent goals must be carefully managed
to avoid both overly trivial and excessively large
differences, which can respectively hinder pol-
icy performance. To tackle this issue, we pro-
pose a margin-based policy self-regularization ap-
proach that optimizes the policy discrepancies
between adjacent desired goals to a minimal ac-
ceptable threshold. This method can be inte-
grated into popular GCRL algorithms, such as
GC-SAC, HER, and GC-PPO. Systematic eval-
uations across two robotic arm control tasks
and a complex fixed-wing aircraft control task
demonstrate that our approach significantly im-
proves the continuity of goal-achievement abil-
ities of GCRL algorithms, thereby enhancing
their overall performance. Our code is avail-
able at https://github.com/GongXudong/fly-craft-
examples.

1. Introduction
Goal-conditioned Reinforcement Learning (GCRL) (Liu
et al., 2022) is an approach that acquires goal-conditioned
behaviors by maximizing cumulative rewards over a desired
goal distribution through trial-and-error (Sutton & Barto,
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(a) GC-PPO (baseline)
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(b) MSR-GC-PPO (ours)

Figure 1. Success rate of adjacent goals around an achievable goal
on the fixed-wing aircraft control task. In this task, χ and µ
represent two dimensions of the goal space. The central point in
the figure denotes an achievable goal. To enhance the clarity of the
two coordinate axes, we introduce the baseline noise parameters
∆χ and ∆µ. The horizontal axis, ϵχ, signifies that the distance
between an adjacent goal and the achievable goal along the χ
dimension is ϵχ∆χ. A similar interpretation applies to the vertical
axis, ϵµ. We train 5 policies, each initialized with a distinct random
seed. For each policy, we conduct evaluations with 100 achievable
goals. The results presented herein reflect the average performance
across the total of 500 achievable goals.

2018). This method demonstrates superiority over conven-
tional approaches of training a policy for each individual
goal, as it facilitates the transfer of knowledge across dif-
ferent goals (Andrychowicz et al., 2017). GCRL has been
extensively applied in control domains, such as robotic arm
manipulation (Pitis et al., 2020) and fixed-wing aircraft con-
trol (Gong et al., 2024b; 2025b), as well as in games like
MineCraft (Yuan et al., 2024) and Atari (Warde-Farley et al.,
2018; Schaul et al., 2015).

However, in practice, we observe that GCRL algorithms
commonly encounter discontinuity in their capability to
achieve goals. For instance, when the error threshold for
determining achievement, δ = 1, an aircraft is capable of ex-
ecuting a right turn of 30 degrees, yet it fails to accomplish
a right turn of 30.1 degrees. This is an issue that should not
arise, given that the change in the goal, 0.1, is significantly
less than δ. Consequently, reusing the trajectory for the 30-
degree right turn should suffice to achieve the 30.1-degree
turn, as demonstrated in Fig. 2 (a) and (b). To provide a
more intuitive illustration, we conduct systematic evalua-
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(a) Research Question: 
Suppose the aircraft can 
turn right 30°. Then, can 
it turn right 30.1° (error 
threshold 𝜹 = 𝟏)?

(b) Observation 1: 
Directly reusing the policy 
for turning right 30° can 
achieve 30.1° and obtain 
a guaranteed return.

(c) Observation 2: 
It is necessary to 
change the reused 
policy in order to 
obtain higher returns.

(d) Observation 3: 
If the policy differs too 
much, it may lead to failure.

30.1°
30°

Figure 2. Research question and three corresponding observational findings.

tions on the fixed-wing aircraft control task, and the results
are depicted in Fig. 1. It is evident that the success rate for
goals in the vicinity of an achievable goal typically falls
below 60%. In contrast, our method significantly elevates
the success rate to well above 60%.

To address the aforementioned issue, we conduct a theo-
retical analysis which reveals that, during training, reusing
successful trajectories can facilitate the policy in learning
to achieve adjacent goals around the achieved ones, while
also guaranteeing a baseline level of cumulative rewards.
The difference between policies for achieved goals and their
adjacent goals should be small but not too trivial; an exces-
sively small discrepancy may hinder the policy from further
enhancing cumulative rewards beyond the baseline (Fig. 2
(c)), whereas a large discrepancy may result in the policy’s
failure to obtain the baseline cumulative rewards (Fig. 2
(d)).

Building upon these insights, we develop a Margin-Based
Policy Self-Regularization (MSR) approach, which opti-
mizes the difference between the polices for a desired goal
and its adjacent goals to a threshold that represents the
minimal acceptable discrepancy. We incorporate MSR
into the widely used GCRL algorithms, including the goal-
conditioned off-policy algorithms GC-SAC (Pitis et al.,
2020) and HER (Andrychowicz et al., 2017), as well as
the goal-conditioned on-policy algorithm, GC-PPO (Gong
et al., 2024a). We conduct experiments on two robotic
arm control tasks (Gallouédec et al., 2021) and one com-
plex, real-world fixed-wing aircraft control task (Gong et al.,
2025a). Experiment results indicate that MSR effectively
improves the continuity of goal-achievement abilities for
GCRL algorithms, and furthermore, it improves the ability
of the policies to obtain cumulative rewards.

To summarize:

• We assess multiple prevalent GCRL algorithms across
a range of tasks, substantiating the prevalent challenge
of discontinuity in the goal-achievement capabilities
of GCRL algorithms.

• We conduct a theoretical analysis to elucidate the rea-
sons for the discontinuity in goal-achievement capabil-
ities of GCRL algorithms. Based on the insights from
theoretical analysis, we design a margin-based policy
self-regularization method. This method, serving as an
auxiliary optimization for policies, can be integrated
as a plug-in module into nearly all GCRL algorithms.

• We conduct systematic evaluations on two robotic arm
control tasks and a fixed-wing aircraft control task.
Results indicate that the integration of MSR into GCRL
algorithms substantially improves the continuity of
their goal-achievement abilities.

2. Preliminaries
GCRL can be described by goal-augmented MDP (Liu et al.,
2022) M = ⟨S,A, T , r, γ,G, pdg, ϕ⟩, where S,A, γ,G and
pdg denote the state space, action space, discount factor,
goal space and desired goal distribution of the environment,
respectively. T : S × A → P(S) is the transition func-
tion, where P(X ) denote the probability distribution over
a set X . r : S × A × G → R is the goal-conditioned
reward function. ϕ : S → G is a tractable mapping func-
tion that maps the state to a specific goal. The objective
of GCRL is to achieve goals via a goal-conditioned policy
π : S×G → P(A) that maximizes the expectation of the cu-
mulative rewards over the desired goal distribution J(π) =
Eat∼π(·|st,g),g∼pdg,st+1∼T (·|st,at) [

∑
t γ

tr(st, at, g)] .

Without loss of generality, we assume that: (1) In the tran-
sition function, a parameter δ is incorporated to assess the
achievement of a goal. The criterion for determining that
a state s has achieved the goal g is given by the condition
∥ϕ(s) − g∥ < δ, where ∥ · ∥ represents a distance metric.
If this condition is satisfied, it is said that the state s has
achieved the goal g. (2) The reward function is bounded by
Rmax, i.e., |r(s, a)| ≤ Rmax,∀(s, a) ∈ S ×A.

To facilitate later analysis, we introduce the discounted sta-
tionary state distribution dπ(s) = (1− γ)

∑∞
t=0 γ

tPr(st =
s;π), and the discounted stationary state-action distribution
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ρπ(s, a) = (1 − γ)
∑∞

t=0 γ
tPr(st = s, at = a;π). Intu-

itively, discounted stationary state (state-action) distribution
measures the overall frequency of visiting a state (state-
action) (Xu et al., 2020). Their relationship ρπ(s, a) =
π(a|s)dπ(s) holds for any policy π. Additionally, we intro-
duce an alternative method for computing the cumulative
rewards, given by J(π) = 1

1−γE(s,a)∼ρπ
r(s, a), where 1

1−γ
is analogous to the effective planning horizon (Puterman,
2014).

To maintain the clarity of the formulas, we employ the
notation πg as an abbreviation for π(·|·, g). We denote
the cumulative rewards that policy π can obtain with re-
spect to a desired goal g as J(πg), which is defined as
J(πg) = Eat∼π(·|st,g),st+1∼T (·|st,at) [

∑
t γ

tr(st, at, g)] =
1

1−γE(s,a)∼ρπg
r(s, a, g).

3. Margin-Based Policy Self-Regularization
3.1. Theoretical Analysis

We commence by presenting Theorem 3.1 and Corollary 3.2,
which underpin the insight depicted in Fig. 2(b).

Theorem 3.1. Consider a goal-augmented MDP M =
⟨S,A, T , r, γ,G, pdg, ϕ⟩, where the error threshold for de-
termining goal achievement is δ. Suppose we have a trajec-
tory τ = (s0, a0, s1, a1, · · · , sT , aT ) satisfying ϕ(sT ) = g.
For an arbitrary perturbation ϵ ∈ G, if ∥ϵ∥ < δ, then τ may
also be regarded as achieving g + ϵ.

The proof of Theorem 3.1 can be found in Appendix A.2.
Theorem 3.1 shows that if a trajectory successfully achieves
goal g, then it is also able to serve as a trajectory for achiev-
ing goals in the vicinity of g. Theorem 3.1 analyzes the
properties of achieved goals from the perspective of tra-
jectories. The following Corollary 3.2, on the other hand,
analyzes the properties of the achieved goal from the per-
spective of the policy.

Corollary 3.2. Consider a goal-augmented MDP M =
⟨S,A, T , r, γ,G, pdg, ϕ⟩, where the error threshold for de-
termining goal achievement is δ. For a desired goal g′,
suppose we have a policy π that can achieve this goal (with
the actually achieved goal being denoted as g). For any per-
turbation ϵ ∈ G such that ∥ϵ∥ < δ, the policy is guaranteed
to achieve the goal g + ϵ on the condition that it satisfies
Es∼dπ

g′
DKL (π(·|s, g′), π(·|s, g + ϵ)) = 0.

The proof of Corollary 3.2 can be found in Appendix A.3.
Corollary 3.2 indicates that if the policy remains unchanged,
the same policy can also achieve goals in the vicinity of
achieved goals.

Theorem 3.1 and Corollary 3.2 demonstrate that the tra-
jectories or policies associated with achieved goals can be
reused to achieve goals in the vicinity of these achieved

goals. Theorem 3.3, meanwhile, attempts to quantify the cu-
mulative rewards that can be obtained by reusing successful
trajectories and policies.

Theorem 3.3. Consider a goal-augmented MDP M =
⟨S,A, T , r, γ,G, pdg, ϕ⟩. For any goal g ∈ G and perturba-
tion ϵ ∈ G, the following two inequalities hold:

J(πg+ϵ) ≥
1

1− γ

∑
(s,a)

ρπg (s, a)r(s, a, g + ϵ)

− 2
√
2Rmax

(1− γ)2

√
DKL (πg+ϵ(·|s), πg(·|s))

(1)

J(πg+ϵ) ≤
1

1− γ

∑
(s,a)

ρπg
(s, a)r(s, a, g + ϵ)

+
2
√
2Rmax

(1− γ)2

√
DKL (πg+ϵ(·|s), πg(·|s))

(2)

The proof of Theorem 3.3 can be found in Appendix A.4.
Theorem 3.3 establishes the upper and lower bounds for
J(πg+ϵ). Here, 1

1−γ

∑
(s,a) ρπg

(s, a)r(s, a, g + ϵ) repre-
sents the first part of return determined by the state-action
distribution induced by πg and the reward function defined
by g+ ϵ, while 2

√
2Rmax

(1−γ)2

√
DKL (πg+ϵ(·|s), πg(·|s)) denotes

the second part of return that is determined by the discrep-
ancy between πg and πg+ϵ.

As indicated by Equation 1, when πg and πg+ϵ are
identical, J(πg+ϵ) obtains the maximum lower bound,
1

1−γ

∑
(s,a) ρπg

(s, a)r(s, a, g + ϵ). We refer to this value
as the guaranteed return for πg+ϵ. The guaranteed re-
turn corresponds to the cumulative rewards obtainable from
reusing trajectories or policies as discussed in Theorem 3.1
and Corollary 3.2.

According to Equation 2, to enhance the return of πg+ϵ

beyond the guaranteed return, there must be a certain de-
gree of discrepancy between πg+ϵ and πg (as depicted by
Fig. 2(c)). In the following section, we present Theorem 3.4
to elucidate the relationship between the policy discrepancy
between πg+ϵ and πg and the corresponding return gap.

Theorem 3.4. Consider a goal-augmented MDP M =
⟨S,A, T , r, γ,G, pdg, ϕ⟩. For a policy π and any pair of
goals g1 ∈ G and g2 ∈ G, the following inequality holds:

|J(πg1)− J(πg2)| ≤
1

1− γ

∑
(s,a)

ρπg1
(s, a) |r(s, a, g1)− r(s, a, g2)|

+
2
√
2Rmax

(1− γ)2
Es∼dπg1

√
dKL(πg1(·|s), πg2(·|s))

(3)
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The proof of Theorem 3.4 can be found in Appendix A.5.
Theorem 3.4 demonstrates that the gap in cumulative re-
wards between two goals, g1 and g2, under policy π is
bounded by two components: the first part is the return gap
determined by the state-action distribution induced by πg1

and the reward gap determined by g1 and g2; the second part
is the return gap determined by the discrepancy between
πg1 and πg2 . In the context of multi-goal problems, a com-
monly employed reward function is r = −∥ϕ(s)− g∥. For
this type of reward, we further simplify Equation 3 through
Corollary 3.5.

Corollary 3.5. Consider a goal-augmented MDP M =
⟨S,A, T , r, γ,G, pdg, ϕ⟩, where the reward function is de-
fined as r(s, a, g) = −∥ϕ(s)− g∥. For a policy π and any
pair of goals g1 ∈ G and g2 ∈ G, the following inequality
holds:

|J(πg1)− J(πg2)| ≤
∥g1 − g2∥
1− γ

+
2
√
2Rmax

(1− γ)2
Es∼dπg1

√
dKL(πg1(·|s), πg2(·|s))

(4)

The proof of Corollary 3.5 can be found in Appendix A.6.
It can be observed that the first part of the return gap is
reduced to ∥g1−g2∥

1−γ , a value that is solely determined by the
difference between g1 and g2. When applied to our research
problem, considering goals g and g + ϵ, we further simplify
Equation 4 through Corollary 3.6.

Corollary 3.6. Consider a goal-augmented MDP M =
⟨S,A, T , r, γ,G, pdg, ϕ⟩, where the reward function is de-
fined as r(s, a, g) = −∥ϕ(s)− g∥ and the error threshold
for determining goal achievement is δ. For a policy π, a
specific goal g, and any perturbation ϵ ∈ G, if ∥ϵ∥ < δ, the
following inequality holds:

|J(πg)− J(πg+ϵ)| ≤
δ

1− γ
+

2
√
2Rmax

(1− γ)2
Es∼dπg

√
dKL(πg(·|s), πg+ϵ(·|s))

(5)

The proof of Corollary 3.6 can be found in Appendix A.7.
It is evident that for a goal g and a goal within its δ-ball,
g + ϵ, the return gap under policy π is governed by two
parts: a constant part determined by δ and a variable part de-
termined by the discrepancy between πg and πg+ϵ. Current
GCRL algorithms generally lack constraints on the discrep-
ancy between policies for adjacent goals, which leads to the
observed discontinuity in the policy’s capability to achieve
goals (as depicted by Fig. 2(d)). Consequently, Corollary 3.6
indicates that to reduce the return gap of a policy on two
adjacent goals, it is necessary to diminish the policy discrep-
ancy between these two goals.

3.2. The Proposed Method

We commence by summarizing the conclusions presented
in Section 3.1:

• Corollary 3.2 indicates that a policy corresponding to
an achieved goal can be reused to achieve goals in the
vicinity of this achieved goal.

• Theorem 3.3 suggests that reusing a policy ensures
a guaranteed return, yet higher returns can only be
attained through policy modification.

• Corollary 3.6 demonstrates that when modifying the
reused policy, the extent of modification should not
be excessive, as this may result in the policy’s return
being unbounded.

Inspired by the aforementioned three conclusions, we are led
to consider the reduction of the discrepancy between πg and
πg+ϵ while simultaneously preventing their convergence to
excessive similarity. Consequently, we propose the MSR
method, as delineated in Equation 6. The core component
of this regularization involves the divergence between π at
g and g + ϵ, quantified by DKL [πg(·|s), πg+ϵ(·|s)]. Hence,
the primary function of MSR is to mitigate the divergence
between πg and πg+ϵ. The role of the parameter β and the
maximization operator is to ensure that the MSR ceases to
exert influence when DKL [πg(·|s), πg+ϵ(·|s)] is less than β,
thereby preventing excessively small discrepancies between
πg and πg+ϵ.

LMSR(π) = max{E s∼dπg
ϵ∼(−ϵ′,ϵ′)

DKL [πg(·|s), πg+ϵ(·|s)]−β, 0}

(6)

Given that MSR serves as a regularization for policies, it
can be integrated with any policy-based GCRL method,
whether it is off-policy, such as GC-SAC, or on-policy, such
as GC-PPO. The specifics of this integration are detailed in
Equation 7.

L(π) = LRL(π) + λLMSR(π), (7)

where LRL(π) represents the optimization objective on π in
reinforcement learning and λ is the strength of MSR. Algo-
rithm 1 delineates the specific procedure for computing the
MSR loss. It is important to note that for each transition,
we sample N perturbations, and based on Equation 6, we
calculate N MSR values. The average of these N MSR
values is then taken as the MSR for that particular transition.
Increasing the value of N can make the estimation of Equa-
tion 6 more accurate, however, it also leads to an increase
in computational expense.
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Algorithm 1 Margin-Based Policy Self-Regularization

Input: training batch [(si, gi)], i = 1, · · · ,M , policy π,
perturbation number for each transition N , the maximum
perturbation ϵ′, MSR threshold β, MSR strength λ
MSR losses = [ ]
for transition (si, gi) in training batch do

this transition MSR losses = [ ]
for j = 1 to N do

sample a perturbation ϵ ∼ (−ϵ′, ϵ′)
tmp MSR loss = max{DKL[π(·|si, gi), π(·|si, gi +
ϵ)]− β, 0}
this transition MSR losses.append(tmp MSR loss)

end for
MSR losses.append(this transition MSR losses.mean())

end for
return λ · MSR losses.mean()

4. Experiments
4.1. Settings

To evaluate the effectiveness of the proposed method, we
conduct experiments on three tasks across two physics sim-
ulation engines. The tasks included: (1) Reach and (2) Push
tasks on the Panda robotic arm (Gallouédec et al., 2021),
which are two multi-goal tasks frequently used in academic
research. We modify the Reach and Push tasks to increase
their difficulty. For Reach, we expand the target range, re-
duce the error threshold for determining achievement, and
employ the joints control mode which means a larger action
space; for Push, we expand the target range, employ the
joints control mode and sparse rewards. (3) The Velocity
Vector Control (VVC) task on a fixed-wing aircraft (Gong
et al., 2025a), which is a typical multi-goal long-horizon
task. The long-horizon nature of the VVC task implies
that the algorithm must overcome more challenging explo-
ration difficulties. The specific configurations for the three
tasks are detailed in Appendix B. Overall, in terms of task
difficulty, the order is Reach < Push < VVC.

We evaluate the following three baseline algorithms: (1)
GC-SAC, representing off-policy GCRL algorithms; (2)
HER, another off-policy GCRL algorithm that incorporates
the goal-relabeling technique; and (3) GC-PPO, represent-
ing on-policy GCRL algorithms. Furthermore, we extend
these baselines with MSR: (4) MSR-GC-SAC; (5) MSR-
HER; and (6) MSR-GC-PPO. Detailed descriptions of these
algorithms can be found in Appendix C.

4.2. Main Results

Table 1 presents the performance of our method and the
baselines across three tasks.

MSR effectively reduces the discrepancy between poli-

Table 1. Policy discrepancy, DKL(πg+ϵ, πg), return gap,
J(πg+ϵ) − J(πg), and expect return, J(π), for different
algorithms. Italics indicates that these results should be interpreted
with caution due to the baseline algorithm’s performance
limitations. The mean and variance are shown over 10 random
seeds.

(a) Reach
Algorithms DKL(πg+ϵ, πg) J(πg+ϵ)− J(πg) J(π)

GC-SAC 0.51±1.28 -0.89±0.68 –12.03±0.63

MSR-GC-SAC 0.25±0.03 0.00±0.00 -0.85±0.02

HER 0.71±0.25 -0.01±0.01 -1.16±0.10

MSR-HER 0.31±0.04 -0.01±0.01 -0.96±0.08

GC-PPO 0.01±0.03 -5.29±2.11 -24.89±1.62

MSR-GC-PPO 2.85±0.72 -0.01±0.02 -1.03±0.15

(b) Push
Algorithms DKL(πg+ϵ, πg) J(πg+ϵ)− J(πg) J(π)

GC-SAC 9.69±6.81 -7.58±3.05 -25.50±8.00

MSR-GC-SAC 4.27±1.42 -6.48±4.14 -23.80±6.76

HER 5.62±0.57 -7.05±2.28 -18.00±2.24

MSR-HER 3.80±0.31 -7.02±1.33 -16.31±1.92

GC-PPO 0.80±0.42 -8.21±1.82 -24.76±2.99

MSR-GC-PPO 0.61±0.17 -7.08±1.78 -23.08±5.06

(c) VVC
Algorithms DKL(πg+ϵ, πg) J(πg+ϵ)− J(πg) J(π)

GC-SAC 0.37±0.12 -22.00±5.06 -138.20±14.16

MSR-GC-SAC 0.33±0.09 -20.94±7.62 -132.09±8.06

HER 0.65±0.22 -7.91±3.22 -69.21±12.87

MSR-HER 0.58±0.16 -7.52±3.15 -64.73±13.55

GC-PPO 0.08±0.08 -44.50±12.09 -169.04±25.57

MSR-GC-PPO 0.19±0.20 -28.89±14.75 -146.64±28.05

cies for adjacent desired goals, DKL(πg+ϵ, πg). As ob-
served in the second column of all tables, except for the
comparison with GC-PPO on the Reach and VVC tasks,
MSR consistently lowers DKL(πg+ϵ, πg) across all tasks
and algorithms. By considering the policy return J(π) and
the success rate presented in Appendix D.2 and D.4, it is ev-
ident that GC-PPO barely acquires any capability to achieve
goals on these two tasks. The failure to learn the distinc-
tions between adjacent goals results in a small value of
DKL(πg+ϵ, πg). Conversely, MSR aids the policy in learn-
ing the distinctions between adjacent goals, thereby slightly
increasing DKL(πg+ϵ, πg).

MSR also effectively diminishes the return gap between
policies for adjacent desired goals, |J(πg+ϵ) − J(πg)|.
The third column of all tables demonstrates that MSR re-
duces |J(πg+ϵ) − J(πg)| across all tasks and algorithms.
In conjunction with Theorem 3.4 and the aforementioned
analysis of DKL(πg+ϵ, πg), it can be concluded that MSR
can effectively reduce the discrepancy between policies for
adjacent desired goals, thereby lowering the return gap. Ad-
ditionally, we present the success rate for adjacent desired
goals surrounding achievable goals in Appendix D, which
exhibits a similar trend to |J(πg+ϵ)− J(πg)|.
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(a) HER, DKL(πg+ϵ, πg)
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(b) MSR-HER, DKL(πg+ϵ, πg)
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(c) HER, J(πg+ϵ)− J(πg)
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(d) MSR-HER, J(πg+ϵ)− J(πg)

Figure 3. Policy discrepancy and return gap between policies for adjacent desired goals. Results come from experiments on Push over 10
ransom seeds. The interpretation of the coordinate axes and the data collection methods are analogous to those described in Fig. 1.
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Figure 4. Trends of policy discrepancy between policies for ad-
jacent desired goals and cumulative rewards of policy during
training. It is important to note that the data presented in this
figure are derived from the training process. In the computation
of DKL(πg+ϵ, πg), g may represent both achievable and unachiev-
able goals. In contrast, the data shown in Fig. 3 are obtained from
testing conducted after the completion of training, where g is only
comprised of achievable goals. Results come from HER and MSR-
HER on Push over 10 random seeds.

Furthermore, MSR enhances the cumulative rewards
of the policy, J(π). The fourth column of all tables shows
that MSR consistently improves J(π). We posit that the
enhancement of J(π) by MSR is an indirect result of its
reduction in |J(πg+ϵ) − J(πg)|. Specifically, MSR’s en-
hancement of the continuity in the policy’s ability to achieve
goals subsequently boosts the policy’s capability to accumu-
late rewards across all goals.

Additionally, we analyze the impact of MSR on training
efficiency. For detailed experiments and analysis, please
refer to Appendix D.1.

In summary, the core capability of MSR is to reduce the
policy discrepancy between adjacent desired goals. This
reduction in policy discrepancy facilitates a decrease in the
return gap between adjacent desired goals, thereby enhanc-
ing the overall ability of the policy to accumulate rewards.

4.3. A Micro-level Analysis of the Results

To provide a more intuitive demonstration of the effective-
ness of our method, we present in Fig. 3 the policy dis-

crepancy and return gap between achievable goals and their
adjacent goals. It can be observed that the color in Fig. 3b
is darker than that in Fig. 3a, indicating that MSR-HER
has a smaller DKL(πg+ϵ, πg) value, which suggests that our
method effectively reduces the discrepancy between poli-
cies for adjacent desired goals. Furthermore, the color in
Fig. 3d is lighter than that in Fig. 3c, indicating that the
value of J(πg+ϵ)− J(πg) for MSR-HER is closer to zero,
demonstrating that our method effectively reduces the return
gap between policies for adjacent desired goals. For results
on other tasks and algorithms, please refer to Appendix D.

In addition, Fig. 4 illustrates the trends of DKL(πg+ϵ, πg)
and J(π) during training. As observed in Fig. 4a, our ap-
proach successfully confines the values of DKL(πg+ϵ, πg)
within a relatively low range, demonstrating its effectiveness
in limiting the discrepancy between policies for adjacent
desired goals without overly minimizing it. Furthermore,
Fig. 4b reveals that the policy trained by our method ex-
hibits a faster increase in cumulative rewards, indicating
that our approach not only enhances the policy’s capability
to acquire cumulative rewards but also accelerates the rate
at which these rewards are obtained.

4.4. Ablation Studies

In this section, we take the MSR-GC-SAC algorithm as an
example on the Reach task to analyze the impact of the four
hyperparameters in MSR, ϵ′, λ, β,N , on the training.

Setting ϵ′ to δ facilitates the reduction of discrepancy
between policies for adjacent desired goals.. The value
of ϵ′ determines the definition of adjacent desired goals,
making it a parameter tightly coupled with the task. Typi-
cally, setting ϵ′ = δ is sufficient. To demonstrate the impact
of ϵ′ on training, we set λ = 0.001, β = 0.0 and ϵ′ to
0.1δ, 0.5δ, δ, and respectively evaluate the trained policies
within the ranges of 0.1δ, 0.5δ, δ around achievable goals.
Figure 5 presents the corresponding average DKL(πg+ϵ, πg)
of achievable goals and their adjacent goals with ϵ sampled
randomly from the range of evaluation ϵ′. It can be ob-
served that regardless of the value of ϵ′ used in evaluation,
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Figure 5. Policy discrepancy be-
tween adjacent desired goals,
DKL(πg+ϵ, πg), under different
ϵ′ settings. Results are derived
from MSR-GC-SAC on Reach
across 5 random seeds.
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Figure 6. Policy discrepancy between adjacent desired goals, DKL(πg+ϵ, πg), under different β
settings. The meanings of the coordinate axes and the evaluation methods are consistent with those
in Fig.1. Results are derived from MSR-GC-SAC on Reach across 5 random seeds.
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Figure 7. Trends of policy discrepancy between policies for ad-
jacent desired goals, DKL(πg+ϵ, πg), and expected return, J(π),
during training under different λ settings. Results are derived from
MSR-GC-SAC on Reach across 5 random seeds.

increasing ϵ′ used in training towards δ aids in reducing the
discrepancy between policies for adjacent desired goals.

The selection of λ necessitates a balance between the
effects of RL optimization and MSR optimization. λ
is utilized to balance the relative importance between op-
timization objectives of RL and MSR. A larger value of
λ indicates a greater proportion of the MSR optimization
objective in the overall optimization objective. We conduct
ablation experiments with ϵ′ = δ, β = 0.1 and λ set at
0.001, 0.01, 0.1, and 1, and the trends of DKL(πg+ϵ, πg)
and J(π) during training are shown in Fig. 7. As observed
in Fig. 7a, an increase in λ corresponds to a decrease in the
value of DKL(πg+ϵ, πg), suggesting that a larger λ enhances
the self-regularization effect on the policy. However, Fig. 7b
reveals that a larger λ results in a reduced capability of the
policy to acquire cumulative rewards. This is attributed to
the extension of the RL optimization objective by MSR; a
greater emphasis on MSR leads to a diminished focus on
the original RL optimization objective, adversely affecting
the policy’s ability to accumulate rewards. Therefore, λ
is a parameter that requires careful consideration when ap-
plying MSR. A too small λ may not adequately leverage
MSR’s self-regularization effects on the policy, while an

Table 2. Policy discrepancy between adjacent desired goals,
DKL(πg+ϵ, πg), return gap, J(πg+ϵ) − J(πg), and expected re-
turn, J(π), under different N settings. The mean and variance are
shown over 5 random seeds.

N DKL(πg+ϵ, πg) J(πg+ϵ)− J(πg) J(π)
1 0.23±0.18 0.00±0.01 -0.85±0.01

4 0.24±0.19 0.00±0.01 -0.83±0.02

16 0.25±0.20 0.00±0.01 -0.84±0.02

64 0.22±0.17 0.00±0.01 -0.82±0.01

excessively large λ can compromise the optimization of the
original RL objectives.

A moderate increase in β is beneficial for preventing
MSR from over-optimizing the discrepancy between poli-
cies for adjacent desired goals. The initial motivation for
introducing the β parameter into MSR is to prevent the
over-optimization of the discrepancy between policies for
adjacent desired goals during the policy optimization pro-
cess. To validate the role of β, we conduct evaluations under
the conditions ϵ′ = 0.1δ, λ = 1 with β set to 0.0, 0.01, and
0.1, and present the DKL(πg+ϵ, πg) between policies for
adjacent desired goals in Fig. 6. It can be observed that as β
increases, the policy discrepancy also increases, effectively
demonstrating β’s role in preventing the over-optimization
of the discrepancy between policies for adjacent desired
goals. However, it is important to note that an excessively
large β can diminish MSR’s self-regularization effects on
the policy during training, as an overly large β implies that
MSR is unable to function.

MSR exhibits robustness to the value of N . The role
of N is to average Equation 6 over multiple noises; as N
increases, the estimation of Equation 6 becomes more accu-
rate, albeit with a corresponding increase in computational
cost. To analyze the varying effects of different N values
on training, we conduct experiments with N set to 1, 4, 16,
and 64, under the conditions ϵ′ = δ, λ = 0.001, β = 0.1.
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Figure 8. Policy discrepancy
between adjacent desired
goals, DKL(πg+ϵ, πg) under
different N settings. Results
come from MSR-GC-SAC on
Reach over 5 random seeds.

Figure 8 illustrates the trend
of DKL(πg+ϵ, πg) during
training, while Table 2
presents the evaluation re-
sults after training. It can be
observed that, both during
training and in the final eval-
uation, there is negligible
differential impact of vary-
ing N values on the training
process. This indicates that
MSR is robust to the choice
of N .

5. Related Work
Goal-Conditioned Reinforcement Learning. Research
in GCRL primarily focuses on two directions. The first
direction investigates sampling methods for behavior goals
(Liu et al., 2022), which leverage the concept of curriculum
learning (Narvekar et al., 2020) to select behavior goals
from easy to difficult, thereby accelerating the convergence
of the policy. This line of research encompasses two main
questions: how to estimate the policy’s ability to achieve
goals, and how to select appropriate behavior goals based on
this ability. In the general off-policy GCRL framework pro-
posed by (Pitis et al., 2020), the policy’s goal-achievement
ability is estimated using data from the experience replay
buffer. Conversely, in the general on-policy GCRL frame-
work proposed by (Gong et al., 2024a), the policy’s ability
is assessed periodically during training, and the Off-Policy
Evaluation (OPE) (Uehara et al., 2022) method is used to fit
this ability based on historical evaluation data. Regarding
methods for sampling behavior goals, approaches such as
RIG (Nair et al., 2018), DISCERN (Warde-Farley et al.,
2018), and MEGA (Pitis et al., 2020) sample behavior goals
based on variations in the distribution of achieved goals.
The second research direction explores sub-goal generation
methods, which are primarily aimed at addressing the long-
horizon challenge. These methods decompose the desired
goal into several sub-goals (Park et al., 2024; Chane-Sane
et al., 2021), and then use GCRL to sequentially solve these
sub-goals, thereby achieving the original desired goal. It
is evident that the primary research areas in GCRL have
not yet taken note of the continuity of the policy’s goal-
achievement ability. To the best of our knowledge, our work
is the first in the field of GCRL to focus on the continuity of
the policy’s goal-achievement ability.

Generalization in Reinforcement Learning. Our work
shares similarities with research on generalization in RL
(Korkmaz, 2024). For instance, (Lee et al., 2020) observed
that RL agents frequently overfit to training environments
and struggle to generalize to unseen environments. Simi-

larly, (Korkmaz, 2024) identified overfitting as a primary
factor limiting the generalization capabilities of policies.
Consequently, research on RL generalization has largely fo-
cused on overcoming overfitting. Examples include studies
like (Laskin et al., 2020; Yarats et al., 2021), which con-
centrate on data regularization through data augmentation
methods, and (Igl et al., 2019; Lee et al., 2020; Liu et al.,
2021), which focus on policy regularization via neural net-
work regularization techniques. In the context of GCRL,
(Yang et al., 2023) combined both data and policy regu-
larization methods to enhance the generalization ability of
offline GCRL approaches. Despite these similarities, our
research differs significantly from generalization studies.
We discuss the continuity of the policy’s goal-achievement
ability, without emphasizing whether it pertains to training
or unseen environments. As our experiments demonstrate,
for tasks with continuous state spaces, the policy’s continu-
ity of goal-achievement ability is suboptimal even within
the training tasks.

Additionally, KL divergence is commonly used as a measure
of distance to constrain policies in policy optimization. In
the context of multi-goal settings, we compare MSR with
two KL-based policy constraint approaches and provide a
detailed analysis in Appendix E.

6. Conclusion and Limitations
In this paper, we delve into the challenge of discontinuity in
goal-achievement capabilities inherent in Goal-conditioned
Reinforcement Learning (GCRL) algorithms. Through a
comprehensive evaluation of various prevalent GCRL algo-
rithms across diverse tasks, we empirically demonstrate the
prevalence and significance of this issue. Our theoretical
analysis provide deeper insights into the underlying causes
of this discontinuity, highlighting the importance of regular-
izing policy discrepancies between achieved goals and their
adjacent goals.

In response to these findings, we propose a novel margin-
based policy self-regularization (MSR) approach. MSR,
designed to optimize the minimal acceptable discrepancy
between policies for a desired goal and its adjacent goals,
offers a robust solution to the discontinuity problem. By
integrating MSR as a plug-in module into existing GCRL
algorithms, we show its effectiveness through systematic
evaluations on two robotic arm control tasks and a complex,
real-world fixed-wing aircraft control task.

Some limitations should be addressed in future work. Firstly,
exploring the scalability of our method to even more
complex tasks and environments, as well as investigating
its applicability to more GCRL algorithms, remain im-
portant directions. Secondly, further theoretical analysis
could provide more nuanced understandings of the relation-
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ship between policy differences and cumulative rewards.
Thirdly, our approach mitigates the discontinuity in goal-
achievement capabilities under expected scenarios, but it
does not address the discontinuity in goal-achievement ca-
pabilities in the worst-case scenarios.

In conclusion, our research contributes to the advancement
of GCRL by providing a novel and effective solution to
the discontinuity problem, thereby enhancing the perfor-
mance and applicability of GCRL algorithms in real-world
scenarios.
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Appendix
A. Theoretical Proofs
A.1. Useful Lemmas

Lemma A.1. (Pinsker’s inequality (Csiszár & Körner, 2011)) For two arbitrary distributions µ and ν, DTV(µ, ν) ≤√
2DKL(µ, ν)

Lemma A.2. (Xu et al., 2020) For any two policies π1 and π2, we have that

DTV(ρπ1
, ρπ2

) ≤ 1

1− γ
Es∼dπ1

[DTV (π1(·|s), π2(·|s))] . (8)

A.2. Proof of Theorem 3.1

Proof. Based on that ϕ(sT ) = g and ∥ϵ∥ < δ, we can derive that ∥ϕ(sT )− (g + ϵ)∥ = ∥g − (g + ϵ)∥ = ∥ϵ∥ ≤ δ.

A.3. Proof of Corollary 3.2

Proof. We give the proof under the conditions of deterministic environment transitions and deterministic policies.

Suppose that the trajectory τ achieved by policy π for goal g′ is τ = (s0, a0, s1, a1, · · · , sT , aT ), where ai = π(si, g
′), 1 ≤

i ≤ T , and it satisfies ϕ(sT ) = g with ∥g′ − g∥ < δ. For the goal g + ϵ, let the corresponding trajectory be denoted as
τ ′ = (s′0, a

′
0, s

′
1, a

′
1, · · · , s′T , a′T ), where a′i = π(s′i, g + ϵ), 1 ≤ i ≤ T .

We proceed to prove that τ = τ ′ by induction:

Firstly, since we assume a fixed initial state, it follows that s0 = s′0. Furthermore, from the condition
Es∼dπ

g′
DKL (π(s, g

′), π(s, g + ϵ)) = 0, we can infer that a′0 = π(s′0, g + ϵ) = π(s0, g + ϵ) = π(s0, g
′) = a0, which

implies τ0:1 = τ ′0:1.

Secondly, assuming τ0:k = τ ′0:k, we have sk = T (sk−1, ak−1) = T (s′k−1, a
′
k−1) = s′k, and ak = π(sk, g

′) = π(sk, g +
ϵ) = π(s′k, g + ϵ) = a′k, thus τ0:k+1 = τ ′0:k+1.

The above proof establishes that π(·, g + ϵ) can yield the same trajectory τ as π(·, g′). By combining this with Theorem 3.1,
we conclude the proof.

A.4. Proof of Theorem 3.3

Proof.

J(πg+ϵ) (9)

=
1

1− γ

∑
(s,a)

ρπg+ϵ(s, a)r(s, a, g + ϵ) (10)

=
1

1− γ

∑
(s,a)

(ρπg+ϵ
(s, a)− ρπg

(s, a))r(s, a, g + ϵ) +
1

1− γ

∑
(s,a)

ρπg
(s, a)r(s, a, g + ϵ) (11)

≥ − 1

1− γ

∑
(s,a)

∣∣ρπg+ϵ
(s, a)− ρπg

(s, a)
∣∣ r(s, a, g + ϵ) +

1

1− γ

∑
(s,a)

ρπg
(s, a)r(s, a, g + ϵ) (12)

≥ − Rmax

1− γ

∑
(s,a)

∣∣ρπg+ϵ
(s, a)− ρπg

(s, a)
∣∣+ 1

1− γ

∑
(s,a)

ρπg
(s, a)r(s, a, g + ϵ) (13)
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= −2Rmax

1− γ
DTV(ρπg+ϵ

, ρπg
) +

1

1− γ

∑
(s,a)

ρπg
(s, a)r(s, a, g + ϵ) (14)

≥ − 2Rmax

(1− γ)2
Es∼dπg

[DTV (πg+ϵ(·|s), πg(·|s))] +
1

1− γ

∑
(s,a)

ρπg
(s, a)r(s, a, g + ϵ) (15)

≥ −2
√
2Rmax

(1− γ)2

√
DKL (πg+ϵ(·|s), πg(·|s)) +

1

1− γ

∑
(s,a)

ρπg
(s, a)r(s, a, g + ϵ) (16)

J(πg+ϵ) (17)

=
1

1− γ

∑
(s,a)

ρπg+ϵ(s, a)r(s, a, g + ϵ) (18)

=
1

1− γ

∑
(s,a)

(ρπg+ϵ
(s, a)− ρπg

(s, a))r(s, a, g + ϵ) +
1

1− γ

∑
(s,a)

ρπg
(s, a)r(s, a, g + ϵ) (19)

≤ 1

1− γ

∑
(s,a)

∣∣ρπg+ϵ
(s, a)− ρπg

(s, a)
∣∣ r(s, a, g + ϵ) +

1

1− γ

∑
(s,a)

ρπg
(s, a)r(s, a, g + ϵ) (20)

≤ Rmax

1− γ

∑
(s,a)

∣∣ρπg+ϵ
(s, a)− ρπg

(s, a)
∣∣+ 1

1− γ

∑
(s,a)

ρπg
(s, a)r(s, a, g + ϵ) (21)

=
2Rmax

1− γ
DTV(ρπg+ϵ , ρπg ) +

1

1− γ

∑
(s,a)

ρπg (s, a)r(s, a, g + ϵ) (22)

≤ 2Rmax

(1− γ)2
Es∼dπg

[DTV (πg+ϵ(·|s), πg(·|s))] +
1

1− γ

∑
(s,a)

ρπg
(s, a)r(s, a, g + ϵ) (23)

≤ 2
√
2Rmax

(1− γ)2

√
DKL (πg+ϵ(·|s), πg(·|s)) +

1

1− γ

∑
(s,a)

ρπg (s, a)r(s, a, g + ϵ) (24)

A.5. Proof of Theorem 3.4

Proof.

|J(πg1)− J(πg2)| (25)

=
1

1− γ

∣∣∣E(s,a)∼ρπg1
r(s, a, g1)− E(s,a)∼ρπg2

r(s, a, g2)
∣∣∣ (26)

=
1

1− γ

∑
(s,a)

∣∣ρπg1
(s, a)r(s, a, g1)− ρπg2

(s, a)r(s, a, g2)
∣∣ (27)

=
1

1− γ

∑
(s,a)

∣∣ρπg1
(s, a)r(s, a, g1)− ρπg1

(s, a)r(s, a, g2) + ρπg1
(s, a)r(s, a, g2)− ρπg2

(s, a)r(s, a, g2)
∣∣ (28)

≤ 1

1− γ

∑
(s,a)

∣∣ρπg1
(s, a) [r (s, a, g1)− r (s, a, g2)]

∣∣+ 1

1− γ

∑
(s,a)

∣∣r (s, a, g2) [ρπg1
(s, a)− ρπg2

(s, a)
]∣∣ (29)

≤ 1

1− γ

∑
(s,a)

∣∣ρπg1
(s, a) [r (s, a, g1)− r (s, a, g2)]

∣∣+ Rmax

1− γ

∑
(s,a)

∣∣[ρπg1
(s, a)− ρπg2

(s, a)
]∣∣ (30)

=
1

1− γ

∑
(s,a)

ρπg1
(s, a) |r (s, a, g1)− r (s, a, g2)|+

2Rmax

1− γ
DTV

(
ρπg1

, ρπg2

)
(31)
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Table 3. Environment Hyper-Parameters
(a) Reach

Parameter Value

control type joints
reward type dense
goal range 0.5

distance threshold 0.01
max episode steps 50

(b) Push

Parameter Value

control type joints
reward type sparse

goal xy range 0.5
obj xy range 0.0

distance threshold 0.05
max episode steps 50

(c) VVC

Parameter Value

v min 150
v max 250

mu min -30
mu max 30
chi min -60
chi max 60

max episode steps 400

≤ 1

1− γ

∑
(s,a)

ρπg1
(s, a) |r (s, a, g1)− r (s, a, g2)|+

2
√
2Rmax

(1− γ)2
Es∼dπg1

√
dKL(πg1(·|s), πg2(·|s)) (32)

A.6. Proof of Corollary 3.5

Proof.

|J(πg1)− J(πg2)| (33)

≤ 1

1− γ

∑
(s,a)

ρπg1
(s, a) |r (s, a, g1)− r (s, a, g2)|+

2
√
2Rmax

(1− γ)2
Es∼dπg1

√
dKL(πg1(·|s), πg2(·|s)) (34)

=
1

1− γ

∑
(s,a)

ρπg1
(s, a) |−∥ϕ(s)− g1∥+ ∥ϕ(s)− g2∥|+

2
√
2Rmax

(1− γ)2
Es∼dπg1

√
dKL(πg1(·|s), πg2(·|s)) (35)

≤ 1

1− γ

∑
(s,a)

ρπg1
(s, a)∥g1 − g2∥+

2
√
2Rmax

(1− γ)2
Es∼dπg1

√
dKL(πg1(·|s), πg2(·|s)) (36)

=
∥g1 − g2∥
1− γ

+
2
√
2Rmax

(1− γ)2
Es∼dπg1

√
dKL(πg1(·|s), πg2(·|s)) (37)

A.7. Proof of Corollary 3.6

Proof.

|J(πg)− J(πg+ϵ)| (38)

≤ ∥g − (g + ϵ)∥
1− γ

+
2
√
2Rmax

(1− γ)2
Es∼dπg

√
dKL(πg(·|s), πg+ϵ(·|s)) (39)

≤ δ

1− γ
+

2
√
2Rmax

(1− γ)2
Es∼dπg

√
dKL(πg(·|s), πg+ϵ(·|s)) (40)

B. Environments Details
The configurations for the Reach and Push tasks are presented in Tables 3a and 3b, respectively, with all other parameters
adhering to the default settings of Panda-Gym (Panda-Gym, 2024). For the VVC task, the settings are detailed in Table 3c,
while the remaining parameters are maintained at the default settings of FlyCraft (Gong et al., 2025a).
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Table 4. Algorithm Hyper-Parameters Used on Reach and Push
(a) SAC

Parameter Value

net arch [256,256]
gamma 0.95

train steps 1× 106

batch size 256
rollout process num 1

learning rate 3× 10−4

gradient steps 1
buffer size 2× 105

(b) HER

Parameter Value

net arch [256,256]
gamma 0.95

train steps (Reach/Push) 5× 104/1× 106

batch size 256
rollout process num 1

learning rate 3× 10−4

gradient steps 1
buffer size 2× 105

(c) PPO

Parameter Value

net arch [256,256]
gamma 0.95

train steps 1× 107

batch size 512
n steps 512

n epochs 5
rollout process num 16

learning rate 3× 10−4

Table 5. Algorithm Hyper-Parameters Used on VVC
(a) SAC

Parameter Value

net arch [128,128]
gamma 0.995

train steps 106

batch size 1024
rollout process num 1

learning rate 3× 10−4

gradient steps 1
buffer size 2× 105

(b) HER

Parameter Value

net arch [128,128]
gamma 0.995

train steps 5 ∗ 105
batch size 1024

rollout process num 1
learning rate 3× 10−4

gradient steps 1
buffer size 2× 105

(c) PPO

Parameter Value

net arch [128,128]
gamma 0.95

train steps 2× 108

batch size 4096
n steps 512

n epochs 5
rollout process num 64

learning rate 3× 10−4

Table 6. Comparison of training wall clock time between baselines and MSR+baselines. Results come from PPO (107 environment steps),
SAC (105 environment steps), and HER (105 environment steps) on VVC.

GC-PPO MSR-GC-PPO GC-SAC MSR-GC-SAC HER MSR-HER

Wall Clock Time (s) 3498 3573 2621 3175 5096 5912

C. Implementation Details
All our GC-SAC, GC-HER, and GC-PPO are implemented with the Stable-Baselines3 (Raffin et al., 2021) framework. For
our MSR method, we employ ϵ′ = δ, λ = 10−3, β = 0.1, N = 16 for Reach and Push and ϵ′ = 0.1 · δ, λ = 10−3, β =
0.1, N = 16 for VVC.

D. Additional Results
In this section, we provide supplementary presentations of the experimental results discussed in the main text.

D.1. Impact on Training Efficiency

MSR adds training overhead without influencing inference, due to added regularization only in policy optimization. Table 6
shows the wall clock time for training different baselines and baselines+MSR. For on-policy RL, where the main cost is
environment sampling, MSR’s effect is negligible, with only a 2.14% increase. In off-policy RL, which leverages replay
buffer data, the impact is more pronounced: a 21.14% increase for MSR-GC-SAC and 16.02% for MSR-HER. Figs. 13, 17,
and 22 reveal MSR’s convergence rate is on par with baselines. Overall, despite the slight added training overhead, MSR
markedly improves policy continuity in achieving goals.
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(a) GC-SAC, DKL(πg+ϵ, πg)
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(b) MSR-GC-SAC,
DKL(πg+ϵ, πg)
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(c) GC-SAC, J(πg+ϵ)− J(πg)
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(d) MSR-GC-SAC, J(πg+ϵ) −
J(πg)

Figure 9. Policy discrepancy and return gap between policies for adjacent desired goals. Results come from experiments on Reach with
GC-SAC and MSR-GC-SAC. The interpretation of the coordinate axes and the data collection methods are analogous to those described
in Fig. 1.
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(a) HER, DKL(πg+ϵ, πg)
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(b) MSR-HER, DKL(πg+ϵ, πg)
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(c) HER, J(πg+ϵ)− J(πg)
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(d) MSR-HER, J(πg+ϵ)− J(πg)

Figure 10. Policy discrepancy and return gap between policies for adjacent desired goals. Results come from experiments on Reach with
HER and MSR-HER. The interpretation of the coordinate axes and the data collection methods are analogous to those described in Fig. 1.

D.2. On Reach

Figure 9 illustrates the evaluation results of GC-SAC and MSR-GC-SAC. It is evident that MSR-GC-SAC significantly
reduces the policy discrepancy between adjacent desired goals, DKL(πg+ϵ, πg), while effectively diminishing the return
gap between policies for adjacent desired goals, J(πg+ϵ)− J(πg). Figure 10 presents the evaluation results of HER and
MSR-HER, yielding conclusions similar to those of MSR-GC-SAC. Figure 11 depicts the evaluation results of GC-PPO
and MSR-GC-PPO, showing that MSR-GC-PPO slightly increases J(πg+ϵ) − J(πg). In conjunction with the success
rates presented in Table 7, it is observed that the success rate of GC-PPO is nearly zero, suggesting that GC-PPO lacks
the capability to achieve goals. This is reflected in DKL(πg+ϵ, πg), indicating that the policy cannot distinguish between
different goals, resulting in a particularly small value of DKL(πg+ϵ, πg).

Figure 12 shows the trend of policy discrepancy between adjacent desired goals, DKL(πg+ϵ, πg), during training, indicating
that MSR maintains DKL(πg+ϵ, πg) within a relatively small but not excessively small range. Figure 13 demonstrates the
trend of cumulative rewards during training, revealing that MSR not only enhances the upper limit of cumulative rewards
acquisition but also accelerates the rate of cumulative rewards acquisition.

Table 7 presents the success rates of adjacent goals around an achievable goal and the overall success rate. Given that our
method diminishes the return gap between policies for adjacent desired goals and enhances the overall capability of the
policy to acquire cumulative rewards, the policy exhibits a notable improvement in both the success rate of adjacent goals
around an achievable goal and the overall success rate.

D.3. On Push

Figure 14 illustrates the evaluation results of GC-SAC and MSR-GC-SAC. It is evident that MSR-GC-SAC significantly
reduces the policy discrepancy between adjacent desired goals, DKL(πg+ϵ, πg), while effectively diminishing the return gap
between policies for adjacent desired goals, J(πg+ϵ)− J(πg). Figure 15 presents the evaluation results of GC-PPO and
MSR-GC-PPO, yielding conclusions similar to those of MSR-GC-SAC.
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(a) GC-PPO, DKL(πg+ϵ, πg)
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(b) MSR-GC-PPO,
DKL(πg+ϵ, πg)
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(c) GC-PPO, J(πg+ϵ)− J(πg)
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(d) MSR-GC-PPO, J(πg+ϵ) −
J(πg)

Figure 11. Policy discrepancy and return gap between policies for adjacent desired goals. Results come from experiments on Reach with
GC-PPO and MSR-GC-PPO. The interpretation of the coordinate axes and the data collection methods are analogous to those described
in Fig. 1.
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Figure 12. Trends of policy discrepancy between policies for adjacent desired goals during training on Reach. Results come from
algorithms over 5 random seeds.
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Figure 13. Cumulative rewards of policy during training on Reach. Results come from algorithms over 5 random seeds.

Table 7. Success rate of adjacent goals around an achievable goal and overall success rate of policy for different algorithms on Reach.
The mean and variance are shown over 5 random seeds. Italics indicates that these results should be interpreted with caution due to the
baseline algorithm’s performance limitations.

Algorithms Adjacent Success Rate (%) Success Rate (%)

GC-SAC 65.58±9.10 0.20±0.29

MSR-GC-SAC 99.98±0.04 99.95±0.12

HER 98.98±0.42 94.60±4.43

MSR-HER 99.34±0.27 90.69±6.85

GC-PPO 44.63±13.83 0.04±0.09

MSR-GC-PPO 98.79±0.36 98.05±3.19

Figure 16 shows the trend of policy discrepancy between adjacent desired goals, DKL(πg+ϵ, πg), during training. Figure 17
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(c) GC-SAC, J(πg+ϵ)− J(πg)
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Figure 14. Policy discrepancy and return gap between policies for adjacent desired goals. Results come from experiments on Push with
GC-SAC and MSR-GC-SAC. The interpretation of the coordinate axes and the data collection methods are analogous to those described
in Fig. 1.
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(c) GC-PPO, J(πg+ϵ)− J(πg)
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Figure 15. Policy discrepancy and return gap between policies for adjacent desired goals. Results come from experiments on Push with
GC-PPO and MSR-GC-PPO. The interpretation of the coordinate axes and the data collection methods are analogous to those described
in Fig. 1.
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Figure 16. Trends of policy discrepancy between policies for adjacent desired goals during training on Push. Results come from algorithms
over 5 random seeds.

demonstrates the trend of cumulative rewards during training. Table 8 presents the success rates of adjacent goals around an
achievable goal and the overall success rate. All of the above results demonstrated conclusions similar to those observed on
the Push task.

D.4. On VVC

Figure 18 illustrates the evaluation results of GC-SAC and MSR-GC-SAC. Figure 19 illustrates the evaluation results of
HER and MSR-HER. Figure 20 illustrates the evaluation results of GC-PPO and MSR-GC-PPO.

Figure 21 shows the trend of policy discrepancy between adjacent desired goals, DKL(πg+ϵ, πg), during training. Figure 22
demonstrates the trend of cumulative rewards during training. Table 9 presents the success rates of adjacent goals around an
achievable goal and the overall success rate. All of the above results demonstrated conclusions similar to those observed on
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Figure 17. Cumulative rewards of policy during training on Push. Results come from algorithms over 5 random seeds.

Table 8. Success rate of adjacent goals around an achievable goal and overall success rate of policy for different algorithms on Push. The
mean and variance are shown over 5 random seeds.

Algorithms Adjacent Success Rate (%) Success Rate (%)

GC-SAC 81.26±3.28 58.37±19.37

MSR-GC-SAC 84.37±2.34 62.17±16.23

HER 82.27±1.34 79.49±5.34

MSR-HER 82.29±1.51 84.27±3.92

GC-PPO 77.07±3.36 66.90±6.84

MSR-GC-PPO 80.17±3.69 68.82±10.84
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Figure 18. Policy discrepancy and return gap between policies for adjacent desired goals. Results come from experiments on VVC with
GC-SAC and MSR-GC-SAC. The interpretation of the coordinate axes and the data collection methods are analogous to those described
in Fig. 1.
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(a) HER, DKL(πg+ϵ, πg)
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(b) MSR-HER, DKL(πg+ϵ, πg)

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5
-4

-3
-2

-1
0

1
2

3
4

5

15

10

5

0

(c) HER, J(πg+ϵ)− J(πg)
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(d) MSR-HER, J(πg+ϵ)− J(πg)

Figure 19. Policy discrepancy and return gap between policies for adjacent desired goals. Results come from experiments on VVC with
HER and MSR-HER. The interpretation of the coordinate axes and the data collection methods are analogous to those described in Fig. 1.

the Reach task.
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(a) GC-PPO, DKL(πg+ϵ, πg)
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(b) MSR-GC-PPO,
DKL(πg+ϵ, πg)
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(c) GC-PPO, J(πg+ϵ)− J(πg)
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(d) MSR-GC-PPO, J(πg+ϵ) −
J(πg)

Figure 20. Policy discrepancy and return gap between policies for adjacent desired goals. Results come from experiments on VVC with
GC-PPO and MSR-GC-PPO. The interpretation of the coordinate axes and the data collection methods are analogous to those described
in Fig. 1.
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Figure 21. Trends of policy discrepancy between policies for adjacent desired goals during training on VVC. Results come from algorithms
over 5 random seeds. Note that the policy discrepancy is measured by noise ϵ ∼ [−0.1 · δ, 0.1 · δ].
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Figure 22. Cumulative rewards of policy during training on VVC. Results come from algorithms over 5 random seeds.

Table 9. Success rate of adjacent goals around an achievable goal and overall success rate of policy for different algorithms on VVC. The
mean and variance are shown over 5 random seeds.

Algorithms Adjacent Success Rate (%) Success Rate (%)

GC-SAC 71.72±8.87 20.86±7.75

MSR-GC-SAC 74.32±7.46 22.28±6.84

HER 89.69±3.03 62.84±12.12

MSR-HER 90.97±3.59 67.94±13.03

GC-PPO 54.22±8.02 7.62±8.06

MSR-GC-PPO 69.11±5.65 26.52±33.64
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Table 10. Comparison of TRPO, Offline-to-Online and MSR.

Algorithm Optimization Objective

TRPO Eg∼pdg
KL[πθt−1(·|·, g)∥πθt(·|·, g)]

Offline-to-Online Eg∼pdg
KL[π0(·|·, g)∥πθt(·|·, g)]

MSR Eg∼pdg,ϵ∼(−ϵ′,ϵ′)KL[πθt(·|·, g)∥πθt(·|·, g + ϵ)]

E. Comparison of MSR with Other KL-Based Policy Optimization Methods
Table 10 delineates the optimization objectives of TRPO (Schulman et al., 2015), Offline-to-Online (Baker et al., 2022;
Gong et al., 2024b), and MSR under multi-goal settings. It can be observed that:

• TRPO aims to prevent the policy from changing too much during optimization, thus it achieves this objective by
constraining the KL divergence between policies in consecutive training iterations.

• The Offline-to-Online method aims to prevent the policy from forgetting the knowledge learned offline during online
learning, by constraining the KL divergence between the offline-learned policy, π0, and the policy currently being
learned online, πθt .

• MSR, on the other hand, seeks to enhance the policy’s continuity of goal-achievement ability by limiting the divergence
between policies corresponding to adjacent goals.

In summary, although all these methods utilize KL divergence, from the perspective of optimization objectives, MSR is
fundamentally distinct from other KL-based methods.
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