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Abstract

Aspect-based sentiment analysis (ABSA) is an001
important subtask of sentiment analysis, which002
aims to extract the aspects and predict their003
sentiments. Most existing studies focus on im-004
proving the performance of the target domain005
by fine-tuning domain-specific models (trained006
on source domains) based on the target domain007
dataset. Few works propose continual learning008
tasks for ABSA, which aim to learn the target009
domain’s ability while maintaining the history010
domains’ abilities. In this paper, we propose a011
Large Language Model-based Continual Learn-012
ing (LLM-CL) model for ABSA. First, we de-013
sign a domain knowledge decoupling module014
to learn a domain-invariant adapter and sepa-015
rate domain-variant adapters dependently with016
an orthogonal constraint. Then, we introduce017
a domain knowledge warmup strategy to align018
the representation between domain-invariant019
and domain-variant knowledge. In the test020
phase, we index the corresponding domain-021
variant knowledge via domain positioning to022
not require each sample’s domain ID. Exten-023
sive experiments over 19 datasets indicate that024
our LLM-CL model obtains new state-of-the-art025
performance.026

1 Introduction027

Aspect-based sentiment analysis (ABSA) (Pontiki028

et al., 2016; Do et al., 2019; Zhang et al., 2022)029

plays an important role in the field of natural lan-030

guage processing. This task can be divided into031

two sub-tasks: aspect extract (AE), which aims032

to identify the aspects in the sentence and aspect-033

based sentiment classification (ABSC) (Zhou et al.,034

2019), which aims to infer the polarities of the cor-035

responding aspects. For example, in the review036

“The service is bad but the food is delicious!", the037

user expresses negative and positive sentiments for038

aspects “service" and “food" respectively.039

The previous work for ABSA mainly trained a040

domain-specific model with designed architectures,041

Restaurant domain Laptop domain Book domain

Bad service

long menu

hot pizza

Good delivery

Charge for a long time

Fast power consumption

Beautiful shape

Fast response

high quality

Good atmosphere
Hot CPU

Figure 1: Continual learning for a sequence of ABSA
domains. The blue color is domain-invariant knowledge,
and the other is domain-variant knowledge.

which largely relies on the size of the target dataset 042

(Li et al., 2018; Fei et al., 2022; Zhou et al., 2024). 043

To utilize the datasets of other domains, transfer 044

learning-based methods are proposed to learn the 045

knowledge from source domains to the target do- 046

main (Marcacini et al., 2018; Zhou et al., 2021). 047

However, these studies focus on improving the per- 048

formance of the target domain, while ignoring the 049

accuracy of source domains. To address this prob- 050

lem, a few studies introduced continual learning for 051

a sequence of ABSA domains (Wang et al., 2018, 052

2020b; Ke et al., 2021c,d,a). 053

Wang et al. (2018) used a memory network to 054

accumulate aspect sentiment knowledge by itself 055

from big (past) unlabeled data and then used it to 056

better guide its new/future task learning. Wang et 057

al. (2020b) integrated a lifelong machine learning 058

into Positive-Unlabeled (PU) learning model for 059

target-based sentiment analysis. Ke et al. (2021c) 060

introduced a novel contrastive continual learning 061

method for knowledge transfer and distillation, and 062

task masks to isolate task-specific knowledge to 063

avoid catastrophic forgetting. To overcome catas- 064

trophic forgetting and transfer knowledge across 065

domains, Ke et al. (2021d; 2021a) presented a 066

novel capsule network based on pre-trained lan- 067

guage models (e.g., BERT) to learn task-shared 068

and task-specific knowledge via a masking strat- 069

egy. They used a task-specific module for all the 070

tasks, while the knowledge in different domains 071

may conflict. Moreover, the relationships between 072

the shared knowledge and specific knowledge are 073
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ignored by them.074

There are still several challenges to continual075

learning for ABSA. First (C1), this task requires076

rich commonsense knowledge to infer the senti-077

ment. For example, the word “hot" expresses a078

negative sentiment polarity for the aspect “CPU"079

in the Laptop domain and has a positive sentiment080

for the aspect “pizza" in the Restaurant domain081

(See Figure 1). Second (C2), the sentiment knowl-082

edge is inconsistent among different domains. The083

knowledge in each domain can be divided into084

domain-invariant knowledge (e.g., good, happy)085

and domain-variant knowledge (e.g., long, hot,086

fast). For instance, the general sentiment words087

are domain-invariant knowledge, which does not088

change among various domains.089

To address these problems, we propose large lan-090

guage model-based continual learning (LLM-CL) for091

ABSA. Particularly, for C1, we integrate LLMs to092

utilize the large-scale commonsense knowledge in093

the model. Existing work has proved that LLMs094

can serve as a knowledge base (Petroni et al., 2019;095

Suchanek and Luu, 2023). Then, for C2, we indi-096

vidually consider the domain-invariant and domain-097

variant knowledge via a domain knowledge decou-098

pling module with an orthogonal constraint. All099

the domains learn separate adapters for different100

domains with a shared adapter. Also, we propose101

a domain knowledge warmup mechanism to align102

the domain-invariant and -variant representation103

using replay data. In the test phase, we design a104

domain positioning strategy to index the correct105

domain-variant knowledge without knowing the106

domain the sample belongs to.107

In the experiments, we first analyze the catas-108

trophic forgetting problem of LLMs for ABSA.109

Although LLMs can reduce the catastrophic for-110

getting problem, it is still challenging for LLMs.111

Comparing our LLM-CL model on ABSC, AE, and112

JOINT tasks with several strong baselines, our113

model obtains new state-of-the-art performance on114

19 datasets. The ablation studies show the effec-115

tiveness of the main components consisting of our116

LLM-CL model.117

The key contributions are summarized as fol-118

lows:119

• We propose an LLMs-based CL framework for120

ABSA to leverage the rich commonsense knowl-121

edge in LLMs.122

• We decouple domain-invariant and -variant123

knowledge by modeling the relationships among124

them using an orthogonal constraint. Then, a do- 125

main knowledge warmup strategy is proposed to 126

align the representations of domain-invariant and 127

-variant knowledge. 128

• We conduct extensive experiments on three sub- 129

tasks over 19 domain datasets. The results show 130

our LLM-CL model outperforms the existing typi- 131

cal baselines. 132

2 Related Work 133

2.1 Aspect-based Sentiment Analysis 134

Aspect-based sentiment analysis (ABSA) emerges 135

as an advanced iteration of sentiment analysis, hon- 136

ing in on the intricate task of identifying specific 137

aspects within a given text and subsequently ex- 138

tracting the associated polarity (Zhou et al., 2019). 139

In this study, our focus is on its subtasks: aspect 140

extraction (AE), which aims to pinpoint the as- 141

pects within a sentence, and aspect-based senti- 142

ment classification (ABSC), which seeks to de- 143

duce the polarities associated with the correspond- 144

ing aspects. Neural network-based ABSA mod- 145

els designed domain-specific structures, such as 146

attention (Wang et al., 2016), memory network 147

(Tang et al., 2016), sequence to sequence (Yan 148

et al., 2021) and graph neural network (Li et al., 149

2021; Wang et al., 2020a). All these models are 150

based on large-scale labeled datasets, which is 151

time-consuming and labor-intensive. Then, transfer 152

learning is adopted for ABSA to transfer the knowl- 153

edge from the source domain to the target domain 154

(He et al., 2018), which focuses on improving the 155

performance of the target domain. 156

2.2 Continual Learning for NLP 157

Continual learning (CL) is dedicated to acquiring 158

new knowledge while addressing the prevalent is- 159

sue of catastrophic forgetting, a subject extensively 160

explored in NLP (Biesialska et al., 2020; Ke et al., 161

2023). Current research can be broadly catego- 162

rized into three main approaches: rehearsal-based, 163

regularization-based, and architecture-based meth- 164

ods. Rehearsal-based methods involve conducting 165

experience replay by retaining historical informa- 166

tion, which may take the form of preserved data 167

(Li et al., 2022b; Scialom et al., 2022), or pseudo- 168

data generators (Sun et al., 2019; Qin and Joty, 169

2022). Regularization-based methods enhance the 170

loss function by introducing an additional term, 171

commonly implemented through techniques such 172

as knowledge distillation (Varshney et al., 2022; 173
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Monaikul et al., 2021) or parameter importance (Li174

et al., 2022a; Liu et al., 2019). This modification175

aims to discourage alterations to crucial parameters176

acquired during a prior task when the model adapts177

to a new one. Architecture-based methods (Wang178

et al., 2023b,a; Razdaibiedina et al., 2023) allocate179

sets of task-specific parameters and dynamically180

integrate them with the frozen base model. These181

studies mainly focus on reducing the catastrophic182

forgetting problem based on pre-trained language183

models (e.g., BERT) whose parameters are much184

smaller than LLMs.185

2.3 Continual Learning for ABSA186

The most related works to our paper are (Ke et al.,187

2021c,d), which delved into the CL performance188

of pre-trained language models in ABSC. These189

works primarily designed a CL framework that per-190

forms well on the target domain while keeping191

the performance over the history domains. To over-192

come catastrophic forgetting, they shared a domain-193

specific module across all the domains and learned194

the domain-shared or domain-specific knowledge195

independently. However, domain-variant sentiment196

knowledge may conflict between the two domains.197

Moreover, domain-variant knowledge and domain-198

invariant knowledge are mutually exclusive with199

rich commonsense knowledge. Leveraging the ca-200

pabilities of large language models, we model the201

relationships among domain-invariant and domain-202

variant knowledge and extend our investigation into203

ABSA, which performs AE and ABSC jointly.204

3 Our Method205

In this paper, we propose an LLMs-based CL206

framework for ABSA, which consists of do-207

main knowledge decoupling, domain knowledge208

warmup and domain positioning (Figure 2). Our209

framework is based on an LLMs-based ABSA210

model, which trains a generative model using in-211

struction tuning. We first introduce a domain212

knowledge decoupling module to learn a domain-213

invariant adapter with individual domain-variant214

adapters for each domain. Then, we align the215

domain-invariant and domain-variant representa-216

tions via a domain knowledge warmup strategy.217

Finally, we utilize a domain positioning mecha-218

nism to index the domain-variant adapter without219

requiring the domain ID of each sample in the test220

stage.221

Formally, given a sequence of domains222

{D1,D2, ...,DN}, we aim to sequentially learn a 223

model f to maximize the function f at the domain 224

Di and history domains D1, ...,Di−1. Each do- 225

main Di contains training samples {(xij , yij)}
|Di|
1 , 226

where (xij , y
i
j) are the j-th example in domain do- 227

main Di, and |Di| is the number of training samples 228

in domain Di. Let xij be a text in AE and JOINT or 229

a text combined with a term in ABSC. Additionally 230

let yij be the aspect term in AE, or sentiment polar- 231

ity (e.g., positive, negative and neutral) in ABSC 232

or their combination in JOINT. Notably, in the test 233

phase, we need to predict we randomly merge all 234

the test samples selected from all domains without 235

domain IDs. 236

3.1 LLMs-Based ABSA Model 237

Using a generative framework, we first build an 238

LLMs-based ABSA model to integrate the rich la- 239

tent knowledge in LLMs. We construct instructions 240

to convert the input and output of ABSC and AE 241

subtasks into a unified structure so that our model 242

can perform all the tasks simultaneously. 243

Specifically, our instruction consists of input, 244

prompt and output. The input is the sentence xij we 245

aim to predict. In prompt, we define the task (i.e., 246

“Given a Sentence, you should extract all aspect 247

terms and give a corresponding polarity") and the 248

form of the output (i.e., “The format is "terms1: 249

polarity1; terms2: polarity2"). In this way, the 250

model can better understand the task and generate 251

the response in a fixed format. As described in the 252

prompt, we use “:" combine the aspect term and 253

its polarity and use “;" combine multiple aspects in 254

yij . 255

We adopt a parameter-efficient fine-tuning 256

method, LoRA (Hu et al., 2022), which learns a 257

low-rank adapter for each domain. The training 258

objective is computed as follows: 259

f(yij |xij) = LLMϕ+θ(outputyij
|prompt, inputxi

j
)

(1) 260

where ϕ is the frozen pre-trained weights and θ is 261

the domain-specific parameter increment, which 262

θ ≪ ϕ. In particular, the forward pass for LoRA 263

are as follows: 264

h = ϕh0 + θh0 = ϕh0 +BAh0 (2) 265

where θ = BA is the parameters of up matrix 266

A ∈ Rr,d and down matrix B ∈ Rd,r, h0 and h are 267

the text representation before and after encoding. d 268

and r are the dimension of hidden representation 269

and rank, where d ≪ r. 270
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Figure 2: The framework of our LLM-CL.

3.2 Domain Knowledge Decoupling271

Unlike the traditional LoRA model, we design a272

domain knowledge decoupling module to learn a273

domain-invariant adapter with separate domain-274

variant adapters. For the i-th domain, the train-275

ing data including Di and the replay data DR,i =276

{DR
1 , ...,DR

k , ...,DR
i }. DR

k means few examples277

sampled from the domain Dk. We train the domain-278

invariant adapter θS = BSAS based on the replay279

data DR,i using language modeling loss (LML).280

Li
S =

∑
DR

k ∈DR,i

∑
(xk

j ,y
k
j )∈DR

k

LML(ykj , f(y
k
j |xkj ))

(3)281

Then, we train the domain-variant adapter θi =282

BiAi for the i-th domain based on domain data Di.283

Li
D =

∑
(xi

j ,y
i
j)∈Di

LML(yij , f(y
i
j |xij)) (4)284

Furthermore, we utilize an orthogonal constraint285

to enforce the model to learn the difference between286

domain-invariant and domain-variant knowledge.287

To make sure Bi and Ai is orthogonal to BS and288

AS , we need to constrains them with BT
i BS = 0289

and AT
i AS = 0. The loss is calculated as follows:290

LO = ∥ AT
i AS ∥2 + ∥ BT

i BS ∥2 (5)291

Thus, the final training loss for domain knowl-292

edge decoupling is L = Li
S + Li

D + λLO, where293

λ is a hyper-parameter.294

3.3 Domain Knowledge Warmup 295

Since the domain-variant adapter remains static 296

post-training on a specific dataset, and the domain- 297

invariant adapter undergoes changes throughout 298

the training process, combining the two adapters 299

directly can result in mismatches in parameter dis- 300

tributions and subsequent performance degrada- 301

tion. To address this, we leverage the replay data 302

to fine-tune the invariant adapter for each vari- 303

ant adapter with frozen variant adapters. Specifi- 304

cally, following the competition of training for the 305

N -th domain, we obtain a set of domain-variant 306

adapters (B1, A1), (B2, A2), ..., (BN , AN ), along 307

with a domain-invariant adapter (BS , AS). We pro- 308

cess with additional training by combining each 309

(Bi, Ai) with (BS , AS) using replay data DR,N , 310

which comprises samples collected from all do- 311

mains. To maintain the specificity of each domain- 312

variant adapter, we only fine-tune the domain- 313

invariant adapter in the process. This approach 314

ensures that the domain-invariant adapter aligns 315

with the parameter distribution differences among 316

the domain-variant adapters, ensuring the effective- 317

ness of subsequent combinations between them. 318

3.4 Domain Positioning 319

In the test phase, we need to index the domain- 320

variant adapter of the test sample without knowing 321

the domain ID the sample belongs to. Thus, we 322

design a domain prototype learning module to learn 323

the representation of the domain. Then, a nearest 324

domain indexing module is presented to find the 325
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corresponding domain-variant adapter.326

Domain Prototype Learning. Upon enter-327

ing the test stage, we acquire N domain-variant328

adapters and corresponding domain-invariant329

adapters. As we lack knowledge of the domain330

ID corresponding to each sample at this stage, a331

strategy is needed to select the appropriate domain-332

variant adapter. We introduce a Domain Prototype333

Learning module to learn the recognizable repre-334

sentation of different domains based on the training335

data. For each training sample xij in domain Di,336

we first obtain the average of the last block’s hid-337

den representations of the LLM, h(xij). Then we338

calculate each domain’s mean µi and a shared co-339

variance Σ to represent the domain,340

µi =
1

|Di|
∑

(xi
j ,y

i
j)∈Di

h(xij) (6)341

342

Σ =

N∑
i=1

1

|Di|
∑

(xi
j ,y

i
j)∈Di

(h(xij)−µi)(h(xij)−µi)T

(7)343

Nearest Domain Indexing. For a test sample344

x, we select the most matching domain-variant345

adapter using Mahalanobis distance,346

−(h(x)− µi)TΣ−1(h(x)− µi) (8)347

4 Experimental Setups348

4.1 Datasets and Metrics349

Datasets Following the previous works (Ke et al.,350

2021d,c), we use 19 ABSA datasets which in-351

clude product reviews to construct sequences of352

tasks. It consists (1) HL5Domains (Hu and Liu,353

2004) with reviews of 5 products; (2) Liu3Domains354

(Liu et al., 2015) with reviews of 3 products; (3)355

Ding9Domains (Ding et al., 2008) with reviews of356

9 products; and (4) SemEval14, with reviews of 2357

products.358

Metrics Considering the order of the 19 tasks359

can influence the final result, we randomly choose360

and run 3 task sequences, averaging their results361

for robust evaluation. In the case of ABSC, we cal-362

culate both accuracy and Macro-F1. The inclusion363

of Macro-F1 is crucial as it helps mitigate biases in-364

troduced in accuracy by imbalanced class distribu-365

tions. Additionally, we compute F1 scores in both366

AE and JOINT. Following (Ke et al., 2021c,d), we367

adopt Average performance as an important metric368

in continuous learning, which reflects the compre-369

hensive performance of the model on new and old370

tasks.371

4.2 Selected Baselines 372

We evaluate LLM-CL against 15 typical baseline 373

methods, which can be divided into two parts, 374

Pre-trained Language Models (PLMs)-based and 375

LLMs-based methods. 376

For PLMs-based methods, we compare with the 377

following 10 strong baselines: 378

• KAN (Ke et al., 2021b) learns mask to activate 379

units, facilitating optimized learning for the cur- 380

rent task. 381

• SRK (Lv et al., 2019) learns knowledge and fea- 382

ture embeddings separately, and integrates them 383

through a gate. 384

• EWC (Kirkpatrick et al., 2017) uses a regulariza- 385

tion term to limit excessive updates of important 386

parameters. 387

• UCL (Ahn et al., 2019) introduces a method 388

based on a conventional Bayesian online learning 389

framework. 390

• OWM (Zeng et al., 2019) adapts the parameters 391

along a direction orthogonal to the input space of 392

previous tasks. 393

• HAT (Serra et al., 2018) learns and utilizes path- 394

ways within a base network based on the task ID 395

to construct task-specific networks. 396

• B-CL (Ke et al., 2021d) proposes a novel capsule 397

network-based model for continual learning. 398

• LAMOL (Sun et al., 2019) employs a train- 399

ing strategy that involves both current data and 400

samples derived from pseudo experience replay 401

based on GPT-2. 402

• CTR (Ke et al., 2021a) integrates continual learn- 403

ing plug-ins into BERT. 404

• CLASSIC (Ke et al., 2021c) employs a con- 405

trastive continual learning method, facilitating 406

knowledge transfer and knowledge distillation 407

across tasks. 408

We also select some LLMs-based continual 409

learning methods, which are based on LLaMA: 410

• SEQUENCE (Gururangan et al., 2020) utilizes 411

a set of fixed-size LoRA parameters trained on a 412

sequence of tasks. 413
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Figure 3: Catastrophic forgetting of LLM. The x-axis
represents the test results for the corresponding domain.
The y-axis represents the direction of the training do-
main from bottom to top. The subgraph in the upper
right corner represents the gap between each method
in each training domain. The depth of the color in the
grid indicates how well the LLM performs on the corre-
sponding test set during the continual learning process.

• REPLAY (Chaudhry et al., 2019) saves 8 sam-414

ples of each previous task as memory and trains415

a fix-sized LoRA one step on the memory after416

every 5 steps of training on the new task. For417

a fair comparison, we also adopt the replay to418

O-LoRA and AdaLoRA.419

• O-LoRA (Wang et al., 2023a) focuses on learn-420

ing new tasks within an orthogonal subspace421

while maintaining fixed LoRA parameters for422

previously learned tasks.423

• AdaLoRA (Zhang et al., 2023) adaptively allo-424

cates parameter budgets among weight matrices425

based on importance scores and parameterizes426

incremental updates using singular value decom-427

position.428

• Multi-task (Caruana, 1997) trains a set of fixed-429

size LoRA parameters on all tasks as multi-task430

learning, which is the upper bound of continual431

learning.432

4.3 Experimental Settings433

In our experiment, we adopt LLaMA-7B (Touvron434

et al., 2023) as our base model. We train all mod-435

els using AdamW with β1 = 0.9 and β2 = 0.999436

coupled with a cosine scheduler with the initial437

learning rate of 5e − 5. For all orders of task se-438

quences, we trained the models with 30 epochs, a439

batch size of 16 on NVIDIA RTX 4090 with 24GB440

video memory. And we trained 10 epochs in do- 441

main knowledge warmup. We set the default LoRA 442

rank to 8. For every domain, we randomly preserve 443

8 samples for replay. For domain knowledge de- 444

coupling and domain knowledge warmup, we set 445

λ = 1e− 6, 1e− 5 separately. 446

5 Experimental Analysis 447

5.1 Catastrophic Forgetting of LLMs 448

In Figure 3, We explore the catastrophic forget- 449

ting problem of LLMs on ABSA. We find: (1) 450

LLMs still meet the catastrophic forgetting prob- 451

lem. For example, the model trained on the first 452

8 domains obtains a 0.71 F1 score on the 8-th do- 453

main, while the model trained on the first 18 do- 454

mains obtains only 0.24. (2) LLM-CL showcases 455

its effectiveness in mitigating catastrophic forget- 456

ting. We observe that LLM-CL obtains improve- 457

ment over SEQUENCE in most domains (16/18). 458

While approaching the performance of the multi- 459

task model, LLM-CL has even surpassed Multi-task 460

in 7 domains. 461

5.2 Main Results 462

In Table 1, we compare our method with precious 463

continual learning methods for ABSC and some 464

LLMs-based continual learning methods. Addi- 465

tionally, we extend to more challenging ABSA sub- 466

tasks, AE and JOINT in Table 2. 467

Peformance on ABSC. Overall, LLM-CL outper- 468

forms all baselines markedly. We also find: (1) 469

SEQUENCE achieves comparable results to previ- 470

ous CL methods, which show the powerful perfor- 471

mance of LLMs. (2) Compared to rehearsal-free 472

CL methods, replaying a certain proportion of his- 473

torical data can improve the CL methods in most 474

cases. However, replay data can still affect the 475

model’s ability to cope with data requiring domain- 476

specific knowledge. (3) Compared to the previ- 477

ous SOTA CL method for ABSC, CLASSIC, our 478

method improves from 0.9022 to 0.9491 in Accu- 479

racy and from 0.8512 to 0.9143 in Macro-F1. Note- 480

worthily, our method achieves results comparable 481

to Multi-task in Accuracy and gets 4.38% improve- 482

ment on Macro-F1, which shows our methods can 483

extract shared and specific knowledge during con- 484

tinual learning settings, thereby mitigating catas- 485

trophic forgetting. Multi-task merges the datasets 486

from multiple domains simply, where the incon- 487

sistent (domain-specific) knowledge may influence 488

the performance. 489
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Order 1 Order 2 Order 3 Average
Acc. F1 Acc. F1 Acc. F1 Acc. F1

PLMs

KAN* - - - - - - 0.8549 0.7738
SRK* - - - - - - 0.8476 0.7852
EWC* - - - - - - 0.8637 0.7452
UCL* - - - - - - 0.8389 0.7482
OWM* - - - - - - 0.8702 0.7931
HAT* - - - - - - 0.8674 0.7816
B-CL* - - - - - - 0.8829 0.8140
LAMOL* - - - - - - 0.8891 0.8059
CTR* - - - - - - 0.8947 0.8362
CLASSIC† - - - - - - 0.9022 0.8512

LLMs

SEQUENCE 0.8994 0.7215 0.9405 0.8895 0.9430 0.9017 0.9276 0.8376
REPLAY 0.9212 0.7444 0.9367 0.8765 0.9377 0.8837 0.9319 0.8349
O-LoRA 0.8822 0.6752 0.9429 0.8923 0.9400 0.8974 0.9217 0.8216
O-LoRAreplay 0.9071 0.7897 0.9196 0.8421 0.9350 0.8300 0.9206 0.8206
AdaLoRA 0.8553 0.6385 0.9332 0.8574 0.9227 0.8435 0.9037 0.7798
AdaLoRAreplay 0.9086 0.7822 0.9387 0.8778 0.9269 0.8659 0.9247 0.8420
LLaMA (0/4-shot) - - - - - - - -
Alpaca (0/4-shot) - - - - - - - -
GPT-3.5-Turbo (0-shot) - - - - - - 0.9098 0.7086
GPT-3.5-Turbo (4-shot) - - - - - - 0.9269 0.6316

Ours LLM-CL 0.9498 0.9123 0.9495 0.9155 0.9480 0.9150 0.9491 0.9143
Upper bound Multi-task - - - - - - 0.9492 0.8705

Table 1: The main results on ABSC in terms of Accuracy (Acc.) and Macro-F1 (F1). ∗ and † denote the results
come from (Ke et al., 2021a) and (Ke et al., 2021c). The best results of all methods are bolded.

Peformance on AE and JOINT. The conclu-490

sions derived from Table 2 generally align with491

Table 1, and we also have some observations: (1)492

Our method has a more significant improvement in493

the capabilities of these two subtasks, while there494

is still a potential room for improvement compared495

with the upper bound. (2) In all subtasks, we find496

that O-LoRA and AdaLoRA, even with the addition497

of replay, did not achieve better results than RE-498

PLAY. We believe that these two methods mainly499

focus on the differences between different tasks500

while ignoring the shared knowledge between do-501

mains, which requires special attention in the con-502

tinual learning for ABSA.503

5.3 Ablation Studies504

To further inspect our methods, we conduct anal-505

yses to investigate the effect of LLM-CL’s compo-506

nents. Specifically, we investigate the effect of507

(1) - Orthogonal Constraint(- OC), in which we re-508

move the constraint between the domain-invariant509

adapter and separate domain-variant adapter. (2) -510

Domain Knowledge Decoupling(- DKD), in which511

we merge two adapters directly without distinguish-512

ing them. (3) - Domain Knowledge Warmup(-513

DKW), in which we skip the stage of Domain514

Knowledge Warmup. (4) - Domain Positioning(-515

DP), which we replace with Random Positioning.516

We observe the following findings: (1) Or-517

thogonal constraint can effectively extract domain-518

variant knowledge that is orthogonal to invariant 519

knowledge, which was more pronounced in more 520

challenging subtasks such as AE and JOINT. (2) 521

Simply decoupling the adapter has no advantage 522

compared to the original adapter, while our method 523

improves it due to considering the constraints be- 524

tween different adapters. (3) Unlike the ABSC, the 525

domain-invariant adapter exhibits a heightened ca- 526

pacity for acquiring broader knowledge during con- 527

tinual learning across domains, particularly in the 528

context of AE and JOINT tasks. The integration of 529

Domain Knowledge Warmup further enhances its 530

adaptability to the domain-variant adapter, where 531

F1 has elevated from 0.5180 to 0.6785 on AE and 532

from 0.3327 to 0.5867 on JOINT. (4) Utilizing Do- 533

main Positioning, our approach adeptly identifies 534

the fitting domain-variant adapter for predictions. 535

This underscores the discernible distinctions in data 536

distribution across various fields, demonstrating the 537

efficacy of LLMs’ capabilities in leveraging these 538

domain-variant characteristics. 539

5.4 Further Analysis 540

Comparison with SOTA LLMs. As LLMs 541

demonstrate the capability to learn new tasks solely 542

through natural language instructions, we inves- 543

tigate the performance of SOTA LLMs in 0-shot 544

and few-shot scenarios. As shown in Table 1 and 545

Table 2, we select LLaMA, Alpaca (instruction fine- 546

tuned version of LLaMA) and GPT-3.5-Turbo us- 547

7



AE JOINT
Order 1 Order 2 Order 3 Average Order 1 Order 2 Order 3 Average

SEQUENCE 0.6262 0.6003 0.6734 0.6333 0.4817 0.4939 0.5428 0.5061
REPLAY 0.6236 0.6684 0.6774 0.6565 0.5300 0.5309 0.5637 0.5415
O-LoRA 0.6116 0.6043 0.6849 0.6336 0.4507 0.4943 0.5751 0.5067
O-LoRAreplay 0.6077 0.6034 0.6633 0.6248 0.5286 0.5392 0.5564 0.5414
AdaLoRA 0.6007 0.5575 0.6376 0.5986 0.4213 0.4586 0.5079 0.4626
AdaLoRAreplay 0.6136 0.5818 0.6514 0.6156 0.4803 0.5278 0.5432 0.5171
LLaMA (0/4-shot) - - - - - - - -
Alpaca (0/4-shot) - - - - - - - -
GPT-3.5-Turbo (0-shot) - - - 0.4663 - - - 0.3919
GPT-3.5-Turbo (4-shot) - - - 0.5610 - - - 0.4886
LLM-CL (ours) 0.6719 0.6758 0.6877 0.6785 0.5893 0.5829 0.5878 0.5867
Upper bound (Multi-task) - - - 0.7033 - - - 0.6235

Table 2: The F1 scores over AE and JOINT tasks.

ABSC AE JOINT
Acc. F1 F1 F1

LLM-CL 0.9491 0.9143 0.6785 0.5867
- OC 0.9443 0.9050 0.6500 0.5676
- DKD 0.9334 0.8744 0.6630 0.5732
- DKW 0.9447 0.9054 0.5180 0.3327
- DP 0.9378 0.8846 0.6456 0.5207

Table 3: The results of ablation studies.

ABSC AE JOINT
r Acc. F1 F1 F1 Score
4 0.9460 0.9197 0.6818 0.5298 0.4882
8 0.9498 0.9123 0.6719 0.5893 0.7536
16 0.9465 0.9124 0.6865 0.5700 0.6996
32 0.9450 0.8812 0.6681 0.5697 0.1647

Table 4: Influence of rank r on ABSC (order 1).

ing 0-shot and 4-shot. We observed that 1) LLaMA548

and Alpaca fail to predict the answer both in two549

scenarios. This observation underscores the neces-550

sity of fine-tuning procedures for some LLMs, par-551

ticularly when tackling intricate tasks like ABSA.552

2) GPT-3.5-Turbo shows powerful 0-shot and 4-553

shot capabilities, but there is still a certain gap554

compared to the fine-tuned model.555

The Influence of Rank r. Since our method is556

a variant of Lora, an important influencing factor557

is rank r. We study the hyperparameter sensitivity558

by setting rank r with values in [4, 8, 16, 32] for559

LLM-CL and conducted experiments on order1 of560

ABSC. We calculate Score as follows:561

Score =
1

|M |
∑
m∈M

pr,m −min(p∗,m)

max(p∗,m)−min(p∗,m)
562

where M includes is a set of metrics on each sub- 563

task, pi,j represents the performance of LLM-CL on 564

metric j when rank r = i. 565

As shown in Table 4, we find that with rank r 566

increasing, Score initially improves and then de- 567

teriorates, reaching its optimum when rank r = 8. 568

This suggests, on one hand, that excessively small 569

rank r can hinder the model’s ability to effectively 570

capture the diversity of tasks. On the other hand, 571

overly large rank r may lead to overfitting. 572

5.5 Conclusions and Further Work 573

This paper introduces a novel approach, the LLMs- 574

based continual learning framework, LLM-CL, de- 575

signed for ABSA. It effectively separates domain- 576

invariant and -variant knowledge by incorporating 577

an orthogonal constraint to model their relation- 578

ships. To bridge the gap between these knowledge 579

types, we introduce a domain knowledge warmup 580

strategy, which focuses on aligning representations 581

of domain-invariant information. We observe that 582

LLMs still have the problem of catastrophic for- 583

getting despite obtaining great improvement com- 584

pared with traditional models. Experiments show 585

that LLM-CL markedly improves the performance 586

on three subtasks over 19 domain datasets. In fu- 587

ture work, we would like to explore the effective- 588

ness of our model on other cross-domain continual 589

learning tasks. 590
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Limitations591

Although the effectiveness of our method has been592

validated across the three subtasks of ABSA, there593

is still room for improvement. Firstly, our method594

decouples the traditional adapter into a domain-595

invariant adapter and a domain-variant adapter.596

However, as the number of domains increases, the597

storage requirements also grow. More fine-grained598

decoupling will be the focus of our future research.599

Secondly, during the test phase, additional infer-600

ence is required for samples to obtain implicit in-601

formation for domain positioning. To improve effi-602

ciency and performance, our method needs a more603

lightweight and efficient model for domain pro-604

totype learning. By addressing these limitations,605

we can enhance the scalability and performance of606

our method, further advancing the development of607

LLMs in CL.608
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