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Abstract
Learning models that offer robust out-of-
distribution generalization and fast adaptation is a
key challenge in modern machine learning. Mod-
elling causal structure into neural networks holds
the promise to accomplish robust zero and few-
shot adaptation. Recent advances in differentiable
causal discovery have proposed to factorize the
data generating process into a set of modules, i.e.
one module for the conditional distribution of ev-
ery variable where only causal parents are used
as predictors. Such a modular decomposition
of knowledge enables adaptation to distributions
shifts by only updating a subset of parameters. In
this work, we systematically study the generaliza-
tion and adaption performance of such modular
neural causal models by comparing it to mono-
lithic models and structured models where the set
of predictors is not constrained to causal parents.
Our analysis shows that the modular neural causal
models outperform other models on both zero and
few-shot adaptation in low data regimes and of-
fer robust generalization. We also found that the
effects are more significant for sparser graphs as
compared to denser graphs.

1. Introduction
Deep Learning models have demonstrated remarkable ca-
pabilities when the test distribution matches the training
distribution, but their performance significantly degrades as
the test distribution diverges from the training distribution
(Lake et al., 2017; Rosenfeld et al., 2018; Bahdanau et al.,
2018; Packer et al., 2018; Nichol et al., 2018b; Cobbe et al.,
2019; Taori et al., 2020; Djolonga et al., 2021; Koh et al.,
2021). However, such distribution shifts are inevitable in
the real world and can occur in various settings, e.g. across
hospitals in healthcare or across locations in agriculture
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(Wang et al., 2021). This sensitivity to distribution shift
inherently limits the robust and safe deployment in the wild.
At the same time, deep learning systems constructed with a
multi-layered monolithic architecture tend to co-adapt dif-
ferent components of the network. Due to such a monolithic
structure, when the distribution changes, a majority of the
components of the network are likely to adapt in response
to these changes, potentially leading to poor performance
on out-of-distribution samples (Ke et al., 2021; Goyal et al.,
2019) and interference between subtasks or subdistributions.
Endowing neural networks with the ability to capture the
underlying causal structure holds the promise to accomplish
much out-of-distribution adaptation and generalization by
properly factorizing the knowledge that is stationary (causal
mechanisms) from the knowledge that isn’t (the state of the
random variables and interventions that change the distribu-
tion).

Given the underlying causal graph G, every causal mech-
anism represents a conditional probability distribution
p(Xi|Xpa(i,G)) of a given variable Xi where only causal
parentsXpa(i) are used as predictors. In such a causal frame-
work, distribution shifts can be interpreted as interventions
(i.e. perturbations) that affect certain mechanisms locally
(Magliacane et al., 2018; Zhang et al., 2013; Schölkopf
et al., 2021). As usually not the complete environment and
its structure changes at once, adapting to a distribution shift
in such a framework is therefore equivalent to adapting the
intervened mechanisms.

The promising opportunities of causal models in machine
learning have led to a flurry of work and accompanying
advances along various research axes (e.g. causal discovery
(Zheng et al., 2018; Yu et al., 2019; Bengio et al., 2019;
Ke et al., 2019; Lachapelle et al., 2019; Brouillard et al.,
2020; Scherrer et al., 2021; Annadani et al., 2021; Lorch
et al., 2021; Lippe et al., 2021; Geffner et al., 2022; Ke et al.,
2022), domain adaptation (Zhang et al., 2013; Peters et al.,
2016; Rojas-Carulla et al., 2018; Magliacane et al., 2018;
Bengio et al., 2019; Le Priol et al., 2021), robustness of
neural networks (Zhang et al., 2020; Kyono et al., 2020),
causal models in reinforcement learning (RL) (De Haan
et al., 2019; Dasgupta et al., 2019; Nair et al., 2019; Goyal
et al., 2019; Rezende et al., 2020; Ke et al., 2021), etc. While
most of these works either analyze a problem-specific ob-
jective, such as structure discovery or a success rate on a
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Figure 1: Architectural Setup: We employ the same model architecture consisting of a stack of MLPs across all considered models.
Every MLP fθi(X,Mi) consisting of a masking layer Mi and one hidden layer, takes a data sample X ∼ D as input, applies a input
mask Mi to the input and outputs the logits of a categorical distribution on its output layer. The logits are finally normalized through a
softmax-activation function σ(·) which results in the CPD p(Xi|X,Mi). Between the considered models, we vary the learning objective
to learn the parameters θ and the inputs masks M . While monolithic models and structured models with expert knowledge have a fixed
mask M , the causal discovery model optimizes M using an additional set of parameters.

task, little attention has been paid to a systematic analysis
of the generalization and adaptation capabilities of causal
models. Previous work including speed of adaptation analy-
sis of Bengio et al. (2019); Le Priol et al. (2021) is limited
to causal and anti-causal models in a bivariate setting. The
work of Ke et al. (2021) analyzes generalization and adapta-
tion performance of models with different inductive biases
in different high-dimensional RL environments, where the
underlying causal structure as well as causal variables are
not given and need to be learned directly from high dimen-
sional visual input.

In this work, we systematically investigate zero and few-shot
adaptation capabilities of monolithic models and structured
models where causal variables are explicitly given. As an
evaluation setting, we consider the task of predicting miss-
ing values (e.g. given all the other variables of the sample)
under unseen distribution shifts (see ??). In order to investi-
gate the effect of the different inductive biases, we employ
the same model architecture (i.e. one MLP per conditional
distribution) across all considered models (see Figure 1).
Hence, all models have the same expressive abilities and
only vary in their training objectives and pre-existing do-
main knowledge. Within the class of structured models, we
distinguish between expert knowledge models where we
provide certain structure upfront of training (e.g. causal
graph, anti-causal graph) and models where causal struc-
ture is learned from data. We train monolithic models with
different training objectives including a pseudo-likelihood
objective as well as a meta-learning objective which explic-
itly optimizes the parameters of the monolithic models to
adapt quickly to changes in distribution, hence confounding
many different problems. This setup allows us to uncover
generalization and adaptation discrepancies between differ-
ent models and analyze if and where models are prone to
fail.

Contributions. (i) We show that generalization capabilities
of different models vary significantly with the amount of
available training samples. (ii) We demonstrate that struc-
tured models significantly outperform monolithic models
in low-data regimes. (iii) We show that a general evalua-

tion metric is prone to drawing erroneous conclusions with
respect to robustness and show how a general evaluation
metric can be dissected into refined metrics to investigate if
and how specific models fail. (iv) We show that non-causal
models can fail drastically in settings where the underlying
causal structure is sparse. (v) We evaluate few-shot adapta-
tion in various settings and show that causal models are the
fastest and most robust to adapt. (vi) We show how mod-
els adapt in parameter space and relate this to the speed of
adaptation and robustness. (vii) We propose and investigate
a new adaptation objective for causal models which enables
an efficient adaptation in low training and adaptation-data
regimes.

2. Problem Setting
In our work, we consider setting where high-level causal
variables are observed and given (i.e. they do not need to be
inferred from high-dimensional input). We limit the number
of variables N ∈ {10, 20} where causal variables X =
{X1, . . . , Xn} are directly observed. We generate synthetic
observational and interventional data D = (Dobs,Dint) on
causal acyclic graphs and fit different models to data in
order to learn conditional probability distributions p(Xi|·)
for all variables Xi. During test time (with and without
adaptation), we predict all variables Xj for j ∈ {1, . . . , N}
of unseen interventional distributions p(X|do(Xk)) using
all other variables Xi (i 6= j) of the sample.

3. Model Architecture and Training Setup
Model Architectures In order to disentangle architectural
effects from the training objectives, we employ the same
architecture across all evaluated models. We follow the
setup of (Ke et al., 2019; Scherrer et al., 2021) and choose a
stack ofN independent MLPs for a setting withN observed
variables. Hence for every variable Xi, there exists an
MLP parametrized by θi that represents the conditional
probability distribution (CPD) p(Xi|X,Mi) where Mi ∈
{0, 1}N denotes a input mask. Specifically, every MLP
has an input layer of size N ×K, one hidden layer of 64
neurons with Leaky ReLU activations of slope 0.1 and a
linear output layer of size K. The output layer represents
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Figure 2: OOD Generalization with Varying Amounts of
Training Data. We report NLL-Mean over a set of unseen in-
terventions across ER-graphs of varying density (N = 20 and
10 graphs per setting) and training sets of increasing size (up
to 2k samples). Structured models outperform monolithic mod-
els consistently on low data regimes on the NLL-mean metric.
EXP-Skeleton outperforms all other models on all settings.
The causal models attain Bound-ZeroShot (green) as expected
with sufficient amount of samples.

the unnormalized log-probabilities of each possible category
that are finally mapped to valid CPDs through a softmax
activation function σ(·).
Training Objectives In our study, we evaluate six differ-
ent learning paradigms on a fixed architecture consisting
of a stack of N MLPs (see Section 3 for a detailed de-
scription) with the goal to learn the underlying genera-
tive mechanisms p(Xi|·). To this end, we consider two
techniques to learn a monolithic model (i.e. Pseudo-LL
and MAML) and four different techniques to learn a struc-
tured model (i.e. EXP-Causal, EXP-AntiCausal,
EXP-Skeleton and L-Causal). Within the structured
models, we construct three models using expert knowledge
(EXP) and a model where the causal structure is learned
from data (i.e. L-Causal) without any supervision. The
exact training objectives are described in the appendix § C.2

4. Analysis of Generalization Performance
We start by analyzing OOD generalization (zero-shot) per-
formance for the different models discussed in Section 3.
In particular, our experiments seek to answer the follow-
ing questions: (a) How different models generalize under
different circumstances. (b) Analyzing how different parts
of our models contribute to the failure or success for OOD
generalization.

Implementation details. We keep the training and evalua-
tion setup between different models as similar as possible.
All models have the same number of parameters to repre-
sent the CPDs and are trained for the same number of steps,
we train models on the same range of learning rates and
pick the best performing one for each model individually.
All experiments are run with 10 random seeds, we report
the mean and standard deviation of the results. In partic-
ular, we use the Adam optimizer (Kingma & Ba, 2014)
across all models and have evaluated learning rates from
the set {1e−2, 1e−3, 1e−4}, weight decay from the set
{1e−4, 1e−5, 0} and train all models for 1000 iterations,
except the L-Causal model which was trained for mul-
tiple rounds with iterative optimization. For the detailed

setup with all model-specific hyperparameters, we refer to
appendix §C.3.1.

Performance Bounds on Causal Models. To assess the
performance of the causal models, we compute two upper
bounds on the performance of the causal model by accessing
the data-generating causal model. (a) Bound-ZeroShot
shows the maximal zero-shot adaptation performance and
(b) Bound-Adaptation show the maximal adaptation
performance on the transfer distribution. Note that the
causal model EXP-Causal that relies on expert knowl-
edge should naturally attain this bound faster than the model
L-Causal that learns the causal structure from data.

4.1. Generalization performance.
We analyze the generalization performance of different mod-
els under different settings. There are three aspects of the
settings that we consider. First is the amount of training
data D, then we look at the density of the underlying SEM
that generated the data; at last, we look at the size of the
graph. To be specific, we vary the amount of training data
between 102 and 104, the graph density of the underlying
SEM between ER-1 and ER-3 and the size of the graph
between 10 and 20.

The training dataDT consist of both observationalDTobs and
interventional data DTint. We keep the number of observa-
tional data DTobs the same as the number of interventional
data DTint in training. Test data Dt is kept fixed across ex-
periments. We report the NLL-Mean of the test data on
the model, this is average NLL scores across all variables
(including the intervened-on variable).

Summary. Results for comparisons between different
amount of data and graph sparsity are found in Figure 2,
results for comparisons between data with different number
of nodes are in Figure 4. Refer to §F.3 in the appendix for a
complete set of results. We found that causal models outper-
form monolitic models (Pseudo-LL and MAML) when the
amount of training data is low (Figure 2). We also found that
the performance gap widens as the density of the graphs de-
creases (Figure 2). The performance gap also widens as the
size of the SEM increases (Figure 4). These results suggest
that models with the correct structure (such as causal mod-
els) generalize better compared to models with no structure,
especially when trained on a small amount of data coming
from sparse and large graphs. Furthermore, EXP-Causal
models outperforms EXP-AntiCausal models under all
settings, and EXP-AntiCausal can perform worse than
monolitic models (Pseudo-LL and MAML) under some
settings. This suggests that having the correct structure is
important and having the wrong structure can hurt perfor-
mance.

We observe slower convergence of causal models to
Bound-ZeroShot on dense graphs than on sparse graph,
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as the identification of the causal structure is more challeng-
ing in such settings (Ke et al., 2019; Scherrer et al., 2021).
An interesting observation is that EXP-Skeleton models
can outperform EXP-Causal models, this is because that
when the intervention is not on the children of the predicted
node, then EXP-Skeleton models can use the value of
the child and the the value of the parents to predict the value
of the node, whereas, the EXP-Causal models only uses
the parents to predict the value of the node. However, the
EXP-Skeleton models will fail catastrophically when
the intervention is on the children of the predicted node, we
will see more analysis about this in Section 4.2.

4.2. Dissecting generalization performance
The analysis in Section 4.1 reports an average evaluation
metric across all nodes, which may not help us to understand
the model’s performance in detail, as noted at the end of the
previous section. Hence, in this section, we aim to dissect
the NLL-Mean metric into sub-metrics, which could help
to systematically identify if and where models are prune to
failure. Such an analysis helps us to assess the the individual
model robustness to distribution shifts and uncover failure
settings which are hidden in the NLL-Mean metric. To
this end, we consider a data regime (1k training samples)
where all models perform similar with respect to the general
NLL-Mean score.

We dissect NLL-Mean systematically into: (a)
NLL-Intervention: NLL on intervened vari-
able Xi, (b) NLL-Root: Mean-NLL on root variables in
G, (c) NLL-Parents: Mean-NLL on parent variables
Xpa(i,G) for a intervention on Xi (excluding root variables)
and (d) NLL-Remainder: Mean-NLL of all variables
except root and intervention variables.

Note that, causal models are not expected to yield
comparable performance on NLL-Intervention and
NLL-Root, as causal models only use the parents of each
variables to make its prediction. As this is an empty set for
root variables and hard intervened variables, causal models
estimate such variables from the marginal distribution of
such variables. In contrast, monolithic models also rely on
(potentially unstable) correlated predictors and anti-causal
predictors and hence benefit from stronger performance as
long none of these predictors were affected by an interven-
tion.

Summary. Building upon our introduced sub-metrics, we
find that important failure and robustness insights are hid-
den in a general evaluation scores such as NLL-Mean (see
Figure 3). We observe different performance trends across
all sub-metrics. While causal models maintain a robust
performance as they only rely on the inferred causal pre-
dictors, monolithic models and structured models that rely
on anti-causal predictors (i.e. EXP-AntiCausal and
EXP-Skeleton) show a significant deterioration in per-
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Figure 3: NLL-Parents metric across various sizes of train-
ing data.. A dissection of the general NLL-Mean metric into
more fine-graded sub-metrics reveals important failure scenar-
ios. In particular, as shown here on the NLL-Parents metric,
non-causal models can catastrophically fail to predict the parent
variables of an intervened variables. Note that effect is stronger on
sparse graphs where less stable predictors are available.
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Figure 4: Metric across increasing number of variables (fixed
setting ER-1 with 100 training samples). We observe across
all our experiments that the general generalization performance
gaps with respect to NLL-Mean metric between monolithic mod-
els and structured models increases with increasing number of
variables. On the same time, we observe a similar behavior on
NLL-Parents where causal models maintain robust generaliza-
tion performance while all non-causal models show big risks for
catastrophic failure.

formance with large standard deviations on NLL-Parents
as certain predictors got unstable due to the present distri-
bution shift (i.e. modelled by a single-target intervention).
We further observe stronger effects on sparse graphs where
less stable predictors are available (see §F.3). Overall, this
experiment confirms that all models expect causal models
show bigger risk for catastrophical failures by relying on
unstable predictors.

5. Analysis of Adaptation Performance
We evaluate the adaption performance by evaluating how
fast (speed of adaptation) and how well (how much overfit-
ting) different models adapt to changes in distribution. We
use two different adaptation techniques: (i) unconstrained
adaptation and (ii) sparse adaptation (explained in Ap-
pendix C.3). Throughout this analysis, we pay particular
attention to the NLL-Parents metrics and see how fast
the affected models recover.

Speed of adaptation. We fix the training data size of all
models to be 103 samples, as all models have converged on
the generalization performance by then (Figure 2). We ana-
lyze the speed of adaption of different models by evaluating
their adaption performance when finetuned using different
amounts of data. Results shown in Figure 5.

We observe that the structured models adapt considerably
faster than the monolithic models across all settings. We
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Figure 5: Speed of Adaptation in terms of different metrics.
Structured models adapt considerably faster than monolithic mod-
els across all settings and metrics. Monolithic models show a
sensitivity to overfitting if only low amounts of adaptation samples
are available. We observe slightly faster adaptation for causal
model than for the other structured models.

observe slightly faster adaptation for causal model than for
the other structured models. Within the monolithic models,
we observe that models that are trained with an adaptation
objective (i.e. with MAML (Finn et al., 2017)) adapt faster
with respect to the intervened module than models trained
on a naive pseudo-likelihood objective.

Risk of overfitting. Ideally, one aims to adapt to a transfer
distribution using a less number of adaptation samples. In
such a setting, a single update (i.e. gradient step with respect
to the samples) using the available samples may be not suf-
ficient to exploit all available information. Hence, it would
be desirable to perform multiple updates on a small number
of adaptation samples to extract all relevant information but
without overfitting to the adaptation samples. To this end,
we investigate the risk of overfitting when performing one
or multiple updates on a fixed amount of data.

Across all our experiments, monolithic models show strong
overfitting effect when the number of adaptation samples
are less, even on a single update step (see Figure 5). In
contrast, structured models show reduced overfitting effects
over multiple gradient steps, especially causal models. For
less number of adaptation samples, the speed of adaptation
of causal models can be further improved by employing a
sparse adaptation objective. Overall, the adaptation land-
scape of the causal models is significantly different from all
other models, and hence allows to continuously improve the
adaptation performance over multiple update steps.

How does adaptation affect the parameter space θ?
Based on the results from the previous analyses, we aim to
further investigate the adaptation performance of models.
We compare the effect on the parameters space θ between
different models by employing the unconstrained adaptation
objective, the most general adaptation objective.

While monolithic models adapt the parameters of many
modules (i.e. independent MLPs) heavily, measured with re-
spect to the gradient magnitude, the adaptation of structured
models results in smaller updates, especially on the non-
intervened modules (see Figure 6). Causal models show
remarkable adaptation behaviour in parameter space with
localized updates on certain modules, and significantly re-
duced gradient magnitudes. If a causal model is trained on
enough training samples and has access to enough adapta-
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Figure 6: Parameter Space Analysis. While adapting to a shift
in distribution, monolithic models update most modules that were
not affected by the intervention quite heavily compared to struc-
tured models. Causal models show remarkable adaptation be-
haviour in parameter space with localized updates on intervened
modules.
tion adaptation samples, the unconstrained adaptation with-
out knowledge about the intervention target yields nearly
the same update as if we enforce the sparse update on the
known intervened module (see §G.2).

Efficient Adaptation of Causal Model Due to space con-
straints, we refer to the appendix §E for an analysis of the
proposed adaptation objective.

6. Conclusion
In this work, we systematically analyzed the generalization
and adaptation performance of different models ranging
from monolithic models that have no inbuilt structure to
structured models that are either provided with structural
expert knowledge upfront or learn structure from data. Our
experiments show that the causal models significantly out-
perform non-causal models in low-data regimes and offer
robust generalization across all settings. In a further anal-
ysis, we evaluated few-shot adaptation in various settings
and show that causal models offer fast and robust adaptation
with only less number of adaptation samples. Based on
these results, we analyze how the adaptation performance
relates to changes in the parameter space and then proposed
a new adaptation objective that dynamically modulates the
degree of adaptation and hence allows more sample effi-
cient adaptation. In this work, we considered relatively
low-dimensional settings where causal variables are explic-
itly given. Translating our systematic evaluation and score
dissection analysis to high-dimensional evaluation setups
such as (Ke et al., 2021) would be an interesting direction
for future work.
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A. Background
Causal Graph. A causal graph is commonly represented by a directed acyclic graph (DAG) G = (V,E) with |V| = N
and |E| = M . Such a graph is defined over finite set of vertices V associated with a finite set of random variables (or
observables) X = {X1, . . . , XN}, where directed edges in the causal graph G point from causes to effects. For convenience,
the set of Xi’s parents in G is usually denoted as Xpa(i,G) and the set of Xi’s children in G by Xch(i,G).

Adjacency Matrix. The connectivity between vertices V in a graph is commonly represented by an adjacency matrix
A ∈ {0, 1}N×N such that Ai,j = 1 if node j is a parent of node i.

Structural Causal Model (SCM). An SCM (Pearl, 1995; Peters et al., 2017), also known as structural equation model
(SEM), is defined by a causal graph G over a set of random variables (or observables) X = {X1, . . . , XN} and a
set of associated structural equations. The structural equations express the functional relationships among the causal
variables through functions fi and jointly independent noise variables Ui as Xi = fi(Xpa(i,G), Ui)∀i ∈ {1, . . . N}. The
noise variables Ui ensure that the set of structural equations can represent general conditional probability distributions
P (Xi|Xpa(i,G)). The joint distribution entailed by the variables X = {X1, . . . , XN} can be factorized such that each
variable is conditionally independent of other variables given its parents in the graph G:

P (X1, . . . , XN ) =

N∏
i=1

P (Xi|Xpa(i,G)) (1)

In the causality literature, this factorization is also known as the causal factorization (Schölkopf et al., 2021).

B. Related Work
Differentiable Causal Discovery. Recent advances in differentiable causal discovery focused on building new algorithms
for causal discovery from observational data (Zheng et al., 2018; Yu et al., 2019; Lachapelle et al., 2019; Annadani
et al., 2021; Lorch et al., 2021; Cundy et al., 2021; Geffner et al., 2022; Ke et al., 2022) or fused data (observational and
interventional data) (Bengio et al., 2019; Ke et al., 2019; Brouillard et al., 2020; Lippe et al., 2021) using advances in deep
learning. Such methods are primarily concerned to identify the underlying causal structure from data, and not evaluate the
zero and few-shot capabilities of the learned models.

Speed of Adaptation While Bengio et al. (2019); Ke et al. (2019) included an analysis for adaptation or generalization
speed of causal models compared to monolithic models, these analyses are focused on a specific setting, such as a specific
number of variables. The work of Le Priol et al. (2021) analyzes the speed of adaption of causal and anti-causal models,
however, the analysis is only limited to the bivariate settings. Schölkopf et al. (2021) discussed the generalization and
adaption performance of causal models against monolithic models in a high-dimensional setting, however, no experimental
analysis is included. Ke et al. (2021) proposed a novel suite of RL enviromments and tasks for analyzing causal discovery in
a high-dimensional RL setting, and the work analyzed generalization and adaption performance of models with different
inductive biases. In our work, we perform a systematic analysis of generalization and adaption performance of causal
models against monolithic models, as well as models that are explicitly optimized using meta-learning objectives such as
MAML (Finn et al., 2017) on settings where the causal variables are explicitly given.

Domain Adaptation. Multiple approaches have been proposed that exploit the causal structure of the data generating
process in order to address the problem of domain adaptation (Zhang et al., 2013; Peters et al., 2016; Bareinboim & Pearl,
2016; Rojas-Carulla et al., 2018; Magliacane et al., 2018). While these works analyze specific instances of domain adaptation
problems with varying assumptions, our work is concerned to investigate zero- and few-shot adaptation abilities of various
monolithic and structured models.

Improving Robustness through Causal Structure. Zhang et al. (2020) showed a connection between the vulnerability /
robustness of neural neural networks and their lack of causal reasoning. Kyono et al. (2020) showed that learning causal
structure as an auxiliary tasks improves the in-distribution generalization capabilities of overparameterized feed-forward
neural networks. However, the work only investigates out-of-sample generalization within the same distribution, and does
not consider out-of-distribution settings.

Transfer through Modular Knowledge Decomposition. Recent work has shown that architectural inductive biases which
promote modular decomposition of knowledge can provide a useful basis for transfer of knowledge from one task to another
task (Alet et al., 2018; Chen et al., 2020; Madan et al., 2021). Such architectures employ a meta-learning approach to update
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different subset of parameters of the network over different timescales and show such an approach leads to improvements in
sample efficiency as compared to training all the parameters at once (Madan et al., 2021). Such methods learn directly from
low dimensional pixel data and don’t explicitly learn causal variables.

B.1. Limitations

In the present work, we have only experimented with one specific class of a neural causal discovery framework (Ke et al.,
2019; Lippe et al., 2021) to learn causal structure from data. Hence, the performance may vary with other classes of neural
causal discovery frameworks. However, we have introduced a causal model where the true causal structure is presented
upfront and hence represents an performance upper-bound given a certain amount of training data. Furthermore, we have
only conducted experiments on datasets where the causal variables are explicitly observed and the underlying causal graph
is acyclic.

C. Model and Training Setup
C.1. Data Generation
In order to systematically investigate the effect of different training objectives on generalization and adaptation performance,
we employ a synthetic data generation setup. We generate observational and interventional data D = (Dobs,Dint) of
discrete and non-linear nature governed by causal graphs.

Graph Generation. We distinguish between structured and random graphs in order to represent a wide diversity of possible
graphs. For structured graphs, we follow the setup of (Ke et al., 2019) and generated various DAGs with acyclic and cyclic
skeletons. In order to generate random graphs, we follow the Erdós–Rényi (ER) model with varying edge densities (i.e.
ER-1, ER-2 and ER-3) as in (Scherrer et al., 2021).

Conditional Probabilty Distributions (CPD) In order to generate discrete, observational data Dobs given a causal DAG
G, we perform ancestral sampling based on the topological order of the causal DAG G as proposed in (Ke et al., 2019).
Similar to (Ke et al., 2019; Lippe et al., 2021), we model the CPDs p(Xi|Xpa(i,G)) using randomly initalized one-hidden
layer MLPs (weights orthogonally in the range [−2.5, 2.5] and biases uniformly in the range [−1.1, 1.1]) with a hidden
dimensionality of 48 where all inputs except the parents Xpa(i,G) are masked to 0 during the sampling process. We perform
point interventions on a single node modelled by an Uniform distribution U [1,K], where K is the number of possible
categorical assignments.

C.2. Training Objectives
C.2.1. MONOLITHIC MODELS

Pseudo-Loglikelihood (Pseudo-LL): As a simple monolithic model, we train a model using maximum likelihood on an
unconstrained input mask M on observational data Dobs. We minimize:

θ∗i = argmin
θi

E
X∼Dobs

[−log(f(X,Mi; θi))] (2)

for every MLPi independently, where Mi denotes the i’th column of the input mask and θi the corresponding MLP
parameters. M is a unconstrained input mask with ones everywhere except zeroes on the diagonal. This prevents from
learning an identity mapping Xi = Xi. Hence, the Pseudo-LL model learn CPD’s of the form p(Xi|X \Xi) on data
from Dobs.
Model-Agnostic Meta-Learning (MAML): Motivated by the adaptation capabilities of meta-learned models, we use the
model-agnostic meta learning algorithm (MAML) (Finn et al., 2017) in order to train a monolithic model on a variety of
interventional distributions {Dint(l)}Ll=1. To this end, we employ the following meta-optimization formulation:

θ∗i = argmin
θi

∑
l∼p(Int)

E
X∼Dint(l)

[
− log

(
f(X,Mi; θ̂i,l)

)]
where: θ̂i,l = θi − α∇θi E

X∼Dint(l)

[
− log(f(X,Mi; θi

] (3)

where p(Int) = U [1, . . . , L] denotes a uniform distribution over the available interventional distributions, Mi is the input
mask, α is the step-size parameter of the inner update and θ̂i, l represents the updated model parameters. The above



On the Generalization and Adaption Performance of Causal Models

meta-optimization objective is optimized using Adam (Kingma & Ba, 2014) and the inner updated is done using stochastic
gradient descent (SGD). Note that the meta-optimization is performed over the model parameters θi, whereas the objective
is computed using the updated model parameters θ̂i. For the input mask Mi, we follow same setup as for Pseudo-LL.
Hence, the MAML models learns CPD’s of the form p(Xi|X \Xi) on different interventional distributions Dint(l) ∼ Dint.
In our experiment, we rely on the first-order approximation of MAML (Nichol et al., 2018a).

C.2.2. STRUCTURED MODELS

Learning with Expert Knowledge (EXP-Causal, EXP-AntiCausal and EXP-Skeleton): Given the adjacency
matrix A of the ground-truth causal structure G, the anti-causal adjacency matrix (i.e. the transpose of the causal adjacency)
or the adjacency matrix of the undirected skeleton, we inject the the provided expert knowledge by setting the input mask to
M = A and train the models EXP-Causal, EXP-AntiCausal and EXP-Skeleton using maximum likelihood train-
ing on observational dataDobs. To this end, we minimize Equation (2) for every MLP independently. Hence, EXP-Causal
learns CPD’s of the form p(Xi|Xpa(i,G)) (i.e. only causal predictors), EXP-AntiCausal learns CPD’s of the form
p(Xi|Xch(i,G)) (i.e. only anti-causal predictors) and EXP-Skeleton learns CPD’s of the form p(Xi|Xpa(i,G)), Xch(i,G))
(i.e. causal and anti-causal predictors).

Learning Causal Structure (L-Causal): We use a causal discovery framework to learn a structural causal model (SCM)
from data. To this end, we follow the setup of Lippe et al. (2021) and introduce an additional set of parameters γ = (u, v)
with u ∈ RN×N and v ∈ RN×N which define a continuous relaxation of an adjacency matrix γ = σ(u) · σ(v). Such a
soft-adjacency matrix can be conveniently used to sample input masks M . In order to train the parameters θ of the MLPs and
the learnable input mask γ, the framework relies on a optimization formulation using two alternating phases of optimization
(Ke et al., 2019; Lippe et al., 2021; Scherrer et al., 2021). These are performed until convergence in an iterative manner.
Under freezed mask parameters γ, we train during phase 1 (called ”Distribution Fitting”) the parameters θi of each MLP on
observational data Dobs using a similar maximum likelihood objective as in Equation (2):

θ∗i = argmin
θi

E
X∼Dobs

E
M∼p(M ;u,v)

[−log(f(X,Mi; θi))] (4)

where we sample a set of input masks M from p(M ;u, v) instead of relying on a fixed mask M , where Mij ∼ Ber(σ(uij) ·
σ(vij)). During phase 2 (called ”Graph Fitting”), we freeze the previously trained MLP parameters θ and optimize the mask
parameters γ using different sets of interventional data Dint(l) ∼ Dint. To this end, we employ the optimization formulation
of (Lippe et al., 2021):

γ∗ = (u∗, v∗) = argmin
(u∗,v∗)

= El∼pI(I)EX∼Dint(l)
EM∼p(M ;u,v)

[
N∑
i=1

−logf(X,Mi; θi)

]

+ λsparse

N∑
i=1

N∑
j=1

σ (uij) · σ (vij)︸ ︷︷ ︸
:=Regularizer

(5)

where pI(I) denotes a distribution over interventions (uniform in our case) and X ∼ Dint(l) refers to a a set of data drawn
from the interventional dataset Dint(l). As in phase 1 (i.e. distribution fitting), masks M are sampled from p(M ;u, v) which
represents a distribution over adjacency matrices. For a detailed optimization formulation and gradient derivations, we refer
to Lippe et al. (2021).

C.3. Adaptation Techniques
During test time, we aim to adapt pretrained models to interventional distributions that were not presented during training.
Given a set of adaptation samples DAint, we consider:

(a) Unconstrained Adaptation. Finetune all MLPs using DAint for multiple gradient steps.

(b) Sparse Adaptation. We only finetune the module that was affected by the intervention. The affected module is either
known or predicted in the setting of unknown interventions.

(c) Regularized Adaptation. By relaxing the Sparse Mechanisms hypothesis, we aim to compute adaptation weights that
control the magnitude of adaptation (lower adaptation where knowledge can be directly reused, more adaptation where
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knowledge has changed). To this end, we compute the NLL on the adaptation data for every variable Xi and store it as score
si, assessing the fit of each MLP given the new transfer data. We use this score to compute the weight of adaptation of a
certain mechanism by employing a temperature-scaled softmax over these scores [s1, . . . , sN ]. The temperature t allows to
control the magnitude of co-adaptation and interpolate between unconstrained adaptation (t =∞) and sparse adaptation
(t = 0).

C.3.1. HYPERPARAMETER SETUP

Hyperparameters: Pseudo-LL, EXP-Causal, EXP-AntiCausal and EXP-Skeleton

Optimizer: Adam (Kingma & Ba, 2014)
Learning Rate: {0.1, 0.01, 0.001, 0.0001}
Weight Decay: {0.01, 0.001, 0.0}
Number of iterations: {500, 1000, 2000}

Hyperparameters L-Causal

Number of Alternating Iterations: 30
Distribution Fitting:
Optimizer: Adam (Kingma & Ba, 2014)
Learning Rate: {0.1, 0.01, 0.001, 0.0001}
Weight Decay: {0.01, 0.001, 0.0}
Number of iterations: {500, 1000, 2000}
Graph Fitting∗:
Optimizer: Adam (Kingma & Ba, 2014)
Learning rate u: 0.005
Learning rate v: 0.02
Number of iterations: 100
Number of Graphs: 100

∗ All hyperparameters were adopted from Lippe et al. (2021) as we relied on their graph fitting formulation.

Hyperparameters MAML

Inner Loop:
Optimizer: SGD
Learning Rate: {0.1, 0.01, 0.001}
Nr. Iterations: {1, 2, 5}
Outer Loop:
Optimizer: Adam (Kingma & Ba, 2014)
Learning Rate: {0.1, 0.01, 0.001, 0.0001}
Weight Decay: {0.01, 0.001, 0.0}
Nr. Iterations: {500, 1000}
Nr. Tasks per Iteration: {10, 20, 50}

Table 1: Hyperparameters - Model Training

Hyperparameters: Model Adaptation
Optimizer: SGD

Learning Rate: {0.1, 0.05, 0.01}

Table 2: Hyperparameters - Model Adaptation
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D. Generalization Convergence of Causal Models ( L-Causal vs. EXP-Causal)
In this analsis, we only focus on causal models and seek to compare the performance of the EXP-Causal which is provided
with the true causal structure upfront, and L-Causal which aims to learn the causal structure from data.

Findings. We observe that EXP-Causal outperforms L-Causal on low training regimes as the employed causal
discovery framework can only identify the true causal graph with sufficient amounts of samples (see Figure 7). With
increasing amounts of samples, the learned causal structure of L-Causal gets closer to the ground-truth structure (see
bottom row of Figure 7 for Structural Hamming Distance (SHD) between learned and true structure) and hence the
generalization performance improves. Both models attain Bound-ZeroShot (blue) as expected with sufficient amount of
samples. In addition, we observe slower convergence of L-Causal to Bound-ZeroShot on dense graphs than on sparse
graph, as the identification of the causal structure is more challenging in such settings (Ke et al., 2019; Scherrer et al., 2021).
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Figure 7: Convergence Behaviour of Causal Models. EXP-Causal outperforms L-Causal on low training regimes as L-Causal
can only identify the true causal graph with sufficient amounts of samples. With increasing amount of training samples, the structural esti-
mate of L-Causal improves (see bottom row) and hence the generalization performance improves and converges to Bound-ZeroShot.
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E. Efficient Adaptation of Causal Models
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Figure 8: Efficient Adaptation of a causal
model. Regularized Adaptation leads to effi-
cient adaptation with low amounts of samples
and improves the speed of adaptation compared
to unconstrained adaptation.

Up to this experiment, we have observed the effects of an unconstrained
adaptation objective where all modules can be updated, and the sparse adap-
tation objective where only a specific module is updated (i.e. module is
either estimated or known). However, it would be desirable to update the
modules in a more efficient manner using less amount of adaptation sam-
ples without overfitting. To this end, we employ our proposed regularized
adaptation objective and investigate the effect on the speed of adaptation.

Across our experiments, we observed how the proposed adaptation objective
further improves the speed of adaptation if only less amount of adapta-
tion samples are available (as shown in Figure 8). It especially improves
adaptation if the pretrained model is only trained on few amounts of data.
Further, it improves the statistical efficiency compared to the sparse adapta-
tion objective, as available samples are used to update necessary module, if
necessary.

F. Extended Analysis of Generalization Performance
In this section, we provide an extended generalization analysis of the one presented in Section 4. with additional results and
investigations on various settings (N ∈ {10, 20}, Graphs: ER-1, ER-2, ER-3). We start with an in-depth analysis of a
sparse setting (N = 20, ER-1, Nr. Training Samples: 1000) in Section F.1 and thereby highlight the importance of the
average evaluation metric dissection. In a second step, we analyze in Section F.2 how the generalization performance is
affected as the size of SEM increases. As a final step, we provide the complete results on all sub-metrics across all evaluated
settings in Section F.3.

F.1. Case Analysis: N = 10, ER-1 Graph

As shown in Section 4.2, an average evaluation metric such as NLL-Mean may not not help us to understand the model’s
performance in detail and does not provide enough insights where models are prone to fail. In order to highlight the
importance of the introduced sub-metrics for evaluating the generalization robustness, we fix a sparse evaluation setting
(Graph-Type: ER-1, N = 20, Nr. Training Samples: 1000) where all models perform similar with respect to NLL-Mean
and dissect the results in detail.

Findings. We observe that monolithic models (i.e. Pseudo-LL and MAML) and EXP-Skeleton slightly outperform
the two causal models (i.e. L-Causal, EXP-Causal) and the anti-causal model on the NLL-Mean metric (see
Figure 9). However, by looking at the submetrics in more detail, we find that this performance advantage on NLL-Mean
is due to performance differences on NLL-Intervention and NLL-Root where causal models are not expected to
achieve similar performance as they only rely on causal predictors (i.e. an empty set for root and hard-intervened variables).
By excluding all variables where the set of causal predictors is empty (i.e. root and intervention nodes), we arrive at the
NLL-Remainder metric. On this metric, we observe that all models achieve similar performance ranges except the
anti-causal model (i.e. EXP-AntiCausal) which yields significantly reduced performance. Finally, we focus on the
NLL-Parents metric, where we only evaluate the ability to predict the parents variables Xpa(i,G) of a given intervention
target Xi which induced the present distribution shift by a perfect intervention do(Xi). While non-causal models can
catastrophically fail on this task, we observe that causal models maintain their performance and outperform all other models.
In summary, all models show difficulties to predict the intervened variables as one expects. On all the remaining variables,
causal models yield the most robust performance without tendencies for catastrophic failure.

F.2. Generalization Performance Across Graphs of Increasing Size

In this analysis, we seek to investigate how the generalization performance of the considered models changes as the size of
the underlying graphs and the corresponding SEM increases. To this end, we fix a sparse class of graphs (i.e. ER-1) and
analyze the sub-metrics under training datasets DT of different size, i.e. |DT | ∈ {100, 200, 1000}.
Findings. In line with our observation that structured models are more sample-efficient than monolithic models with respect
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Figure 9: NLL Dissection (Graph-Type: ER-1, N = 20, Nr. Training Samples: 1000). Reporting the sub-metrics on the same scale
(top row) clearly shows that NLL-Parents and NLL-Intervention are yielding NLL scores on a different scale. Therefore, we
zoom in and show all sub-metrics on their own scale (bottom row). While all models achieve comparable results on most metrics, we
observe that non-causal models can catastrophically fail to predict the parent variables of an intervened variables (i.e. NLL-Parents).
In contrast, causal models maintain their performance and outperform all models on the NLL-Parents metric. Furthermore, we observe
advantages of non-causal models over causal models on the NLL-Intervention and NLL-Root metrics which is in line with our
expectation as non-causal models make use of non-causal predictors.

to the generalization performance, we find that the performance gap between structured models and monolithic models
widens significantly as the size of the graph increases (i.e. from N = 10 to N = 20). In particular, we observe a remarkable
generalization behaviour of the causal model EXP-Causal where the true causal structure is provided upfront. Under a
fixed size of the training data, the model maintains robust performance over all metrics when the size of the graph increases.
Within the models that are not provided with any domain knowledge upfront, we observe that L-Causal and MAML clearly
outperform Pseudo-LL on low-sample regimes. As the number of training samples increases, L-Causal is capable of
fully identifying the underlying causal structure from data and reaches the same performance as EXP-Causal. In general,
the performance gap between the models decreases as the amount of training samples is increased.
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Figure 10: Generalization Performance Across Graphs of Increasing Size. We report the dissected NLL evaluation metrics on ER-1
graphs of sizeN ∈ {10, 20}. We observe that the performance gap between structured models and monolithic models widens significantly
as the size of the graph increases.
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F.3. Dissection - Results Across All Settings

In this section, we report all evaluated (sub)-metrics across ER graphs of varying density (i.e. ER-1, ER-2 and ER-3 of
size N ∈ {10, 20} on different amount of training samples |DT | ∈ {100, 200, 400, 1000, 2000}.
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Figure 11: Dissection of OOD Generalization with Varying Amounts of Training Data (N = 10). We report all sub-metrics (i.e.
one per row) over various ER graphs (i.e. ER-1, ER-2 and ER-3). The dissection reveals that important failure and robustness insights are
hidden in the general evaluation score NLL-Mean (top row). While non-causal models yield slightly better performance on NLL-Root
and NLL-Intervention, we observe that they can catastrophically fail to predict the parent variables of an intervened variables (i.e.
NLL-Parents), especially on sparse graphs. Within the structured models, we observe that the EXP-Skeleton model that relies on
causal and anti-causal predictors performs best across most settings, but is also prone to fail on NLL-Parents.
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Figure 12: Dissection of OOD Generalization with Varying Amounts of Training Data(N = 20). We report all sub-metrics (i.e. one
per row) over various ER graphs (i.e. ER-1, ER-2 and ER-3). The dissection reveals that important failure and robustness insights are
hidden in the general evaluation score NLL-Mean (top row). While non-causal models yield slightly better performance on NLL-Root
and NLL-Intervention, we observe that they can catastrophically fail to predict the parent variables of an intervened variables (i.e.
NLL-Parents), especially on sparse graphs. Within the structured models, we observe that the EXP-Skeleton model that relies on
causal and anti-causal predictors performs best across most settings, but is also prone to fail on NLL-Parents.
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G. Extended Analysis of Adaptation Performance
In this section, we expand our few-shot adaptation analysis from Appendix E with respect to speed of adaptation and
overfitting behaviour in Section G.1, and the effect on the parameter space θ in Section G.2. In addition, we provide further
results and analysis on the regularized adaptation objective.

G.1. Adaptation Performance

As in Appendix E, we fix the training data size of all models to be 103 samples, as all models have converged on the
generalization performance by then. We analyze the speed of adaption of different models by evaluating their adaption
performance when fine-tuning using different amounts of adaptation data.

Findings. Across all evaluated classes of graphs (e.g. ER-1, ER-2 and ER-3), we observe that structured models adapt
considerable faster than monolithic models with respect to the required amount of adaptation samples. When doing a
few gradient steps using SGD (i.e. 3 steps with a learning rate of 0.1), we already observe strong overfitting effects for
the considered monolithic models on all evaluated metrics except NLL-Intervention (see Figure 13). By inspecting
the NLL-Parents metric, we observe the robustness of the two causal models (i.e. L-Causal and EXP-Causal),
especially on sparse graphs.
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Figure 13: Speed of Adaptation in terms of different metrics (N = 20,DT = 1000, 3 Gradient Steps). Structured models adapt
considerably faster than monolithic models across all settings and metrics. Monolithic models show a sensitivity to overfitting on all
classes of graph if only low amounts of adaptation samples are available. In contrast, structured models adapt smoothly to the transfer
distribution with significantly reduced overfitting effects.
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G.2. Parameter Space Analysis

Keeping the adaptation performance of the previous section in mind, we now expand our analysis on the parameter space θ.
We seek to answer if the adaptation performance is related to the changes in parameter space θ.

Findings. We find that the overfitting behaviour of monolithic models is correlated with the observed updates in parameter
space. For the range of adaptation samples where the monolithic models are prone to overfit (i.e. 1 to 10 adaptation
samples), we observe high gradient magnitudes on the non-intervened modules (referred to as other modules) in monolithic
models compared to the relatively small updates of structured models. As the size of adaptation samples increases (i.e. 100
adaptation samples), we observe significantly reduced gradient magnitudes on non-intervened modules and lower overfitting
effects. Within the structured models that are built upon structural domain knowledge, we observe that EXP-Causal and
EXP-AntiCausal yield relatively small gradient updates compared to EXP-Skeleton. In addition, we observe that the
anti-causal model yields lower updates on the intervened module as expected as it relies on anti-causal predictors of
the intervened variable children, that were not affected by the intervention.
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Figure 14: Parameter Space Analysis (N = 20,DT = 1000). While adapting to a shift in distribution with an unconstrained adaptation
objective using a single gradient step, monolithic models update most modules that were not affected by the intervention quite heavily
compared to structured models. Causal and anti-causal models show remarkable adaptation behaviour in parameter space with localized
updates on intervened modules.
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G.3. Regularized Adaptation

In this section, we provide further insights on the effects of a a regularized adaptation objective on top of EXP-Causal.
We report speed of adaptation in Figure 15 and analyses on the parameter space in Figure 16.

Findings. We observe that the regularized adaptation objective improves the adaptation performance on low amounts of
adaptation samples considerably. Our results indicate that the adaptation objective prevents from overfitting if multiple
gradient steps are performed. It is noteable, that the regularized adaptation objective yields nearly the same performance as
the sparse adaptation objective, even though the sparse adaptation objective leverages a supervised signal (i.e. knowledge of
the intervention location) in the present setting.
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Figure 15: Regularized Adaptation: Effects on Speed of Adaptation (N = 10,DT = 1000). For 5 gradients steps using SGD with a
learning rate of 0.1, we observe continuously improving adaptation with respect to the NLL-Mean metric on all regularization techniques.
With 10 gradient steps, we observe an overfitting behaviour of the unconstrained adaptation objective if only low amounts of adaptation
samples are available. In contrast, the sparse and regularized adaptation objective still yield continuous improvements, even if only low
few adaptation samples are available. It is noteable, that the regularized adaptation objective yields nearly the same performance as the
sparse adaptation objective, even though the sparse adaptation objective leverages a supervised signal (i.e. knowledge of the intervention
location) in the present setting.
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Figure 16: Regularized Adaptation: Effects on Parameter Space θ (N = 10,DT = 1000). With respect to the parameter space, we
observe that the regularized adaptation objective yields smaller updates on the intervened module if only low amounts of adaptation
samples are available. In general, the regularized adaptation objective is capable of identifying the intervened mechanisms and only
performs updates of low gradient-magnitude on non-intervened modules whereas the unconstrained adaptation objective yields updates of
greater magnitude. As the number of adaptation samples increases, the regularized objective yields similar updates on the intervened
mechanisms as the other two objectives.
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