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ABSTRACT

Shape restoration aims to recover intact 3D shapes from defective ones, such
as those that are incomplete, noisy, and low-resolution. Previous works have
achieved impressive results in shape restoration subtasks thanks to advanced gen-
erative models. While effective for specific shape defects, they are less applicable
in real-world scenarios involving multiple defect types simultaneously. Addition-
ally, training on limited subsets of defective shapes hinders knowledge transfer
across restoration types and thus affects generalization. In this paper, we address
the task of general shape restoration, which restores shapes with various types
of defects through a unified model, thereby naturally improving the applicabil-
ity and scalability. Our approach first standardizes the data representation across
different restoration subtasks using high-resolution TSDF grids and constructs a
large-scale dataset with diverse types of shape defects. Next, we design an effi-
cient and noise-robust hierarchical shape generation model that enables effective
defective shape understanding and intact shape generation. Moreover, we propose
a scalable training strategy for efficient model training. The capabilities of our
proposed method are demonstrated across multiple shape restoration subtasks and
validated on various datasets, including Objaverse, ShapeNet, GSO, and ABO.

1 INTRODUCTION

Restoring complete and intact shapes from defective ones is essential for applications in virtual re-
ality, robotics, and content generation. Defective shapes can arise from various sources, including
depth sensor noise (Tölgyessy et al., 2021), ill-posed 3D reconstruction (Wu et al., 2023), intrin-
sic defects in geometric representations (Feng & Crane, 2024), and so on. Consequently, shape
restoration encompasses various repair goals, such as completion, super-resolution, and denoising,
as illustrated in Fig. 1. These diverse tasks require model capabilities such as semantic understanding
of highly incomplete and noisy shapes without additional inputs, robustness to varying degrees of
incompleteness and noise, and the ability to produce diverse restoration results that balance quality
and fidelity — making it challenging to design a unified model for general shape restoration.

To simplify the problem, many existing works focus on specific shape restoration goals other than
addressing general shape restoration. By leveraging advanced deep learning techniques, such as
regression models (Dai et al., 2017; 2020; Rao et al., 2022; Huang et al., 2023) and generative
models (Mittal et al., 2022; Cheng et al., 2023; Warburg et al., 2023; Chu et al., 2024; Ju et al.,
2024), these methods have achieved remarkable results on specific restoration goals. However,
focusing on specific goals limits the models’ capabilities in two key aspects. First, the defective
shapes often contain various artifacts simultaneously, such as incompleteness and noise from ill-
posed 3D reconstruction. Models that handle only certain artifacts have limited performance and
applicability in these scenarios. Second, models aimed at specific goals are trained on limited types
of data, and their learned object priors are not shared across tasks, resulting in less training data
diversity compared to general shape restoration.

In this paper, we aim to address the task of general shape restoration, which targets the repair of
various forms of defective geometries with a unified model. Compared with previous works on
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Figure 1: We propose UniRestore3D for general shape restoration. It can restore various types of
defective 3D shapes under arbitrary poses, generate multiple possible restoration results, and support
complex multi-object scenes.

specific restoration subtasks, the general shape restoration setting has two main advantages. First, it
is more user-friendly. Users can apply a single model to repair various forms of defective geometries,
which is significantly more convenient than first classifying the shape defect type and then using a
mixture of corresponding restoration models. Second, this task enables us to exploit more data. By
training on larger and more diverse datasets, the model can learn a more generalized shape prior,
which is beneficial for handling in-the-wild defective shapes. As shown in Sec. 5.4, our model has
better performance than models trained on specific subtasks.

To handle the general shape restoration task, we propose a novel, scalable framework that consists
of three key components: a unified shape restoration dataset, an efficient and noise-robust shape
restoration model, and a scalable training strategy. Regarding training data, as illustrated in Fig. 2,
we construct synthetic defective-intact shape pairs with tailored construction methods for differ-
ent subtasks, which realistically simulate real-world impairment scenarios. With the availability
of large-scale datasets, model design and training strategies still face several technical challenges.
First, restoring an intact shape solely from a defective one relies on the model’s semantic under-
standing of the defective shape and its ability to efficiently generate high-quality shape. We design a
hierarchical latent diffusion model (H-LDM) that achieves multi-scale encoding of defective shapes
and efficient generation of intact ones, as shown in Fig. 3. Besides, two technical challenges remain.
First, robustness to irregular noise in defective shapes; second, to ensure high fidelity to the existing
input shape details, it is necessary to use high-resolution defective shapes as model inputs. This
necessitates pre-compression of the defective shapes before training the H-LDM; otherwise, reading
and encoding high-resolution shapes would unacceptably slow down training. Our key insight to
solve these challenges is to construct a unified representation for both defective and intact shapes.
Specifically, we first learn representations of intact shapes on large-scale data. Then, we train an
defective shape encoder whose encodings are explicitly aligned to their corresponding intact ones.
In this way, we achieve pre-compression of defective shapes, while enhancing noise robustness, as
the feature alignment step enforces defective shape denoising.

The effectiveness of our method is validated on datasets including Objaverse (Deitke et al., 2023b;a),
ShapeNet (Chang et al., 2015), ABO (Collins et al., 2022), GSO (Downs et al., 2022) and Scan-
Net (Rao et al., 2022). Our approach achieves SOTA results in tasks including noise-free shape
completion, noisy shape refinement and completion. Related ablation studies have confirmed the
effectiveness of key modules in our model.

2 RELATED WORK

2.1 3D SHAPE RESTORATION

Shape restoration encompasses various subtasks, each of which has been extensively studied in pre-
vious research. As illustrated in Fig. 2, the shape to be restored may exhibit local or extensive
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Figure 2: Dataset curation and examples of shape restoration subtasks. We create (defective,
intact) shape pairs by adopting different impairment strategies for different subtasks.

missing regions, and the known areas may be noisy or noise-free. Most existing approaches focus
on shape restoration under specific conditions, lacking general applicability. For example, surface
reconstruction methods (Kazhdan & Hoppe, 2013; Peng et al., 2020; Huang et al., 2023) aim to
restore complete geometry from noisy but fairly complete point clouds. Some works (Wu et al.,
2018; Cui et al., 2023) target the restoration of complete point clouds from noisy ones with exten-
sive incompleteness. Another line of works (Mittal et al., 2022; Li et al., 2023; Cui et al., 2024)
train shape generative models to complete noise-free incomplete shapes. Among these, diffusion
model based approaches rely on SDEdit (Meng et al., 2022) or blended diffusion (Lugmayr et al.,
2022; Avrahami et al., 2022; 2023) mechanisms to complete the missing regions, which presents
certain limitations in their use. Some works (Dai et al., 2017; Rao et al., 2022; Chu et al., 2024;
Liu et al., 2024a; Galvis et al., 2024) aim to restore complete, noise-free TSDF grids from noisy
and defective ones. However, they are trained on limited defect scenarios, which hinders their gen-
erality. Feng & Crane (2024) proposes a signed heat method for approximating the SDF of locally
corrupted geometries, but does not leverage semantic information, thus limited to surface refinement
and local restoration. Our goal is to build a conditional generative model for efficient, high-quality
shape restoration that supports different types of impairment. Moreover, we emphasize the ability of
accepting high-resolution defective shapes as inputs, which is necessary for high fidelity restoration.

2.2 3D SHAPE PRIOR

Shape restoration can be regarded as a form of shape prior for repairing defective geometries. Pre-
vious works have explored various types of shape priors and applied them to 3D reconstruction.
By constraining 3D reconstruction to the latent or parameter space of shape prior models, these
approaches help to avoid low-quality reconstruction results under ill-posed conditions (Zhu et al.,
2018; Lin et al., 2019; Sucar et al., 2020; Liu et al., 2020; Yang et al., 2021; Sun et al., 2024). Among
these studies, some object-level approaches can reconstruct complete 3D models under sparse obser-
vations but are limited to specific categories (Yang et al., 2022; Sucar et al., 2020). Part-level shape
priors (Rao et al., 2022; Bokhovkin & Dai, 2023; Sun et al., 2022) are category-agnostic but lack
semantic understanding and thus can not handle large missing regions. 3D diffusion models (DMs)
have also been used as shape priors for 3D reconstruction (Warburg et al., 2023; Yang et al., 2023);
however, they are still limited to modeling specific categories or small missing regions. General
shape restoration aims to provide a general shape prior that is not confined to specific categories.
We achieve this by training a conditional shape generative model, which directly maps the defective
shapes onto the manifold of plausible shapes.

2.3 3D SHAPE GENERATIVE MODELS

3D shape generative models can be categorized based on the primary 3D representation utilized by
the network, e.g., multiple 2D planes, hierarchical 3D structures, no explicit 3D representations, and
hybrid approaches. To enhance generative modeling efficiency, these methods focus on leveraging
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the sparsity of 3D data. Methods based on multi-view images (Szymanowicz et al., 2023; Shi et al.,
2024; Liu et al., 2024b) or tri-planes (Chan et al., 2022; Gupta et al., 2023; Shue et al., 2023) exploit
the sparsity of 3D data by reducing the dimensionality of the core representation, which effectively
represent individual assets. Still, they are less efficient when handling complex, large-scale scenes.
Approaches that discard 3D inductive bias and use latent features (Zhang et al., 2023; 2024) strug-
gle with scaling feature sets and controlling their spatial distribution, limiting their applicability to
large scenes. Hierarchical generative models based on sparse voxel hierarchies (Zheng et al., 2023;
Ren et al., 2024) explicitly leverage sparsity by generating in a coarse-to-fine manner, which amor-
tizes the generation process across levels, supports dynamic control of geometric details, and scales
more efficiently to large scenes. The hierarchical structure naturally introduces multi-level condi-
tional signals, facilitating a nuanced understanding of conditional inputs. We adopt a hierarchical
generative model as our foundation and train a conditional model for general shape restoration.

3 GENERAL SHAPE RESTORAION

General shape restoration aims to restore complete and clean shapes x from incomplete and noisy
inputs xc, which follows the conditional distribution P (x | xc, c) with optional conditions c like
text. Its generality is demonstrated by its extensive support for defective inputs, encompassing
regular or irregular geometric deficiencies and noise from sources such as sparse viewpoints, sensor
noise, and reconstruction flaws. The main challenges include understanding various incomplete
and noisy inputs, identifying regions needing restoration, accommodating shapes under different
poses, and preserving the original structure and semantics while generating high-quality restoration
results. Based on the level of noise and incompleteness present in the input geometry, we roughly
categorize the general shape restoration into four subtasks: noise-free completion, super-resolution,
noisy completion, and noisy refinement, among which previous works (Rao et al., 2022; Chu et al.,
2024; Li et al., 2023) only focus on solving single specific subtasks.

Dataset creation. We represent both defective and intact shapes using the TSDF grid for its versa-
tility. To construct numerous (defective, intact) shape pairs for model training, we employ different
approaches for subtasks as shown in Fig. 2:

(1) Noise-free completion: Randomly sample partial shapes with varying levels of incompleteness
from complete shapes, akin to image inpainting.

(2) Super-resolution: Subsample complete shapes to lower resolutions to create defective shapes
of varying difficulty.

(3) Noisy completion: Render depth maps from sparse viewpoints, apply TSDF fusion to recon-
struct incomplete shapes, and introduce varying degrees of noise into depth maps and camera
poses to simulate geometric noises and missing scenarios.

(4) Noisy refinement: Similar to noisy completion but fuse input shapes from more viewpoints,
resulting in complete structures with noisy surface details.

We randomly perturb model poses to enhance diversity and avoid canonical pose modeling. Since
super-resolution does not conflict with the other subtasks, we randomly use different resolutions
in the other three subtasks to enhance data diversity and increase task difficulty. Applying these
strategies to datasets including Objaverse, ShapeNet, ABO, and GSO yields a large-scale dataset
with approximately 120k object models and 800k shape pairs for training and evaluation.

4 METHOD

We devise a conditional shape generative model to achieve general shape restoration, which restores
intact shapes from defective ones. Our model consists of three modules: a hierarchical variational
autoencoder (H-VAE) for intact shapes compression, a hierarchical noise-robust encoder for pro-
cessing defective shapes, and a hierarchical latent diffusion model (H-LDM) for conditional gener-
ation. We adopt a hierarchical approach to shape encoding and generation, enabling a multi-level
understanding of defective geometries and efficient shape restoration. Fig. 3 presents the inference
pipeline of shape restoration. Specifically, we first encode the defective input into multi-level sparse
feature grids utilizing the noise-robust encoder. These feature grids serve as conditional inputs at
different levels of the H-LDM, which generates sparse latent grids of intact shapes that can be fur-
ther decoded to sparse TSDF grids from low to high resolution. In the following sections, we will
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Figure 3: Inference pipeline of the proposed shape restoration model. We leverage a conditional
hierarchical latent diffusion model (H-LDM) to restore complete and clean shapes from incomplete
and noisy inputs. Defective input shapes are encoded into multi-level sparse features (two levels
here) with a hierarchical noise-robust encoder, which acts as conditional signals of the H-LDM to
generate multi-level sparse feature grids, and finally decoded to the restored shapes.

first introduce the hierarchical encoding of intact and defective shapes and the proposed scalable
training strategy in Sec. 4.1 and then present the conditional H-LDM in Sec. 4.2.

4.1 HIERARCHICAL SHAPE ENCODING

The conditional H-LDM for shape restoration relies on compact encodings of intact and defective
shapes. We propose a unified hierarchcial shape encoding pipeline for both the intact and defective
shapes, which respectively acts as the generation targets and conditional inputs of the H-LDM. Here
we first introduce the probabilistic modeling and architectural design, and then the scalable two-
stage training strategy.

Probabilistic modeling. We use a cascaded VAE as in Razavi et al. (2019); Vahdat & Kautz (2020)
to learn the multi-level latent representations jointly, instead of learning individual VAEs for shapes
at different levels individually as in Ren et al. (2024). This design simplifies the training process
and facilitates learning inter-level dependencies across multi-level latents. The H-VAE consists of
a series of cascaded encoders E = {E1, . . . ,EL} across levels and independent decoders D =
{D1, . . . ,DL} at each level, as shown in the top row of Fig. 4. Specifically, the H-VAE encoders
learn the approximate posterior qϕ(z | x) =

∏
i qϕ(z

i | z<i,x), where each level’s latent zi is
built upon the z<i from previous levels. The H-VAE decoders learn the likelihood pφ(x | z) =∏

i pφ(x
i | z≥i), where shape xi at each level is decoded not only from the corresponding latent zi

but also based on the coarser levels z>i.

Patch-wise encoding. To enhance the generalization of shape encoders on both intact and impaired
shapes, we employ a patch-wise encoding strategy. Previous methods (Mittal et al., 2022; Yan et al.,
2022) utilize patch-wise encoding to ensure that encoders can support both complete and partial
shapes without noise. We further extend the patch-wise encoder to simultaneously encode noisy and
noise-free 3D shapes, reducing the risk of out-of-distribution (OOD) occurrences for noisy shape
encodings. Specifically, we divide the 3D shapes into multiple non-overlapping patches and apply
the aforementioned cascaded encoder to encode each patch into hierarchical sparse features. The
encodings of all patches at each level are then concatenated to form the latent representations of
the entire shape. The decoders at different levels are not restricted to patch-wise decoding, thereby
avoiding inconsistencies at the boundaries between patches.

Scalable training strategy. Given a pre-trained H-VAE of intact shapes, we can efficiently train
an unconditional H-LDM for shape generation. However, for a conditional H-LDM, we still need
to train a defective shape encoder along with the H-LDM, which is extremely inefficient due to
the need to load high-resolution defective shapes online. To mitigate this issue, we learn defective
shape encodings in advance using a two-stage training strategy as shown in Fig. 4. Our key insight
it to share an unified representation between intact and defective shapes by learning the hierarchical
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Figure 4: Learning hierarchical shape encodings. We learn hierarchical shape encodings of intact
and defective shapes in two stages. These encodings are later used to train the conditional diffu-
sion model for shape restoration. In stage-1 (top row), we train the hierarchical VAE (H-VAE) on
intact shapes to learn hierarchical latent representations. In stage-2 (bottom left), we fine-tune a
noise-robust encoder for encoding defective shapes through multi-level feature alignment between
defective and intact encodings. The noise-robust encoder can robustly encode and pre-denoise the
noisy defective shape as illustrated by the decoded shape (bottom right).

encodings of intact shapes first and then align the defective shape encodings to the intact ones. In
this way, we can learn a defective shape encoder in advance and pre-compress shapes before LDM
training. Moreover, the forced alignment leads to a noise-robust encoder as introduced below.

Noise-robust encoder fine-tuning. A naive approach to encoding impaired shapes is directly using
the H-VAE encoders trained on intact shapes. However, given that the impaired shapes contain
various types of noise that do not conform to a well-defined distribution, this approach is susceptible
to the influence of OOD samples. To address this, we further perform a fine-tuning stage on the
cascaded encoder of the pre-trained H-VAE and turn it into a separate noise-robust defective shape
encoder Ec. Specifically, as shown in the bottom row of Fig. 4, given a pair of defective and intact
shapes, we encode the defective shape with Ec to multi-level encodings zc = {z1c, . . . , zLc }, and
encode the intact shape with the frozen pre-trained H-VAE encoder E to z = {z1, . . . , zL}. We train
the noise-robust encoder Ec by minimizing the discrepancy between these two sets of encodings.
This fine-tuning stage not only enhances the robustness of the encoding of defective shapes but also
pre-denoises the noisy inputs as shown in the bottom right of Fig. 4, thereby reducing the training
difficulty of the subsequent conditional generative model.

4.2 HIERARCHICAL LATENT DIFFUSION MODEL

Given the hierarchical sparse encodings of the intact and defective shapes, we train a conditional
hierarchical latent diffusion model (H-LDM) as the shape restoration model, which progressively
generates 3D sparse structures and corresponding geometric attributes from low to high resolution.
At each level, a sparse latent grid is generated and decoded to the concrete geometry, which serves
as the sparse structure of the next level at higher resolution.

Specifically, given a intact shape x and a defective shape xc, we encode them separately to multi-
level sparse encodings z = {z1, . . . , zL} and zc = {z1c, . . . , zLc } as introduced in Sec. 4.1. We aim
for the conditional H-LDM to learn the following probability distribution, which generates multi-
level sparse latent grids from low (i = L) to high resolution (i = 1):

pθ(z | zc, c) =
1∏

i=L

piθ(z
i | z>i, zic, c), (1)

where c are optional conditions besides the defective shape xc, such as text. Notably, at each level,
besides the conditional encoding zic of the defective shape, we also rely on the previously generated
coarser level latent grids z>i as additional conditions to provide a global context for the generation
of finer latent grids zi, which introduces more details.
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We model each level’s denoising process piθ using a Sparse U-Net based denoiser, where its de-
pendent sparse structure is obtained by decoding the sparse latent grid zi+1 from the previous level
through the H-VAE decoder.

The H-LDM balances generation efficiency and quality thanks to the marrying of spatial sparsity
and diffusion modeling on latent spaces. Moreover, it can explicitly reason over multi-level features
of defective shapes through hierarchical conditioning for better restoration.

4.3 TRAINING AND IMPLEMENTATION DETAILS

Our pipeline consists of three trainable modules. For the H-VAE, we train all levels jointly using the
standard ELBO objective (Kingma, 2013) at each level. For the H-LDM, we adopt a continuous-
time diffusion model with v-parameterization and use the simplified training objective (Ho et al.,
2020) at each level. We fine-tune the noise-robust encoder with the following loss:

Lalign =

L∑
i=1

∥∥∥Eqϕc (z
i
c|z

<i
c ,xc)

[zic]− Eqϕ(zi|z<i,x)[z
i]
∥∥∥
1
, (2)

which optimizes the noise-robust encoder to align the multi-level encodings of the defective shapes
to the intact ones. We compute the loss only on sparse voxels shared by both defective and intact
shapes. We employ sparse convolution (Tang et al., 2023) in all three modules for efficient process-
ing of sparse voxel grids. However, at the coarsest level, the voxel grid becomes a dense one, where
we use dense convolution for further processing. More details are provided in the appendix.

5 EXPERIMENTS

To validate the effectiveness of our proposed method, we conduct evaluations on several different
shape restoration subtasks. We use an unconditional model (i.e., with only shape condition) for
shape restoration without additional conditions like text to demonstrate the model’s understanding
capability of the impaired shapes. We first conduct experiments on our proposed general shape
restoration task in Sec. 5.1, and then verify our model’s effectiveness on existing benchmarks of
shape restoration subtasks in Secs. 5.2 and 5.3. We train the model on a dataset that combines
Objaverse and ShapeNet, comprising approximately 120k object models and 800k (defective, intact)
shape pairs. Intact shapes are represented with 2563 TSDF grids, while impaired shapes, originally
at various resolutions, are upsampled to 2563 and used as conditional inputs for the model. More
details on data preprocessing and results postprocessing are provided in the appendix.

5.1 GENERAL SHAPE RESTORATION

The proposed task of general shape restoration contains different types of shape impairments. We
evaluate the model separately on known categories and in-the-wild instances to quantify its capabil-
ity. The known categories consist of 13 classes from ShapeNet with a substantial number of training
samples. The in-the-wild categories refer to other unseen categories, which may have very few or
no samples included in the training set. For known categories, we use the ShapeNet-13 (Liu et al.,
2020) test set. For in-the-wild categories, we constructed the test set with GSO and ABO categories
which are not included in ShapeNet-13.

Evaluation metrics. Following MSC (Wu et al., 2020), we evaluate the quality, diversity, and
fidelity of the restoration results separately with the Minimum Matching Distance (MMD), Total
Mutual Difference (TMD), and Average Matching Distance (AMD) metrics. For each impaired
shape, we sample k = 10 samples in unit cubes and calculate these metrics. The reported metrics
are multiplied by 103. More details are provided in the appendix.

Results. We present both quantitative and qualitative results across multiple dataset subsets and
restoration subtasks. Quantitative results in Tab. 1 highlight difficulty variations among differ-
ent data and subtasks. Benefiting from the advantage of more training samples, the model per-
forms better on known categories compared to in-the-wild ones. Among subtasks, noisy completion
and noise-free completion demand stronger semantic understanding and generation capabilities on
broader semantics from the model, resulting in generally worse metrics across several dataset sub-
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Table 1: Quantitative results of general shape restoration.

In-the-wild Categories Known Categories
MMD ↓ / AMD ↓ / TMD ↑ GSO ABO ShapeNet-13
super-resolution 0.174 / 0.213 / 0.192 1.177 / 1.358 / 0.255 0.174 / 0.315 / 0.251
noise-free completion 2.985 / 5.920 / 4.201 1.267 / 2.701 / 1.916 0.462 / 1.313 / 1.060
noisy refinement 0.344 / 0.466 / 0.395 1.195 / 1.513 / 0.419 0.204 / 0.304 / 0.240
noisy completion 0.922 / 1.467 / 1.046 1.201 / 1.875 / 0.873 0.319 / 0.648 / 0.506

Table 2: Quantitative results of noise-free shape completion on the 3DQD benchmark.
Half Octant

Method Resolution MMD ↓ AMD ↓ TMD ↑ MMD ↓ AMD ↓ TMD ↑
PoinTr point cloud 5.316 N/A N/A 21.57 N/A N/A
SeedFormer point cloud 4.972 N/A N/A 23.99 N/A N/A
AutoSDF 643 3.510 8.200 4.660 5.720 12.79 8.260
3DQD 643 2.933 6.302 4.780 4.690 10.93 9.600
NeuSDFusion sdf field 2.290 5.900 4.760 3.030 9.590 8.320
Ours 2563 2.268 6.143 5.330 3.840 9.930 9.080
Ours (more samples) 2563 1.844 4.752 3.960 3.560 8.400 7.020

sets. Fig. 5 illustrates the model’s performance on different subtasks, showing its ability to compre-
hend severely missing or noisy inputs and generate multi-modal outputs.

5.2 NOISE-FREE (MULTI-MODAL) SHAPE COMPLETION

We use the 3DQD (Li et al., 2023) benchmark to evaluate the multi-modal completion for noise-
free partial shapes. 3DQD trains a category-conditional model on ShapeNet-13, using either half
or octant samples as partial shapes, and evaluates MMD, TMD, and AMD metrics separately. To
generate category-conditioned samples, we pre-train our model on Objaverse using text conditions
based on captions provided by Cap3D (Luo et al., 2024) and fine-tune it on ShapeNet-13 using
category names as the text conditions. Notably, we do not train our model solely on the noise-free
completion subtask but jointly on all restoration subtasks, ensuring its generalizability, which cannot
be effectively evaluated on the 3DQD benchmark. More details are provided in the appendix.

Results. Our method achieves SoTA completion quality (MMD) on the half subset, significantly
outperforming previous baselines based on various 3D representations, as shown in Tab. 2. It also de-
livers better overall results (AMD) on the octant subset. In our vanilla training data, noise-free com-
pletion accounts for only a small fraction of the samples (approximately 1/8 of the entire dataset).
As shown in Ours (more samples), by introducing more noise-free completion samples, we can fur-
ther improve the model’s performance. As illustrated in Fig. 6, our method provides restoration that
better preserve the given partial input and generate outputs with finer details. Conditional generative
models are known to trade diversity for quality (Sadat et al., 2024; Ho & Salimans, 2022); our model
similarly exhibits slightly lower diversity than baselines. However, TMD measures diversity without
considering plausibility. Our method achieves more plausible restorations than baselines.

5.3 NOISY SHAPE COMPLETION

The PatchComplete (Rao et al., 2022) benchmark focuses on restoring noisy 3D scans of unknown
categories. It includes synthetic and real-world subsets with severely incomplete, noisy partial
shapes constructed by virtual rendering and depth fusion on ShapeNet, as well as cropping from
ScanNet scans. Restoration quality is assessed by IoU and Chamfer Distance. Similar to 3DQD, we
fine-tune our pre-trained model on PatchComplete’s training set. The base model is trained on the
Objaverse subset of our dataset, with all novel categories presented in the test set filtered.

Results. As shown in Tab. 3, our method achieves SoTA results on novel categories from both syn-
thetic and real-world data. Notably, inputs of this benchmark are very low-resolution (323) TSDF
grids. As illustrated in Fig. 7, our model can handle such low-resolution noisy inputs, generating
high-resolution geometry while maintaining consistency with the partial ones. Unlike baseline meth-
ods, we do not leverage the observability information contained in the original TSDF grid but rely
solely on the geometric information near the surface. This leads to a more general and challenging
problem, yet the proposed method still yields superior results compared to baselines.
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Table 3: Quantitative results of noisy shape completion on ShapeNet and ScanNet objects of novel
categories. We leave the full results of each novel category to the appendix.

CD ↓ / IoU ↑ 3D-EPN Auto-SDF PatchComplete DiffComplete SC-Diff Ours
ShapeNet (avg. of 8 categories) 5.58 / 59.4 5.86 / 45.2 4.27 / 65.4 4.10 / 67.5 4.08 / 68.3 3.90 / 70.6
ScanNet (avg. of 6 categories) 9.09 / 44.0 8.90 / 38.9 7.52 / 49.5 7.18 / 51.3 7.04 / 51.9 6.75 / 53.3

Table 4: Ablation study on joint subtasks learning.
ABO (in-the-wild categories) ShapeNet-13 (known categories)

MMD ↓ / AMD ↓ / TMD ↑ noisy refinement noisy completion noisy refinement noisy completion
noisy refinement only 1.53 / 1.75 / 0.258 4.25 / 5.44 / 0.653 0.278 / 0.360 / 0.195 1.84 / 2.49 / 0.408
noisy completion only 1.49 / 1.82 / 0.372 1.95 / 2.68 / 0.693 0.265 / 0.385 / 0.219 0.640 / 0.965 / 0.391
Ours (joint training) 1.19 / 1.51 / 0.419 1.20 / 1.87 / 0.873 0.204 / 0.304 / 0.240 0.319 / 0.648 / 0.506

Table 5: Ablation study on conditional encoder pre-alignment fine-tuning.

MMD ↓ / AMD ↓ / TMD ↑ noisy refinement noisy completion
w/o pre-alignment 0.308 / 0.400 / 0.299 0.401 / 0.577 / 0.435
w/ pre-alignment 0.299 / 0.383 / 0.296 0.376 / 0.534 / 0.407

5.4 ABLATION STUDIES

Effectiveness of joint training on subtasks. In this ablation study, we aim to validate the effec-
tiveness of joint training on multiple shape restoration subtasks compared to training each subtask
individually. We train two models separately on our dataset’s noisy completion subset and the noisy
refinement subset. Then, we test their performance on each task, comparing the results with those
of the jointly trained model. As shown in Tab. 4, joint training on a dataset composed of vari-
ous shape restoration scenarios can effectively improve performance across different cases. Joint
training proves effective for both rare and common categories.

Effectiveness of conditional encoding pre-alignment. In this experiment, we aim to validate the
effectiveness of our proposed conditional encoder training mechanism. We compare two setups: one
using the base VAE encoder directly without fine-tuning as the conditional encoder and the other
applying our proposed pre-alignment fine-tuning strategy to it. Training the conditional encoder
from scratch is excluded, as loading the uncompressed high-resolution conditional shapes during
training significantly slows down training, making it impractical. We compare these setups on a
single ShapeNet category. As shown in Tab. 5 pre-alignment fine-tuning yields better results on
noisy, defective shapes with varying levels of incompleteness, i.e., noisy refinement and completion.

6 CONCLUSION

In this work, we unify multiple shape restoration subtasks and simulate diverse scenarios — such
as varying degrees of incompleteness and noise — to build a cohesive synthetic dataset for training
a general-purpose shape restoration model. We employ a conditional hierarchical latent diffusion
model for shape restoration, enabling multi-level understanding of the defective shapes and efficient
generation of the intact ones. Additionally, we enhance the model’s robustness to extreme OOD
inputs through patch-wise and noise-robust encoding. Benefiting from the proposed scalable training
strategy, we can pre-compress defective shapes, significantly improving the training efficiency of
the generative model. We demonstrate our model’s effectiveness across different shape restoration
subtasks on multiple datasets.

Limitation and future works. Our conditional diffusion model achieves high-quality results but
sacrifices diversity for quality, a common tradeoff in such models. Although effective in certain
multi-object scenarios, our method is limited by the training data and cannot handle large-scale
scenes. Exploring geometric restoration in large scenes through compositional or holistic ap-
proaches is a promising direction. Restoring shapes with significant incompleteness requires the
understanding and generation capabilities of broad semantics. Enhancing our model by training on
larger-scale datasets could improve its robustness. Additionally, representing objects with sparse
TSDF grids remains insufficiently compact; hence, shape restoration based on primitive-based or
CAD-related representations is a potential area for further improvement.
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Figure 5: Qualitative results of shape restoration on our general shape restoration bench-
mark. UniRestore3D can handle various types of impairments with high quality.
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Figure 6: Qualitative results of noise-free shape completion on the 3DQD benchmark.
UniRestore3D achieves better quality and fidelity compared to baselines.
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Figure 7: Qualitative results of noisy shape completion on the PatchComplete benchmark.
UniRestore3D can restore low-resolution and noisy inputs effectively.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work was partially supported by the NSFC (No. U24B20154, No. 62322207, No. 62402427),
Ant Group and Information Technology Center and State Key Lab of CAD&CG, Zhejiang Univer-
sity.

REFERENCES

Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
natural images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 18208–18218, June 2022.

Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended latent diffusion. ACM transactions on
graphics (TOG), 42(4):1–11, 2023.

Jakob Andreas Bærentzen and Henrik Aanaes. Signed distance computation using the angle
weighted pseudonormal. IEEE Transactions on Visualization and Computer Graphics, 11(3):
243–253, 2005.

Gavin Barill, Nia Dickson, Ryan Schmidt, David I.W. Levin, and Alec Jacobson. Fast winding
numbers for soups and clouds. ACM Transactions on Graphics, 2018.

Aleksei Bokhovkin and Angela Dai. Neural part priors: Learning to optimize part-based object
completion in rgb-d scans. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9032–9042, 2023.

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d
generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 16123–16133, 2022.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan Gui. Sd-
fusion: Multimodal 3d shape completion, reconstruction, and generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4456–4465, 2023.

Ruihang Chu, Enze Xie, Shentong Mo, Zhenguo Li, Matthias Nießner, Chi-Wing Fu, and Jiaya Jia.
Diffcomplete: Diffusion-based generative 3d shape completion. Advances in Neural Information
Processing Systems, 36, 2024.

Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu,
Xi Zhang, Tomas F Yago Vicente, Thomas Dideriksen, Himanshu Arora, et al. Abo: Dataset and
benchmarks for real-world 3d object understanding. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 21126–21136, 2022.

Ruikai Cui, Shi Qiu, Saeed Anwar, Jiawei Liu, Chaoyue Xing, Jing Zhang, and Nick Barnes.
P2c: Self-supervised point cloud completion from single partial clouds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 14351–14360, 2023.

Ruikai Cui, Weizhe Liu, Weixuan Sun, Senbo Wang, Taizhang Shang, Yang Li, Xibin Song, Han
Yan, Zhennan Wu, Shenzhou Chen, et al. Neusdfusion: A spatial-aware generative model for 3d
shape completion, reconstruction, and generation. arXiv preprint arXiv:2403.18241, 2024.

Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. Shape completion using 3d-encoder-
predictor cnns and shape synthesis. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5868–5877, 2017.

Angela Dai, Christian Diller, and Matthias Nießner. Sg-nn: Sparse generative neural networks for
self-supervised scene completion of rgb-d scans. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 849–858, 2020.

11



Published as a conference paper at ICLR 2025

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati,
Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha
Kembhavi, Carl Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi.
Objaverse-XL: A Universe of 10M+ 3D Objects, July 2023a.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13142–13153, 2023b.

Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
Thomas B McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset
of 3d scanned household items. In 2022 International Conference on Robotics and Automation
(ICRA), pp. 2553–2560. IEEE, 2022.

Nicole Feng and Keenan Crane. A heat method for generalized signed distance. ACM Transactions
on Graphics (TOG), 43(4):1–19, 2024.

Juan D Galvis, Xingxing Zuo, Simon Schaefer, and Stefan Leutengger. Sc-diff: 3d shape completion
with latent diffusion models. arXiv preprint arXiv:2403.12470, 2024.

Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Barlas Oğuz. 3dgen: Triplane latent
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ETHICS STATEMENT

The proposed general shape restoration method and related datasets mostly do not involve hu-
man subjects or personal data; however, we recognize several potential ethical considerations.
The constructed dataset is based on existing ones, including Objaverse (Deitke et al., 2023b;a),
ShapeNet (Chang et al., 2015), ABO (Collins et al., 2022) and GSO (Downs et al., 2022), among
which Objaverse includes 3d models of humans. The methods developed here are intended for gen-
eral shape restoration, it is essential to consider the potential consequences if applied to sensitive
areas, such as reconstructing protected or proprietary 3D models without authorization, 3D models
involving human subjects, etc.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of each component of our method, including the dataset construc-
tion Sec. 3, the encoding methods and training strategy for defective and intact shapes Sec. 4.1, and
the model and training procedure for the hierarchical latent diffusion model Sec. 4.2. The proposed
method is built on publicly available codebases, including latent diffusion1 and other open-source
diffusion model implementations2. Main network architectures are built upon the publicly available
TorchSparse codebase3. This information facilitates the reproduction of our method.

A APPENDIX

A.1 MORE QUALITATIVE RESULTS

We present more qualitative results of our model on different subtasks of the proposed general shape
restoration benchmark in Fig. 8.
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Figure 8: Qualitative results on our general shape restoration benchmark.

1https://github.com/CompVis/latent-diffusion
2https://github.com/lucidrains/denoising-diffusion-pytorch
3https://github.com/mit-han-lab/torchsparse
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Figure 9: Data samples from the proposed general shape restoration dataset.

A.2 NETWORK ARCHITECTURE

Hierarchical VAE (H-VAE). In the encoder part of the H-VAE, we adopt a cascaded structural
design comprising multiple stages. First, for high-resolution inputs (e.g., 2563 or higher), we use a
fast downsampling operation like spatial2column to reduce computational load and memory usage.
This operation directly downsamples the input to the target resolution of the current stage encoder’s
bottleneck (e.g., from 2563 to 643). This is equivalent to the use of a convolution layer for fast
downsampling in Hoogeboom et al. (2023).

Then, we use 1×1 convolutions (Conv1×1) to encode the spatial2column results at each location
into a feature space of dimension C1. We then perform encoding using patch-wise residual blocks
(ResBlocks) composed of sparse convolutions (without downsampling if spatial2column is used
firstly), obtaining latent encodings of dimension C2 for the current stage. Notably, if all values
within a patch are truncated values, we skip the encoding and directly assign a globally-shared
learnable feature. Proceeding to the next stage (lower resolution), we concatenate the sparse TSDF
grid corresponding to this stage with the sparse latents from the previous stage as the input to this
stage, and use Conv1×1 to encode it into a feature space of dimension C3. Similar to the previous
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Table 6: Training efficiency gains from precomputation using pre-trained noise-robust encoder.

Model w/ precomputation w/o precomputation

speed time speed time

H-LDM (1st stage) 4.37 it/s 3.5 days 0.22 it/s 70 days

stage, we use patch-wise ResBlocks composed of sparse convolutions (downsampling is performed
here), obtaining latent encodings of dimension C4 for the current stage. The specific structure of
each ResBlock is the same as in the latent diffusion model (LDM) (Rombach et al., 2022).

In the decoder part, we use ResBlocks composed of sparse convolutions for decoding (no longer
restricted to patch-wise). Each ResBlock’s specific structure is the same as in LDM. We then use
an MLP head to predict the TSDF values of the current stage and optionally a mask used to control
sparse structure pruning, respectively. If the encoder corresponding to the current stage used the
spatial2column operation for fast downsampling, we also additionally use the column2spatial
operation during decoding for fast upsampling to obtain the relevant results at the target resolution.

Hierarchical latent diffusion model (H-LDM). In the H-LDM part, we employ an U-Net-based
denoiser at each stage, where the U-Net is implemented using sparse convolution. The structure
of the U-Net is consistent with that of the latent diffusion model (Rombach et al., 2022). The key
difference is that the latents generated from the previous stage (which are at a lower resolution) are
upsampled and used as additional conditional input for the current stage; this conditional input is
modeled through concatenation. When using text as an additional conditional input — in experi-
ments on the 3DQD benchmark — we inject the condition via cross-attention.

A.3 TRAINING AND INFERENCE DETAILS

All our trainings conducts on 8 A100 GPUs. The experimental results in the paper are based on
using a two-stage H-LDM; therefore, the model training is divided into four parts: training of the
H-VAE, training of the noise-robust shape encoder, and the two-stage training of the H-LDM. Below
are the training details of each sub-model:

H-VAE. The training of the H-VAE does not use data augmentation (since the VAE has strong
generalization capabilities, and online pose augmentation for high-resolution TSDF grids is too
time-consuming). We use 8 A100 GPUs to train the H-VAE for 200 epochs. The batch size is set
to 8×8=64, and each iteration takes about 5 seconds. The training set (Objaverse subset) contains
approximately 120K samples, and the training process takes about 14 days.

Noise-Robust Encoder. The training of the noise-robust encoder also does not use data augmenta-
tion. We use 8 A100 GPUs to train for 90 epochs. The batch size is 8×8=64, each iteration takes
about 4.5 seconds, and the entire training process takes about 6 days.

H-LDM (1st stage). This part is trained with random object poses, we use 8 A100 GPUs for 400
epochs. The batch size is 32×8 = 256, with approximately 4.37 iterations per second, and GPU
memory usage is about 27 GB. The training set contains approximately 800K samples, and the en-
tire training process takes about 3.5 days. Our pre-trained noise-robust encoder enables precomput-
ing compressed latents of defective shapes, significantly reducing I/O overhead for high-resolution
shapes. This optimization accelerates training speed by approximately 20×, as demonstrated in
Table 6.

H-LDM (2nd stage). Also trained with random object poses, we use 8 A100 GPUs for 200 epochs.
The batch size is 32×8=256, with approximately 1.5 iterations per second, GPU memory usage is
about 35 GB, and the entire training process takes about 5 days.

Inference details. We employ the DDIM sampler with 100 timesteps for diffusion sampling in
all stages. For inference on an NVIDIA A100 GPU, the 1st stage denoiser runs approximately 10
timesteps per second, resulting in about 10 seconds per sampling and a VRAM usage of 8 GB. For
the 2nd stage model, the sampling speed is around 6.5 timesteps per second, leading to an inference
time of approximately 15 seconds per sampling and a VRAM consumption of 12 GB.
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A.4 EVALUATION PROTOCOL

Evaluation metrics. Following MSC (Wu et al., 2020), we evaluate the quality, diversity, and
fidelity of the restoration results. For each impaired shape, we preprocess it and generate restoration
results in unit cubes. Due to the intrinsic multi-modal distribution of shape restoration results, we
sample k = 10 samples and calculate the following metrics. The Minimum Matching Distance
(MMD) measures the quality of the restorations with the minimum Chamfer Distance (CD) between
the k samples and a single GT. The Total Mutual Difference (TMD) measures diversity using the
average CD between each of the k samples and the other k − 1 ones. The sum of k average CDs is
defined as TMD. TMD and MMD are strongly correlated; due to the inherent uncertainty in shape
restoration, a model must generate diverse samples to achieve lower MMD. Ideally, fidelity should
be assessed using the Unidirectional Hausdorff Distance (UHD), which measures the unidirectional
distance from the given partial shape to the restoration result. However, since the entire shape may
be impaired, leaving no intact region, computing UHD is not plausible, we approximate fidelity
using the Average Matching Distance (AMD), which computes the average of the CD between the
k samples and the GT.

Adapting pre-trained models to existing benchmarks. Existing benchmarks only handle low-
resolution shapes; e.g., PatchComplete (Rao et al., 2022) handles 323 resolution TSDF grids, and
3DQD (Li et al., 2023) handles 643 ones. Similar to image super-resolution, we upsample these low-
resolution grids to 2563 as inputs. During evaluation, they are downsampled back to the required
resolution.

A.5 DETAILS OF GENERAL SHAPE RESTORATION DATASET

In this section, we provide a more detailed description of the construction method for our general
shape restoration dataset. We present data samples from the dataset in Fig. 9. We use a 256-
resolution TSDF grid to represent both the defective and intact shapes. While we consider defective
shapes at different resolutions, similar to image super-resolution, they are all upsampled to 256-
resolution voxel grids as inputs to the model. Low-resolution geometric representations inherently
lead to geometric deficiencies. Beyond that, we consider three additional factors contributing to
geometric degradation, combining them with different low-resolution representations to create more
complex shape restoration scenarios. These scenarios correspond to noise-free completion, noisy
completion, and noisy refinement. Below, we will describe the methods for constructing defective
shapes for each case in detail.

Intact TSDF grids computation. When computing ground truth TSDF grids for intact shapes, we
first use Manifold (Huang et al., 2018) to convert the original 3D models into watertight manifold
surfaces. Next, we compute the distances based on point-mesh distances and determine the sign
using fast winding numbers (Barill et al., 2018; Williams, 2022).

TSDF grids upsampling. We standardize various types of impaired shapes at different resolutions
to a 256-resolution voxel grid as model inputs. To reduce artifacts caused by interpolation during the
upsampling of low-resolution TSDF grids, we first extract the surface meshes and then recalculate
the high-resolution TSDF grids. For the inside-outside determination, we use the pseudo-normal
check (Bærentzen & Aanaes, 2005) instead of the generalized winding number (Jacobson et al.,
2013), as we empirically found the pseudo-normal test leads to more plausible results in our case.

Shape super-resolution. Shape super-resolution aims to restore high-resolution shapes from ones
represented in lower resolutions, which might exhibit detail loss, geometric artifacts, surface offset,
etc. In the super-resolution subtask of our general shape restoration dataset, we construct geometries
at multiple resolutions, including {32, 64, 128, 256}. We calculate TSDF grids at different
resolutions using a method similar to that used for intact TSDF grids. Specifically, we first compute
the watertight manifold surface based on the Manifold algorithm (Huang et al., 2018), with the
parameter set for the highest resolution (256). This parameter corresponds to the depth of the octree
constructed in intermediate steps, which influences the final geometric detail kept in the manifold
surface. Based on the watertight manifold surface, we compute TSDF grids at different resolutions
and then upsample them to 256-resolution voxel grids. We do not adjust the Manifold parameter
for different resolutions, as this would create noticeable offsets between the resulting surfaces at
different resolutions. While this may introduce more artifacts in low-resolution TSDF grids, we
expect the shape restoration model to correct these artifacts.
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Table 7: Quantitative results of noisy shape refinement across resolutions.

Resolution AMD ↓ MMD ↓ TMD ↑
32 0.518 0.347 0.489
64 0.457 0.357 0.358

128 0.463 0.353 0.373
256 0.211 0.161 0.203

Noise-free shape completion. Noise-free shape completion aims to recover a complete geometry
from a partial shape with missing regions but no noise in the given areas. Similar to previous related
works (Mittal et al., 2022; Cheng et al., 2023; Li et al., 2023), we randomly sample half or octant
partial shapes from complete geometries to create the impaired shapes for restoration. We randomly
sample complete TSDF grids at different resolutions and then randomly extract partial TSDF grids
from them. These partial grids are upsampled to a resolution of 256 to increase diversity. We
can extend the sampling of partial shapes to more random, irregular voxel grid sampling, thereby
creating a wider range of data variations.

Noisy shape completion. Noisy shape completion aims to restore complete, noise-free geometry
from incomplete geometries that exhibit noise and significant missing regions. Such geometries
are common in 3D reconstruction, especially in cases of sparse viewpoints, insufficient network
capacity, or significant errors in camera poses. To simulate these conditions, we employ depth fusion
based on TSDF grids. We generate incomplete geometries by sampling sparse camera viewpoints
and introducing random noise to depth maps and camera poses. Specifically, to simulate varying
levels of sparse view observations, we apply several strategies: (1) using depth maps from a single
view; (2) restricting camera viewpoints to cover a small, localized area, such as within a narrow
cone; and (3) applying random cropping to the sampled sparse views to mimic random wide-baseline
scenarios. On top of these viewpoint setups, we introduce random noise to both the camera poses
and the rendered depth maps. For the depth maps, we simulate Kinect-like noise (Tölgyessy et al.,
2021) with a probability of 0.5. For the camera poses, we randomly perturb both the rotation and
translation components with a probability of 0.5.

Noisy shape refinement. Noisy shape refinement is similar to noisy shape completion but assumes
the geometry to be repaired is relatively complete, with the primary task being the local optimization
of surfaces affected by significant noise. This type of geometry frequently occurs in 3D reconstruc-
tion, for instance, due to camera pose errors, depth noise, or missing geometric details caused by
algorithmic limitations. To simulate noisy shape refinement, we use the same camera pose and
depth noise models as in noisy shape completion but ensure that the camera viewpoints fully cover
the entire model.

Impact of combining different shape degradation factors. We categorize shape restoration into
four subtasks. However, because different degradation factors are combined with randomly sampled
resolutions to form defective shapes, there is no clear difficulty ranking among these subtasks. For
example, in noisy shape refinement, even though more camera views are used in data generation
than in noisy shape completion, the lower shape resolution can still lead to significant surface loss.
In Tab. 7, we present the evaluation results of defective shapes at different resolutions for the noisy
shape refinement subtask. It can be seen that, as the resolution increases, the model’s AMD and
MMD metrics generally improve, which means that higher resolutions result in less geometric loss
and a simpler task.

A.6 DETAILS OF 3DQD BENCHMARK

Similar to our training data, the 3DQD (Li et al., 2023) benchmark uses the TSDF grid as 3D
representation for shapes. However, its data preprocessing method (calculating TSDF grids from
possibly non-manifold meshes) differs from ours, and the resulting resolution of voxel grids is also
different. These differences result in significant variations between the datasets, which can affect
model evaluation. In the following, we will provide a detailed description of the data preprocessing
and evaluation methods used in the 3DQD benchmark.

Data preprocessing. The 3DQD benchmark uses SDF grids provided by DIST (Liu et al., 2020)
for both training and testing. The SDF grid is computed using the method proposed by Xu & Bar-
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bič (2020). For a potentially non-manifold mesh, this method first calculates the unsigned distance
function (UDF) and extracts an offset manifold surface, from which the SDF is then computed. This
method generally produces a well-defined offset surface, but the surface corresponding to level=0
often suffers from significant deficiencies. The 3DQD benchmark computes SDF grids with a res-
olution of 64, due to the low resolution, these deficiencies are further amplified. Consequently,
the 3DQD benchmark adopts a strategy of computing relevant metrics based on the offset surface.
Specifically, for a complete shape that is approximately normalized to fit within a unit cube (with
some padding reserved), the 3DQD benchmark extracts surface meshes from both the GT SDF grid
and the completion result at level=0.04 and samples point clouds to compute relevant metrics.

Our model preprocesses defective shapes into TSDF grids with a resolution of 256 as model inputs.
To avoid shape deficiency when extracting surface meshes at level=0 for upsampling shapes
from the 3DQD benchmark, we rebuild partial TSDF grids at resolution of 256, keeping the missing
regions consistent with ones in 3DQD. For the model output, we first extract surface meshes at
level=0 and then recompute the SDF grid at lower resolution using the method proposed by Xu
& Barbič (2020) to match 3DQD benchmark’s required format.

Training data. The 3DQD benchmark evaluates a model’s ability to complete shapes that are in-
complete but free of noise. In contrast, our model aims for general shape restoration. Therefore,
during training, we persist in using data from various restoration scenarios to maintain the model’s
versatility, and then evaluate the model on the 3DQD benchmark. Specifically, we preprocess shapes
in the 3DQD benchmark’s training set using the strategy shown in Fig. 2 to construct a general shape
restoration data for model training. Moreover, due to the extreme incompleteness of shapes in the
3DQD benchmark, the object poses of the completion results tend to be highly diverse (e.g., when
only chair legs are provided, the chair’s pose can be ambiguous). Training the model under random
poses often leads to significant differences between the predicted poses and the canonical pose of
the ground truth. To address this, we train and evaluate our model in the canonical pose, consistent
with other baselines.

A.7 DETAILS OF PATCHCOMPLETE BENCHMARK

The PatchComplete benchmark (Rao et al., 2022) generates noisy and incomplete partial shapes
for restoration using TSDF fusion. The corresponding ground truth (GT) TSDF grids are also ob-
tained through TSDF fusion, but under dense viewpoints. Both the partial and GT TSDF grids are
represented using a 32-resolution voxel grid. Due to its low resolution, the incomplete shape in
PatchComplete contains limited geometric details. Below, we provide a detailed description of the
data preprocessing and evaluation methods used for the PatchComplete benchmark.

Data preprocessing. Ideally, we could upsample the low-resolution TSDF grid from PatchComplete
to the desired resolution for shape restoration. However, this straightforward approach can lead to
inconsistencies in shapes’ scale. Specifically, PatchComplete does not allocate sufficient padding
during TSDF fusion, which may cause the object’s geometric border to extend beyond the grid,
resulting in an incomplete extracted mesh. Therefore, we cannot simply rescale the extracted mesh
to fit entirely within the TSDF grid and then upsample it to a higher resolution. Instead, we adopt the
same TSDF fusion method as PatchComplete, ensuring enough padding is reserved during fusion.
After performing fusion within the 32-resolution TSDF grid, we upsample it as the input for our
model.

Another issue in preprocessing the PatchComplete data (the ShapeNet subset) arises from its use of
single-view depth for TSDF fusion. Directly extracting the mesh with marching cubes often leads to
erroneous surfaces at the boundary between observed and unobserved regions, which corresponds
to the camera’s view frustum. We remove these erroneous surfaces before upsampling. In general,
the TSDF grid obtained through TSDF fusion contains observability information, which shape com-
pletion methods with dense grids can directly use as inputs. These methods can retain the observed
regions and only complete the non-observed areas. However, our model aims to achieve more gen-
eral shape restoration. It uses a sparse voxel grid as input and only relies on information near the
surface, without leveraging observability data, thus addressing a more challenging problem.

Training data. When training models for the PatchComplete benchmark, we fine-tune a pre-trained
model using limited data available in PatchComplete. Since the benchmark emphasizes completion
for novel categories, we exclude all instances related to the test set categories during pre-training on
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Table 8: Quantitative results of noisy shape completion on ShapeNet objects of novel categories.

CD ↓ / IoU ↑ 3D-EPN Auto-SDF PatchComplete DiffComplete SC-Diff Ours
Bag 5.01 / 73.8 5.81 / 56.3 3.94 / 77.6 3.86 / 78.3 3.79 / 78.3 3.50 / 79.8
Lamp 8.07 / 47.2 6.57 / 39.1 4.68 / 56.4 4.80 / 57.9 4.74 / 60.0 5.35 / 59.7
Bathtub 4.21 / 57.9 5.17 / 41.0 3.78 / 66.3 3.52 / 68.9 3.67 / 65.9 3.39 / 72.0
Bed 5.84 / 58.4 6.01 / 44.6 4.49 / 66.8 4.16 / 67.1 4.40 / 67.1 4.46 / 66.5
Basket 7.90 / 54.0 6.70 / 39.8 5.15 / 61.0 4.94 / 65.5 4.89 / 68.5 3.70 / 74.2
Printer 5.15 / 73.6 7.52 / 49.9 4.63 / 77.6 4.40 / 76.8 4.36 / 76.8 4.18 / 80.5
Laptop 3.90 / 62.0 4.81 / 51.1 3.77 / 63.8 3.52 / 67.4 3.41 / 68.4 3.00 / 76.4
Bench 4.54 / 48.3 4.31 / 39.5 3.70 / 53.9 3.56 / 58.2 3.39 / 61.1 3.58 / 55.3
Avg. 5.58 / 59.4 5.86 / 45.2 4.27 / 65.4 4.10 / 67.5 4.08 / 68.3 3.90 / 70.6

Table 9: Quantitative results of noisy shape completion on ScanNet objects of novel categories.

CD ↓ / IoU ↑ 3D-EPN Auto-SDF PatchComplete DiffComplete SC-Diff Ours
Bag 8.83 / 53.7 9.30 / 48.7 8.23 / 58.3 7.05 / 48.5 7.41 / 50.0 7.56 / 63.7
Lamp 14.3 / 20.7 11.2 / 24.4 9.42 / 28.4 6.84 / 30.5 6.39 / 33.2 7.92 / 38.8
Bathtub 7.56 / 41.0 7.84 / 36.6 6.77 / 48.0 8.22 / 48.5 8.09 / 48.4 6.42 / 46.9
Bed 7.76 / 47.8 7.91 / 38.0 7.24 / 48.4 7.20 / 46.6 6.91 / 48.6 6.42 / 51.1
Basket 7.74 / 36.5 7.54 / 36.1 6.60 / 45.5 7.42 / 59.2 6.38 / 62.2 5.62 / 48.2
Printer 8.36 / 63.0 9.66 / 49.9 6.84 / 70.5 6.36 / 74.5 7.10 / 69.1 6.59 / 71.1
Avg. 9.09 / 44.0 8.90 / 38.9 7.52 / 49.5 7.18 / 51.3 7.04 / 51.9 6.75 / 53.3

Objaverse. During fine-tuning, we update the entire model, and we also experimented with LoRA-
based fine-tuning (Hu et al., 2021), which showed no performance improvement.

Results postprocessing. Since the ground truth shape in the PatchComplete benchmark is obtained
from low-resolution TSDF fusion, directly downsampling our model’s high-resolution predictions
to a low resolution would result in geometries with characteristics different from those produced by
TSDF fusion, such as differing geometric details due to low-resolution artifacts. Therefore, we adopt
a downsampling method consistent with the construction of the GTs. We first extract the surface
meshes from the restoration results and then perform virtual rendering and TSDF fusion to obtain
a low-resolution TSDF grid, which is then used as the input for evaluation in the PatchComplete
benchmark. When evaluating our model on the ScanNet subset of the PatchComplete benchmark,
following the evaluation strategy of AutoSDF (Mittal et al., 2022) in PatchComplete, we take 5
samples for each restoration and keep the best-performing one for evaluation, which is similar to the
computation of Minimum Matching Distance (MMD). This is because the ScanNet subset is highly
ambiguous; only taking 1 sample leads to a high variance in the evaluation results.

Full results. Due to space limitations in the main text, we only presented the average metrics of
our method across all categories in the ShapeNet and ScanNet subsets. We provide the complete
quantitative results in Tab. 8 and Tab. 9. The proposed method achieves the best results on both CD
and IoU on most of the novel categories. It is important to note that the ground truth geometry in
the PatchComplete benchmark has a relatively low resolution, which may hinder our method from
effectively showcasing its advantages in categories with thin structures. This could also introduce
biases, particularly in categories like Lamp and Bench.
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