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Abstract

Data-to-text (D2T) generation is a core task in text generation that involves converting
semi-structured data (e.g., tables, graphs) into text. Recent advances in large language
models (LLMs) have led to significant improvements in D2T. Despite these gains, factual
inconsistency remains a persistent issue in LLMs for D2T. Understanding how such incon-
sistencies scale with factors like model size, compute (FLOPs), and data size is crucial for
building trustworthy systems. While prior scaling studies focus on generalization error via
power law scaling, the impact of these factors on factual inconsistency in D2T remains
unexplored. This paper addresses the gap by empirically investigating how factual inconsis-
tency scales with various scaling factors. Unlike prior studies that focus solely on power law
scaling, we also examine exponential scaling. To rigorously compare these models, we in-
troduce VaCScal, a three-stage statistical validation framework: (1) predictive performance
estimation, (2) goodness-of-fit assessment, and (3) comparative analysis. Experiments are
conducted across five diverse LLM families and five D2T datasets. Factual inconsistency
is inversely measured using four state-of-the-art consistency metrics, including human eval-
uation. QLoRA and Prefix-Tuning are employed for fine-tuning the LLMs. Our analysis,
validated through the VaCScal framework, consistently shows that factual inconsistency
in D2T generation follows exponential scaling with respect to model (LLM) size, compute
(FLOPs), and fine-tuning data size—challenging the prevailing assumption of power law
scaling. To support this finding, a mathematical rationale is also provided, demonstrating
why exponential scaling behavior is expected in factual inconsistency under typical D2T
conditions.

1 Introduction

Data-to-text (D2T) generation (Lin et al., 2024b; Li et al., 2024) involves converting semi-structured data
(e.g., tables, graphs) into natural language, with applications in dialogue systems, automated journalism,
and beyond. LLMs have achieved strong performance on D2T tasks, particularly in coherence and informa-
tiveness (Lorandi & Belz, 2024). However, factual inconsistency—where the generated text fails to faithfully
reflect the input data—remains a major challenge (Li et al., 2022; Huang et al., 2023), often diminishing
trust in LLM-based D2T systems (Figure 1). To build reliable models, it is crucial to understand how fac-
tual inconsistency scales with key factors such as model size, compute (FLOPs), and training (fine-tuning)
data. Nonetheless, existing scaling analyses in D2T focus almost entirely on generalization errors or test
perplexity, especially under power law scaling (Kaplan et al., 2020; Hoffmann et al., 2022), while overlooking
how factual inconsistency behaves under similar scaling. Bridging this gap is essential for advancing both
research understanding and the practical development of more trustworthy D2T systems.

In this paper, we address a critical research gap by examining how factual inconsistency scales in D2T gen-
eration. Unlike prior work focused solely on power law scaling (Kaplan et al., 2020; Hoffmann et al., 2022;
Brandfonbrener et al., 2025), we also explore exponential scaling using VaCScal—a three-stage statistical
validation framework consisting of: (1) predictive performance estimation, (2) goodness-of-fit assessment,
and (3) comparative analysis. VaCScal enables rigorous and principled comparison between power law and
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Figure 1: An example from the DART (Nan et al., 2021) dataset demonstrating a factually inconsistent
output generated by an LLM (Pythia-1.4B). The generated text contains unsupported content—“his work
on Close to Ahm Delta”—which is not grounded in the source data.

exponential scaling behaviours. Our study covers three major LLM architectures (decoder-only, encoder-
decoder, and state-space), evaluating five LLM families—BLOOM, FLAN-T5, Mamba, OPT, and Pythia—
across five D2T datasets: E2E, ViGGO, WebNLG, DART, and WikiTableText. Models are fine-tuned using
QLoRA (Dettmers et al., 2023) and Prefix-Tuning (Li & Liang, 2021). For robustness toward decoding, we
report results using both greedy and nucleus sampling decoding strategies. Factual inconsistency is defined
as the inverse of factual consistency and measured using four automatic metrics: AlignScore, QAFactE-
val, SummaC-conv, and UniEval-fact, along with human annotations. Our findings, validated through
VaCScal, reveal that factual inconsistency exhibits exponential scaling across multiple factors—such as model
size, compute, and fine-tuning data—challenging the dominant assumption of power-law scaling. To sup-
port these empirical results, we also provide a mathematical rationale (Appendix H) showing that factual
inconsistency is expected to scale exponentially with LLM size under typical D2T conditions.

2 Related Work

Data-to-text generation (D2T) and factual inconsistency. Data-to-text (D2T) generation (Lin et al.,
2024b) involves generating natural language from structured inputs such as graphs (Gardent et al., 2017; Nan
et al., 2021), tables (Bao et al., 2018), and meaning representations (slot-value pairs) (Novikova et al., 2017;
Juraska et al., 2019). These three representation forms constitute the main categories of D2T: graph-to-text,
table-to-text, and MR-to-text Recently, LLMs have become central to D2T due to their large-scale pretrain-
ing (Zhang et al., 2022), scalability (Scao et al., 2022), and compatibility with efficient fine-tuning (Dettmers
et al., 2023) and prompt-based learning (Lester et al., 2021). These models often outperform traditional
approaches in coherence and informativeness (Ge et al., 2023). However, factual inconsistency—where gen-
erated text fails to reflect input data accurately—remains a persistent challenge (Fabbri et al., 2022; Zha
et al., 2023), leading to hallucinations and reduced trustworthiness. Prior work attributes this to misalign-
ment between source data and references (Dhingra et al., 2019; ul Islam et al., 2023), LLM biases (Zhang
et al., 2023), and exposure bias (Huang et al., 2023). While human evaluation is the gold standard, recent
automatic metrics (Fabbri et al., 2022; Zha et al., 2023) have shown strong correlation with human judgments
and offer scalable alternatives.

Scaling in LLM. In LLMs, scaling describes how LLM performance varies with scaling factors such as
model size, compute, data, etc (Chung et al., 2024; Zhang et al., 2024; Brandfonbrener et al., 2025; Mayil-
vahanan et al., 2025). Hestness et al. (2017) showed that deep language models follow power law scaling,
which was extended by Kaplan et al. (2020) to include model size, dataset size, and compute. Subsequent
works have explored scaling across tasks (Bansal et al., 2022; Kaplan et al., 2020), paradigms such as sparse
modeling (Frantar et al., 2024), and parameter-efficient fine-tuning (Zhang et al., 2024). More recently,
joint scaling—such as additive and multiplicative formulations—has garnered increasing attention (Hoff-
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mann et al., 2022; Zhang et al., 2024). Scaling plays a critical role in hyperparameter tuning (Hendrycks,
forthcoming), training cost estimation (Hägele et al., 2024), and model performance prediction (Hoffmann
et al., 2022). A set of recent studies (Atanasov et al., 2024; Bahri et al., 2024; Lin et al., 2024a) has further
reinforced the theoretical foundations of scaling.

3 Desiderata: Scaling Models

Moving beyond prior work on power law scaling (Kaplan et al., 2020; Brandfonbrener et al., 2025; Gadre
et al., 2025), we examine two scaling models for factual inconsistency in D2T generation with respect to
LLM size: power law scaling (modeled by a power law function) and exponential scaling (modeled by an
exponential function). The two scaling models are defined as follows:

Power Law Scaling Model : f(x) =
{

Axα + B x ≥ 0
0 otherwise

(1)

Exponential Scaling Model : f(x) =
{

Ceβx + D x ≥ 0
0 otherwise

(2)

Here, A and C are case-specific parameters, α is the power law exponent, β is the exponential scaling
rate, x represents the scaling factor (e.g., LLM size, compute (FLOPs), etc.), and f(x) denotes the scaling
objective (e.g., factual inconsistency). B and D represent the irreducible error or entropy of an LLM
family (Brandfonbrener et al., 2025); in other studies, they are interpreted as the performance threshold or
capacity of a given LLM family (Hestness et al., 2017). Following the significant work by Zhang et al. (2024),
we estimate the parameters of both models via maximum likelihood estimation on the factual inconsistency
data D, optimizing with the standard Huber loss (δ = 1) due to its robustness to outliers.

4 VaCScal: Statistical Validation Framework

Prior empirical studies on LLM scaling often assess predictive performance using held-out loss alone. How-
ever, we find this insufficient for rigorously evaluating or comparing multiple scaling models. To address this,
we use VaCScal (Validation and Comparison of Scaling law)—a structured three-stage framework compris-
ing predictive performance estimation, goodness-of-fit assessment, and comparative analysis. Each stage is
detailed below.
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Figure 2: All three stages of VaCScal, the statistical validation framework for scaling models. Dashed ovals
indicate outputs of each stage.
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• Stage I: Predictive Performance Estimation. The first stage evaluates how well the scaling
models generalize in terms of their predictive ability on unseen data. To achieve this, we assess
the scaling models on held-out data using the Huber loss (δ = 1). The Huber loss is known for
its robustness to outliers, making it well-suited for reliable estimation. Given the limited data
availability, we employ five-fold cross-validation to assess predictive performance.

• Stage II: Goodness-of-fit Assessment. Predictive performance alone is not sufficient to validate
a scaling model; assessing its goodness-of-fit is also crucial for its acceptance. Therefore, in this
stage, we assess the goodness-of-fit of the scaling models using an F-test for regression (Weisberg,
2005; Siegel, 2016). The test statistic for the F-test is computed as follows:

Fstat = SSRR − SSRE

dfR − dfE

/SSRE

dfE

Fstat ∼ F-distribution(x)

Here, SSRR and SSRE represent the sum of squared residuals for the reduced and exact models,
respectively. Similarly, dfR and dfE denote the degrees of freedom for the reduced and exact models,
respectively. We consider both of our scaling models as exact models, while the reduced model is
represented by a simple mean-response model. Since the F-test applies only to linear regression
models, we use a log transformation to convert our scaling models into their linear forms. We
perform the F-test with a significance level of p < 0.05, which is commonly considered a moderate
threshold. If a scaling model fails to achieve a p-value below 0.05 in the goodness-of-fit assessment,
we do not consider it feasible for modeling scaling behavior.

• Stage III: Comparative analysis. In this final stage of validation, we compare the two scaling
models, through hypothesis testing to determine which better explains the data. Since power law
and exponential scaling models are not nested hypotheses, the standard likelihood-ratio test is not
applicable. Instead, we employ Vuong’s likelihood-ratio test (Vuong, 1989) for comparison. The test
statistic for Vuong’s likelihood-ratio test is computed as follows:

Vstat =
√

n · mean(d)√
Var(d)

(3)

Vstat ∼ normal(0, 1) (4)

Where n represents the sample size, and d denotes the n-sized sample of the log-likelihood differences
between the two scaling models. We conduct Vuong’s likelihood ratio test at a stringent significance
level of p < 0.005 to provide highly compelling evidence for our conclusion.

Normality Assumptions Verification. In Stage II and III of our validation framework, we incorporate
the F-test and Vuong’s likelihood-ratio test. Both tests rely, directly or indirectly, on the assumption that the
residuals of our scaling models follow a normal distribution. Therefore, validating this assumption is essential.
To assess the normality of residuals for both scaling models, we employ the Shapiro–Wilk test (Shaphiro &
Wilk, 1965) (with p < 0.05) throughout all of our experiments.

5 Experiment Setup

We provide brief details about the LLM families, D2T datasets, and metrics used to measure factual in-
consistency. For additional information on settings and other critical implementation details, please see
Appendix A. All code used in our scaling experiments is provided in the Supplementary Material.
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5.1 D2T Datasets and LLM Families

Our experiments incorporate five widely used D2T datasets, covering three major D2T generation types:
DART (Nan et al., 2021) and WebNLG (Gardent et al., 2017) for graph-to-text, WikiTableText (Bao et al.,
2018) for table-to-text, and E2E (Dusek et al., 2018) and ViGGO (Juraska et al., 2018) for MR-to-text.
Additional dataset details are provided in Appendix A.1. We also evaluate five prominent LLM families
spanning three architectural paradigms: decoder-only, encoder-decoder, and state-space. These include
BLOOM (5 models) (Scao et al., 2022), FLAN-T5 (5 models) (Chung et al., 2024), OPT (6 models) (Zhang
et al., 2022), Pythia (8 models) (Biderman et al., 2023), and Mamba (5 models) (Gu & Dao, 2024). Further
details are available in Appendix A.2. All datasets and model variants are sourced from the Hugging Face
hub (Wolf et al., 2020). A summary of the LLM families is presented in Table 1.

Family Model Paradigm Model Counts Parameters of Each Models
BLOOM decoder-only 5 560M, 1.1B, 1.7B, 3B, 7B
FLAN-T5 encoder-decoder 5 77M, 248M, 783M, 2.85B, 11.3B
Mamba state-space model 5 130M, 370M, 790M, 1.4B, 2.8B
OPT decoder-only 6 125M, 350M, 1.3B, 2.7B, 6.7B, 13B

Pythia decoder-only 8 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, 12B

Table 1: Overview of the five LLM families, their architectural paradigms, and model sizes (M = million, B
= billion parameters).

5.2 Settings

Fine-tuning and Decoding Strategies. We use two parameter-efficient fine-tuning strategies—
QLoRA (Dettmers et al., 2023) and Prefix-Tuning (Li & Liang, 2021)—to fine-tune all LLMs on each D2T
dataset. For more details on the fine-tuning setup, please see Appendix A.3. For decoding, we consider
both greedy decoding and nucleus sampling. For further training settings and library details, please refer to
Appendix A.4.

Quantification for Factual Inconsistency. We define factual inconsistency as the inverse of factual
consistency, computed as (1 − z), where z is the factual consistency score ranging from 0 to 1. To evaluate
factual inconsistency in LLMs for D2T tasks, we employ four state-of-the-art automatic metrics that exhibit
strong correlations with human judgments: AlignScore, which measures consistency through informa-
tion alignment (Zha et al., 2023); QAFactEval, which assesses consistency via question generation and
answering (Fabbri et al., 2022); SummaC-conv, which leverages natural language inference techniques (La-
ban et al., 2022); and UniEval-fact, which utilizes a unified evaluation framework based on multi-task
training (Zhong et al., 2022). In addition to these automatic metrics, we also conduct a small-scale human
evaluation, wherein factual consistency is manually annotated by human annotators.

6 Results

This section presents the plots and VaCScal results for factual inconsistency scaling (measure using Align-
Score and QAFactEval) in D2T with respect to two scaling factor model size and compute (FLOPs),
based on two scaling models—power law and exponential. All results in this study are based on text generated
using greedy decoding.

6.1 Scaling Behavior Based on Model Size of Fine-Tuned (QLoRA) LLM Families

Here, we present the scaling behavior of factual inconsistency in D2T with respect to model size for LLM fam-
ilies fine-tuned using QLoRA. For results using SummaC-conv and UniEval-fact as factual inconsistency
metrics, please refer to Appendix C.
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Figure 3: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by AlignScore, plotted against model size across different LLM families.

6.1.1 Factual Inconsistency Measured via AlignScore

Figure 3 shows the fitted curves for power law and exponential scaling models, along with 95% confidence
margins derived from residual error. Anomalies are observed particularly in the E2E dataset for the BLOOM
and Mamba families, where factual inconsistency unexpectedly increases with model size. A possible hy-
pothesis for this aberrant behavior is discussed in Appendix G. In sporadic exception cases involving the
E2E dataset and the BLOOM family, both scaling models exhibit higher margin of error (MoE), although
the exponential model consistently shows lower MoE than the power law. Outside these exceptions, expo-
nential scaling generally yields much narrower MoEs, indicating more stable and reliable fits in terms of
uncertainty. Table 2 summarizes the outcomes of the VaCScal framework. Exponential scaling consistently
outperforms power law across all three validation stages: in Stage I, it achieves lower held-out loss; in Stage
II, it passes the F-test more frequently (✔); and in Stage III, Vuong’s test favors exponential scaling in
most cases (highlighted in blue). In several scenarios, power law scaling is found to be infeasible. Despite a
few exceptions (e.g., E2E-BLOOM), VaCScal results indicate that exponential scaling more reliably models
factual inconsistency—measured via AlignScore—in D2T generation.
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Takeaway. Exponential scaling models more accurately capture factual inconsistency (measured via Align-
Score) with respect to LLM model size in D2T, exhibiting lower error and stronger statistical fit compared
to power law scaling, despite a few outliers.

LLM family Scaling DART E2E ViGGO WebNLG WikiTableText
Exponential 1.84E-04/✖ 6.29E+03/✖ 5.82E+03/✖ 2.51E-04/✔ 1.43E+03/✖BLOOM Power Law 6.92E-04/✖ 6.65E-04/✖ 3.30E-04/✖ 2.43E-02/✖ 1.55E-03/✖

Exponential 4.15E-04/✔ 8.60E-04/✖ 1.14E-03/✔ 2.16E-03/✔ 2.56E-03/✔FLAN-T5 Power Law 1.47E-04/✔ 3.11E-03/✖ 7.80E-01/✖ 6.16E-04/✔ 1.45E-04/✔

Exponential 2.14E-05/✔ 1.43E-04/✖ 4.40E+01/✔ 1.05E-04/✔ 3.09E-04/✖Mamba Power Law 3.77E+05/✖ 1.99E+03/✖ 1.08E+167/✖ 3.50E-04/✖ 1.42E+13/✖

Exponential 1.64E-04/✔ 1.15E-01/✖ 1.37E-03/✔ 3.66E-04/✔ 9.04E-04/✔OPT Power Law 2.96E-03/✖ 1.16E+82/✖ 3.72E+81/✖ 1.94E-03/✖ 1.10E+03/✔

Exponential 2.03E-03/✔ 1.71E+01/✔ 2.48E-03/✔ 2.30E-02/✔ 3.31E-03/✔Pythia Power Law 1.68E+11/✖ 1.24E-02/✔ 1.92E-02/✖ 8.71E+11/✖ 1.96E+04/✖

Table 2: Results from VaCScal corresponding to Figure 3. Numerical values, along with (✔/✖) and blue/red
highlights, indicate the outcomes of Stages I, II, and III of VaCScal.

6.1.2 Factual Inconsistency Measured via QAFactEval

Figure 4 shows the fitted power law and exponential scaling curves, along with 95% MoE, using QAFactE-
val as the inconsistency metric. Similar to AlignScore, notable anomalies are observed—especially for
the E2E dataset, where all LLM families (except Pythia) exhibit increasing inconsistency with model size.
Aside from a few exceptions in E2E and BLOOM, where both scaling models show higher MoE, exponential
scaling generally yields narrower MoE than power law scaling, indicating more stable fits with lower uncer-
tainty. Table 3 summarizes the corresponding results under the VaCScal framework. In most Stage I results,
exponential models consistently achieve lower or comparable held-out loss. For Stage II, they pass the F-test
(✔) more reliably than power law models, which often fail (✖). Overall, Stage III also favors exponential
scaling, with numerous significant Vuong test results (highlighted in blue). In two rare cases—DART and
WebNLG with the FLAN-T5 family—power law scaling outperforms exponential models. We hypothesize
that FLAN-T5, having been pre-trained on graph-to-text formats, may exhibit divergence from exponential
scaling in these cases due to prior alignment with power-law behavior. Overall, aside from these two rare ex-
ceptions, exponential scaling emerges as a more robust and statistically valid model of factual inconsistency
in D2T when measured with QAFactEval.

Takeaway. Compared to power law scaling, exponential scaling more effectively captures the relationship be-
tween factual inconsistency (measured via QAFactEval) and model size in D2T across most LLM families,
despite some anomalies (e.g., E2E, ViGGO).

LLM Family Scaling DART E2E ViGGO WebNLG WikiTableText
Exponential 2.07E-04/✔ 7.81E-05/✖ 7.41E-04/✖ 4.81E-04/✔ 3.76E-04/✖BLOOM Power Law 1.00E-01/✖ 2.45E-03/✖ 8.86E-04/✖ 3.10E-02/✖ 4.43E+06/✖

Exponential 3.37E-03/✔ 6.59E-05/✖ 4.64E-03/✔ 2.46E-03/✔ 3.22E+00/✔FLAN-T5 Power Law 1.22E+02/✔ 7.08E-04/✖ 1.30E-03/✔ 2.57E-03/✔ 4.57E-04/✔

Exponential 3.74E-04/✔ 3.75E-05/✖ 1.52E+01/✔ 4.38E-05/✔ 5.68E-05/✔Mamba Power Law 4.01E-05/✖ 2.17E-05/✖ 4.43E-04/✖ 2.63E+05/✖ 9.08E+20/✖

Exponential 1.13E-04/✔ 5.28E-05/✖ 1.28E-03/✖ 3.63E-03/✔ 1.35E-04/✔OPT Power Law 2.00E+01/✖ 9.51E-02/✖ 1.63E-02/✖ 5.69E+02/✔ 4.42E+00/✖

Exponential 3.97E-03/✔ 7.47E-02/✔ 3.65E-03/✔ 4.54E-02/✔ 3.24E-01/✔Pythia Power Law 1.04E+06/✖ 2.86E-02/✔ 2.09E+06/✔ 9.44E+14/✖ 1.73E-02/✖

Table 3: Results from VaCScal corresponding to Figure 4. Numerical values, along with (✔/✖) and blue/red
highlights, indicate the outcomes of Stages I, II, and III of VaCScal.

6.2 Scaling Behaviour Based on FLOPs of Fine-Tuned (QLoRA) LLM Families

Estimating compute budget is central to LLM scaling research (Kaplan et al., 2020; Chung et al., 2024), with
several early works linking generalization error to FLOPs (floating-point operation). This section examines
the scaling behavior of LLM factual inconsistency in D2T with respect to FLOPs. We evaluate five LLM

7
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Exponential scaling Margin of error (exponential scaling) Power law scaling Margin of error (power law scaling)

1.21 2.69 4.16 5.63 7.10
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1.21 2.69 4.16 5.63 7.10

Parameters (Billions)→

0.14
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Figure 4: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by QAFactEval, plotted against model size across different LLM families.

families (BLOOM, FLAN-T5, OPT, Pythia, Mamba) across five D2T datasets using two automatic metrics—
AlignScore and QAFactEval. FLOPs are computed using calflops1, and all models are fine-tuned via
QLoRA.

6.2.1 Factual Inconsistency Measured via AlignScore

Figure 5 illustrates how factual inconsistency—measured via AlignScore—scales with FLOPs across LLM
families under both power law and exponential models, along with 95% confidence margins. As with the
model size results, similar anomalies persist in FLOP-based scaling—particularly in the E2E dataset (notably
with the BLOOM and Mamba families), where inconsistency increases with FLOPs. Similar to the model
size-based findings, Appendix G provides a plausible explanation for the observed aberrant behavior here as
well. In Figure 5, E2E also shows higher MoE across both scaling models and most LLM families. Outside
these exceptions, exponential scaling consistently yields narrower MoEs, indicating more stable fits with lower

1https://github.com/MrYxJ/calculate-flops.pytorch
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residual uncertainty. Table 4 summarizes the VaCScal evaluation for this FLOP-based analysis. In Stage I,
exponential models consistently achieve lower held-out loss. While Stage II includes a few infeasible cases
(e.g., E2E and ViGGO with BLOOM), exponential scaling is statistically preferred in most model–dataset
pairs, as shown by the frequent blue marks indicating significant Vuong test outcomes in Stage III. Overall,
the VaCScal results indicate that exponential scaling provides a more robust and reliable model for capturing
how factual inconsistency in D2T generation decreases with increasing compute—offering actionable insights
for compute-budget planning with fine-tuned LLMs.

Takeaway. Exponential scaling model better captures how factual inconsistency (via AlignScore) de-
creases with FLOPs across LLM families, offering a more stable and practical scaling model than power law
scaling.

Exponential scaling Margin of error (exponential scaling) Power law scaling Margin of error (power law scaling)

3.23 7.14 11.05 14.96 18.87

FLOPs (×1020)→
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Figure 5: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by AlignScore, plotted against FLOPs across different LLM families.

6.2.2 Factual Inconsistency Measured via QAFactEval

Figure 6 displays fitted power law and exponential scaling curves with 95% confidence intervals (MoE),
showing how factual inconsistency—measured using QAFactEval—varies with FLOPs. Again, certain
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LLM Family Scaling DART E2E ViGGO WebNLG WikiTableText
Exponential 4.77E-03/✖ 1.35E+03/✖ 1.13E+03/✖ 3.60E-04/✔ 2.22E+02/✖BLOOM Power Law 1.64E-01/✖ 1.39E-02/✖ 2.83E+198/✖ 2.64E-04/✖ 1.35E-03/✖

Exponential 1.52E-03/✔ 4.62E-04/✖ 3.28E-03/✖ 4.48E-04/✔ 3.88E-03/✔FLAN-T5 Power Law 6.14E-05/✔ 6.15E-03/✖ 3.47E-01/✖ 2.36E-03/✔ 1.33E-04/✔

Exponential 1.62E-05/✔ 2.36E-04/✖ 8.04E+01/✔ 3.92E-04/✔ 4.56E-04/✖Mamba Power Law 4.51E+05/✖ 1.47E-03/✖ 5.07E+176/✖ 1.13E+00/✖ 4.44E+13/✖

Exponential 3.40E-04/✔ 1.83E-04/✖ 1.19E-03/✔ 1.16E-04/✔ 4.44E+02/✔OPT Power Law 9.22E+01/✖ 1.71E-04/✖ 5.96E-04/✖ 1.69E+08/✖ 6.29E+02/✔

Exponential 3.82E-03/✔ 3.22E+01/✔ 1.24E-03/✔ 4.92E-02/✔ 1.03E-03/✔Pythia Power Law 1.95E+11/✖ 2.56E-02/✔ 2.48E+03/✖ 1.77E+11/✖ 1.37E+03/✖

Table 4: Results from VaCScal corresponding to Figure 5. Numerical values, along with (✔/✖) and blue/red
highlights, indicate the outcomes of Stages I, II, and III of VaCScal.

Exponential scaling Margin of error (exponential scaling) Power law scaling Margin of error (power law scaling)
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Figure 6: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by QAFactEval, plotted against FLOPs across different LLM families.

anomalies persist: for instance, factual inconsistency increases with compute for the E2E dataset (under the
BLOOM and Mamba families) and for the ViGGO dataset (under BLOOM). The E2E dataset and BLOOM
family often exhibit large MoEs across datasets, indicating high uncertainty. Nevertheless, exponential
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scaling consistently delivers narrower confidence bounds than power law fits, suggesting more reliable and
stable modeling. The associated VaCScal outcomes, summarized in Table 5, reinforce this conclusion: most
model–dataset pairs show a clear preference for exponential scaling, as indicated by the frequent blue-
highlighted Vuong test results. While a few configurations—such as BLOOM on E2E—are deemed infeasible
in Stage II, the broader pattern of VaCScal results affirms exponential scaling as the superior framework for
capturing how factual inconsistency declines with increasing computational effort.

LLM Family Scaling DART E2E ViGGO WebNLG WikiTableText
Exponential 4.31E-04/✔ 1.33E-04/✖ 6.10E-04/✖ 6.60E-04/✔ 2.27E-04/✖BLOOM Power Law 4.75E-02/✖ 6.22E-05/✖ 4.54E-04/✖ 2.88E-02/✖ 1.54E-02/✖

Exponential 2.37E-03/✔ 6.81E-05/✖ 4.00E-03/✔ 2.34E-04/✔ 1.64E-04/✔FLAN-T5 Power Law 2.24E+02/✔ 5.52E-06/✖ 3.73E-03/✔ 6.87E-03/✔ 3.64E-04/✔

Exponential 8.12E-05/✔ 1.76E-06/✖ 1.96E-04/✔ 3.72E-05/✔ 1.10E-03/✔Mamba Power Law 8.31E+08/✖ 2.60E-04/✖ 7.56E-04/✖ 7.46E+05/✖ 2.66E+21/✖

Exponential 1.85E-04/✔ 2.00E-05/✖ 1.03E-03/✖ 2.97E-03/✔ 1.23E-04/✔OPT Power Law 2.59E+01/✖ 1.71E-04/✖ 6.37E+04/✖ 1.30E+07/✔ 1.52E+00/✖

Exponential 2.81E-03/✔ 2.32E-02/✔ 9.32E-04/✔ 3.67E-01/✔ 7.35E+01/✔Pythia Power Law 5.64E+06/✖ 5.29E-02/✔ 9.25E+03/✔ 1.01E+15/✖ 4.59E-02/✖

Table 5: Results from VaCScal corresponding to Figure 6. Numerical values, along with (✔/✖) and blue/red
highlights, indicate the outcomes of Stages I, II, and III of VaCScal.

Takeaway. Compared to power law scaling, the exponential model more effectively captures the relationship
between FLOPs and factual inconsistency (measured via QAFactEval), exhibiting greater stability across
LLM families.

7 Discussion

Our findings consistently demonstrate that exponential scaling provides a more accurate and statistically
grounded explanation of factual inconsistency in D2T generation, as compared to power law scaling. This con-
clusion holds across multiple evaluation metrics, scaling factors, and experimental setups. In the main results
(section 6), exponential scaling outperformed power law scaling in modeling factual inconsistency, as mea-
sured by AlignScore and QAFactEval, with respect to both model size and compute budget (FLOPs).
This trend persists even when alternative factual consistency metrics are used—such as SummaC-conv
and UniEval-fact (Appendix C)—and when evaluated against human annotations (Appendix B), further
reinforcing the robustness of the observed scaling behavior. Moreover, exponential scaling remains domi-
nant when other scaling factors are considered, such as the size of the fine-tuning dataset (Appendix F).
To ensure that our conclusions are not dependent on a specific fine-tuning or decoding strategy, we con-
ducted additional experiments using Prefix-Tuning (Appendix E) and nucleus sampling (Appendix D). In
all these cases, exponential scaling consistently showed superior performance. Although a few exceptions
were observed—particularly with the E2E and ViGGO datasets—these anomalies are limited in scope and
do not undermine the broader empirical trend. Moreover, in Appendix G, we provide a critical analysis of
the aberrant behavior exhibited by these two datasets. A key enabler of our analysis is the proposed frame-
work VaCScal, which offers statistically rigorous validation of scaling models beyond conventional measures
such as margin of error (MoE) or held-out loss. While MoE is helpful for visualizing uncertainty, it does
not assess the statistical plausibility of a model. In several cases, models with low MoE failed Stage II
of VaCScal, due to high p-values, indicating that a visually good fit may not always be statistically valid.
Furthermore, Stage III of VaCScal provides a principled mechanism for comparing competing scaling mod-
els, often yielding strong evidence in favor of exponential scaling when both models pass feasibility checks
in Stage II. Interestingly, Stage I of VaCScal also reveals that exponential scaling tends to achieve lower
held-out loss even in settings where neither model passes Stage II feasibility, suggesting its robustness in
practice. In summary, our comprehensive evaluation—spanning multiple metrics, datasets, scaling factors,
and validation strategies—empirically substantiates the superiority of exponential scaling over power law
scaling for capturing factual inconsistency in D2T generation with fine-tuned LLMs. Finally, we present a
mathematical rationale in Appendix H to substantiate our claim that factual inconsistency in D2T scales
exponentially with model size.
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8 Conclusion

This work presents a comprehensive scaling analysis of factual inconsistency in D2T generation with respect
to model size, compute (FLOPs), and fine-tuning data size. Contrary to prior studies favoring power
law behavior, our experiments across diverse LLM families, datasets, and evaluation metrics consistently
reveal that factual inconsistency follows exponential scaling. To rigorously compare scaling models, we
introduce VaCScal, a three-stage statistical framework that evaluates predictive performance, goodness-of-
fit, and model comparison. Exponential scaling outperforms power law across all stages and remains robust
across different tuning and decoding strategies. Finally, to reinforce our empirical findings, we provide a
mathematical rationale showing that under typical D2T conditions involving source-reference divergence,
factual inconsistency is expected to scale exponentially with LLM size. Together, these results establish
exponential scaling as a more accurate and theoretically grounded model of factual inconsistency in D2T
generation with fine-tuned LLMs.

Limitation and Future Scope

While our study offers promising insights into the scaling behavior of factual inconsistency in D2T generation,
several limitations remain. First, we did not examine the transferability of scaling models across different
LLM families or datasets, which could be an important avenue for future work. Second, our analysis is
restricted to the D2T task due to computational constraints; extending the framework to other conditional
generation tasks such as summarization or dialogue could test its broader applicability. Finally, we focus
solely on fine-tuning strategies, leaving out alternative approaches like in-context learning or chain-of-thought
prompting—both of which offer interesting directions for future research.

Broader Impact Statement

This work highlights that factual inconsistency in LLM-based data-to-text generation exhibits exponential
scaling with respect to model size, compute (FLOPs), and fine-tuning data volume. By introducing the VaC-
Scal framework for statistically grounded model validation and comparison, this study lays the foundation
for future efforts in designing more factually consistent and resource-efficient language systems. The accom-
panying mathematical perspective further deepens understanding of scaling dynamics, offering a principled
basis for guiding the development of next-generation LLMs across diverse generation tasks.
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A Experiment Setup

A.1 D2T Dataset

E2E (Novikova et al., 2017; Dusek et al., 2018) is an MR-to-text dataset from the restaurant domain,
containing over 37K instances with an average text length of 21 words. ViGGO (Juraska et al., 2018),
another MR-to-text dataset, comprises 7K instances across nine dialogue acts in the video game domain,
averaging 14 words per text. Both E2E and ViGGO are closed-domain datasets. WikiTableText (Bao
et al., 2018) is an open-domain table-to-text dataset with around 13K pairs derived from Wikipedia tables.
DART (Nan et al., 2021) includes nearly 70K knowledge graph triples with an average output length of
34 words. WebNLG (Gardent et al., 2017) is a graph-to-text dataset focused on RDF-to-text generation,
containing approximately 38K samples with an average of 30 words per output. Both DART and WebNLG
are open-domain datasets. All datasets are sourced from (Kasner et al., 2023) and (Wolf et al., 2020). Key
statistics for all datasets are shown in Table 6.

Dataset D2T Types Domain Type Dataset Size Source Data Reference
Average length Unique Tokens Total Tokens Average length Unique Tokens Total Tokens

E2E MR-to-text closed 36,856 27.3 125 1M 20.8 4.5K 885K
ViGGo MR-to-text closed 6,900 29.9 618 206K 21.5 4.4K 148K

WikiTableText Table-to-text open 13,318 35.2 29K 469K 13.9 24K 185K
DART graph-to-text open 70,524 34.8 44K 2.5M 19.3 45K 1.5M

WebNLG graph-to-text open 38,872 30.4 7K 1.2M 20.1 19K 905K

Table 6: Summary of key statistics, D2T types, and domains for the five incorporated datasets. The table
presents average length (number of tokens in text), unique tokens, and total tokens for both sources data
(linearized to text) and references.

A.2 LLM Families

We consider five prominent LLM families in our study, spanning three distinct architectural paradigms:
decoder-only, encoder-decoder, and state-space model. BLOOM (Scao et al., 2022) is a decoder-only language
model trained on the multilingual ROOT dataset. We include five BLOOM variants in our experiments.
FLAN-T5 (Chung et al., 2024) is an encoder-decoder model family. Unlike decoder-only models, FLAN-T5
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processes input prompts primarily through its encoder. We incorporate five models of varying sizes from
this family. OPT (Zhang et al., 2022) consists of decoder-only transformer models ranging from 130M
to 13B parameters. OPT family are trained on a mixture of datasets including Reddit, the Pile, and
RoBERTa pretraining corpora, following the setup of Brown et al. (2020). We use six OPT models in our
experiments. Pythia (Biderman et al., 2023) is a collection of eight decoder-only, GPT-style autoregressive
models (70M–12B parameters) employing flash attention. All Pythia models are trained on the Pile dataset
using a consistent data ordering scheme. In contrast to these attention-based models, recent work in NLP
has explored state-space models as a scalable alternative for modeling long-range dependencies with linear-
time inference. To include this model paradigm, we include Mamba (Gu & Dao, 2024), a state-of-the-art
state-space language model, and evaluate five different model sizes.

A.3 Fine-tuning and Decoding Strategies

Given the large model sizes, full fine-tuning is computationally expensive. To address this, all LLMs are
fine-tuned separately on each of the five D2T datasets using two parameter-efficient fine-tuning strategies:
QLoRA (Dettmers et al., 2023) (Quantized Low-rank Adapter) and Prefix-Tuning (Li & Liang, 2021). Prefix-
Tuning is widely regarded as one of the most effective soft prompt-tuning methods. In the QLoRA setup, we
use a reduced rank (r = 16), applied primarily to the attention and feedforward modules of the LLMs. For
Prefix-Tuning, we use a virtual prefix of 32 tokens. Prefix-Tuning is applied to all considered LLM families
except Mamba, due to unstable initialization issues for virtual tokens in the state-space architecture. For
both fine-tuning methods, we fix the learning rate at 1.00e−04 for trainable parameters. Given the critical
role of decoding strategies in D2T, we evaluate both deterministic (greedy decoding) and stochastic (nucleus
sampling) approaches to provide a comprehensive analysis. For nucleus sampling, we set the nucleus size to
0.95. Most of the results in this paper are based on text generated through greedy decoding.

A.4 Training Setting and Libraries

In all of our experiments, we use the SciPy library (Virtanen et al., 2020) to train both scaling models
(power law and exponential) on factual inconsistency results. Along with plotting the scaling models, we
include the margin of error (MoE) on residual deviation with a 95% confidence interval, as a measure of the
uncertainty in fitting these models. We also use the same SciPy library for all hypothesis testing. Vuong’s
likelihood-ratio test is implemented in Python. For all fine-tuning and model quantization tasks involving
the LLM families, we make extensive use of the transformers library (Wolf et al., 2020) from HuggingFace.
Fine-tuning and evaluation are conducted separately on each D2T dataset, using their respective training
and testing splits.

B Scaling Behaviour Based on Model Size of Fine-Tuned (QLoRA) LLM Families
With Human Evaluation

Although automatic metrics for evaluating factual consistency have improved in recent years, they still fall
short compared to human-based evaluations. To strengthen the validity of exponential scaling for modeling
factual inconsistency in D2T, we conducted a human evaluation involving five university student annotators
from diverse academic backgrounds. This voluntary task was performed on outputs generated by the OPT
LLM family. Prior to the annotation process, each annotator participated in a brief training session that
included five example instances, along with source data and reference texts. Factual inconsistency was
assessed on a Likert scale from 5 (completely inconsistent) to 0 (fully consistent). In addition to assigning
scores, annotators were required to justify inconsistencies using one or more of the following categories: (1)
missing fact, (2) fabricated fact, and (3) irrelevant fact. A gold-labeled reference set was provided to guide
the evaluation criteria (Table 7). Each annotator independently evaluated 30 generated outputs across five
D2T datasets, without consulting others or using external resources. The agreement among annotators was
high, with a Fleiss’ kappa coefficient of 0.82, indicating strong inter-annotator reliability.

Figure 7 presents the fitted power law and exponential scaling curves, along with 95% confidence intervals
(MoE), based on human-annotated assessments of factual inconsistency across varying model sizes (in terms
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source reference generated text label (Likert Scale 0-
5, with reasons)

(‘MotorSport Vision’, ‘city’, ‘Fawkham’) MotorSport Vision is located in
Fawkham . Fawkham is in the UK. 5 (inconsistent:

irrelevant fact)
((‘subjtitle’, ‘kf tirana’),

(‘subjsubtitle’, ‘presidents history’),
(‘name’, ‘lutfi nuri’), (‘from–to’, ‘1998–99’))

lutfi nuri was president of kf
tirana during 1998–99 .

lutfi nuri president of kf
tirana who took office 1998–99 . 0 (consistent)

((‘subjtitle’, ’aachen’), (‘subjsubtitle’, ‘demographics’),
(‘year’, ’2015’), (‘population’, ’245,885’))

the population of aachen 245,885
in 2015 .

245,885 people in aachen
lived in 2015 . 0 (consistent)

((‘subjtitle’, ‘fc rubin kazan’),
(‘subjsubtitle’, ‘average attendance’),

(‘year’, ‘2011’), (‘reg . season’, ’16,380’))

the average attendance of fc rubin
kazanin 2011 were 16,380 .

fc rubin kazan got 16,380
attendences in 2011 .

1 (almost consistent:
missing ‘average’)

((‘name’, ‘Clowns’), (‘eatType’, ‘pub’),
(‘near’, ‘The Sorrento’))

Close to The Sorrento you can
find Clowns pub.

Clowns pub serves food for under £20
and is located near The Sorrento.

3 (inconsistent:
fabricated fact)

Table 7: The five short sample given to each annotators for training before annotation task.
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Figure 7: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, annotated by Human, plotted against model size of OPT LLMs.

of parameter count). Across all D2T datasets, exponential scaling consistently exhibits lower MoEs than
power law scaling, indicating greater stability and confidence under human evaluation. The corresponding
VaCScal results are shown in Table 8, where all datasets favor exponential scaling. This is evidenced by the
blue-highlighted cells denoting strong statistical preference for exponential scaling in Stage III of the Vuong
test. Although the human evaluation was limited to the OPT model family due to resource constraints,
the findings strongly corroborate our earlier results based on automatic metrics. These consistent VaCScal
outcomes further support the suitability of exponential scaling for modeling the relationship between model
size and factual inconsistency in D2T generation.

Takeaway: Human evaluation confirms that exponential scaling more reliably models factual inconsistency
in D2T with respect to LLM size, aligning with findings from automatic metrics.

LLM Family Scaling DART E2E ViGGO WebNLG WikiTableText
Exponential 1.25E-03/✔ 4.29E-04/✔ 4.13E-03/✔ 2.54E-04/✔ 2.84E-03/✔OPT Power Law 7.00E+01/✖ 1.26E+00/✖ 6.51E+02/✖ 1.58E+10/✖/◗ 2.03E-03/✖

Table 8: Results from VaCScal corresponding to Figure 7. Numerical values, along with (✔/✖) and blue/red
highlights, indicate the outcomes of Stages I, II, and III of VaCScal.

C Result: Scaling Behavior Based on Model Size of Fine-Tuned (QLoRA) LLM
Families

C.1 Factual Inconsistency Measured via SummaC-conv

Figure 8 presents fitted power law and exponential scaling curves (with 95% confidence intervals) for factual
inconsistency measured via SummaC-conv, plotted against model size across LLM families. Although
some anomalies appear—particularly in the E2E dataset with BLOOM—exponential scaling consistently
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yields lower MoE and lower held-out loss. Table 9 shows corresponding VaCScal results, where exponential
models pass statistical tests more frequently and are preferred by Vuong’s test in most settings. These
VaCScal results support the robustness of exponential scaling in modeling factual inconsistency—measured
via SummaC-conv—with respect to LLM model size across families.

Takeaway: Exponential scaling captures better the decline of factual inconsistency (measured by SummaC-
conv) with increasing model size more reliably than power law scaling across LLM families, supported by
tighter confidence margins and stronger statistical validation from VaCScal.

Exponential scaling Margin of error (exponential scaling) Power law scaling Margin of error (power law scaling)

1.21 2.69 4.16 5.63 7.10

Parameters (Billions)→

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

DART (w/ BLOOM Family)

1.21 2.69 4.16 5.63 7.10

Parameters (Billions)→

0.14

0.14

0.14

0.15

0.15

0.15

0.15

0.15

0.16

E2E (w/ BLOOM Family)

1.21 2.69 4.16 5.63 7.10

Parameters (Billions)→

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

ViGGO (w/ BLOOM Family)

1.21 2.69 4.16 5.63 7.10

Parameters (Billions)→

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

WebNLG (w/ BLOOM Family)

1.21 2.69 4.16 5.63 7.10

Parameters (Billions)→

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

WikiTableText (w/ BLOOM Family)

F
a

ct
u

a
l

In
co

n
si

st
en

cy
w

/
S
u
m

m
a
C

-c
o

n
v
→

1.20 3.72 6.25 8.77 11.30

Parameters (Billions)→

0.18

0.20

0.23

0.25

0.28

0.30

0.33

0.35

0.38

0.40

DART (w/ FLAN-T5 Family)

1.20 3.72 6.25 8.77 11.30

Parameters (Billions)→

0.13

0.13

0.14

0.14

0.14

0.14

0.14

0.15

0.15

E2E (w/ FLAN-T5 Family)

1.20 3.72 6.25 8.77 11.30

Parameters (Billions)→

0.38

0.40

0.43

0.45

0.48

0.50

0.53

0.55

0.58

ViGGO (w/ FLAN-T5 Family)

1.20 3.72 6.25 8.77 11.30

Parameters (Billions)→

0.20

0.25

0.30

0.35

0.40

0.45

WebNLG (w/ FLAN-T5 Family)

1.20 3.72 6.25 8.77 11.30

Parameters (Billions)→

0.38

0.40

0.43

0.45

0.48

0.50

0.53

0.55

0.58

WikiTableText (w/ FLAN-T5 Family)

F
a

ct
u

a
l

In
co

n
si

st
en

cy
w

/
S
u
m

m
a
C

-c
o

n
v
→

0.40 1.00 1.60 2.20 2.80

Parameters (Billions)→

0.28

0.30

0.32

0.34

0.36

0.38

0.40

DART (w/ Mamba Family)

0.40 1.00 1.60 2.20 2.80

Parameters (Billions)→

0.14

0.14

0.14

0.14

0.14

0.15

0.15

0.15

0.15

0.15

E2E (w/ Mamba Family)

0.40 1.00 1.60 2.20 2.80

Parameters (Billions)→

0.34

0.36

0.38

0.40

0.42

0.44

ViGGO (w/ Mamba Family)

0.40 1.00 1.60 2.20 2.80

Parameters (Billions)→

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

WebNLG (w/ Mamba Family)

0.40 1.00 1.60 2.20 2.80

Parameters (Billions)→

0.40

0.42

0.44

0.46

0.48

0.50

WikiTableText (w/ Mamba Family)

F
a

ct
u

a
l

In
co

n
si

st
en

cy
w

/
S
u
m

m
a
C

-c
o

n
v
→

1.41 4.31 7.21 10.10 13.00

Parameters (Billions)→

0.35

0.38

0.40

0.43

0.45

0.48

0.50

0.53

0.55

0.57

DART (w/ OPT Family)

1.41 4.31 7.21 10.10 13.00

Parameters (Billions)→

0.12

0.12

0.12

0.12

0.12

0.13

0.13

0.13

0.13

0.13

E2E (w/ OPT Family)

1.41 4.31 7.21 10.10 13.00

Parameters (Billions)→

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

ViGGO (w/ OPT Family)

1.41 4.31 7.21 10.10 13.00

Parameters (Billions)→

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

WebNLG (w/ OPT Family)

1.41 4.31 7.21 10.10 13.00

Parameters (Billions)→

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

WikiTableText (w/ OPT Family)

F
a

ct
u

a
l

In
co

n
si

st
en

cy
w

/
S
u
m

m
a
C

-c
o

n
v
→

1.26 3.95 6.63 9.32 12.00

Parameters (Billions)→

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

DART (w/ Pythia Family)

1.26 3.95 6.63 9.32 12.00

Parameters (Billions)→

0.00

0.20

0.40

0.60

0.80

1.00

E2E (w/ Pythia Family)

1.26 3.95 6.63 9.32 12.00

Parameters (Billions)→

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

ViGGO (w/ Pythia Family)

1.26 3.95 6.63 9.32 12.00

Parameters (Billions)→

0.20

0.40

0.60

0.80

1.00

1.20

WebNLG (w/ Pythia Family)

1.26 3.95 6.63 9.32 12.00

Parameters (Billions)→

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

WikiTableText (w/ Pythia Family)

F
a

ct
u

a
l

In
co

n
si

st
en

cy
w

/
S
u
m

m
a
C

-c
o

n
v
→

Figure 8: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by SummaC-conv, plotted against model size across different LLM families.

C.2 Factual Inconsistency Measured via UniEval-fact

Figure 9 shows the fitted power law and exponential scaling curves with 95% confidence intervals (MoE) for
factual inconsistency measured by UniEval-fact. As with other metrics (AlignScore, QAFactEval,
SummaC-conv), anomalies persist—most notably in the E2E dataset and BLOOM family, which exhibit
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LLM Family Scaling DART E2E ViGGO WebNLG WikiTableText
Exponential 1.79E-04/✖ 2.39E+02/✖ 2.45E-04/✖ 5.40E-04/✖ 2.20E-05/✔BLOOM Power Law 2.72E-02/✖ 2.98E-02/✖ 2.11E-04/✖ 7.86E-03/✖ 9.19E-03/✖

Exponential 6.46E-04/✔ 9.07E-06/✖ 2.39E-04/✔ 2.83E-04/✔ 3.13E+00/✔FLAN-T5 Power Law 2.12E-03/✔ 1.35E-05/✖ 2.43E+01/✖ 2.96E-04/✔ 4.74E-05/✔

Exponential 7.88E-05/✔ 1.76E-06/✖ 1.88E+01/✖ 1.52E-04/✔ 3.04E-04/✔Mamba Power Law 8.26E-06/✖ 1.00E-04/✖ 1.08E+168/✖ 1.14E-04/✖ 5.13E+11/✖

Exponential 1.92E-04/✔ 2.85E-01/✖ 6.21E-04/✖ 3.48E-05/✔ 4.75E-04/✔OPT Power Law 3.94E-01/✖ 8.17E+80/✖ 1.42E-04/✖ 6.67E+10/✖ 5.98E+04/✔

Exponential 1.38E-03/✔ 1.05E-03/✔ 8.16E-04/✔ 5.51E-03/✔ 4.07E-04/✔Pythia Power Law 5.21E-03/✖ 1.25E-02/✔ 3.14E-03/✖ 1.42E+09/✖ 7.34E-03/✖

Table 9: Results from VaCScal corresponding to Figure 8. Numerical values, along with (✔/✖) and blue/red
highlights, indicate the outcomes of Stages I, II, and III of VaCScal.

increasing inconsistency or large MoEs. Despite these outliers, exponential scaling consistently yields sub-
stantially lower MoEs across all cases compared to power law scaling, indicating reduced uncertainty in
estimation. The corresponding VaCScal results (Table 10) further support this observation: exponential
scaling achieves significantly lower held-out loss in Stage I. In Stages II and III, exponential models also
demonstrate greater statistical feasibility (marked with ✔) and receive more support from Vuong’s test
(highlighted in blue) than their power law counterparts. Overall, VaCScal results affirm that exponential
scaling more effectively captures how factual inconsistency varies with model size in D2T generation under
UniEval-fact.

Takeaway. Exponential scaling more reliably models the relationship between model size of LLMs and
factual inconsistency in D2T tasks, as measured by UniEval-fact, outperforming power law scaling despite
a few dataset-specific anomalies.

LLM Family Scaling DART E2E ViGGO WebNLG WikiTableText
Exponential 3.07E-04/✔ 1.39E-04/✖ 6.31E-04/✖ 4.78E-06/✔ 3.45E-04/✔BLOOM Power Law 3.25E-02/✖ 8.95E-03/✖ 1.49E-04/✖ 1.06E-02/✖ 1.36E-04/✖

Exponential 2.15E-04/✔ 5.01E-05/✖ 8.94E-04/✔ 1.26E-03/✔ 7.04E-01/✔FLAN-T5 Power Law 2.64E-04/✔ 4.26E+00/✖ 1.74E-03/✖ 1.74E-03/✔ 8.80E-05/✔

Exponential 4.89E-05/✔ 1.22E-04/✖ 1.98E+02/✔ 4.13E-05/✔ 2.92E-04/✔Mamba Power Law 3.56E+06/✖ 1.18E-04/✖ 4.22E+170/✖ 3.91E-04/✖ 1.09E-03/✖

Exponential 1.13E-03/✔ 8.96E-05/✖ 2.81E-03/✔ 5.28E-01/✔ 1.23E-04/✔OPT Power Law 3.08E+02/✖ 5.89E-02/✖ 6.76E-04/✔ 1.20E+87/✖ 3.69E+03/✔

Exponential 1.06E-02/✔ 1.06E-02/✔ 7.36E-04/✔ 6.82E-03/✔ 4.14E-02/✔Pythia Power Law 1.36E+05/✖ 2.06E+13/✔ 2.11E+03/✖ 4.45E+10/✖ 4.23E+00/✖

Table 10: Results from VaCScal corresponding to Figure 9. Numerical values, along with (✔/✖) and blue/red
highlights, indicate the outcomes of Stages I, II, and III of VaCScal.
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Exponential scaling Margin of error (exponential scaling) Power law scaling Margin of error (power law scaling)
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Figure 9: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by UniEval-fact, plotted against model size across different LLM families.

D Results: Scaling Behavior Based on Model Size of Fine-Tuned (QLoRA) LLM
Families with Nucleus Sampling

As discussed in section 7, all prior results were based on greedy decoding. However, decoding strategy sig-
nificantly influences the factual inconsistency of LLM outputs. To evaluate the robustness of our findings
favoring exponential scaling over power law scaling, we conduct additional experiments using nucleus sam-
pling (with a nucleus probability of 0.95)—a widely used stochastic decoding method. For this setup, all five
LLM families are fine-tuned on the five D2T datasets using QLoRA, and factual inconsistency is assessed
using AlignScore and QAFactEval.

Figure 10 and Figure 11 show fitted power law and exponential scaling curves (with 95% confidence intervals)
for factual inconsistency—measured by AlignScore and QAFactEval—under nucleus sampling (p =
0.95). The trends largely mirror those from greedy decoding: exponential scaling yields consistently lower
MoEs, indicating greater stability. Exceptions such as the E2E dataset and the BLOOM family persist, with
large uncertainties and irregular patterns. VaCScal results in Table 11 and Table 12 reaffirm exponential
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Exponential scaling Margin of error (exponential scaling) Power law scaling Margin of error (power law scaling)
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Figure 10: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by AlignScore, plotted against model size across different LLM families. Here we
have considered nucleus sampling for text generation.

scaling as the preferred model across most dataset–model combinations. These findings confirm that our
conclusions hold under stochastic decoding, consistent with the results obtained using greedy decoding across
all our experiments.

Takeaway: Exponential scaling remains the more robust and statistically valid model for capturing factual
inconsistency in D2T generation—even under stochastic decoding with nucleus sampling—further validating
the generalizability of our findings across decoding strategies.

22



Under review as submission to TMLR

LLM Family Scaling DART E2E ViGGO WebNLG WikiTableText
Exponential 2.99E-04/✔ 1.43E-03/✖ 1.62E-03/✔ 2.60E-04/✔ 2.03E-03/✖BLOOM Power Law 2.63E+02/✖ 2.82E-04/✖ 3.84E-01/✖ 2.68E-03/✖ 5.65E-01/✖

Exponential 2.59E-04/✔ 5.44E-04/✖ 7.12E-03/✔ 2.59E-04/✔ 9.13E-05/✔FLAN-T5 Power Law 2.26E-03/✔ 5.46E-06/✖ 2.55E-01/✖ 4.34E+08/✖ 5.38E+14/✔

Exponential 1.01E-03/✔ 5.39E-05/✖ 1.39E-03/✔ 4.22E-04/✔ 1.97E-04/✔Mamba Power Law 3.88E+03/✖ 1.05E-03/✖ 6.78E+05/✖ 2.51E+02/✖ 5.08E+03/✖

Exponential 9.81E-04/✔ 8.72E-01/✖ 3.64E-04/✔ 2.68E-04/✔ 3.99E-03/✔OPT Power Law 9.50E+03/✖ 1.86E+79/✖ 2.37E+03/✖ 7.56E-03/✖ 1.51E-03/✖

Exponential 5.34E-03/✔ 3.06E-01/✔ 3.18E-03/✔ 5.82E-03/✔ 4.26E-03/✔Pythia Power Law 1.56E-02/✖ 1.97E-02/✔ 2.17E+03/✖ 8.13E+04/✖ 1.24E+04/✖

Table 11: Results from VaCScal corresponding to Figure 10. Numerical values, along with (✔/✖) and
blue/red highlights, indicate the outcomes of Stages I, II, and III of VaCScal.

LLM Family Scaling DART E2E ViGGO WebNLG WikiTableText
Exponential 5.01E-03/✔ 7.46E+01/✖ 4.92E-03/✖ 2.76E-03/✔ 1.49E-03/✖BLOOM Power Law 8.35E+00/✖ 5.92E-04/✖ 9.12E-03/✖ 2.51E-03/✖ 2.84E+05/✖

Exponential 2.80E-04/✔ 6.21E-05/✖ 8.37E-03/✖ 3.01E-04/✔ 3.11E-03/✔FLAN-T5 Power Law 5.65E+05/✔ 1.12E-03/✖ 8.98E-02/✖ 5.46E-03/✖ 1.81E+07/✔

Exponential 3.32E-04/✔ 5.82E-05/✔ 9.18E+01/✔ 1.85E-04/✔ 3.01E-04/✔Mamba Power Law 2.23E+03/✖ 2.81E-06/✔ 7.28E-04/✖ 1.74E+01/✖ 1.37E-04/✖

Exponential 2.83E-03/✔ 1.58E-05/✔ 2.14E-03/✔ 1.13E-03/✔ 2.64E-02/✔OPT Power Law 2.31E+01/✖ 6.34E-01/✖ 1.02E+08/✖ 3.28E+05/✖ 1.24E+08/✖

Exponential 1.30E-03/✔ 2.67E-03/✔ 3.60E-03/✔ 7.31E-03/✔ 5.69E-04/✔Pythia Power Law 4.16E+08/✖ 4.99E+07/✔ 2.04E+02/✖ 2.90E-02/✖ 4.00E+10/✖

Table 12: Results from VaCScal corresponding to Figure 11. Numerical values, along with (✔/✖) and
blue/red highlights, indicate the outcomes of Stages I, II, and III of VaCScal.
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Exponential scaling Margin of error (exponential scaling) Power law scaling Margin of error (power law scaling)
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Figure 11: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by QAFactEval, plotted against model size across different LLM families. Here
we have considered nucleus sampling for text generation.
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E Result: Scaling Behavior Based on Model Size of Fine-Tuned (Prefix-Tuning)
LLM Families

In this section, we report results from experiments where the LLM families were fine-tuned using Prefix-
Tuning, to verify the robustness of our conclusions across different fine-tuning strategies. We compare these
results against the previously used QLoRA setup. Factual inconsistency is evaluated using AlignScore
and QAFactEval, as these metrics were sufficient to generalize the trends under QLoRA. Note that Prefix-
Tuning was not applied to the Mamba family due to stability issues encountered during fine-tuning.

E.1 Factual Inconsistency Measured via AlignScore and QAFactEval.

Here we present experimental results using Prefix-Tuning as an alternative fine-tuning strategy to the pre-
viously employed QLoRA. This comparison aims to assess the robustness of our findings across different
fine-tuning approaches. We evaluate factual inconsistency using two representative automatic metrics—
AlignScore and QAFactEval—which have consistently captured key trends and are sufficient to support
our conclusions. Note that the Mamba family was excluded from this setup due to instability encountered
during Prefix-Tuning.
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Figure 12: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by AlignScore, plotted against model size across different LLM families. Here we
consider Prefix-Tuning for fine-tuning all LLM families.

Figure 12 and Figure 13 present the fitted power law and exponential scaling curves with 95% confidence
intervals (MoE) for factual inconsistency, measured using AlignScore and QAFactEval, plotted against
model size (in terms of parameter count). For AlignScore, both the FLAN-T5 and Pythia families exhibit
unusually large MoEs under both scaling models; similarly, for QAFactEval, the Pythia family shows
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LLM Family Scaling DART E2E ViGGO WebNLG WikiTableText
Exponential 2.14E-04/✔ 1.16E-02/✖ 4.73E+03/✖ 2.78E-05/✔ 3.00E+03/✔BLOOM Power Law 1.31E+05/✖ 6.16E-03/✖ 3.25E-03/✖ 1.08E-03/✖ 1.17E+203/✔

Exponential 1.09E-02/✖ 3.01E-02/✖ 5.14E-03/✖ 3.88E-02/✖ 3.08E-03/✖FLAN-T5 Power Law 1.49E-01/✖ 8.41E-02/✖ 6.03E-04/✖ 8.07E-03/✖ 8.31E-04/✖

Exponential 7.88E-04/✔ 4.38E-03/✔ 5.62E-03/✖ 3.40E-03/✔ 6.92E-04/✔OPT Power Law 1.75E+09/✖ 4.50E+56/✔ 1.92E+01/✖ 1.82E+02/✔ 1.37E+03/✖

Exponential 2.49E-02/✖ 1.82E-02/✖ 6.60E-02/✖ 8.25E-03/✖ 2.65E-03/✔Pythia Power Law 4.80E-02/✖ 2.07E-02/✖ 1.84E-02/✖ 2.04E-02/✖ 9.44E-02/✔

Table 13: Results from VaCScal corresponding to Figure 12. Numerical values, along with (✔/✖) and
blue/red highlights, indicate the outcomes of Stages I, II, and III of VaCScal.

high uncertainty. We hypothesize that this arises from the uniform addition of 32 virtual tokens during
Prefix-Tuning across all models within a family. This fixed augmentation likely benefits smaller models
disproportionately, while offering diminishing returns for larger ones, thereby limiting their improvement in
factual consistency. Despite these anomalies, exponential scaling generally results in tighter MoEs than power
law scaling, indicating more stable and confident fits. The corresponding VaCScal results, shown in Table 13
and Table 14, reveal that although many model–dataset combinations fail feasibility in Stage II, exponential
scaling consistently achieves lower held-out loss (Stage I) compared to power law scaling. Moreover, in
all feasible cases, exponential scaling outperforms power law scaling in capturing the relationship between
factual inconsistency and model size.

Takeaway. Exponential scaling remains more stable and accurate than power law scaling in modeling fac-
tual inconsistency under Prefix-Tuning, despite some anomalies caused by uniformly applied virtual tokens—
especially in smaller models like FLAN-T5 and Pythia. Even when feasibility is limited, exponential scaling
consistently yields lower held-out loss and better fits in all valid cases.

LLM Family Scaling DART E2E ViGGO WebNLG WikiTableText
Exponential 2.99E-04/✔ 1.17E-02/✖ 1.01E-03/✔ 9.22E-04/✔ 3.07E-03/✖BLOOM Power Law 6.86E-01/✖ 8.30E-02/✖ 1.05E-03/✔ 2.33E-01/✖ 7.28E-02/✔

Exponential 1.13E+00/✖ 1.77E-02/✖ 2.36E-04/✖ 1.42E-05/✔ 7.38E-04/✔FLAN-T5 Power Law 9.30E+95/✖ 1.52E-01/✖ 1.11E-02/✖ 1.55E+02/✖ 7.74E-04/✖

Exponential 7.88E-04/✔ 4.38E-03/✔ 5.62E-03/✖ 3.40E-03/✔ 6.92E-04/✔OPT Power Law 1.75E+09/✖ 4.50E+56/✔ 1.92E+01/✖ 1.82E+02/✔ 1.37E+03/✖

Exponential 1.51E-02/✖ 2.06E-02/✖ 9.79E-05/✖ 2.04E-02/✖ 2.93E-03/✖Pythia Power Law 1.46E+51/✖ 3.66E-02/✖ 4.51E+07/✖ 2.80E-02/✖ 1.09E+50/✖

Table 14: Results from VaCScal corresponding to Figure 13. Numerical values, along with (✔/✖) and
blue/red highlights, indicate the outcomes of Stages I, II, and III of VaCScal.
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Exponential scaling Margin of error (exponential scaling) Power law scaling Margin of error (power law scaling)
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Figure 13: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by QAFactEval, plotted against model size across different LLM families. Here
we consider Prefix-Tuning for fine-tuning all LLM families.

F Result: Scaling Behavior Based on Fine-tune Data Size

Data size is a fundamental factor in understanding scaling behavior. To investigate its effect on factual
inconsistency in D2T tasks with LLMs, we analyze how varying the amount of fine-tuning data influences
factual inconsistency outcomes. Here, "fine-tuning data" refers to different proportions of the original training
set—specifically 10%, 20%, 40%, 60%, and 100%—used during fine-tuning with the QLoRA technique. This
experiment is conducted on three representative D2T datasets: DART (graph-to-text), E2E (MR-to-text),
and WikiTableText (table-to-text), with factual inconsistency measured using AlignScore and QAFactE-
val. We use the largest variants from each of the five incorporated LLM families. Figure 14 and Figure 15
show the fitted power law and exponential scaling curves along with 95% confidence intervals (MoE), derived
from residual-based estimation. Across both metrics and all model families, the E2E dataset consistently
exhibits aberrant behavior—characterized by wide confidence bands and unstable scaling patterns—likely
due to its inherent characteristics, which we discuss in more detail in Appendix G. DART also shows ele-
vated MoEs, especially under AlignScore, whereas WikiTableText demonstrates relatively stable scaling
behavior, with low MoEs under both models. The corresponding VaCScal results, presented in Table 15
and Table 16, support these observations. For the E2E dataset, neither scaling model yields feasible fits,
indicating unreliable scaling behavior. However, DART (particularly under QAFactEval) and WikiTable-
Text show stronger support for exponential scaling. A few exceptions persist—for instance, the FLAN-T5
model on WikiTableText favors power law scaling, as indicated by a red-marked cell. In summary, while
fine-tuning data size does not lead to universally consistent scaling across all settings, the results broadly
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support exponential scaling as the more robust and reliable model for capturing the relationship between
factual inconsistency and data size across LLMs.

Takeaway. Exponential scaling generally serves as a more robust and reliable model than power law scaling
for predicting how factual inconsistency in D2T tasks decreases with increasing fine-tuning data size, despite
some datasets (e.g., E2E) exhibiting aberrant or unstable behavior.
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Figure 14: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by AlignScore, plotted against fine-tune data size across three datasets—DART,
E2E and WikiTableText.

Dataset Scaling BLOOM FLAN-T5 Mamba OPT Pythia
Exponential 4.17E+00/✖ 2.00E-04/✖ 1.20E+02/✔ 2.95E-04/✖ 1.39E-03/✖DART Power Law 7.72E+144/✖ 1.24E-04/✖ 2.90E-03/✖ 3.16E-02/✖ 4.60E-03/✖

Exponential 1.20E-04/✔ 5.14E-06/✖ 4.61E-05/✖ 6.41E+01/✔ 1.56E-03/✖E2E Power Law 1.48E+00/✔ 2.49E-05/✖ 6.86E-04/✖ 4.24E-02/✔ 2.25E-03/✖

Exponential 7.02E-04/✖ 1.35E-03/✔ 1.64E-03/✔ 1.32E-04/✖ 1.80E-04/✔WikiTableText Power Law 1.89E-01/✖ 8.59E-05/✔ 6.68E+00/✖ 4.95E-03/✖ 3.10E-02/✖

Table 15: Results from VaCScal corresponding to Figure 14. Numerical values, along with (✔/✖) and
blue/red highlights, indicate the outcomes of Stages I, II, and III of VaCScal.

Dataset Scaling BLOOM FLAN-T5 Mamba OPT Pythia
Exponential 5.83E-04/✖ 1.53E-05/✔ 7.41E+01/✔ 6.25E+00/✔ 1.52E+01/✖DART Power Law 1.74E+147/✖ 2.87E-03/✖ 6.66E+163/✖ 5.70E-04/✖ 1.23E-02/✖

Exponential 3.40E-05/✖ 3.38E+00/✖ 9.86E+00/✖ 1.54E+01/✖ 5.85E-04/✖E2E Power Law 2.00E+04/✖ 3.47E-05/✖ 4.59E+05/✖ 4.32E-04/✖ 6.65E-03/✖

Exponential 3.72E-04/✖ 4.82E-04/✔ 2.22E-03/✔ 4.03E-04/✖ 6.34E-04/✔WikiTableText Power Law 8.04E-04/✖ 3.13E-04/✔ 2.13E-04/✖ 6.41E-02/✖ 1.41E-02/✖

Table 16: Results from VaCScal corresponding to Figure 15. Numerical values, along with (✔/✖) and
blue/red highlights, indicate the outcomes of Stages I, II, and III of VaCScal.
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Exponential scaling Margin of error (exponential scaling) Power law scaling Margin of error (power law scaling)
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Figure 15: Fitted power law and exponential scaling models (with 95% confidence intervals) for factual
inconsistency, measured by QAFactEval, plotted against fine-tune data size across three datasets—DART,
E2E and WikiTableText.

G On the Aberrant Scaling Patterns of E2E and ViGGO

Throughout our experiments, we consistently observed aberrant behavior from the E2E dataset, and to a
lesser extent, the ViGGO dataset. Specifically, factual inconsistency in these datasets tends to increase
with scaling factors such as model size, FLOPs, and fine-tuning data size—contrary to expected trends.
Although we could not definitively identify the root cause of this behavior, we hypothesize that the low lexical
diversity and closed-domain nature of these datasets may be contributing factors. Limited diversity can lead
to overfitting during fine-tuning, resulting in degraded output quality and increased factual inconsistency.
Additionally, the closed-domain nature of the E2E and ViGGO datasets (see Table 6) may hinder LLMs from
effectively leveraging their pre-trained knowledge. To support this hypothesis, we present the type-token
ratio (TTR), computed using the following formula, for all five datasets used in our study:

TTR = number of unique words or tokens
total number of words and tokens

A lower TTR indicates reduced lexical diversity. As shown in Table 17, the E2E and ViGGO datasets exhibit
the lowest lexical richness—both in the input source data and the corresponding references—compared to
the other three datasets.

DART E2E ViGGO WebNLG WikiTableText
TTR (of source-input) 0.0178 0.0001 0.0029 0.0057 0.0621
TTR (of reference text) 0.03 0.0058 0.0297 0.0209 0.1297

Table 17: Type-Token Ratio (TTR) for all five D2T datasets, calculated separately for input source data
and corresponding reference texts.

29



Under review as submission to TMLR

H Mathematical Insights into the Exponential Scaling of Factual Inconsistency in
D2T with LLM Size

To develop an intuitive understanding of why factual inconsistency in D2T generation often exhibits expo-
nential scaling with LLM size, we draw on a few mathematical insights. We hypothesize that one of the
primary causes of factual inconsistency in D2T tasks is source-reference divergence—a discrepancy between
the input source data and the reference outputs in the training (or fine-tuning) data. Such divergence intro-
duces systematic biases during learning, which manifest as factual errors at inference time. Consequently,
standard perplexity—computed against the training reference—fails to serve as a reliable indicator of factual
inconsistency, since the model is trained on references that may themselves contain factual deviations. To
address this limitation, we propose a relative perplexity measure, which more closely (though NOT exactly)
reflects the degree of factual inconsistency. Using relative perplexity instead of ordinary perplexity is mo-
tivated by the need to compare how the model scores a factual reference against its own most likely (and
potentially inconsistent) output. While ordinary perplexity captures the overall fluency or likelihood of a
sequence, it doesn’t reveal whether the model prefers a hallucinated output over the truth. Formally, we
define the relative perplexity R between the input x and the true factual reference yref = yref

1 yref
2 . . . yref

L as
the ratio between the perplexity of the true reference and that of the model’s most likely output at inference,
ymax = ymax

1 ymax
2 . . . ymax

L , where L denotes the sequence length of both texts (Equation 5). Note that the
“true” reference here may differ from the dataset-provided reference; it may also incorporate information
directly grounded in the input x.

R(x, yref) = perplexity(yref)
perplexity(ymax)

∣∣∣∣
input=x

=


L∏

i=1
Pr(yref

i )

L∏
i=1

Pr(ymax
i )


− 1

L

∣∣∣∣∣∣∣∣∣∣
input=x

(5)

The relative perplexity R takes values in the range [1, ∞), where a value of 1 indicates minimal factual
inconsistency—i.e., the LLM assigns maximum likelihood to the true factual reference. As R increases (i.e.,
R → ∞), it reflects growing factual inconsistency between the model’s output and the true reference. In
practice, this range may be bounded through proper calibration of the LLM.

Since most LLMs compute token probabilities via a softmax function applied over logits at inference time,
we now turn our attention to the logits underlying the tokens in Equation 5. Let zref and zmax denote the
logits associated with yref and ymax, respectively.

R(x, yref) =


L∏

i=1

e
zref

i∑
j

e
zref

i,j

L∏
i=1

e
zmax

i∑
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− 1
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input=x

=
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i
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ezmax
i


− 1

L
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input=x

=
(2)

(
L∏

i=1
ezref

i −zmax
i

)− 1
L

∣∣∣∣∣∣
input=x

(6)

In the first (1) case of Equation 6, the simplification follows directly from the observation that the softmax
denominators in both the numerator and the denominator are identical and hence cancel out. It is crucial to
emphasize that the terms zref

i and zmax
i do not denote the i-th index in the vocabulary V . Instead, they refer

to the logits assigned to the i-th token in the respective sequences yref and ymax. Interpreting Equation 6,
we see that the relative perplexity R—which we propose as a proxy for factual inconsistency—captures the
aggregate deflection of the logits assigned to the factual reference tokens from those assigned to the model’s
most likely output. Given that D2T datasets often exhibit source-reference divergence, it is expected that
such a mismatch between zref

i and zmax
i will frequently occur. In the following part, we mathematically

analyze the nature and implications of this mismatch in greater detail.
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Figure 16: A simplified systematic view of the logits output in a LLM.

For notational simplicity, let us denote za = zref
i and zb = zmax

i , where a and b are the indices of the
corresponding tokens in the vocabulary V . Before proceeding further, we make the following assumptions
about the generation of logits. At a time step, the logit vector is computed as z = Eh, where E ∈ R|V |×d

is the output embedding matrix (mapping hidden representations to vocabulary logits), and h ∈ Rd is the
hidden state of the LLM at time step t. Assume the model dimension is d, i.e., dim(h) = d. Following
training and under a normalized regime, we assume that the elements of E and h are independent and
identically distributed (IID) with zero mean: Ei,j ∼ N (0, σ2

E) and hj ∼ N (0, σ2
h) for all valid indices i, j,

and all random variables are mutually independent. Under these assumptions, the logit value for the k-th
token in the vocabulary is given by following Equation 7.

zk =
d∑

j=1
Ek,jhj (7)

The variance of any logit can be computed using the expression for zk from Equation 7, as follows:

var[zk] = d · σ2
h · σ2

E (8)
= d · σ2 Assuming σ2 = σ2

h · σ2
E (9)

It is well established in prior work on scaling laws (Sharma & Kaplan, 2022; Bahri et al., 2024) that the
model dimension d scales with the model size N according to a function ϕ, i.e., d ∝ ϕ(N), where ϕ is typically
linear or sub-linear. Given this relationship, we now aim to estimate the expected mismatch between the
logits za and zb. To that end, we invoke Chebyshev’s inequality to bound the probability of large deviations
between these two logits. This provides a principled estimate of the likelihood of factual inconsistency as
captured by the logit-level difference |za − zb|.

Pr (|za − zb| ≥ ξ(N)) ≤ Var(za − zb)
ξ(N)2 (10)

In Equation 10, we define ξ(N) to be a linear or sub-linear function of the model size N . Now, let us
recall the basic rule for the variance of the difference between two random variables. Given two independent
random variables, the variance of their difference is given by:
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Var(za − zb) = Var(za) + Var(zb) − 2 Cov(za, zb) (11)

We now observe that za = E⊤
a,:h and zb = E⊤

b,:h, where Ea,: and Eb,: denote the a-th and b-th rows of the
output embedding matrix E, respectively. Under this formulation, the covariance between za and zb can be
expressed as:

Cov(za, zb) = E⊤
a,: Cov(h)Eb,: (12)

= σ2
h · E⊤

a,:Eb,: (13)

An important observation here is that the term E⊤
a,:Eb,: corresponds to the inner product (or similarity)

between the embeddings of the a-th and b-th vocabulary tokens. When the embeddings are normalized, this
similarity lies in the range [−1, 1]. According to Equation 13, the variance of the logit difference can then
be expressed as Var(za − zb) = O(d · σ2), where σ2 denotes the product of variances σ2

Eσ2
h, and d ∝ ϕ(N)

for some linear or sub-linear function ϕ of the model size N . This variance becomes particularly large when
Ea,: and Eb,: are nearly orthogonal (i.e., dissimilar), which is frequently the case in D2T tasks involving
divergent source-reference training pairs—where the model must learn to associate inputs and references
that contain distinct or conflicting facts. Now, applying Chebyshev’s inequality from Equation 10, we obtain
the upper bound Var(za−zb)

ξ(N)2 , where ξ(N) is assumed to be a linear or sub-linear function of N . Since
Var(za − zb) = O(d · σ2), the right-hand side can still be a relatively large quantity for realistic values of
N and ξ(N). This implies that the event |za − zb| ≥ ξ(N) is not unlikely—in fact, it may occur with
high probability under typical D2T conditions. Consequently, the occurrence of significant logit deviations
between the factual reference and the maximum-likelihood output is a plausible and theoretically grounded
phenomenon.

Recall that za = zref
i and zb = zmax

i . Therefore, the probability of observing a deviation of the form
zref

i − zmax
i ≥ ξ(N) is also high. Substituting ξ(N) in place of zref

i − zmax
i into the expression in Equation 6,

we obtain:

R(x, yref) =
(

L∏
i=1

eξ(N)

)− 1
L

∣∣∣∣∣∣
input=x

= e−ξ(N)
∣∣∣
input=x

(14)

Hence, based on the above reasoning and Equation 14, we can conclude that the relative perplexity R—which
serves as a proxy (NOT an exact measure) for factual inconsistency—tends to scale exponentially with the
size of the LLM, denoted by N .

This conclusion follows from the observation that, as the LLM size N increases, the model dimension d also
grows, leading to greater logit deviations between zref

i and zmax
i . When aggregated in the relative perplexity

R, these deviations scale exponentially with N . Hence, under source-reference divergence in D2T, factual
inconsistency may exhibit exponential scaling with model size.
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