
OPT2022: 14th Annual Workshop on Optimization for Machine Learning

Optimization for Robustness Evaluation beyond ℓp Metrics

Hengyue Liang1 LIANG656@UMN.EDU

Buyun Liang1 LIANG664@UMN.EDU

Ying Cui1 YINGCUI@UMN.EDU

Tim Mitchell2 TMITCHELL@QC.CUNY.EDU

Ju Sun1 JUSUN@UMN.EDU
1University of Minnesota, Minneapolis, USA
2Queens College of the City University of New York, New York City, USA

Abstract
Empirical evaluation of deep learning models against adversarial attacks entails solving nontrivial
constrained optimization problems. Popular algorithms for solving these constrained problems
rely on projected gradient descent (PGD) and require careful tuning of multiple hyperparameters.
Moreover, PGD can only handle ℓ1, ℓ2, and ℓ∞ attack models due to the use of analytical projectors.
In this paper, we introduce a novel algorithmic framework that blends a general-purpose constrained-
optimization solver PyGRANSO, With Constraint-Folding (PWCF), to add reliability and generality
to robustness evaluation. PWCF 1) finds good-quality solutions without the need of delicate
hyperparameter tuning, and 2) can handle general attack models, e.g., general ℓp (p > 0) and
perceptual attacks, which are inaccessible to PGD-based algorithms. Future updates on this topic
will be posted at https://arxiv.org/abs/2210.00621.

1. Introduction

In visual recognition, deep neural networks (DNNs) are not robust against perturbations that are
easily discounted by human perception—either adversarially constructed or naturally occurring [2,
10, 11, 13–15, 26, 28, 29]. A popular way of finding an adversarial perturbation (a.k.a adversarial
attack) is by solving the adversarial loss formulation [19]:

max
x′

ℓ
(
y, fθ(x

′)
)

, s. t. x′ ∈ ∆(x) = {x′ ∈ [0, 1]n : d
(
x,x′) ≤ ε} (1)

Here, fθ is the DNN model, and ∆(x) is an allowable perturbation set with radius ε as measured by
the metric d. Early works assume ∆(x) is the ℓp norm ball intersected with the natural image box,
i.e., {x′ ∈ [0, 1]n : ∥x− x′∥p ≤ ε}, where p = 1, 2,∞ are popular choices [11, 19]. To capture
visually realistic perturbations, recent works have also modeled nontrivial transformations using
non-ℓp metrics [2, 10, 13–16, 28, 29]. As for empirical robustness evaluation (RE), solutions of
Eq. (1) lead to the worst-case perturbations to fool fθ.

But solving Eq. (1) is not easy: the objective is non-concave for typical choices of loss ℓ and
model fθ; for non-ℓp metrics, ∆(x) is often a complicated nonconvex set. In practice, there are two
major lines of algorithms: (a) direct numerical maximization that takes differentiable ℓ and fθ,
and tries direct maximization, e.g., using gradient-based methods [8, 19]. This often only produces
a suboptimal solution and can lead to overoptimistic RE; (b) upper-bound maximization that
constructs tractable upper bounds for the margin loss ℓML = maxi ̸=y f

i
θ(x

′)− fy
θ (x

′), where y is
the true class of x , and then optimizes against the upper bounds [25]. Improving the tightness of the
upper bounding while maintaining tractability is still an active area of research.

© H. Liang1, B. Liang1, Y. Cui1, T. Mitchell2 & J. Sun1.

https://arxiv.org/abs/2210.00621

OPTIMIZATION FOR ROBUSTNESS EVALUATION BEYOND ℓp METRICS

Another formalism of robustness is the robustness radius (or minimum distortion radius), defined
as the minimal level of perturbation that causes fθ to change its predicted class:

min
x′∈[0,1]n

d
(
x,x′) s. t. max

i ̸=y
f i
θ(x

′) ≥ fy
θ (x

′) (2)

Solving Eq. (2) produces not only a minimally distorted perturbation x′, but also a robustness radius,
which makes it another popular choice for RE [7, 8, 24]. In fact, [7, 24, 31] perform adversarial
attacks by trying to solve Eq. (2).

In this paper, we focus on numerical optimization of Eq. (1). In particular, we (I) adapt the
constrained-optimization solver PyGRANSO [9, 18] with a constraint-folding (PWCF) technique—
crucial for making PyGRANSO solve Eq. (1) with reasonable speed and quality, and (II) show that
PWCF can handle attacks other than the ℓ1, ℓ2, and ℓ∞ ones—beyond the reach of PGD-based
methods. This can lead to considerably improved RE as PWCF (I) can serve as a reliable supplement
to the state-of-the-art (SOTA) RE packages on ℓ1, ℓ2, and ℓ∞ attacks, e.g. AutoAttack [8], and
(II) opens up the possibility of RE over a much wider range of attack models, e.g., general ℓp attacks
with any p > 0 and more complicated ones such as perceptual attacks [16]. We remark that PWCF is
also general enough to solve Eq. (2), but due to the limited preliminary results currently at hand, we
leave it as future work.

2. Technical background

Eq. (1) is often solved by the projected gradient descent (PGD)1 method. The basic update reads
x′
new = P∆(x)(x

′
old + t∇ℓ(x′

old)), where P∆(x) is the projection operator onto ∆(x). When
∆(x) = {x′ ∈ [0, 1]n : ∥x′ − x∥p ≤ ε} with p = 1,∞, P∆(x) takes simple forms. For p = 2,
sequential projection onto the box and then the norm ball at least finds a feasible solution. Hence,
PGD is feasible for these cases. For other choices of p and general non-ℓp metrics d where analytical
projection is not so intuitive to derive, existing PGD based algorithms does not apply. For practical
PGD methods, previous works have shown that the solution quality is sensitive to the tuning of
multiple hyperparameters, e.g., step-size schedule and iteration budget [4, 8, 22]. The SOTA PGD
variants, APGD-CE and APGD-DLR, try to make the tuning automatic by combining a heuristic
adaptive step-size schedule and momentum acceleration under fixed iteration budget [8]—both are
built into the popular AutoAttack package2.

2.1. PyGRANSO for constrained optimization

In principle, as an instance of nonlinear optimization (NO) problems [1]

min
x

g(x) , s. t. ci(x) ≤ 0 ∀ i ∈ I; hj(x) = 0 ∀ j ∈ E (3)

Eq. (1) can be solved by general-purpose NO solvers such as Knitro [23], Ipopt [27], and
GENO [17]. However, there are two caveats: (1) the above solvers only handle continuously dif-
ferentiable objective and constraint functions, i.e., g, ci’s, and hj’s, but non-differentiable g, ci’s,
and hj’s are common in Eq. (1), e.g., when d is the ℓ1 or ℓ∞ distance, or fθ uses non-differentiable

1. It should be “ascent" instead of “descent" due to the maximization, but we follow the AutoAttack package.
2. https://github.com/fra31/auto-attack

2

https://github.com/fra31/auto-attack

OPTIMIZATION FOR ROBUSTNESS EVALUATION BEYOND ℓp METRICS

activations; (2) they require analytical gradients of g, ci’s, and hj’s, which are impractical to derive
when DNN models fθ are involved.

PyGRANSO3 [9, 18] is a recent PyTorch-port of the powerful MATLAB package GRANSO [9]
which can handle general NO problems of form Eq. (3) and potentially with non-differentiable
g, ci’s, and hj’s. It only requires these functions to be almost everywhere differentiable, which
is satisfied by almost all forms of Eq. (1) proposed so far in the literature. GRANSO employs
a quasi-Newton sequential quadratic programming (BFGS-SQP) to solve Eq. (3), and features
a rigorous adaptive step-size rule via line search and a principled stopping criterion inspired by
gradient sampling [3]. PyGRANSO equips GRANSO with auto-differentiation and GPU computing
powered by PyTorch—crucial for deep learning problems. The stopping criterion is controlled
by stationarity, total constraint violation, and optimization tolerance—all can be transparently
controlled, but is typically unnecessary to tune. For the details of PyGRANSO package, please check:
https://arxiv.org/abs/2210.00973.

3. PyGRANSO with constraint folding as a generic solver for Eq. (1)

Though PyGRANSO can serve as a promising solver for Eq. (1) with general metric d, we find in
practice that naive deployment can suffer from slow convergence, or low quality solutions due to
numerical issues. Below, we introduce PyGRANSO With Constraint-Folding (PWCF), and other
techniques that can substantially speed up the optimization process, and improve the solution quality.

3.1. Reformulating ℓ∞ constraint to avoid sparse subgradients

The BFGS-SQP algorithm inside PyGRANSO relies on the subgradients of the objective and the
constraint functions to approximate the (inverse) Hessian and to compute the search direction. Hence,
when the subgradients are sparse, updating all optimization variables may take many iterations,
leading to slow convergence. For the ℓ∞ metric,

∂z∥z∥∞ = conv{ek sign(zk) : zk = ∥z∥∞ ∀ k}, (4)

where ek’s are the standard basis vectors, conv denotes convex hull, and sign(zk) = zk/|zk| if
zk ̸= 0, else [−1, 1]. The subgradient in Eq. (4) contains no more than nk = |{k : zk = ∥z∥∞}|
nonzeros, and hence is sparse when nk is small. To avoid this issue, we propose a reformulation∥∥x− x′∥∥

∞ ≤ ε ⇐⇒ −ε1 ≤ x− x′ ≤ ε1. (5)

3.2. Constraint-folding to reduce the number of constraints

The natural image constraint x′ ∈ [0, 1]n is a set of n box constraints. The reformulation described
in Section 3.1 introduces another Θ(n) box constraints. Although all these are just simple linear
constraints, the Θ(n)-growth is daunting: for natural images, n is the number of pixels that can
easily get into hundreds of thousands. Typical NO problems become more difficult the number of
constraints grows, e.g., leading to slow convergence for numerical algorithms.

To combat this, we introduce a folding technique that can reduce the number of constraints into
a small constant. To see how this is possible, first note that any equality constraint h(x) = 0 or

3. https://ncvx.org

3

https://arxiv.org/abs/2210.00973
https://ncvx.org

OPTIMIZATION FOR ROBUSTNESS EVALUATION BEYOND ℓp METRICS

inequality constraint c(x) ≤ 0 can be reformulated as

h(x) = 0 ⇐⇒ |h(x)| ≤ 0 , c(x) ≤ 0 ⇐⇒ max{c(x), 0} ≤ 0. (6)

We can then fold them together as

F(|h(x)|,max{c(x), 0}) ≤ 0, (7)

where F : R2
+ 7→ R+ (R+

.
= {t : t ≥ 0}) can be any function satisfying F(z) = 0 =⇒ z = 0, e.g.,

any ℓp (p ≥ 1) norm.

Figure 1: Optimization trajectory of the objective value and constraint violation w.r.t iterations for
an ℓ∞ case on CIFAR-10 dataset. woR: using ℓ∞ original form; wR: with reformulation
but no folding; wRF: with reformulation and folding. Maximum time budget per curve:
600s (only wRF terminates before reaching this budget). Both objective and violation
reaching 0 indicates successful attack.

It is easy to verify the equivalence of Eq. (7) and the original constraints in Eq. (6). The folding
technique can be used to a subset or all of the constraints; one can group and then fold constraints
according to their physical meanings. We note that folding or aggregating constraints is not a new
idea and has been popular in engineering design. For example, [21] uses ℓ∞ folding and its log-sum-
exponential approximation to deal with numerous design constraints. However, applying folding
into NO problems in machine learning seems rare, potentially because producing non-differentiable
constraint(s) due to the folding seems counterproductive.

In our experiments, we use F = ∥·∥2 to fold the Θ(n) box constraints from ℓ∞ reformulation
into a single constraint, enforce the x′ ∈ [0, 1]n constraints in fθ by direct clipping. Fig. 1 shows
clearly that combining folding and reformulation can substantially speed up convergence and boost
the solution quality for our algorithm.

3.3. Loss clipping when solving Eq. (1) with PWCF

For Eq. (1) with the popular cross-entropy (CE) and margin losses, the objective value can easily
dominate constraint violation during the maximization process. Since PyGRANSO tries to balance
the objective value and constraint violation when making progress, it can persistently prioritize
optimizing the objective over constraint satisfaction, resulting in very slow progress in finding a
feasible solution. To resolve this numerical difficulty, we propose using clipped margin loss ℓML

with maximal value 0.01, as any ℓML ≥ 0 indicates a successful attack. For the same reason, we use
clipped CE loss with maximal value at 10 in PWCF4.

4. Attack success happens when the true logit output less than 1/K (assuming softmax normalization is applied), where
K is the number of classes. So the critical value is − log 1/K, which is < 10 for K ≤ e10, sufficient for typical RE
datasets.

4

OPTIMIZATION FOR ROBUSTNESS EVALUATION BEYOND ℓp METRICS

4. Experiments and results: solving Eq. (1) with PWCF

4.1. PWCF offers competitive and complementary attack performance to Eq. (1)

We take SOTA ℓ1-, ℓ2-, and ℓ∞-adversarially trained models on CIFAR1056, and an adversarially-
trained model with respect to the LPIPS distance7 on ImageNet [16]8, to compare the attack perfor-
mance by solving Eq. (1) between PWCF and the APGD9 [6] method from AutoAttack package.
The attack radii ε’s are set following the common practice of adversarial RE10.

Table 1: Comparison of our PWCF with SOTA attack methods on ℓ1-, ℓ2- and ℓ∞- attacks. For
given pretrained models, we report the models’ clean and robust accuracy—lower robust
accuracy means more effective attacks. We test on both CE and margin loss for APGD and
PWCF. Numbers are in (%). Model - Attack denotes the selection of the models and the
type of the performed adversarial attacks and its ε.

APGD PWCF(ours) Square APGD

Dataset Model - Attack Clean CE M CE M M +PWCF

CIFAR10 P1 [20] - ℓ1(12) 73.3 0.96 0.00 28.6 0.00 2.28 0.00

WRN-70-16 [12] - ℓ2(0.5) 94.7 81.8 81.1 81.8 81.0 87.9 80.8

WRN-70-16 [12] - ℓ∞(0.03) 90.8 69.4 68.0 73.6 72.8 71.6 67.1

ImageNet100 PAT-Alex [16] - ℓ2(4.7) 75.0 42.7 44.0 42.8 44.5 63.1 40.9

PAT-Alex [16] - ℓ∞(0.016) 75.0 48.0 48.2 56.6 48.8 59.9 45.2

From Table 1, we can conclude that: (1) PWCF performs strongly and comparably to APGD on
ℓ1, ℓ2 and ℓ∞ attacks, especially using margin loss as the objective; (2) PWCF is weak on ℓ1 and
ℓ∞ attacks using CE loss, likely due to the bad numerical scaling of the CE loss; (3) Combining all
successful attack samples found by APGD and PWCF (APGD+PWCF) can further reduce the robust
accuracy compared to any single APGD or PWCF attack—PWCF and APGD are complementary.
Note that [4] also remarks that the diversity of solutions matters much more than the superiority of
individual solvers, which is the reason why AutoAttack includes Square Attack–a zero-th order
black-box attack method that does not perform strongly itself as shown in Table 1.

5. https://github.com/locuslab/robust_union/tree/master/CIFAR10
6. https://github.com/deepmind/deepmind-research/tree/master/adversarial_
robustness

7. See Section 4.2 for details.
8. https://github.com/cassidylaidlaw/perceptual-advex
9. We implement the margin loss on top of AutoAttack.

10. E.g., https://robustbench.github.io/ for Cifar10 ℓ2 and ℓ∞; https://github.com/locuslab/
robust_union for Cifar10 ℓ1; [16] for ImageNet ℓ2 and ℓ∞.

5

https://github.com/locuslab/robust_union/tree/master/CIFAR10
https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness
https://github.com/deepmind/deepmind-research/tree/master/adversarial_robustness
https://github.com/cassidylaidlaw/perceptual-advex
https://robustbench.github.io/
https://github.com/locuslab/robust_union
https://github.com/locuslab/robust_union

OPTIMIZATION FOR ROBUSTNESS EVALUATION BEYOND ℓp METRICS

Table 2: Attack performance of PWCF with margin loss on general ℓp and non-ℓp metrics. We
report attack success rates (numbers are in %). We test on ℓ1.5, ℓ8, and PAT; numbers on
ℓ1, ℓ2, and ℓ∞ are included for reference. Numbers below each rate in parenthesis are the
perturbation radii.

Special ℓp General ℓp

Model ℓ1 ℓ2 ℓ∞ ℓ1.5 ℓ8 PAT

Clean 100 100 100 100 100 100
(2400) (6.09) (0.01569) (44.40) (0.07) (0.5)

PAT 49.7 40.7 35.2 100 100 100
(2400) (4.7) (0.017) (443.98) (0.70) (0.5)

4.2. PWCF works for general (almost everywhere) differentiable ℓp and non-ℓp distances

As highlighted in Section 2, a major limitation of the PGD based solvers is that they cannot handle
distances other than ℓ1, ℓ2, and ℓ∞

11. By contrast, PWCF stands out as a convenient choice for
general distances. To show this, we apply PWCF to solve Eq. (1) with ℓ1.5 and ℓ8 distances. In
addition, we also solve Eq. (1) with the LPIPS perceptual metric [16, 30], i.e., perceptual attack
(PAT) with

d(x,x′)
.
= ||ϕ(x)− ϕ(x′)||2 , ϕ(x)

.
= [ĝ1(x), . . . , ĝL(x)] (8)

where ĝ1(x), . . . , ĝL(x) are the vectorized intermediate feature maps from pretrained DNNs.
PWCF handles them seamlessly, as shown in Table 2. Here we do not strive to set the most

reasonable perturbation radii, especially for ℓ1.5 and ℓ8 that have not been tested before, and hence we
also do not stress the attack rates. Our point is that PWCF is able to handle these general ℓp distances.
Table 3 further summarizes the details of performing the perceptual attack with ε = 0.5. Existing
methods to compare are Perceptual Projected Gradient Descent (PPGD), Lagrangian perceptual
attack (LPA) and its variant fast Lagrangian perceptual attack (Fast-LPA) methods, all developed
in [16], based on iterative linearization and projection (PPGD), or penalty method (LPA, Fast-LPA)
respectively. In addition to the objective values and attack success rates, we also report their chances
of finding infeasible solutions. As observed in Table 3, our PWCF is the clear winner.

5. Conclusion

In this paper, we propose PWCF to solve the maximization problem Eq. (1) in robustness evaluations,
blending the SOTA constrained optimization solver PyGRANSO with constraint folding and other
tweaks. Our experimental results show that 1) PWCF can provide competitive and complementary
performance compared with the SOTA methods on ℓ1, ℓ2, and ℓ∞ attacks; 2) PWCF can deal with
general attack models such as ℓp with p ≥ 1 and perceptual attacks, which are beyond the reach of
existing PGD-based methods; 3) PWCF involves little to zero parameter-tuning and obtains reliable
solutions based on a principled stopping criterion. Our preliminary experiments also show that the
proposed PWCF is general enough to solve Eq. (2) with good quality, which we will present in
forthcoming papers.

11. We do not consider ℓ0 in this paper as it is not a norm, but we acknowledge that [5] targets at generating ℓ0 attacks
using PGD-based method.

6

OPTIMIZATION FOR ROBUSTNESS EVALUATION BEYOND ℓp METRICS

Table 3: Performance comparison of different methods solving PAT with the clipped CE and
margin (M) loss. Viol. reports the ratio of final solutions that violate constraints. Succ. is
the ratio of all feasible successful attacks divided by total number of samples. The model
we test is pat_alexnet_0.5 [16]. Evaluation is performed on ImageNet-100 dataset.

CE Objective Margin Objective

Method Viol. (%) ↓ Succ. (%) ↑ Viol. (%) ↓ Succ. (%) ↑

Fast-LPA 73.8 3.54 41.6 56.8
LPA 0.00 80.5 0.00 97.0
PPGD 5.44 25.5 0.00 38.5

PWCF 0.62 93.6 0.00 100

References

[1] Dimitri Bertsekas. Nonlinear Programming 3rd Edition. Athena Scientific, 2016. ISBN
9781886529052.

[2] Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li, and David A Forsyth. Big but imper-
ceptible adversarial perturbations via semantic manipulation. arXiv preprint arXiv:1904.06347,
1(3), 2019.

[3] James V Burke, Frank E Curtis, Adrian S Lewis, Michael L Overton, and Lucas EA Simões.
Gradient sampling methods for nonsmooth optimization. Numerical Nonsmooth Optimization,
pages 201–225, 2020.

[4] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial
robustness. arXiv:1902.06705, February 2019.

[5] Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages 4724–4732,
2019.

[6] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. ArXiv, abs/2003.01690, 2020.

[7] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast
adaptive boundary attack. In International Conference on Machine Learning, pages 2196–2205.
PMLR, 2020.

[8] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In International conference on machine learning,
pages 2206–2216. PMLR, 2020.

[9] Frank E Curtis, Tim Mitchell, and Michael L Overton. A bfgs-sqp method for nonsmooth,
nonconvex, constrained optimization and its evaluation using relative minimization profiles.
Optimization Methods and Software, 32(1):148–181, 2017.

7

OPTIMIZATION FOR ROBUSTNESS EVALUATION BEYOND ℓp METRICS

[10] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Ex-
ploring the landscape of spatial robustness. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 1802–1811. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/engstrom19a.html.

[11] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015. URL http:
//arxiv.org/abs/1412.6572.

[12] Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering
the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2020.

[13] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2018.

[14] Hossein Hosseini and Radha Poovendran. Semantic adversarial examples. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 1614–1619,
2018.

[15] Cassidy Laidlaw and Soheil Feizi. Functional adversarial attacks. Advances in neural informa-
tion processing systems, 32, 2019.

[16] Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Perceptual adversarial robustness: Defense
against unseen threat models. In ICLR, 2021.

[17] Sören Laue, Matthias Mitterreiter, and Joachim Giesen. Geno–generic optimization for classical
machine learning. Advances in Neural Information Processing Systems, 32, 2019.

[18] Buyun Liang, Tim Mitchell, and Ju Sun. NCVX: A general-purpose optimization solver for
constrained machine and deep learning. arXiv:2210.00973, 2022.

[19] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[20] Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial robustness against the union of
multiple perturbation models. In International Conference on Machine Learning, pages 6640–
6650. PMLR, 2020.

[21] JRRA Martins and Nicholas MK Poon. On structural optimization using constraint aggregation.
In VI World Congress on Structural and Multidisciplinary Optimization WCSMO6, Rio de
Janeiro, Brasil. Citeseer, 2005.

[22] Marius Mosbach, Maksym Andriushchenko, Thomas Trost, Matthias Hein, and Dietrich Klakow.
Logit pairing methods can fool gradient-based attacks. arXiv preprint arXiv:1810.12042, 2018.

[23] Gianni Pillo and Massimo Roma. Large-scale nonlinear optimization, volume 83. Springer
Science & Business Media, 2006.

8

https://proceedings.mlr.press/v97/engstrom19a.html
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572

OPTIMIZATION FOR ROBUSTNESS EVALUATION BEYOND ℓp METRICS

[24] Maura Pintor, Fabio Roli, Wieland Brendel, and Battista Biggio. Fast minimum-norm adver-
sarial attacks through adaptive norm constraints. Advances in Neural Information Processing
Systems, 34, 2021.

[25] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast
and effective robustness certification. Advances in neural information processing systems, 31,
2018.

[26] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[27] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical programming, 106
(1):25–57, 2006.

[28] Eric Wong, Frank R. Schmidt, and J. Zico Kolter. Wasserstein adversarial examples via
projected sinkhorn iterations. arXiv:1902.07906, February 2019.

[29] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially
transformed adversarial examples. In International Conference on Learning Representations,
2018.

[30] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[31] Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and Sijia Liu.
Revisiting and advancing fast adversarial training through the lens of bi-level optimization.
arXiv:2112.12376, December 2021.

9

	Introduction
	Technical background
	PyGRANSO for constrained optimization

	PyGRANSO with constraint folding as a generic solver for eq:robustloss
	Reformulating constraint to avoid sparse subgradients
	Constraint-folding to reduce the number of constraints
	Loss clipping when solving eq:robustloss with PWCF

	Experiments and results: solving eq:robustloss with PWCF
	PWCF offers competitive and complementary attack performance to eq:robustloss
	PWCF works for general (almost everywhere) differentiable p and non-p distances

	Conclusion

