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ABSTRACT
In this paper, we describe the gesture synthesis system we devel-

oped for our entry to the GENEA Challenge 2023. One challenge in

learning the co-speech gesture model is that there may be multiple

viable gesture motions for the same speech utterance. Therefore

compared to a deterministic regression model, a probabilistic model

will be preferred to handle the one-to-many mapping problem.

Our system utilizes the vector-quantized variational autoencoder

(VQ-VAE) and discrete diffusion as the framework for predicting

co-speech gestures. Since the gesture motions are produced via

sampling the discrete gesture tokens using the discrete diffusion

process, the method is able to produce diverse gestures given the

same speech input. Based on the user evaluation results, we further

discuss about the strength and limitations of our system, and pro-

vide the lessons learned when developing and tuning the system.

The subjective evaluation results show that our method ranks in

the middle for human-likeness among all submitted entries. In the

the speech appropriateness evaluations, our method has prefer-

ences of 55.4% for matched agent gesture and 51.1% for matched

interlocutor gestures. Overall, we demonstrated the potential of

discrete diffusion models in gesture generation.
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1 INTRODUCTION
Co-speech gesture synthesis is an important capability for driving

virtual character movements in conversational interactions with

human users. It plays an essential role in augmenting the virtual

humanwith non-verbal behaviors that mimic actual human commu-

nications in addition to speech lip-syncing animations. However, it

is not trivial to synthesize gesture motions that are both human-like

and correspond well to the speech input.

In general, the process of gesture generation from speech to

motion is a non-deterministic one-to-many mapping, which indi-

cates that multiple gestures could correspond to the same speech

input to convey a similar meaning. For example, a left-hand beat, a

right-hand beat, or a beat involving hands will all be appropriate

representations of a beat motion corresponding to an utterance.

Therefore instead of using deterministic models [13, 40, 41] to pre-

dict gestures, the recent methods utilized the probablistic frame-

works [2, 23] by sampling the latent space to accommodate the

non-deterministic natures of gesture synthesis.

For the GENEA challenge [21], we have developed our gesture

synthesis system based on vector-quantized variational autoen-

coder (VQ-VAE) and denoising diffusion probabilistic models. We

assume that by utilizing the discrete tokens, the gesture synthesis

problem could be regarded as token sampling based on the pre-

dicted logits. This allows gestures that are far apart in the motion

space to be still mapped to the same input utterance. By leveraging

the disentanglement of information in the latent space of VQ-VAE,

the system gains the potential for controllable gesture synthesis.

The diffusion methods have been adapted successfully for various

applications including image and motion synthesis [10, 35, 44]. The

motivation for our system is to utilize these recent developments in

generative models for gesture synthesis. One more insight for em-

ploying the diffusion process is that diffusion models are inherently

robust to noise and uncertainty in the data. We aim to reduce jit-

tering results generated by many previous methods. Diffusion can

effectively denoise corrupted inputs by stepping backward through

the diffusion process, aiding in data recovery and reconstruction

tasks. Specifically, we first learn the discrete latent codes from the

input motions using VQ-VAE. These codes are then used by the

discrete denoising diffusion probabilistic models (D3PM) to learn

the denoise process. By learning the denoising model in the discrete

latent space, the method is able to leverage the synthesis strength

from the diffusion process while also greatly reducing the compu-

tational costs by requiring much fewer diffusion steps to converge.

After predicting the discrete codes, the model then reconstructs
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the gesture motions through the decoder of VQ-VAE. From the

synthesis results, we found that the method is able to produce di-

verse gestures with good motion dynamics. A demonstration video

showcasing our results can be accessed by visiting the provided

link: here."

2 BACKGROUND
2.1 Co-Speech Gesture Synthesis
In the realm of speech gesture synthesis, traditional rule-based

approaches have relied on manually created sets of gesture units,

employing predefined rules and heuristics to generate gestures

based on linguistic and contextual information [5, 19, 25]. Some

approaches have attempted to extract gesture units from train-

ing speech-gesture pairs [12, 16]. However, these methods have

struggled in accurately estimating gesture attributes and effectively

forming units, thereby impacting the final quality of results.

In contrast, learning-based approaches have emerged, wherein

certain methods utilize speech-gesture pair data to train end-to-

end models that directly predict co-speech gestures, treating the

task as a regression problem from speech to gestures [6, 14, 20, 40].

However, a significant challenge arises when a single speech input

corresponds tomultiple variants of gestures, as the regressionmodel

tends to average the gesture poses, resulting in inferior outcomes.

This challenge is commonly referred to as the one-to-manymapping

from speech to gestures issue.

Recent advancements have approached gesture synthesis in a

probabilistic framework, enabling the generation of multiple ges-

ture sequences from a single speech input through latent space

sampling [1, 2, 7, 23, 24, 27]. Nonetheless, as the length of the

sequence increases, the process of generating data sequentially

becomes time-consuming, and the dependency information is lost

as each element relies on the previously generated ones [29].

Based on the aforementioned points, we propose our model that

combines the VQ-VAE and diffusion techniques to tackle these

challenges and enhance the synthesis of speech gestures.

2.2 Discrete Latent Space Learning
A VAE (Variational Autoencoder) is a type of generative model that

learns a compressed representation of input data by mapping it to

a lower-dimensional latent space, typically modeled as a Gaussian

distribution, using an encoder. In the case of VQ-VAE, the latent

space is discretized into a finite set of codebooks [36]. This allows

for the encoding of original gestures into small, trainable data units

using vector quantization. Recent model design and training tech-

niques have been focusing on improvements for learning the latent

space reconstructions. For instance, Jukebox [9] trained separate

VQ-VAEs on data with different resolutions by hierarchically down-

sampling the input data. RQ-VAE [30] reduces the reconstruction

errors by recursively quantizing the feature maps using a fixed-size

codebook.

One known issue in VQ-VAE is codebook collapse [30], where

multiple embeddings in the codebook collapse and become identical

or nearly identical during training. This collapse leads to a loss of

diversity in learned representations and can adversely affect model

performance and generation quality. Several techniques have been

proposed to mitigate codebook collapse, including re-initializing

unused codes to random vectors during each training iteration [9],

normalizing mean squared error (MSE) for reconstruction [39], and

updating codebook embeddings with exponential moving averages

[30].

VQ-VAE method typically utilizes autoregressive transformers

to learn a probability distribution over the latent space during the

generative stage. However, autoregressive models often struggle

with capturing long-range dependencies in the data, as each el-

ement’s conditioning is limited to the previous elements. In this

work, we instead applied discrete diffusion to enlarge the sampling

window size without negatively affecting the performance of the

generated sequences.

2.3 Denoising Diffusion Probabilistic Models
Diffusion models have emerged as a prominent approach in image

synthesis and motion generation, showcasing their ability to gen-

erate complex and realistic results. In contrast to autoregressive

generative models, diffusion models provide greater flexibility with

reduced error accumulation during inference and are well-suited

for parallel training since they are not constrained by step-by-step

sampling [10, 17, 31–33].

In the continuous diffusion process, the target data array, such

as gesture motions in our case, undergoes an iterative injection

of Gaussian noise through a forward Markov process until pure

noise is obtained. In the subsequent reverse process, the model

learns to gradually denoise the sample. The diffusion transformer

framework has found application in motion synthesis domains,

including tasks like audio-conditioned gesture generation [43] that

can effectively handle long-term dependencies in gesture sequences.

Several notable adaptations of diffusion models have been made for

human motion synthesis as well, such as generating raw motion

frames [35] and improving jittering problems through time-varying

weight schedules for noise estimation [8]. In the realm of gesture

synthesis, Ao et al. [3] leverage a latent diffusion model and apply a

Contrastive-Language-Image-Pretraining strategy [28] to learn the

relationship between speech transcripts and gestures. Additionally,

Zhu et al. [46] focus on ensuring temporal coherence by tailoring

their Diffusion Co-Speech Gesture framework in the context of

gesture synthesis.

Diffusion models can also be extended to discrete data, including

categorical labels or text. For example, D3PM [4] utilizes a transition

matrix in the noising step to handle discrete data. Another variant,

the VQ-Diffusionmodel [15], combines a VQ-VAEwith a conditional

DDPM variant to model the latent space for text-to-image synthesis.

In our system, we adapted the discrete diffusion model to produce

gesture token sequences based on input conditions.

3 DATA PRE-PROCESSING
The training data for the GENEA Challenge 2023 is based on a

subset of the Talking with Hands (TWH) dataset [22]. The dataset

includes the entirety of dyadic interactions, with audio and speech

text features from both the main agent and interlocutor.

In accordance with [42], we undertook analogous data prepro-

cessing procedures.For input gesture representation, we first down-

sampled the input motions to 30 fps and applied a sliding window of

64 frames with a step size of 10 frames to produce gesture samples.

https://vimeo.com/855439894
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Each gesture sample is converted into a tensor of size 𝑇 × 𝐽 × 𝐷 ,
where 𝑇 = 64 is the sliding window size, 𝐽 is the number of joints,

and 𝐷 is the size for joint rotation representation.

We also use 𝐷 = 6 as the representation for joint rotations based

on previous research [45] to prevent singularities and reduce ro-

tation approximation errors. The pose dimension we used is 153,

which includes 6D rotation vectors for 25 joints and the root transla-

tion. For each gesture sample, our target is to predict the main agent

poses, and we combine the audio features from both the main agent

and interlocutor as the input conditions to our model. Following

the baseline data processing scripts provided by the organizers, the

audio features include Mel-frequency cepstral coefficients (MFCCs),

spectrogram, and speech prosody. We concatenate all three features

for both agents into the final speech audio features.

4 METHOD
The method implemented in our system uses a two-stage architec-

ture to train the gesture synthesis models; the first stage involves

learning discrete tokens using VQ-VAE, while the second stage

makes use of the discrete diffusion process to learn conditional

token distributions. Figure 1 presents a summary of our approach

based on discrete diffusion.

4.1 Discrete Gesture Token Learning
We employ a latent space vector quantization model that has been

specially trained on the realm of three-dimensional human gestures.

When given a human gesture represented by a sequence of poses

g ∈ R𝐿×𝐷𝑔
, where L denotes the length of the gesture sequence and

𝐷𝑔 denotes the dimensions of a single gesture frame, an encoder

E converts these frames into gesture tokens or snippets s ∈ R𝑙×ℎ ,
where l denotes a number significantly less than L and h denotes

the latent dimension. Then, using a discrete quantization technique

DQ and a learned codebook C with K embedding entries (c1, ...c𝐾 )
of dimensions Rℎ , these fragments are converted into quantized

vectors b ∈ R𝑙×ℎ . DQ performs a transformation on s by comparing

(s𝑖 )𝑡𝑖=1 to all codebook entries and switches the snippet with the

closest codebook index. Hence, the process DQ is defined as,

k𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛c𝑗 ∈𝐶 | |s𝑖 − c𝑗 | | (1)

In the reverse quantization process to determine the latent embed-

ding for each snippet,DQ’ transforms the indices k into the relevant

entries b from codebook C. In the end, a decoder D reconstructs

b to the 3D space for human gestures. The general formulation of

this autoencoder technique is:

ĝ = 𝐷 (𝐷𝑄 ′ (𝐷𝑄 (𝐸 (g)))) (2)

This procedure is trained with an embedding loss to update the

codebook entries and stabilize training, and a reconstruction loss

between g and ĝ given by:

L𝑣𝑞 = | |̂g − g| |1 + ||𝑠𝑔[E(g)] − b| |2
2
+ 𝛽 | |E(g) − 𝑠𝑔[b] | |2

2
(3)

sg[.] stands for the stop gradient operation in this context and

𝛽 is a weighting factor. Since the quantization process DQ is not

differentiable, back-propagation was made possible by using the

straight-through gradient estimator [37].

In our system, the encoder and decoder layers for the VQ-VAE

model are a series of convolutional layers with skipped connec-

tion, which are adapted from the recent work in image synthesis

[11]. Since their original applications were 2D image synthesis,

we changed the 2D convolutions layers into 1D to better fit the

data dimensions for the gesture motions. We use 𝑙 = 𝐿/4 in our

experiments which gives us a sequence length 𝑙 of 16.

4.2 Diffusion for Discrete Gesture Tokens
The discrete diffusion model and its continuous equivalent share

many similarities. The forward diffusion process gradually corrupts

the sample through a Markov chain 𝑞(k𝑡 |k𝑡−1), given a sequence

of discrete tokens k0 ∈ I𝑙 , where the subscript denotes the diffusion
step. Following the discrete diffusion process [15], we employ the

forward process to create progressively noisier latent variables

k1, . . . , k𝑇 ∈ I𝑙 , where 𝑇 represents the total number of diffusion

steps. In this discrete diffusion example, k𝑇 consists of pure noise

or all masked tokens.

The reverse diffusion process samples from the reverse distri-

bution 𝑞(k𝑡−1 |k𝑡 , k0) in an attempt to reconstruct k0 from k𝑇 . To
approximate the reverse distribution, we train a transformer model

as the denoising model. The transformer model produces the distri-

bution represented by the symbol 𝑝𝜃 (k𝑡−1 |k𝑡 , y), where y denotes

the condition (e.g., speech/text/interlocutor gestures or their com-

bination).

The transitional probabilities between codebook indices are

defined by fixed transition matrices Qt ∈ R(𝐾+1)×(𝐾+1)
at each

timestep. The matrix Q is given by,

Q𝑡 =



𝛼𝑡 + 𝛽𝑡 𝛽𝑡 𝛽𝑡 . . . 0

𝛽𝑡 𝛼𝑡 + 𝛽𝑡 𝛽𝑡 . . . 0

𝛽𝑡 𝛽𝑡 𝛼𝑡 + 𝛽𝑡 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

𝛾𝑡 𝛾𝑡 𝛾𝑡 . . . 1


(4)

The [MASK] token is represented by the extra dimension in

𝐾 + 1. According to Qt , an index in k𝑡 has a probability of 𝐾𝛽𝑡
of being replaced by another index chosen randomly from the 𝐾

indices, with a probability 𝛾𝑡 of turning into a [MASK] index, and

a probability of 𝛼𝑡 of staying the same index at each diffusion step.

During training, the forward diffusion process becomes efficient

by utilizing the closed-form equation [15] of the cumulative transi-

tion matrix𝑄𝑡 = 𝑄𝑡 . . . 𝑄1, which expresses the transition probabil-

ity from k0 to k𝑡 and the corresponding forward probability distri-

bution 𝑞(k𝑡 |k0). Throughout the reverse process, the model learns

to approximate the posterior 𝑞(k𝑡−1 |k𝑡 , k0) with 𝑝𝜃 (k𝑡−1 |k𝑡 , y), as
mentioned earlier.

To enhance generation results, recent efforts [4, 18] utilize a

reparameterization approach, approximating the distribution rather

than directly modeling the posterior. The denoising model produces

denoised gesture tokens given by 𝑝𝜃 (k̃0 |k𝑡 , y). By using the de-

noised token distribution 𝑝𝜃 (k̃0 |k𝑡 , y) and the posterior distribution
𝑞(k𝑡−1 |k𝑡 , k̃0), we sample the (𝑡−1)-th gesture from 𝑝𝜃 (k𝑡−1 |k𝑡 , y)
during inference.

The diffusionmodel is implemented as a transformer architecture

[38] with 19 layers and 16 attention heads. We use 100 diffusion
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Figure 1: Architecture for VQ-Diffusion model. The top half represents the VQ-VAEmodel framework. Bottom left figure briefly
shows the forward and reverse process of the training stage in Diffusion. Bottom right figure explains the inference stage with
the reparametrization trick.

steps for our method and set the condition hidden dimension as

512.

4.3 Classifier-Free Guidance
The diffusion model attempts to optimize the prior distribution

𝑝 (k|y) during the training phase of a conditional generation task

using k as a sample and y as the associated condition, provided

that the posterior distribution 𝑝 (y|k) is satisfied. It’s probable that
throughout training, this posterior probability will be disregarded.

It is possible that the model merely uses the corrupted sample to

reconstruct and ignores the conditional input because it has access

to both the corrupted sample and the condition. The posterior issue
[34], or poor alignment between the generated sample and the

condition, results from this.

Therefore, both 𝑝 (k|y) and 𝑝 (y|k) must be included in our opti-

mization objective. One way to do this is to optimize log𝑝 (k|y) +
𝑠 log 𝑝 (y|k), where s denotes the guidance scale which is a hyper-

parameter. By using Bayes’ Theorem, this optimization function

can be expressed as:

𝑎𝑟𝑔𝑚𝑎𝑥k = [log𝑝 (k) + (𝑠 + 1) (log𝑝 (k|y) − log𝑝 (k))] (5)

where p(k) is the unconditional distribution of k. To handle the

unconditional inputs, the model is also trained with a ’null’ con-

dition [26] for a select percentage of samples. It has been shown

that implementing a learnable conditional vector instead of a ’null’

condition is more suitable for training classifier-free guidance [34].

We adopt the technique with a learnable null vector in our im-

plementation. Empirically, we found that using the classifier-free

guidance with a proper guidance scale improves the overall gesture

synthesis results.

5 RESULTS AND DISCUSSION
5.1 Implementations and Experiments
We chose to train VQ-VAE over 35k steps (120 epochs) on a batch

size of 256 which takes approximately 90 minutes to show proper

convergence. The VQ-VAE model was trained with both the L2

reconstruction loss and the codebook loss. In addition, we utilized

Fréchet Gesture Distance (FGD) as the perceptual metric to evaluate

whether the reconstructed motions were statistically faithful to the

original motion styles. Figure 2 (Top row) shows the loss graphs for

training the VQ-VAE, which demonstrates the method is capable of

learning the discrete representation and reconstructing the original

gestures. The VQ-VAE model shows good gesture reconstruction

capabilities as proven by the best validation FGD of 0.7. However,

empirically we observed one peculiarity that using the VQ-VAE

model with the best reconstruction FGD may produce worse results

when training the discrete diffusion model in the 2nd stage. We

suspected this may be due to overfitting and thus chose a VQ-VAE

checkpoint with FGD of 1 for training the discrete diffusion model.

For training the 2nd stage diffusion model, the KL divergence

loss was used since the diffusion is operated on the discrete la-

bels. For selecting the best checkpoint, FGD was also used as the

evaluation metric to reflect the motion quality of synthesized ges-

tures. During training, the discrete diffusion model converged with

a steady decrease in KL loss until the model started to overfit at

around 12K steps again on a batch size of 256. The FGD was also

converging smoothly without large fluctuations as shown in Figure

2 (Bottom row). As seen in the plots, FGD continued to improve

despite the increase in validation loss. Therefore for stage 2, we

picked the checkpoint with the lowest FGD since it was observed
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Figure 2: Metric plots on the Genea2023 dataset training and validation. Top row shows the metrics for training and validating
of the VQ-VAE stage with training loss, validation loss and FGD from left to right. Bottom row shows the metrics for diffusion
model trained and validated on the above VQ-VAE. Once, again with training loss, validation loss and FGD from left to right.

empirically that the overfitted model with lower FGD resulted in

better-looking gestures.

5.2 Subjective Evaluations
The user study and evaluations were conducted by the GENEA 2023

organizers. The videos for the subjective evaluations were rendered

from the gesture motion submissions from each team. Since the

challenge dataset is based on dyadic conversations between two

agents, three tasks were evaluated to properly assess different qual-

ities for the generated gesture motions. The Human-likeness study

measures the overall quality of the generated motions without fac-

toring in the speech content. Appropriateness for agent speech

study measures whether the synthesized gestures correspond well

to the input speech without considering the interlocutor. Finally, ap-

propriateness for the interlocutor includes the dyadic interactions

to evaluate whether the interlocutor’s motions are proper given

the conversations and the main agent’s motions. In the following,

we further discuss the evaluation results for our system (SI).

Figures 3, 4a, 4b show the subjective evaluations of various mod-

els on the test dataset. Our model (SI) shows average performance

and ranks in the middle of all competing models. The average re-

sult can be attributed to a few reasons. First, due to the efforts for

developing and tuning the VQ-diffusion model, we were not able to

perform extensive experiments with all different input conditions

within the timeline for the Challenge. Therefore the model has been

conditioned only on the audio of the main agent and interlocutor

for simplicity in the experiments. The possible improvement would

be including additional conditions such as the text transcript for

better speech context, interlocutor gestures for more appropriate

dyadic gestures and speaker identities for varying the gesture styles

of different speakers. A combination of these input features can

be fused with the audio features in a joint embedding space which

could serve as a better conditional input for diffusion. Another
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Figure 3: Box plot visualising the ratings distribution in the
human-likeness study. Red bars are the median ratings (each
with a 0.05 confidence interval); yellow diamonds are mean
ratings (also with a 0.05 confidence interval). Box edges are at
25 and 75 percentiles, while whiskers cover 95 % of all ratings
for each condition. Conditions are ordered by descending
sample median rating.

reason for the average performance is that we have ignored synthe-

sizing the finger joints when training our models, and focused only

on producing the body and arm motions. Including these additional

finger motions would likely enhance the details of the gestures and

boost the overall motion quality in the subjective evaluations.

Moreover, on inspection of our generated gestures visually, we

observed a jittering issue in some results. Specifically, sometimes

the synthesized gesture motions may produce abrupt movements
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(a) Appropriateness for agent speech
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(b) Appropriateness for the interlocutor

Figure 4: Bar plots visualising the response distribution in
the appropriateness studies. The blue bar (bottom) repre-
sents responses where subjects preferred the matched mo-
tion, the light grey bar (middle) represents tied (“They are
equal”) responses, and the red bar (top) represents responses
preferring mismatched motion, with the height of each bar
being proportional to the fraction of responses in each cat-
egory. Lighter colours correspond to slight preference, and
darker colours to clear preference. On top of each bar is also
a confidence interval for the mean appropriateness score,
scaled to fit the current axes. The dotted black line indicates
chance-level performance. Conditions are ordered by mean
appropriateness score.

that look like noises and motion artifacts. Originally we thought

this was due to the singularity of the pose representation. However,

the jittering still persisted after we switched to the 6-D rotation

representation. Therefore we speculated that the possible reason for

this effect could be due to the discrete nature of the representation.

During the learning process, the discrete diffusion process might

have predicted to shift between codebook indices representing two

very different gestures. Even though the VQ-VAE decoder should

alleviate the discontinuous motions, this may still lead to sudden

speed changes in the gesture being performed and reduces the

overall smoothness of the produced motion. Resolving this issue

requires a deeper investigation into the diffusion model training to

understand the cause. Some heuristics could also be implemented

to prevent sampling the subsequent gesture tokens that are too far

away in the motion space.

While we believe the proposed architecture of discrete condi-

tional diffusion is a promising method, a significant disadvantage

to this method is having to train two different models. It requires

training both the VQ-VAE model for learning the discrete latent

codes and the discrete diffusion model for learning the conditional

inference. Thus the performance of the diffusion model depends

heavily on the quality of VQ-VAE and slight variance in VQ-VAE can

lead to significant performance differences in the final performance.

In our experiment, we found that the codebook size of the VQ-

VAE is also an important factor and it is easy to overfit if a large

codebook size is chosen. For example, using a codebook size of 1024

produces worse results than a codebook size of 256, which was used

in our final model. Another hyperparameter requires tuning in the

guidance scale in the diffusion process. The final quantitative results

vary significantly on the guidance scale. We found a guidance scale

of 4 to give the best results.

6 CONCLUSIONS AND TAKEAWAYS
In this paper, we describe the gesture synthesis method of our sub-

mission entry to GENEA Challenge 2023 [21]. Overall, the discrete

diffusion method is able to leverage the generative strength of the

diffusion process while reducing the inference time compared to

running the diffusion on the full motion poses. However, the user

study results showed that there is still room for improvement in

our proposed system. In the future, we plan to address the issues of

jittering artifacts and finger motions to improve the overall motion

quality. We also hope to experiment with additional input condi-

tions to produce proper motions in dyadic scenarios. We believe the

method requires more refinements and could be a promising direc-

tion for generating stylized gestures using various input conditions

such as audio, text, and speaker identities once these drawbacks

are addressed.
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