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Abstract

Large Language Models (LLMs) exhibit significant performance degradation in
extended multi-turn interactions when task information is revealed incrementally, a
common scenario in human-AI conversational settings. Such degradation presents
critical challenges to maintaining consistency and reliability in real world multi-turn
tasks. We hypothesize that abrupt increases in model uncertainty signal misalign-
ment and impending conversational drift. To address this, we propose ERGO
(Entropy-guided Resetting for Generation Optimization), an entropy-guided frame-
work that continuously monitors predictive entropy during multi-turn exchanges
and triggers adaptive prompt restructuring whenever entropy spikes. ERGO distills
accumulated context into a concise, stateless prompt that preserves essential task
details while discarding noise. Evaluated on diverse long-horizon tasks, ERGO
improves average multi-turn performance by 56.6%, raises aptitude (peak per-
formance) by 24.7%, and reduces unreliability (variability in performance) by
35.3%. By leveraging internal uncertainty as an alignment signal, ERGO offers a
model-agnostic, inference-time intervention that enhances consistency, stability,
and alignment in complex multi-turn conversational AI systems.

1 Introduction

Large Language Models (LLMs) have become the primary interface for conversational AI systems,
enabling users to interact through multi-turn exchanges. However, recent research has documented a
critical limitation: LLMs experience substantial performance degradation in long-horizon multi-turn
conversations compared to single-turn interactions (Laban et al., 2025; Gupta et al., 2024). This
degradation manifests as reduced accuracy, lower confidence, and a 112% increase in unreliability,
posing significant challenges for real-world deployment (Laban et al., 2025).
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Multi-turn Conversation
How many points did Jack score

in his first basketball game?

Sorry, I do not have enough
information to answer.

Jack averaged 2.4 points
every minute.

Suppose Jack played for 30
minutes, to calculate . . .

Jack played for a total of 15
minutes.

...Jack scored 32
points.

ERGO

How many points did
Jack score in his first

basketball game? Jack
averaged 2.4 points
every minute. Jack

played for a total of 15
minutes.

...Jack scored
36 points.

Figure 1: Illustrative comparison of a standard multi-turn conversational AI and the ERGO system

While prior work has measured this degradation, existing mitigation strategies remain limited.
Approaches based on task classification, retrieval, or context compression lack generality or require
fine-tuning (Wu et al., 2023).

We hypothesize that abrupt spikes in internal model uncertainty, quantified via Shannon entropy over
next-token distributions, serve as early indicators of misalignment and conversational drift. Building
on this insight, we introduce ERGO (Entropy-Guided Resetting for Generation Optimization), a
lightweight, model-agnostic framework for multi-turn interactions. ERGO continuously monitors
token-level entropy changes and triggers prompt reconstruction whenever a sharp spike in uncertainty
is detected. By distilling accumulated dialogue into concise, stateless prompts, ERGO realigns
the model without fine-tuning, preserving essential task context while discarding noise, a visual
representation of this can be seen in Figure 1. This approach ensures sustained coherence and
alignment in extended interactions, addressing key multi-turn challenges.

Evaluated in complex multi-turn tasks with incrementally revealed instructions, ERGO improves
average performance by 56.6% compared to standard multi-turn baselines, increases aptitude levels
by 24.7% (peak performance capability), and reduces the increased unreliability (variability in
performance) observed in multi-turn settings by 35.3%. Furthermore, ERGO outperforms existing
alternative strategies, and triggers resets with greater precision and timing compared to alternate
baselines. To verify our findings and reproduce the results, please refer to the anonymized code
repository found at the following link: https://anonymous.4open.science/r/ERGO-2F58

2 Background and Related Works

Recent work has documented substantial performance degradation in multi-turn LLM conversations.
Laban et al. (2025) demonstrated that model performance rates dropped by 39% on average in
multi-turn settings across six domains. Gupta et al. (2024) formalized task-switch sensitivity using
probability ratios, showing how conversation history compounds model confusion. While Laban
et al. (2025) tested remediation approaches and managed to improve average performance losses by
15-20%, these face substantial verbosity and practicality constraints. Agent-based frameworks (Wu
et al., 2023) explore system-level solutions but do not target fundamental model limitations during
generation.

2.1 Entropy Based Uncertainty Estimation

Entropy-based uncertainty estimation provides the theoretical basis for our method, grounding
ERGO’s use of internal model signals. Prior work has used predictive entropy to quantify model
confidence in classification and generation tasks (Malinin and Gales, 2018; Xiao and Wang, 2022),
implicitly linking internal uncertainty to external behavior. More recent approaches extend this to
semantic-level uncertainty using semantic-aware entropy measures (Kuhn et al., 2023) or trainable
proxies derived from hidden representations (Kossen et al., 2024). While these methods improve
semantic fidelity, they often rely on sampling or auxiliary models. In contrast, we use token-level
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entropy, computed directly from the model’s next-token distribution, as a low-cost proxy for real-time
monitoring. Unlike prior work that applies entropy primarily for evaluation or filtering, we use it as a
temporal signal to detect context degradation and trigger prompt restructuring.

2.2 Inference-Time Interventions

Inference-time control methods intervene on frozen models by manipulating internal activations,
modifying output logits, or reranking candidate outputs. For example, Li et al. (2024) introduced
activation-level interventions to elicit truthful answers without fine-tuning, shifting hidden states to-
ward truthful completions. Similarly, Turner et al. (2024) developed activation engineering techniques
that steer the behavior of the model by editing intermediate representations during decoding. These
methods act directly on the output path of the model and often rely on internal signal manipulation.

In contrast, our approach introduces a policy layer outside of the model that monitors uncertainty and
intervenes by restructuring the user’s input. We do not modify the internal computation or sampling
process of the model.

2.3 Backtracking and Prompt Restructuring

Several recent approaches have explored controlled backtracking during generation. Cundy and
Ermon (2024) augmented the decoding space with a ’backspace’ action to revert low-probability
generations, while Zhang et al. (2024) uses a special [RESET] token to discard unsafe prefixes. Other
strategies such as Self-Refine (Madaan et al., 2023) allowed iterative refinement by prompting the
model to critique and revise its own output. These methods operate on generated content and typically
require multi-step decoding or auxiliary supervision.

Our intervention departs from this paradigm by focusing on upstream correction. Instead of rewriting
the model’s response, we update the user’s prompt to recover task coherence, using rising entropy
as the intervention trigger. This shifts the optimization target from output correction to input re-
specification, which is more lightweight and avoids cumulative reasoning errors. To our knowledge,
this is the first method that uses entropy-based signals to restructure user input mid-conversation,
rather than adjusting the model’s internal behavior or downstream output.

3 Entropy-Guided Context Resetting

3.1 Rise in Average Token Level Entropy

At each turn of the conversation, the average token-level entropy is calculated by measuring the
uncertainty of the model’s token probability distribution when generating each token in its output.

Suppose the model produces a sequence of tokens t1, t2, . . . , tn at a given turn. For each token ti,
the model assigns a probability distribution Pi over the vocabulary V , where Pi(v) is the probability
assigned to token v ∈ V at position i.

The entropy at position i is computed as:

Hi = −
∑
v∈V

Pi(v) logPi(v)

The average token-level entropy H̄ for the turn (covering n generated tokens) is then:

H̄ =
1

n

n∑
i=1

Hi

This metric quantifies the model’s overall uncertainty when generating the turn. Higher H̄ indicates
greater uncertainty and a more diffuse token distribution, while the lower H̄ indicates more confident
and peaked predictions (Malinin and Gales, 2018; Xiao and Wang, 2022).

3



For each subsequent turn t in the conversation, the change in average token-level entropy is calculated
to monitor fluctuations in model uncertainty. Let H̄(t) denote the average token-level entropy at turn
t, as defined previously.

The change in predictive entropy between consecutive turns is defined as:

∆H̄(t) = H̄(t) − H̄(t−1)

A positive ∆H̄(t) indicates that the uncertainty of the model has increased relative to the previous
turn.

3.2 Threshold-Based Trigger for Context Reset

For each model we calibrate an entropy change threshold (τ ). When the change in predictive entropy
satisfies the following condition:

∆H̄(t) > τ

The system deems that the uncertainty of the model is rising beyond an acceptable margin. This
is interpreted as a signal that the evolving conversation context may be inducing compounding
uncertainty or drift. A detailed analysis of the threshold selection process is provided in Appendix A,
while an analysis of ERGO’s sensitivity to entropy thresholds is provided in Appendix B.

3.3 Context Reset Protocol

Upon detection of ∆H̄(t) > τ , an automated context reset protocol is initiated. This protocol
proceeds in the following steps:

I. Prompt Rewriting:
The user’s inputs up to turn t are provided to the model. The model is asked to rewrite these
inputs into a single-turn, optimized prompt that preserves relevant task information while
reducing ambiguity and redundancy.

II. Isolated Generation (New Chat Simulation):
The rewritten prompt is passed into a new instance of the model, simulating a stateless chat
environment with no memory of prior turns. The model then generates a response Ropt to this
rewritten prompt.

III. Branch Continuation:
A new dialogue branch is created that begins from the rewritten prompt and response. This
maintains continuity from the optimized state rather than the potentially degraded original
context.

4 Experimentation Background

4.1 Simulation Scale & Parameters

Our simulation follows the protocol of Laban et al. (2025) with the only change being the implementa-
tion of ERGO. We evaluate a suite of five leading instruction-tuned LLMs: Phi-4 (Abdin et al., 2024),
LLaMA 3.1-8B Instruct (Grattafiori et al., 2024), GPT-4o (Hurst et al., 2024), GPT-4.1 (OpenAI,
2025), and GPT-4o-mini (OpenAI, 2024). All models are used in their publicly released variants
without additional fine-tuning.

Generation settings are standardized across models with temperature set to 1.0. For entropy calcu-
lations, we note an important methodological constraint: OpenAI models provide access to only
the top-20 logprobs through their API. This limitation affects the precision of entropy estimates,
particularly for tasks with shorter responses such as Actions and Data-to-text, where the restricted
probability space may not capture the full uncertainty of the model’s predictions.

We conduct 3 independent simulation runs for each dataset using 100-question samples, with the
exception of the Data-to-text dataset, for which evaluations were performed on a 50-question subset
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FULL 

Solve the following problem using all the 
information given to you:

- How old was Bill when he first saw Comet
Halley?

- Comet Halley takes 75 years to complete one
orbit around the sun

- Bill's dad was 30 years old when he saw the
comet

- Bill saw Comet Halley for the second time
when he was three times as old as his dad was
when his dad saw it

MODEL ANSWER: 15 ✅

  SHARDED

How old was Bill when he first saw Comet
Halley?

Comet Halley takes 75 years to complete one
orbit around the sun

Bill's dad was 30 years old when he saw the
comet

Bill saw Comet Halley for the second time
when he was three times as old as his dad was
when his dad saw it

MODEL ANSWER: 75 ❌

 ERGO

How old was Bill when he first saw Comet
Halley?

Comet Halley takes 75 years to complete one
orbit around the sun

Bill's dad was 30 years old when he saw the
comet

Bill saw Comet Halley for the second time
when he was three times as old as his dad was
when his dad saw it

RESET OCCURS AFTER ROW

Bill's dad was 30 years old when he saw Comet
Halley. The comet takes 75 years to complete 
one orbit around the sun. Bill saw Comet 
Halley for a second time when he was three 
times as old as his dad was when his dad saw
it. How old was Bill when he first saw Comet 
Halley?

MODEL ANSWER: 15 ✅

Figure 2: Example LLaMA 3.1-8B Instruct run on a GSM8K question with FULL, SHARDED and
ERGO settings. Each row represents a separate prompt given to the model while each table represents a context
window.

over 3 runs. All other experimental settings and baseline figures are adopted directly from Laban
et al. (2025).

We compare three settings:

FULL: Simulates a single-turn, fully-specified conversation using the sharded instruction. The
shards are combined into a single bullet-point list (one shard per line), prefaced by a directive to
complete the task using all listed points. This setting serves as an upper bound for performance,
providing a target for evaluating how closely multi-turn intervention methods can approximate
single-turn optimality.

SHARDED: Sequential shard presentation as in the original (Laban et al., 2025) LLMs-lost-in-
conversation experiment.

ERGO: Our entropy-guided reset mechanism applied upon exceeding the entropy threshold.

Figure 2 provides an example of a run on each setting. This evaluation isolates the effect of ERGO
relative to both single-pass and original multi-turn baselines.

4.2 Tasks

We evaluated models on five representative generation tasks, each framed as a multi-turn interaction
over sharded instructions and augmented them with our entropy-guided context resetting method
(Section 3). For each task, we used 220-325 constructed prompts from the datasets created by Laban
et al. (2025). We simulate a multi-turn conversation, feeding the model one shard at a time. At each
assistant turn, we compute the average token-level entropy and track its change ∆H̄(t). Whenever
∆H̄(t) exceeds the calibrated threshold τ , we invoke our reset protocol - prompt rewriting, isolated
regeneration, branch continuation - before continuing.

Below we briefly summarize what the assistant must do in each task:

CODE: Convert natural-language problem description into a correct Python function. Outputs are
validated by executing against the reference test suite (Chen et al., 2021; Jain et al., 2024).

DATABASE: Given a database schema and a user request, generate an SQL query that returns the
requested data. Correctness is checked by running the query on the Spider-derived database (Yu et al.,
2018).

ACTIONS: Given API schemas plus high-level user instruction, emit valid code-style API calls
that fulfill the intent. This is verified against the Berkeley Function Calling Leaderboard definitions
(Yan et al., 2024).
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DATA-TO-TEXT: Take a structured data table and metadata and write a single caption that
highlights its key insight. Adapted from ToTTo and evaluated using BLEU (scaled 0-100) (Parikh
et al., 2020; Papineni et al., 2002).

MATH: Solve an elementary math story problem by carrying out each arithmetic step and returning
the numeric result. Simulates day-to-day problems LLMs may be tasked with by users. GSM8K
problems were used and scored by exact match (Cobbe et al., 2021).

4.3 Metric Selection

We assess LLM performance in multi-turn tasks by repeating simulations for each instruction and
collecting success scores from multiple runs, following Laban et al. (2025). Each score, ranging from
0 to 100, reflects task success. More detailed information on metrics is available in Appendix F

4.4 Per-Run Scoring

I. Binary-Correctness Tasks (Code, Database, API, Math): A correct response at any turn
yields a score of 100, and the run ends. Otherwise, the score is 0.

II. Refinement Task (Data-to-Text): The final output is evaluated using BLEU, rescaled to 0–100.

4.5 Aggregate Metrics

From the scores collected across the 3 runs, we compute three metrics:

• Average Performance (P̄ ): Average performance per instruction for a given task.

• Aptitude (A90): 90th-percentile score, measures a model’s peak capability, indicating its
potential to deliver high-quality results in critical multi-turn tasks. Averaged across all tasks.

• Unreliability (U90
10 ): Difference between 90th and 10th percentiles, quantifies response

variability, where lower values reflect greater consistency, essential for user trust and system
reliability in long-horizon interactions. Averaged across all tasks.

5 Results & Discussion

5.1 Average Performance Gains

Model Code Database Actions Data-to-Text Math

Llama3.1-8b 21.2 21.7 52.0↑ 47.7 25.9 64.3↑ 83.0 45.5 60.0↑ 15.7 13.3 12.3↓ 62.6 37.4 65.7↑

4o-mini 66.7 50.3 66.7↑ 90.7 40.2 93.3↑ 92.2 52.4 92.0↑ 31.2 19.8 22.0↑ 88.0 58.7 85.0↑

Phi-4 48.4 39.1 55.0↑ 79.6 33.1 62.0↑ 76.0 34.1 65.7↑ 28.6 23.2 28.0↑ 90.4 52.5 85.3↑

4.1 88.7 72.6 81.7↑ 86.5 46.0 96.0↑ 98.5 62.9 84.7↑ 54.4 28.6 31.0↑ 89.7 70.7 91.7↑

4o 82.9 61.3 76.3↑ 91.7 42.3 95.7↑ 97.1 65.0 82.0↑ 32.2 20.5 27.0↑ 91.9 67.9 89.3↑

Table 1: Average Performance (P̄ ) comparison across three settings: FULL (single-turn), SHARDED
(multi-turn baseline), and ERGO (multi-turn with entropy-guided resetting). Arrow represents change in
performance for relative to , with arrow size representing magnitude of change.

Table 1 shows that ERGO delivers substantial performance improvements across all models compared
to baseline multi-turn setups. By detecting moments of confusion and restarting interactions, models
avoid becoming "lost" in conversational flow. Nearly every dataset and model combination shows
increased average success rates, with performance improving by 56.6% on average and several
model-task combinations achieving over 100% gains compared to original multi-turn baselines.

While FULL is considered our performance upper-bound, ERGO frequently exceeded FULL in
both average performance and aptitude (Section 5.2) as our method only corrects derailment when
calculated confusion rises significantly. This preserves the model’s ability to iteratively reason
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and refine responses across shards while preventing the compounding errors typical in prolonged
multi-turn contexts. This approach effectively merges both paradigms’ strengths: single-turn stability
and clarity when needed, and iterative decompositional reasoning when the model remains on track.

Moreover, performance on the Data-to-Text task improves over the multi-turn baseline, though
less substantially than in other datasets. This is partly due to model-specific constraints. LLaMA
3.1–8B struggles to rewrite large, structured prompts effectively (e.g., full tables), limiting the benefit
of consolidation. GPT models face difficulties in triggering resets, as entropy estimates are less
reliable, only top-20 log-probabilities are available, and outputs are typically short, reducing entropy
sensitivity. Phi-4 performs best, nearing single-turn levels, likely because it supports accurate entropy
tracking and handles prompt rewriting more effectively. These results indicate model-dependent
limitations in applying our method to high input structure tasks.

5.2 Aptitude and Unreliability Improvements

Along with performance gains, Figure 3 shows that ERGO demonstrates exceptional gains in aptitude,
often exceeding single-turn performance levels, while substantially reducing unreliability compared
to multi-turn baselines, two metrics introduced by Laban et al. (2025) to capture model consistency
across conversations. These results indicate that our intervention not only fully recovers the aptitude
lost in the transition from single-turn to multi-turn settings and achieves aptitude levels exceeding
single-turn baselines, but also makes behavior significantly more stable compared to multi-turn
settings across repeated trials. When comparing to standard sharded conversations, the average
aptitude across models rose by 24.7%, achieving performance levels that surpass single-turn baselines,
enabling more effective handling of complex tasks while unreliability declined by 35.3%.

0.2 0.3 0.4 0.5 0.6
Unreliability (U)

0.60

0.65

0.70

0.75

0.80

0.85

Ap
ti

tu
de

 (
A)

PHI-4

LLAMA3.1-8B

4.1

4o-mini

4o

SHARDED
ERGO

Figure 3: Effect of SHARDED and ERGO on Aptitude and Unreliability. Icons represent models FULL
performance. Green dots represent performance with ERGO while red dots represent SHARDED perfor-
mance

5.3 Evaluating Entropy-Guided Resets vs. Random Resets and Fixed Resets

We compared entropy-based context resets against random and fixed-interval baselines using
Llama3.1-8B across three tasks: Database, Actions, and Math. In these ablations, we
retained all experimental settings from the main condition, with the only change being that each
metric was tested on 50 question samples instead of 100. The random baseline used uniformly
random triggers with unconstrained reset frequency. The fixed baseline triggered resets every five
shards (quintet reset), matching the average reset frequency of Llama3.1-8B observed in our
ERGO system.

The results, visualized in Figure 4, demonstrate a clear advantage for ERGO over baseline approaches.
Entropy-guided resets consistently outperformed both random and fixed reset strategies while demon-
strating adaptive scaling behavior. In the Database task, ERGO achieved a performance gain vs
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Entropy-guided
Random
Quintet Reset

Figure 4: Comparison of performance point gains (percentage-point increase in accuracy relative to
SHARDED) and number of resets across entropy-guided, random, and quintet reset methods on Database,
Actions, and Math tasks. Icons represent their respective task with their color determining method used.

SHARDED of 40.0 percentage points using 96 resets, compared to the quintet baseline’s 26.1 gain
with only 44 resets. This demonstrates the system’s ability to increase intervention frequency when
encountering greater model uncertainty. Conversely, in the Actions task, ERGO required only 41
resets, fewer than both baselines, while still achieving superior performance. This adaptive behavior
indicates that entropy guided resets effectively allocate computational resources by intervening only
when necessary, scaling both up and down based on task complexity and model confusion levels.

The primary risk posed by resets is semantic drift. Poorly timed or excessive context rewriting can
lose critical details through increased abstraction, compromising semantic faithfulness to the original
input (Dreyer et al., 2023). This degradation in semantic faithfulness can offset or even negate the
benefits of resetting. Furthermore, resets incur computational overhead; each reset involves having
two additional forward passes through the model. Together, these considerations underscore why
ERGO outperforms both methods as the frequency and timing of resets are more carefully controlled
in our framework. Not only to avoid wasted computation, but, more critically, to prevent semantic
degradation. For more information on computation and average reset frequency across models, please
refer to Appendix C).

5.4 Comparison to Existing Intervention Strategies

To contextualize ERGO’s improvements as a novel conversational intervention system, we compare
against existing prompt engineering approaches from Laban et al. (2025): SNOWBALL and RECAP
as, to our knowledge, no other methods exist that perform comparable inference time conversational
restructuring

SNOWBALL: Reiterates all prior shards at each new turn, effectively growing the prompt
cumulatively.

RECAP: Reiterates all prior shards only at the final turn. While more efficient, this strategy is
impractical in real-world deployments, since the system would not know prior when the final user
input will occur.

Model FULL SHARDED SNOWBALL RECAP ERGO

GPT-4o-mini 73.8 44.3 54.0 57.7 71.8
GPT-4o 79.2 51.4 57.4 66.3 75.6

Table 2: Comparison of combined average performance (P̄ ) across Code, Database, Actions, Data-
to-Text and Math tasks.
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As shown in Table 2, ERGO significantly outperforms both alternatives. ERGO nearly matches
single-turn performance for both models. Furthermore, ERGO prevents input bloating at each
iteration unlike SNOWBALL, and operates without requiring prior knowledge of the final input
unlike RECAP.

6 Conclusion

Our results show that ERGO effectively mitigates multi-turn LLM performance degradation by
using Shannon entropy to detect model confusion and trigger prompt restructuring. Despite its
simplicity, Shannon entropy serves as a reliable signal for targeted context consolidation, minimizing
unnecessary resets. ERGO consistently outperformed existing methods, achieving 56.6% performance
gains over standard baselines, improving aptitude by 24.7%, and reducing unreliability by 36.3%.
Correlation analysis conducted in Appendix D confirms that entropy-based resets reflect genuine
model uncertainty rather than acting as a proxy for response length. ERGO offers a lightweight,
model-agnostic solution for enhancing stability, consistency, and reliability in multi-turn LLM
applications. Future work will explore advanced context consolidation strategies, including multi-
stage summarization and adaptive techniques for long-form conversations. More information on
Future Works can be found in Appendix E.
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A Threshold Selection Procedure

Model Name Version τ Percentile Provider

Phi-4 N/A 0.1 90th HuggingFace
Llama3.1-8b N/A 0.03 65th HuggingFace
GPT-4.1 gpt-4.1-2025-04-14 0.2 90th OpenAI API
GPT-4o-mini gpt-4o-mini-2024-07-18 0.2 85th OpenAI API
GPT-4o gpt-4o-2024-08-06 0.3 90th OpenAI API

Table 3: Model versions, thresholds, and calibration percentiles used in our experiments. (Versions included
where applicable.)

To determine appropriate entropy thresholds (τ ) for triggering context resets, we conducted a calibra-
tion procedure specific to each model. The goal was to identify a rise in entropy that reliably signals
when a model is ’lost’ in the conversation, that is, when its internal uncertainty increases sharply,
suggesting that it is struggling to integrate or reason over the accumulated context.

For each model, we selected a held-out subset of approximately 80 shard-level examples from
the GSM8K dataset. These examples were drawn from outside the final evaluation set to avoid
contamination, with GSM8K being chosen due to its hybrid structure, requiring both reasoning and
natural language generation. We then ran each model in a standard multi-turn setting over these
shards and computed the change in average token-level predictive entropy at each turn.

From the resulting distribution of entropy rises, we selected a threshold based on a percentile aligned
with the model’s baseline aptitude on GSM8K. For instance, since GPT-4.1 achieves a baseline
aptitude of ∼ 90% on GSM8K in single-turn settings, we selected the 90th percentile of the entropy
rise distribution as its reset threshold. The underlying rationale was to calibrate the threshold so
that only the most atypical (high-entropy) turns, those statistically associated with likely failure,
would trigger an intervention. Details of the models used, including their version identifiers, selected
entropy thresholds, and corresponding calibration percentiles, are summarized in Table 3.

Once determined, this threshold was fixed across all datasets for a given model. We made this decision
intentionally, as our goal was to evaluate the feasibility of a general-purpose, model-specific threshold
rather than tuning thresholds for each dataset individually. This “one-size-fits-all” approach allows
for a more robust and realistic assessment of whether entropy-based context resets can generalize
across tasks without requiring per-task adjustment.

Interestingly, while both GPT-4.1 and Phi-4 shared the same 90th percentile threshold, Phi-4 triggered
significantly more resets during evaluation. This was due to Phi-4’s strong performance on GSM8K
but much weaker performance on the broader set of tasks. This divergence illustrates that the system
remains sensitive to task-specific confusion, with the number of resets scaling appropriately even
under a fixed, model-specific threshold, highlighting the adaptive behavior of the method across
domains. More information on number of resets incurred is available in Appendix C
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B Sensitivity to Entropy Threshold (τ )
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Figure 5: Comparison of maximum performance point gains (i.e., highest percentage-point increase in accuracy
relative to SHARDED) and number of resets between different thresholds on Database, Actions, and

Math tasks. Icons represent their respective task with their color determining method used.

To evaluate the sensitivity of our method to the entropy threshold parameter τ , we conducted an
ablation study using the same controlled setup described in Section 5.3 with the Llama3.1-8B
model on the Database, Actions, and Math tasks. The only variable changed in this study was
the value of τ , the threshold used to trigger entropy-guided resets. We tested four settings: τ ∈
{0.00, 0.03, 0.05, 0.08}, where 0.03 corresponds to the threshold selected for the main experiments.

The results, visualized in Figure 5 showed a clear performance peak at τ = 0.03, which consistently
achieved the highest gains across all tasks. This setting struck a balance between reactivity and
restraint, triggering resets selectively at moments of genuine confusion without introducing excessive
rewrites that risk semantic drift. In contrast, the lowest threshold τ = 0.00 resulted in the highest
number of resets and either matched or underperformed the 0.03 setting, suggesting that overly
aggressive resetting is not beneficial and may lead to instability due to frequent context rewrites.

At the other extreme, the highest threshold τ = 0.08 yielded the fewest resets and consistently
underperformed, likely due to failing to intervene even when the model was demonstrably confused.
The intermediate value τ = 0.05 behaved as expected, yielding results that were approximately
midpoint between 0.03 and 0.08 in both performance and reset count.

Taken together, these findings support the robustness of our selected threshold and highlight the im-
portance of calibrating reset triggers to maintain a balance between informativeness and intervention
overhead.
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C Computational Cost and Reset Overhead Analysis

A key consideration in deploying entropy-guided context resets is the computational overhead they
introduce. In our system, two sources of computational cost must be considered: (1) the cost of
computing predictive entropy at each turn, and (2) the cost incurred when a context reset is triggered.

Entropy Computation Cost: While more advanced measures of model uncertainty such as seman-
tic entropy require sampling multiple outputs over the same input (Kuhn et al., 2023), our method uses
token-level Shannon entropy, which is extracted directly from the next-token probability distribution
during generation. This choice imposes negligible additional cost beyond standard decoding and was
selected for its practicality and compatibility with real-time systems.

Reset Overhead: Each reset introduces two additional forward passes through the model: one to
rewrite the accumulated user context into a consolidated prompt, and a second to respond to that
prompt. This introduces latency and compute proportional to the number of resets triggered per
run. Table 4 showcases the average performance of models with ERGO along with the approximate
number of shards per reset and the selected threshold percentile for each model. Averaged across all
datasets, one question equates to ∼ 6 shards.

Model Average Performance ∼ Shards per Reset Threshold Percentile
GPT-4o 75.6 51 92nd
GPT-4.1 77.2 38 90th
GPT-4o-mini 71.8 29 85th
Phi-4 59.2 7 90th
Llama3.1–8B 50.9 5 63rd

Table 4: Average Performance with ERGO along with the number of shards before reset occurs for each model
and its threshold percentile, measured as an average across all datasets.

These results reflect the adaptive nature of the system: more capable models (e.g., GPT-4.1, GPT-4o)
experience fewer high-entropy turns and thus require fewer resets, minimizing overhead. Conversely,
less capable models like Phi-4 trigger resets more frequently, aligning with their observed confusion.

Prompt Length Reduction: An additional consequence of context resets is that they tend to truncate
the context window, potentially removing stale or redundant information. Across all runs, the average
token length of model prompts for questions where resets occurred was 260 tokens, compared to 309
tokens in questions where no resets were triggered. While this reduction does not eliminate the cost
of the reset itself, it may partially offset it by reducing input size in subsequent turns.

Retrieval-Augmented Consolidation (Future Work): More advanced consolidation techniques,
such as retrieval-augmented synthesis, could further improve the quality of resets but would introduce
additional retrieval and ranking costs. We leave the exploration of such hybrid architectures to future
work.

Taken together, these results indicate that while entropy-guided resets do introduce compute overhead
via additional forward passes, the system remains adaptive. Reset frequency scales with model
confusion, and thresholds derived from a single reasoning heavy dataset generalize effectively across
diverse tasks.

13



D Evaluating Length Bias in Entropy-Based Reset Triggers

One potential concern regarding ERGO’s entropy-based reset mechanism is whether it inadvertently
functions as a proxy for response length. Specifically, since entropy is calculated over token probabil-
ity distributions, it is plausible that longer outputs, which involve more tokens and potentially more
diffuse distributions, may naturally exhibit higher entropy. If true, this would raise the possibility that
ERGO’s resets are effectively triggered by length increases rather than genuine uncertainty spikes,
undermining the validity of entropy as an internal behavioral signal.

Methodology

We analyze response behavior from the Phi-4 model across all tasks and questions used in the main
evaluation suite. For each turn t in a given multi-turn conversation, we compute:

• ∆H̄(t): the change in average token-level entropy relative to the previous turn.
• ∆L(t): the change in response length, measured in tokens, relative to the previous turn.

We evaluate the relationship between these quantities using two standard correlation metrics:

• Spearman’s rank correlation coefficient (ρ) captures monotonic associations without
assuming linearity. (Spearman, 1904)

• Pearson’s correlation coefficient (r) quantifies the strength of linear correlation. (Pearson,
1895)

Results

For the Phi-4 model, we observe the following:

• Spearman’s ρ = −0.0143, p-value = 0.4525
• Pearson’s r = −0.0796, p-value = 2.7× 10−5

The Spearman result indicates no meaningful monotonic relationship between changes in entropy
and length. The Pearson coefficient, while statistically significant due to the large sample size, has
negligible magnitude and a negative sign, indicating no positive linear correlation.

Conclusion

These findings demonstrate that entropy fluctuations are not systematically associated with output
length changes in the Phi-4 model. This supports the claim that ERGO’s reset mechanism is not
driven by verbosity or token count, but rather by internal signals of model uncertainty. Entropy-based
resets therefore retain validity as an independent control signal rather than acting as a surrogate for
response length.

14



E Future Works

While ERGO has demonstrated substantial improvements in multi-turn performance through entropy-
guided context resets, several avenues remain open to extend its applicability and robustness in
broader conversational settings.

Dialogue Trace Consolidation: Our current context-reset protocol rewrites prior user inputs into
a single-turn prompt but does not incorporate preceding assistant responses. This simplification
was chosen to enable stateless resets with minimal overhead in instruction-shard tasks, where user
inputs encode the majority of required task information. However, in more open-ended or exploratory
conversations, where assistant turns may introduce novel entities, explanations, or intermediate
reasoning, this exclusion could result in loss of critical context.

To address this, future work will explore multi-stage consolidation mechanisms that explicitly
summarize both user and assistant dialogue turns. One natural extension is a two-pass strategy: the
first pass summarizes user queries, and the second distills assistant responses. A final generation
step would synthesize these into a coherent prompt, preserving key semantic and referential content
across turns. This approach maintains ERGO’s core design, resetting when confusion is detected via
internal uncertainty signals, while enhancing its fidelity in dialogic settings.

Adaptive Consolidation Strategies: Incorporating assistant responses also raises new design chal-
lenges around content selection, co reference resolution, and context prioritization. We anticipate
integrating lightweight discourse-aware filtering or retrieval-augmented synthesis to further improve
semantic coverage without incurring significant computational cost. Evaluating these techniques
on long-form conversations, assistance tasks, and real-world dialogue logs will be a focus of future
iterations.

These extensions do not alter the core entropy-based mechanism but instead refine how reset inputs
are constructed. As such, they represent a natural progression of ERGO’s architecture toward more
general-purpose deployment. Further exploration will also include model-internal dynamics beyond
entropy, adaptive thresholding tuned to conversation domain, and integration with memory or retrieval
components to support resets over extended dialogue spans.
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F Metrics

F.1 Metric Selection

LLMs employ a stochastic decoding process, yielding different outputs even under fixed prompts
and sampling parameters. We leverage this by repeating our multi-turn simulation on each sharded
instruction and observing the resulting success scores. Let

S = {Si}Ni=1

be the set of scores from N independent runs on a single instruction, where each Si ∈ [0, 100]
measures task success at the end of that simulation.

F.1.1 Per-run scoring:

I. Binary-correctness tasks (Code, Database, API, Math): At each turn, we evaluate the
model’s response; if it produces a correct solution at any turn, we immediately assign Si = 100
and terminate that run. If no turn yields a correct answer, Si = 0.

II. Refinement task (Data-to-Text): We compute the native metric (BLEU for data-to-text; joint
coverage/attribution score for summarization) on the final generated output and rescale it to
[0, 100].

F.1.2 Aggregate metrics

From the per-run scores S, we define three summary statistics, following the methodology from
Laban et al. (2025):

P̄ =
1

N

N∑
i=1

Si (1)

A90 = percentile90(S) (2)

U90
10 = percentile90(S)− percentile10(S) (3)

-P̄ (Average Performance): An unbiased estimate of the model’s mean score on an instruction.

-A90 (Aptitude): Estimates the 90th-percentile performance, reflecting what one can achieve in the
top decile of runs.

- U90 (Unreliability): Measures the gap between the 90th and 10th percentiles, capturing the degree
of stochastic variability in outputs.

Aptitude and Unreliability are computed per instruction and then averaged over the full set of tasks.
Binary-correctness accuracy is mapped onto the 0–100 scale to ensure every task’s score aligns.

16


	Introduction
	Background and Related Works
	Entropy Based Uncertainty Estimation
	Inference-Time Interventions
	Backtracking and Prompt Restructuring

	Entropy-Guided Context Resetting
	Rise in Average Token Level Entropy
	Threshold-Based Trigger for Context Reset
	Context Reset Protocol

	Experimentation Background
	Simulation Scale & Parameters
	Tasks
	Metric Selection
	Per-Run Scoring
	Aggregate Metrics

	Results & Discussion
	Average Performance Gains
	Aptitude and Unreliability Improvements
	Evaluating Entropy-Guided Resets vs. Random Resets and Fixed Resets
	Comparison to Existing Intervention Strategies

	Conclusion
	Threshold Selection Procedure
	Sensitivity to Entropy Threshold ())
	Computational Cost and Reset Overhead Analysis
	Evaluating Length Bias in Entropy-Based Reset Triggers
	Future Works
	Metrics
	Metric Selection
	Per‐run scoring:
	Aggregate metrics



