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ABSTRACT

Vision language models (VLMs) have demonstrated remarkable capabilities in
multimodal tasks, yet their sensitivity to sparse, critical, and overwhelmed vari-
ables remains unexplored. The image preference prediction across multi-country
markets task serves as a representative case in this regard. Specifically, VLMs
(e.g., QwenVL) are tasked with judging between two images (A and B) for the
same product across diverse markets (e.g., Korea, France), the model’s predic-
tions often collapse to a single output (e.g., always ”A”) despite ground-truth
preferences varying by country. This failure is attributed to Sparse Critical Vari-
able Overwhelm (SCVO): the model is overwhelmed by dominant high-volume
variables (e.g., product attributes, image patches consuming hundreds of tokens),
while the critical low-volume variables (e.g., country names consuming only a
few tokens) is statistically drowned out. To study this, we firstly collect dataset, a
real-world advertising image click-through preference across multi-country mar-
kets, and then a novel training framework that strategically mtigate SCVO is pre-
sented and used to trained with the dataset yiedling to CountryReward, a judge
model for advertising image preference prediction across multi-country markets.
Our framework involves three tailored modules: (1) a cross-country retrieval aug-
mentation generation that injects historical click-through preferences aligned with
target markets into the model training, enhancing localized relevance prediction.
(2) a country adapter module that dynamically modulates image representations
based on textual country embeddings, enabling precise visual preference adapta-
tion for diverse markets. (3) an focus-driven penalty loss function that penalizes
mispredictions related to the overlooked variable more heavily. Finally, we apply
the CountryReward as the reward model to fine-tune VLMs through Reinforce-
ment Learning (RL) which can output background designs fed to text-to-image
model (e.g., SDXL) and generate effective e-commerce image for targeted coun-
try. Experiments on a the proposed dataset show that our approach significantly
mitigates the SCVO effect and improves the preference prediction accuracy. This
work highlights the need for robust handling of sparse critical variables in VLMs
and offers a scalable solution for real-world applications where subtle contextual
shifts drive decision-making.

1 INTRODUCTION

Vision-language models (VLMs) (Wang et al., 2024; Chen et al., 2024) have emerged as a corner-
stone of modern artificial intelligence, demonstrating remarkable proficiency across a broad spec-
trum of multimodal tasks, from visual question answering and image captioning to complex reason-
ing about visual scenes. Their ability to learn powerful multimodal representations have been used
to be multimodal reward models (RMs) (He et al., 2024; Liu et al., 2025a; Xu et al., 2025), which can
provide crucial reward signals to guide model training (Ouyang et al., 2022; Rafailov et al., 2024;
Schulman et al., 2017) and inference (Gulcehre et al., 2023; Snell et al., 2024). However, despite
their impressive performance, a critical aspect of their real-world applicability remains underex-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Image B:

Image A:

Image B:

Image A:

The attributes of the product shown in the image:

For American market, compare the two e-commerce 
images below and select the one (A/B) that is more 
likely to attract consumers and drive conversions. 
Consider factors like visual appeal, and background 
design. Answer strictly with a single uppercase letter 
(A/B) on the last line, no explanations.

For Brazilian market, compare the two e-commerce 
images below and select the one (A/B) that is more 
likely to attract consumers and drive conversions. 
Consider factors like visual appeal, and background 
design. Answer strictly with a single uppercase letter 
(A/B) on the last line, no explanations.

Product Category:  Sofa            
Product Title: Modern White Leather Sectional Sofa 
with Black Accents 
Product Material: Crafted from high-quality,… 
Product Color: A clen white tone that brightens…
Product Style: Featuring clean lines, minimalistic…

The attributes of the product shown in the image:
Product Category:  Sofa            
Product Title: Modern White Leather Sectional Sofa 
with Black Accents 
Product Material: Crafted from high-quality,… 
Product Color: A clen white tone that brightens…
Product Style: Featuring clean lines, minimalistic…
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answer: A

label: A

answer: A

label: B

Figure 1: Sparse Critical Variable Overwhelm (SCVO): The only different variable (blue or orange
squares) shown in the two examples is the country names, which sparse but critical. Other cues
(green squares shown in the image) including a pair of images for the same product and product
attributes are same, which are high-volume and dominated. The model’s autoregressive decision-
making process collapses, producing a market-invariant prediction.

plored: their robustness and sensitivity to specific, often underrepresented, variables in instruction-
following scenarios. In particular, the sensitivity of VLMs to the sparse but critical variables which
are overwhhelmed in excessive or complex input instruction, poses a significant challenge to their
reliability and trustworthiness.

The image preference prediction across multi-country markets task is a representative case in the
regard mentioned above. As shown in Figure 1, in this setting, models such as QwenVL (Bai et al.,
2023) are required to discern nuanced preferences between two images (A and B) depicting the same
product across distinct markets, for instance, comparing consumer choices in American market ver-
sus Brazilian market. Despite clear empirical evidence that human preferences vary significantly
by region, VLMs frequently exhibit a collapse in their decision-making process, defaulting to a
single output choice (e.g., persistently selecting ”A”) irrespective of the target market. This fail-
ure is attributed to Sparse Critical Variable Overwhelm (SCVO): a VLM’s autogressive probability
chain, P (x) =

∏
t P (xt|x<t), is dominated by high-volume variables (e.g., product attributes, im-

age patches consuming hundreds of tokens), causing the influence of the sparse critical variable
(e.g., country names consuming only a few tokens) to be statistically drowned out during attention-
weighted feature fusion. The green squares in Figure 1 represented as the same cues drowning out
the influence of the blue or orange squares, resulting the model fails to allocate sufficient sensitivity
to the critical variable, breaking chain rule dependence.

To study this, we first collect a dataset, called Multi-Country Ad Click Preference (MACP), a real-
world advertising image click-through preference across multi-country markets. Our dataset con-
tains 823K training samples and 18K test samples involving 10 countries. The number of sample
from different countries is uniform. Each sample includes two different images of the same product,
their Click-Through Rate (CTR), the detailed product information, including titles, categories, and
other relevant attributes. These samples are collected from same e-commerce platform, ensuring
reliability in data source and characteristics.

In the domain of advertising image preference prediction across different country markets, the pres-
ence of SCVO poses significant challenges to model accuracy. To address this issue, we introduce a
novel training framework specifically designed to mitigate SCVO-related limitations. The proposed
approach leverages a comprehensive dataset to train CountryReward, a specialized judge model for
advertising image preference prediction across different country markets. Our framework incorpo-
rates three strategically designed components: (1) A cross-country retrieval augmentation generation
that integrates historical click-through perferences aligned with target markets, thereby enhancing
the model’s capacity for localized relevance assessment. (2) A country adapter module that dynami-
cally adjusts visual representations using textual country embeddings, enabling fine-grained adapta-
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tion to diverse market-specific characteristics. (3) A focus-driven penalty loss function that assigns
weighted penalties to prediction errors associated with previously overlooked variables. Through
these innovations, our framework significantly mtigates the SCVO effect and improves prediction
accuracy while maintaining robustness across varied market environments.

In the domain of cross-border e-commerce visual content generation, accurately aligning generated
imagery with market-specific preferences remains a challenging task. To address this limitation, we
integrate the CountryReward as a reward model to fine-tune VLMs through Reinforcement Learning
(RL). The optimized VLM subsequently generates detailed background design tailored to specific
markets, which serve as inputs to text-to-image models such as SDXL (Podell et al., 2023). The
final output consists of highly targeted e-commerce images designed to resonate with consumers in
particular countries, thereby enhancing visual relevance and commercial effectiveness.

We summarize our contributions as four aspects:

• Identifying and formalizing a novel research problem: This work is the first to systemati-
cally identify a critical deficiency in VLM, Sparse Critical Variable Overwhelm (SCVO).

• We collect the Multi-Country Ad Click Preference (MACP) dataset, a novel real-world e-
commerce advertising image click-through preference data from 10 countries.

• We design an innovative training framework for the CountryReward proposed, a judge
model can accurately predict image preference across multi-country markets. This frame-
work integrates three tailored modules:

– A cross-country retrieval augmentation generation that enhances the model’s under-
standing of localized relevance by leveraging historical click-through data aligned
with target markets.

– A country adapter module that enables fine-grained adaptation to diverse market-
specific features by dynamically adjusting visual representations using textual country
embeddings.

– A focus-driven penalty loss that can adaptively apply varying penalities based on focus
of features such as country, image, and product when a prediction error occurs.

• We further use CountryReward as a reward model to fine-tune VLMs via Reinforcement
Learning (RL), enabling the generation of country-market adapted background designs
through text-to-image models (e.g., SDXL) for targeted e-commerce applications.

2 RELATED WORK

2.1 MULTIMODAL REWARD MODELS

Multimodal reward models play an increasingly critical role in aligning vision understanding and
generation systems with human preferences. A widely adopted strategy involves fine-tuning visual-
language models (VLMs) (Li et al., 2024; Bai et al., 2022), capitalizing on their strong multimodal
alignment capacities to acquire reward functions reflective of human judgments. Previous research
has investigated reward modeling in the context of visual generation (Liu et al., 2025a; Xu et al.,
2025; He et al., 2024; Wang et al., 2025b) and visual understanding tasks (Zang et al., 2025; Xiong
et al., 2025). For example, Ziegler et al. (2020) devises an efficient pipeline for building multi-
modal preference datasets and utilizes existing high-quality data to train IXC-2.5-Reward, a model
capable of accurately assessing outputs from visual understanding tasks. Similarly, Wang et al.
(2025b) gathers human feedback to create a dataset of human-rated videos used to train LiFT-
Critic, a reward model designed to evaluate how closely generated videos match human expec-
tations. Wang et al. (2025c) proposes UnifiedReward, a unified reward model that can evaluate
both image and video generation along with understanding tasks, showing that collaborative learn-
ing across various visual domains leads to significant synergistic improvements. Wang et al. (2025a)
presented UNIFIEDREWARD-THINK, a unified multimodal reward model based on lengthy Chain-
of-Thought reasoning, facilitating multi-dimensional long-chain reasoning for visual understanding
and generation tasks. Despite their promising performance, existing reward models does not fur-
ther consider the setting where instructions contian spares but critical variables, frequently leading
to imprecise or untrustworthy reward signals. To this end, we propose CountryReward, a reward
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model can simultaneously adaptively consider different semantic clues (e.g., country name, prod-
uct attributes, and image features), especially the sparse but critical cues which are overwhlmed by
dominant features in the input.

2.2 LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) (Bai et al., 2022; Luong et al., 2024;
Ziegler et al., 2020; Ouyang et al., 2022; Jiao et al., 2025; Zhang et al., 2025; Ying et al., 2024;
Yang et al., 2024; OpenAI et al., 2024; Shao et al., 2024; Hui et al., 2024) collects human feed-
back regarding model outputs. The feedback is then used to optimize generative model via rein-
forcement learning methods such as PPO (Schulman et al., 2017), DPO (Rafailov et al., 2024) and
GRPO DeepSeek-AI et al. (2025). The RL applications for VLMs contain visual quality assess-
ment (Li et al., 2025), visual perception and reasoning (Liu et al., 2025b), mitigating hallucina-
tions (Sun et al., 2023; Yu et al., 2024a), and aligning models with human preferences (Yu et al.,
2024b; Zhou et al., 2024). As for briding VLMs and T2I models, a classifier (Wu et al., 2023)
trained on human-curated image choices, which can output human preference score used to adapt
T2I model. Parrot (Lee et al., 2024) optimizes the prompt expansion and T2I model network to-
gether via a multi-reward RL approach for imrpoving image quality. CAIG (Chen et al., 2025) first
explores the utilization of VLMs for generating advertising images via optimizing for CTR as the
object. Through RL method, CTR reward model is used to fine-tune VLMs. The fine-tuned VLMs
can generate background designs, which input to T2I models to generate image better align with
user preferences. However, the limitation they referred to is that their reward model overlook the
preferences of niche market segments, whose lack of personalization could result in suboptimal ex-
periences for diverse user segments. Moreover, our work can better integrate user preferences across
different country market. We use our CountryReward, trained to overcome SCVO, as a preference
reward model for fine-tuning a VLM. This allows the generative model to product bacground designs
optimized for specific country markets that cater to the needs and behaviors for global users.

3 METHOD

3.1 COUNTRYREWARD

As shown in Figure 2, our proposed model, named CountryReward, is built upon the Qwen2VL
framework, incorporating several key innovations to ease SCVO and improve performance. The
overall architecture consists of a vision transformer for image feature extraction, a language model
for text understanding, and a country adapter mechanism. Additionally, we introduce a focus-driven
regularization technique to guide the model’s focus toward critical tokens (e.g., country, product,
and image tokens). In addition, before the training, there is a retrieval augmentation generation
process to create augmented choice based on the experince knowledge.

3.1.1 CROSS-COUNTRY RETRIEVAL AUGMENTATION GNERATION

To enhance the model’s capacity for localized relevance prediction, we propose a Cross-Country
Retrieval Augmentation Gneration (CC-RAG) that incorporates historical click-through preferences
aligned with target markets. This module enables the model to leverage domain-specific behavioral
patterns from regional users, thereby improving the model’s sensitivity to the country variable, the
sparese but critical variable. Considering the efficiency, CC-RAG is applied before training Coun-
tryReward to obtain the augment choice ŷaug.

Given a query instance from country c ∈ {US, FR,KR, ...} with text embedding qt ∈ Rd and
candidate image embeddings {qA

i ,q
B
i }, we first retrieve the most relevant historical items through

a two-stage hierarchical retrieval process: “Text-based Retrieval” and “Image-based Retrieval”. The
detailed process is as follows:

Nt = Top-k
(
qt ·TT

c

)
, NA

i = Top-m
(
qA
i · ITNt

)
, NB

i = Top-m
(
qB
i · ITNt

)
, (1)

where Tc ∈ RN×d represents the text embedding matrix for country c, Nt denotes the set of top-k
semantically similar historical texts, INt contains image embeddings corresponding to Nt, and NA

i

and NB
i denote the set of top-k similar historical images.
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Image B:Image A:

Country Prompt: Korean
Augmentation Prompt: Based on the experience,  the greater 
probability answer is A.
Instruction Prompt: For American market,  based on the 
<Product Title><Product Attributes> compare the two e-commerce 
images below and select the one (A/B) that is more likely to attract 
consumers and drive conversions. Consider factors like visual 
appeal, and background design. Answer strictly with a single 
uppercase letter (A/B) on the last line, no explanations.

A pair of Images for the Same Product 

Text
Encoder

Vision
Encoder

Image Features

Country Text Features Country Adapter

Adapted Image Features

LLM

Projection

Hidden States

Augmentation Text Features

Classification

(b)

(a)

Instruction Text Features

Query Product 
Text Features

Country Product Text Features

US

BR

…… ……

Query Product 
Image Features

Country Product Image Features

US

BR

…… ……

Click-Through 
Rate (CTR)

✅

❌ ❌

✅

Figure 2: CountryReward: Figure (a) represents that based on the American knowledge database,
the query product text features firstly retrieve items which have similar product text features, and
then the query product image features retrieves the ctr values among the items retrieved in the frist
stage. Figure (b) represents the training framework of CountryReward.

The retrieved items are aggregated using a position-aware weighting scheme that assigns higher
importance to more relevant neighbors. For each retrieved item at position i, we assign weight
wi = n− i, where n is the total number of retrieved items. The preference scores for candidates A
and B are computed as:

SA =

∑n
i=1 wi · I[CTR(i)

A ≥ CTR(i)
B ]∑n

i=1 wi
, SB =

∑n
i=1 wi · I[CTR(i)

B > CTR(i)
A ]∑n

i=1 wi
(2)

where I[·] is the indicator function, and CTR(i)
A , CTR(i)

B represent the historical click-through rates
of the i-th retrieved item, and the final augmented prediction is determined by:

ŷaug =

{
A if SA > SB

B otherwise
(3)

3.1.2 COUNTRY ADAPTER MODULE

Effectively adapting large vision-language (VL) models to diverse global markets requires sensi-
tivity to country-specific, visual content preferences. To this end, we introduce a Country Adapter
Module (CAM). Inspire by FiLM (Perez et al., 2017), this module dynamically modulates the visual
features extracted by the vision encoder based on textual embeddings derived from country-specific
information, allowing the model to adjust its perceptual processing for different country markets.

The core mechanism involves generating a set of affine transformation parameters (scale and shift)
from a learned country embedding. Let ci ∈ Rd denote the mean-pooled embedding vector of the
tokenized country name for the i-th sample in a batch, where d is the hidden dimension size.

The adaptation parameters are generated by a small feed-forward network, the Country Adapter:

γi, βi = Split(CountryAdapter(ci)) (4)

where CountryAdapter: Rd → R2d is implemented as:

CountryAdapter(ci) = W2(ReLU(W1ci + b1)) + b2 (5)

Here, W1 ∈ Rd/2×d, b1 ∈ Rd/2, W2 ∈ R2d×d/2, b2 ∈ R2d are learnable parameters. The output
is split into two vectors γi ∈ Rd (scale) and βi ∈ Rd (shift).

5
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Let Vi ∈ RN×d represent the sequence of visual features (e.g., N image patch embeddings) cor-
responding to the i-th sample before integration into the language model’s input embedding space.
The adapted visual features Ṽi are computed via an element-wise affine transformation:

Ṽi = γi ⊙Vi + βi (6)

where ⊙ denotes the Hadamard (element-wise) product. This transformation is applied to the entire
set of visual features Vi associated with the specific country embedding ci. This allows the model
to selectively emphasize or suppress certain visual patterns based on learned country-specific cues,
effectively tailoring the visual representation to relevant country markets.

3.1.3 FOCUS-DRIVEN PENALITY LOSS

To enhance the model’s ability to leverage multimodal inputs effectively and improve country-
specific adaptation, we propose a novel focus-driven penalty loss (FDPL), which is designed to
penalize the model when it fails to adequately attend to input components (e.g., country tokens,
product descriptors, or image features) during erroneous predictions, while imposing no additional
penalty for correct predictions. This is achieved by introducing an auxiliary penalty term that is
dynamically scaled based on the relative focus allocated to each key component. Let H ∈ RT×d

denote the hidden states of the final transformer layer, where T is the sequence length and d is
the hidden dimension. The hidden states H are obtained by feeding the adapted visual features Ṽ
(stated in 3.1.2) and instruction text features T̃ into the VLM. Next, for each sample in a batch, we
identify the token positions of key input components: country token tc, product token tp, and image
token ti. The focus intensity toward each component is approximated using the L2-norm of their
corresponding hidden states:

Focusc =
∥H[tc]∥2∑T
j=1 ∥H[j]∥2

, Focusp =
∥H[tp]∥2∑T
j=1 ∥H[j]∥2

, Focusi =
∥H[ti]∥2∑T
j=1 ∥H[j]∥2

, (7)

where ∥ · ∥2 is the L2-norm. The penalty terms for country, product, and image are defined as:

Pc = 1− Focusc, Pp = 1− Focusp, Pi = 1− Focusi. (8)

These penalties are activated only when the model makes an incorrect prediction. For a batch of size
B, let ŷi and yi be the predicted probability and ground truth label for the i-th sample, respectively.
The indicator function for incorrect prediction is:

Ii =
{
1 if (ŷi ≥ 0.5) ̸= (yi = 1),

0 otherwise.
(9)

The total penalty loss for the batch is computed as:

Lpenalty =
1

B

B∑
i=1

Ii ·
(
P(i)
c + P(i)

p + P(i)
i

)
. (10)

The overall training objective combines the binary cross-entropy loss LBCE with the penalty loss:

L = LBCE(σ(Wclassifier · (eaug + hlast)), y) + λLpenalty, (11)

where following common practice in sequence classification with LLMs (Touvron et al., 2023),
hlast is the last token of the hidden state as the discriminative representation, as it summarizes the
contextual information of the entire input sequence, eaug is the augmented features via extracting text
embedding based on ŷaug (stated in 3.1.1), Wclassifier refers to the weight matrices in the classifier
component of our model, σ is the sigmoid activation function, λ is a scaling hyperparameter (set to
0.1). This design encourages the model to strengthen its focus on under-attended components when
errors occur, thereby improving feature utilization and country-specific decision-making.
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Attributes Image

Title

Category

Views

Multimodal Product Information Background Design A Background Design B

Generated Image A Generated Image B

Country Reward Model

Design Generation Model

The product attributes:…....
For Korean market, compare the two 
e-commerce images below and select 
the one (A/B) that is more likely to 
attract consumers and drive 
conversions. Answer strictly with a 
single uppercase letter (A/B) on the 
last line, no explanations.

Generate a background design for 
Korean market, based on the <Product 
Attributes> and <Product Image

Text-to-Image Generation Model
Policy Gradient 

Update

Foreground:A long white leather 
sectional sofa with black accents, 
paired with a wooden coffee table 
holding a black cup and decor
Background:A panoramic mountain view 
with layered green hills fading into soft 
blue-gray tones, framed by glass railing.
Color Tone:A calm mix of cool neutrals, 
Lighting: Soft natural daylight

Foreground:A modern white leather 
sectional sofa with black accents beside a 
marble-top coffee table holding a golden 
bowl.
Background:Mediterranean-style 
balcony with potted plants, stone railing, 
and a partially open green door leading 
indoors.
Color Warm earthy terracotta 
Lighting: Bright natural sunlight fills ..

🔥

Figure 3: Country-Adapted Background Design Generation Framework: The Design Generation
Model generates background design for target country, the T2I Generation Model creates product
images according to the designs, the Country Reward Model then predicts the image preference
according to the target country, giving feedback to optimize the Design Generation Model.

3.2 COUNTRY-ADAPTED BACKGROUND DESIGN GENERATION

To address the challenge of generating market-adapted visual content for cross-border e-commerce,
we propose a reinforcement learning-based framework that leverages a CountryReward model to
optimize the generation of country-specific background designs. The framework consists of three
stages (shown in Figure 3):

Firstly, a Design Generation Model (DGM), implemented as a fine-tuned Qwen2-VL (Wang et al.,
2024), a Vision-Language Model (VLM) trained on the proposed dataset, which generates textual
background designs for the target country. The process of training and inference of DGM is:

d = DGM(country, pro, Iori) (12)

where country, pro, Iori represent the target country, the product attributes, and the original product
image respectively. Next, the pair of generated background designs dA and dB will be obtained via
dA = DGM(country, pro, Iori) and dB = DGM(country, pro, Iori).

Secondly, a controlled Text-to-Image (T2I) Generation Model, implemented as integrating a Stable
Diffusion Model (Podell et al., 2023) with a ControlNet adapter (Zhang et al., 2023), that allows us
to condition the generation process on a control map based on the canny edge of the product image.
The component can enable the generated image not only aligns with target market preferences but
also adheres to original product layout. The T2I(p, Iori) function can be represented as follows:

zt−1 =
1

√
αt

(zt −
1− αt√
1− ᾱt

ϵθ(zt, t, τp,Canny(Iori))) + σtϵ,

I = Decoder(z0),
(13)

where zt is the latent representation at timestep t, Iori is the input image, p is the text prompt,
τp is the text encoder, αt, ᾱt, σt are the noise scheduling parameters, Canny(·) is the canny edge
extraction function, and Decoder(·) can decode the final latent z0 to the generated image I . We will
obtain the pair of generated images IA and IB via IA = T2I(dA, Iori) and IB = T2I(dB , Iori).

Thirdly, a Country Reward Model (NRM) that predicts the country-specific preference for the pair
of generated images (IA and IB). According to the obtained preference choice, the design of more
attractive image is denoted as d+, and the design of the less attractive image is represented as d−.
In order to fine-tune the DFM to choose higher attractive design d+ and reject less attractive ones

7
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Table 1: Comparison of accuracy performance across different reward models on MACP. Both ac-
curacy and sensitivity perform better with higher values, and their units are percentage (%).

Model Accuracy Sensitivity BR CL ES FR KR JP US MX AU SA

SAIL2-8B 49.26 26.32 48.96 48.85 49.35 49.38 49.05 49.12 49.15 49.95 49.53 49.28

InternVL3-8B 49.15 27.10 49.86 48.67 50.04 49.04 49.99 48.25 48.94 49.48 48.42 48.54

Qwen2-VL-7B 49.76 31.55 49.77 50.26 48.85 49.16 48.20 50.58 51.17 49.18 49.75 50.70

Qwen2-VL-7B (finetuned) 44.61 20.82 46.96 43.71 49.76 46.15 47.78 40.99 42.99 46.66 40.92 40.16

Qwen2-VL-7B (with FC Head) 55.60 36.73 53.69 56.57 50.86 54.41 53.07 59.10 56.94 53.75 58.47 59.21

CountryReward (w/o CC-RAG) 56.81 37.40 54.93 57.05 53.80 55.39 54.48 59.57 57.65 55.64 59.52 60.11

CountryReward (w/o CAM) 57.98 38.95 55.50 57.85 53.78 56.75 55.19 61.47 59.39 55.98 61.71 62.21

CountryReward (w/o FDPL) 56.95 37.47 54.79 57.09 52.80 56.12 54.44 61.01 58.79 55.33 58.83 60.33

CountryReward 60.37 40.84 58.70 61.12 56.33 59.38 57.88 64.54 61.82 58.72 63.30 62.93

d−. The feedback signals provided by NRM to refine the DGM via Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024). Speicifically, given an optimization policy model DGMθ and a
reference model DGMref , the optimization object is:

Ldpo = −logσ(βlog
DGMθ(d

+|country, pro, Iori)
DGMref (d+|country, pro, Iori)

− βlog
DGMθ(d

−|country, pro, Iori)
DGMref (d−|country, pro, Iori)

),

(14)
where σ and β are the sigmoid activation function and a regularization parameter respectively.
DGMθ and DGMref are policy and reference models repectively, where the policy one is oopti-
mized while the reference one is frozen. In addition, we utilize the fine-tuned DGM to generate
background designs for products. These designs are then fed into the T2I Generation Model to cre-
ate product advertising images ensuring that the generated background designs are tailored to the
target country’s preferences.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Dataset. We evaluate our proposed method on the collected Multi-Country Ad Click Preference
(MACP) dataset. The dataset comprises 823K training samples and 180K test samples, uniformly
distributed across 10 distinct country markets, including “BR”, “CL”, “ES”, “FR”, “JP”, “US”,
“MX”, “AU”, and “SA”. Each sample contains detailed product information, including titles, cat-
egories, tags, and other relevant attributes, two different advertising images (A and B) for the same
product, and the Click-Through Rate (CTR) indicating user preference in the specific market. The
dataset is sourced from a major cross-border e-commerce platform, containing 67K product samples
with 250K unique advertising images, and ensuring consistency in data source and characteristics.

4.2 ANALYSIS ON COUNTRYREWARD

Evaluation Metric. To evaluate the performance of our CountryReward, we introduce the Accuracy
and Sensitivity metrics. Accuracy measures the proportion of correct predictions, and Sensitivity
measures the proportion of simultaneous correct predictions across different country combinations,
reflecting the cross-country consistency sensitivity of the model’s predictions, which are defined as:

Accuracy =
1

B

B∑
i=1

I(ŷi = yi), Sensitivity =

∑N
i=1

∑
(cj ,ck)∈C2(Si)

I(ŷi,cj = yi,cj ∧ ŷi,ck = yi,ck)∑N
i=1 |C2(Si)|

(15)
where N represents the total number of samples, ŷi denotes the predicted class label for the i-th
sample, obtained by thresholding the sigmoid normalized logits at 0.5 and mapping to class labels
A, B, yi corresponds to the ground-truth label, N is represented as total number of unique items, Si

is the set of countries for item i, C2(Si) is the set of all 2-combinations of countries in Si, ŷi,c is the
predicted answer for item i in country c, yi,c is the ground truth answer for item i in country c, and
I[·] is the indicator function (1 if condition true, 0 otherwise).
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Table 2: Comparison of performance across different DGM on MACP. The unit of CountryReward
is percentage (%).

Model Metric Accuracy BR CL ES FR KR JP US MX AU SA

DGM (w/o RL) CountryReward 56.04 54.03 57.05 51.67 55.40 53.59 60.40 57.64 54.36 56.38 59.89

DGM CountryReward 59.60 58.36 60.10 54.66 57.31 56.22 61.76 60.28 57.33 68.26 61.71

Quantitative Results. As shown in Table 1, experimental results on our MACP benchmark demon-
strate that SAIL2-8B (Yin et al., 2025), Internvl3-8B (Zhu et al., 2025), and Qwen2-VL-7B (Wang
et al., 2024) exhibit a significant performance gap, with accuracy approximately 11.11%, 11.23%,
and 10.61% lower than our proposed method (60.37%) respectively, alongside notably poorer sensi-
tivity, and when the original Qwen2-VL model is fine-tuned on the MACP dataset using a standard
approach, the model exhibited a complete prediction collapse. These performance degradations
primarily stem from their vulnerability to SCVO effect.

Ablation Study. To dissect the contribution of each proposed component, we conduct ablation stud-
ies on the test set. The results are summarized in Table 1. Removing the Cross-Country Retrieval
Augmentation Generation (w/o CC-RAG) leads to a 3.56% drop in overall accuracy and 3.44%
drop in sensitivity. This highlights the importance of injecting historical market-specific preference
knowledge to guide the model. Removing the Country Adapter Module (w/o CAM) causes a more
substantial drop of 2.39% in accuracy and drop of 1.89%. This underscores the critical role of
dynamically modulating visual features based on country embeddings for adapting to local visual
preferences. Removing the Focus-Driven Penalty Loss (w/o FDPL) results in a 3.42% accuracy
decrease and in a 3.37% sensitivity decrease. This demonstrates that explicitly penalizing the model
for under-attending to critical tokens during errors is an effective regularization strategy. The cumu-
lative effect of all three modules is clear, as their removal (CountryReward-w/o-Modules) results in
a significantly lower accuracy (55.60%) and lower sensitivity (36.73%).

Performance per Country. Table 1 shows the accuracy breakdown for each country. CountryRe-
ward achieves more balanced and higher performance across all countries compared to baselines.
The variances of Qwen2VL-7B with FC Head and CountryReward are 7.12% and 8.18% respec-
tively. CountryReward’s specialized components obtain more robust adaptation to diverse markets.

4.3 ANALYSIS ON COUNTRY-ADAPTED BACKGROUND DESIGN GENERATION

CountryReward Evaluation. We use CountryReward to evaluate the quality of images generated
using the optimized DGM versus backgrounds from the DGM without RL. As shown in Table 2,
images generated using our method achieve a substantially higher CountryReward Score across all
tested countries. This indicates that the optimized DGM produces background designs that lead to
images better aligned with country-specific preferences.

Case Study. Figure 4 in appendix presents a case study for two products for five targeted country
markets. This qualitative analysis demonstrates our method’s capability to produce highly cus-
tomized visual content that aligns with the preferences of diverse global markets. These results
demonstrate our model’s ability to capture nuanced, country-specific visual preferences, validating
its effectiveness in mitigating SCVO and enabling tailored content generation for global markets.

5 CONCULSION

This work identifies and addresses the Sparse Critical Variable Overwhelm (SCVO) problem in
VLMs, where models fail to respond to instruction-critical variables that are sparse in the input
space. We propose a novel training framework that effectively mitigates SCVO through integrated
components including retrieval augmentation, a country adapter module, and a focus-driven penalty
loss. Evaluated on the newly introduced MACP dataset, our resulting CountryReward model demon-
strates significant improvements in cross-country preference prediction accuracy. Furthermore, we
showcase its practical utility by employing it as a reward signal to optimize background design gen-
eration for targeted markets. This study provides a foundation for enhancing sensitivity to critical
but sparse variables in multimodal reward models.
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this study are with applicable legal and ethical standards. We are committed to conducting research
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B REPRODUCIBILITY STATEMENT

We confirm that the methodology presented in this paper is fully reproducible. To support trans-
parency and facilitate further research, we will publicly release all data and source code used in our
experiments upon acceptance of the paper. The code repository includes detailed instructions for
environment setup, training, and evaluation to ensure easy replication of our results.

C LLM DISCLAIMER

We acknowledge the use of Large Language Models (LLMs) in the preparation of this manuscript.
Specifically, Deepseek DeepSeek-AI et al. (2025) was used solely for two purposes: (1) to assist in
literature review by summarizing existing research and identifying relevant papers, and (2) to polish
the text for improved fluency and readability. All ideation, theoretical development, experimental
design, data analysis, and result interpretation were conducted solely by the authors. The authors
take full responsibility for the content, accuracy, and originality of the work presented herein.

D COUNTRY NAME ABBREVIATION

Table 3: Country name abbreviation

Abbreviation Full Name

BR The Federative Republic of Brazil
CL Republic of Chile
ES The Kingdom of Spain
FR The French Republic
KR Republic of Korea
JP Japan
US The United States of America
MX The United Mexican States
AU The Commonwealth of Australia
SA Kingddom of Saudi Arabia

E CASE STUDY

This case study investigates product advertising adaptation across multicountry market by generating
location-specific marketing imagery for two products. A compact blue car and a pair of white
sneakers, across five distinct countries: France (FR), Korea (KR), Brazil (BR), Spain (ES), and the
United States (US). This qualitative analysis demonstrates our framework’s capability to produce
highly customized visual content that aligns with the nuanced aesthetic preferences of diverse global
markets, such as Parisian architecture for FR, traditional wooden interiors for KR, tropical coastal
vistas for BR, Mediterranean urban textures for ES, and iconic desert or coastal landscapes for US.
The study highlights the role of multimodal generative AI in scalable, location-aware marketing
design, paving the way for automated, globally distributed visual campaigns that remain sensitive to
regional identity and consumer expectations.
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FR KR BR ES US

Figure 4: Case Study for two products across five distinct countries.

F DETERMINATION OF THE OPTIMAL K-VALUE IN CC-RAG

To determine the optimal k value for top-k retrieval in our CC-RAG system, we employ a decay
analysis method based on the cumulative attenuation contribution rate. Specifically, we compute the
average cumulative decay of similarity scores across ranking positions from a large-scale retrieval
experiment. The k value is set at the point where the cumulative decay contribution rate exceeds
a threshold of 80%, indicating that including more results beyond this point yields diminishing
returns. This data-driven approach ensures that we capture the majority of relevant information
while maintaining efficiency.

(a) Top-K of Text Retrieval Augmentation Generation  (b) Top-K of Image Retrieval Augmentation Generation  

Figure 5: The determination of the optimal K-values.

G IMPLEMENTATION DETAILS

For CountryReward, we employ the Qwen2-VL-7B (Wang et al., 2024) as our foundation VLMs.
In CC-RAG process, the values of top-k is 127 and 39 in text and image retrieval stage respec-
tively. This training phase takes about 20 hours to complete. All experiments are conducted on a
machine equipped with 8 NVIDIA A100 GPUs. To optimize training performance, DeepSpeed and
FlashAttention-2 are adopted. We use a per-device batch size of 8, gradient accumulation steps of
2, learning rates of 1e-5, 5e-6, 1e-4, 1e-4 for projecter, LLM and country-adapter, classification,
respectively, a cosine learning rate schedule, and 3 epochs with BF16 mixed-precision enabled. The
λ is set to 0.1 in FDPL. For our T2I generation model, we use Stable Diffusion XL (Podell et al.,
2023), enhanced with ControlNet (Zhang et al., 2023).
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H AUGMENTATION STRATEGY IN CC-RAG

Table 4: Comparison of accuracy performance across different augmentation strategies on MACP.
Both accuracy and sensitivity perform better with higher values, and their units are percentage (%).

Model Accuracy Sensitivity BR CL ES FR KR JP US MX AU SA

Qwen2-VL-7B (with FC Head) 55.60 36.73 53.69 56.57 50.86 54.41 53.07 59.10 56.94 53.75 58.47 59.21

Qwen2-VL-7B (with Instruct RAG) 54.58 36.49 52.41 54.10 50.34 53.76 51.86 57.81 55.74 52.51 58.36 58.94

Qwen2-VL-7B (with Embedding RAG) 55.69 37.23 53.54 56.70 51.45 54.37 52.98 58.68 57.20 53.97 58.99 58.98

Qwen2-VL-7B (with Scaled Embedding RAG) 56.97 38.87 53.79 57.28 52.58 55.22 54.52 60.13 57.73 54.39 56.05 59.95

Our investigation focuses on the effective incorporation of augmented answers (from Figure 2(a))
into CountryReward. We evaluate two paradigms (Table 4): instruction-based injection (”Qwen2-
VL-7B with Instruct RAG”) and embedding-based addition (”Qwen2-VL-7B with Embedding
RAG”) of the answer features to the discriminative features. Since both methods yielded infe-
rior results to the baseline, we subsequently scaled the augmented text features to mitigate potential
magnitude mismatches with the discriminative features.

Ecls = hdis +

(
∥hdis∥2
∥eaug∥2

)
· eaug (16)

where Ecls is used to feed into classification head, eaug is the extracted text embedding of augmented
answers, and hdis is the hidden states of the last token from the VLM.
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