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ABSTRACT

Recently, there has been growing interest in collecting reasoning-intensive pretrain-
ing data to improve the reasoning ability of LLMs. Prior approaches typically rely
on supervised classifiers to identify such data, requiring labeling by humans or
LLMs, often introducing domain-specific biases. Since attention heads are crucial
to in-context reasoning, we propose AttentionInfluence, a simple yet effective,
training-free method without supervision signal. Our approach enables a small
pretrained language model to act as a strong data selector through a simple
attention head masking operation. Specifically, we identify retrieval heads and
compute the loss difference incurred by masking them. We apply AttentionInflu-
ence to a 1.3B-parameter dense model to conduct data selection on the SmolLM
corpus of 241B tokens, and mix the corpus with the selected subset comprising
73B tokens to pretrain a 7B-parameter dense model using 1T training tokens and
the Warmup-Stable-Decay (WSD) learning rate schedule. Experimental results
demonstrate substantial improvements, ranging from 0.8pp to 3.5pp, across several
knowledge-intensive and reasoning-heavy benchmarks (i.e., MMLU, MMLU-Pro,
SuperGPQA, GSM8K, and HumanEval). This demonstrates an effective Weak-to-
Strong scaling property, with small models improving the performance of larger
models—offering a promising and scalable path for reasoning-centric data selection.
Code is available.1

1 INTRODUCTION

The identification of high-quality pretraining data has been a key factor in developing Large Language
Models (LLMs). Commonly recognized high-quality pretraining materials include academic papers
(e.g., arXiv), books (e.g., Project Gutenberg), high-quality code (e.g., GitHub), and instruction
datasets (Li et al., 2024). Existing approaches often rely on manually curated high-quality seed data
to train classifiers for extracting additional high-quality pretraining data from massive web corpora.
However, as the demand for the scale and diversity of LLMs’ pretraining data continues to grow,
these carefully curated classifiers suffer from the high manual effort requirements and relatively low
diversity of identified data. This raises a critical research question: How can we continue to identify
diverse high-quality pretraining data effectively and scalably?

Current mainstream methods (Su et al., 2024) typically use supervised or weakly supervised data
to train classifiers to identify high-quality data. For instance, Llama 2 (Touvron et al., 2023) uses
reference information of Wikipedia documents, which can be seen as weakly supervised data to
train a fastText (Joulin et al., 2016) classifier and then recognize Wikipedia-like documents. Llama
3 (Grattafiori et al., 2024) and FineWeb-Edu (Penedo et al., 2024) use LLM-generated responses to
train a classifier for educational value, which can be regarded as a much sparser form of distillation
from a larger LLM(up to 70B dense parameters) than knowledge distillation (Hinton et al., 2015).
While other approaches like DCLM aim to fit user preferences through utilizing signals of user
behavior, these methods may introduce potential bias and harm diversity (Li et al., 2024). There are

1Core implementation of AttentionInfluence is available in an anonymous repository at https://github.
com/gofornlpsota/AttentionInfluence. The full codebase is under review, but the released core
implementation is sufficient to easily and faithfully reproduce all experimental results reported in this paper.
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(a) Performance Evolution (b) Training Loss

Figure 1: (a) Performance evolution on comprehensive benchmark evaluations during pretrain-
ing. The first 746 billion tokens correspond to the pretraining phase, represented by solid lines, while
the subsequent 254 billion tokens represent the learning rate annealing phase, represented by dashed
lines, using the same dataset. After around 200 billion tokens, AttentionInfluence-1.3B consistently
outperforms the baseline across a wide range of tasks on average, including the annealing phase. (b)
Training loss during pretraining. AttentionInfluence-1.3B consistently achieves a lower loss than
the baseline.

also efforts to train several domain classifiers and combine them for practical use (Wettig et al., 2025).
However, we assume that these methods fail to capture the essence of what makes data reasoning-
intensive, and as a result, they can be labor-intensive and require significant data engineering efforts.
Moreover, there exists a risk that the classification results from small models distilled from larger
models’ responses may not improve the final performance of larger models.

Therefore, we propose AttentionInfluence, which leverages the intrinsic mechanism of existing
LLMs’ attention heads for pretraining data selection to achieve weak-to-strong generalization. Exist-
ing research suggests that feedforward networks (FFNs) store atomic knowledge (Geva et al., 2020),
while attention mechanisms execute algorithms and store procedural knowledge (Olsson et al., 2022;
Wu et al., 2024). These mechanistic interpretability insights inspire us to hypothesize that the data
activating more important attention heads are high-quality and about procedural knowledge. To be
specific, we select the data with a relatively larger loss difference when small pretrained language
models process them with and without masking retrieval heads. Compared with mainstream data
selection methods (Li et al., 2024; Joulin et al., 2016), AttentionInfluence is training-free and more
generalizable.

To validate AttentionInfluence, we adopt a pretrained Llama2-like-1.3B model for data selection
from the SmolLM corpus. This 241B-token dataset was already mainly filtered for quality using
an education-focused classifier (FineWeb-Edu Classifier). For comparison, we pretrain a 7B dense
language model as our baseline on the full SmolLM corpus. Then, we mix the full SmolLM corpus
with the high-quality data selected by the 1.3B model to pretrain a 7B dense language model as
our model, namely AttentionInfluence-1.3B. As shown in Figure 1, despite the strong baseline,
AttentionInfluence-1.3B still yields consistent improvements, demonstrating its ability to further
enhance overall data quality through better data selection. Moreover, AttentionInfluence-1.3B shows
consistent improvements against the baseline across a wide range of tasks, further demonstrating
the effectiveness of the selected data. We further compare AttentionInfluence’s selected samples
with those of the FineWeb-Edu Classifier. We find that AttentionInfluence selects data that is more
balanced, broadly distributed across content categories, and favors longer and more comprehensive
samples. Despite being entirely supervision-free and training-free, AttentionInfluence also shows
strong agreement with trained-classifier-based patterns, validating its reliability and generalizability.

In summary, our key contributions are as follows:

1. We propose AttentionInfluence, a novel unsupervised framework that leverages attention
head mechanisms to quantify the reasoning intensity for effective data selection without
training any classifiers.

2. We show that data selected by AttentionInfluence is high-quality and well-distributed,
thereby yielding consistent improvements across a wide range of tasks.

3. We demonstrate that this approach exhibits Weak-to-Strong scaling property, where data
selected by a small model significantly improves a larger model’s performance.
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2 RELATED WORK

2.1 DATA SELECTION

Many training-free methods use heuristic filtering rules (Rae et al., 2021; Xie et al., 2023b) or
perplexity of existing LLMs (Ankner et al., 2024) to assess the quality of pretraining data. For
instance, Scaling Filter (Li et al., 2024) evaluates text quality by measuring the perplexity difference
between a small and a large language model trained on the same dataset. Some methods leverage
weak supervision from Wikipedia-style text to identify high-quality documents (e.g., Llama 2),
while others such as DCLM fit user preferences from behavioral signals. In contrast, methods that
train models using human-labeled or LLM-generated labels—such as Llama 3, FineWeb-Edu, and
ProX—have gained more attention due to their higher accuracy and broader applicability. Recent
work (Wettig et al., 2024; Zhao et al., 2024; Peng et al., 2025) further explores multi-class classifiers
using data labeled by proprietary commercial LLMs, such as GPT series. There are also efforts to
train several domain classifiers (Wettig et al., 2025; M-A-P, 2024) and combine them for practical
use. Another line of work focuses on optimizing the data mixture in pretraining corpora, through
online and offline frameworks. On the one hand, online approaches (Ye et al., 2024; Xie et al., 2023a)
use small proxy models to dynamically reweight data domains during training. On the other hand,
offline approaches (Held et al., 2025; OLMo et al., 2024; Liu et al., 2024) train small proxy models
on diverse mixtures to identify effective corpus compositions, often using regression or curriculum
strategies. AttentionInfluence can be seen as a training-free method without any training cost or data
annotation.

2.2 MECHANISTIC INTERPRETABILITY

Understanding the inner workings of LLMs is crucial for advancing artificial general intelligence
safely. Olsson et al. (2022) and Wu et al. (2024) reveal certain heads are responsible for in-context
learning and retrieval, respectively. Lv et al. (2024) further explores how attention heads and MLPs
collaborate for factual recall. Sparse autoencoders (Bricken et al., 2023) and head importance
estimation (Fu et al., 2024) are also used to analyze or optimize head behaviors. AttentionInfluence
adopts a proxy task, proposed by Wu et al. (2024); Qiu et al. (2024), to detect specific important
heads, namely the retrieval heads in this paper. AttentionInfluence naturally extends the insights from
Wu et al. (2024), broadening their application beyond model analysis and inference acceleration to
include effective and efficient data selection.

2.3 INFLUENCE MEASURE

Ruis et al. (2024) uses influence functions to recognize pretraining documents important for learning
factual knowledge and mathematical reasoning separately. Mirror Influence (Ko et al., 2024)
realizes an efficient data influence estimation to select high-quality data. MATES (Yu et al., 2024)
continuously adapts a data influence model to the evolving data preferences of the pretraining model
and then selects the most effective data for the current pretraining progress. Our work is similar to
Mirror Influence in that we use data influence estimation to select high-quality data. However, while
Mirror Influence requires a high-quality dataset to train a strong reference model and create a model
pair with significant differences in capabilities to compute delta loss, our approach uses the attention
mechanism to derive a weaker reference model from the base model. This enables us to obtain two
models with a significant capability gap and compute delta loss to evaluate data quality.

3 PRELIMINARY

To estimate the impact of each pretraining data sample on LLMs’ intrinsic reasoning and retrieval
capabilities, we adapt the retrieval score defined in Wu et al. (2024) and model it as a token-level
recall rate based on the attention head behavior. We denote the token generated at decoding step t
of the LLM as wt. Let the input context have length n, and let t− 1 tokens have been generated so
far. Then the full input sequence at step t is x1:n+t−1. The attention scores of a head at this step are
denoted as at ∈ Rn+t−1, i.e., a 1× (n+ t− 1) vector over the full input sequence:

3
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Figure 2: The illustration of AttentionInfluence.

at ∈ Rn+t−1, x1:n+t−1 = [x1, . . . , xn︸ ︷︷ ︸
context

, w1, . . . , wt−1︸ ︷︷ ︸
generated tokens

]. (1)

We assume that an attention head h performs a copy-paste operation on the corresponding content k
in the context x1:n, i.e.,

k ⊆ x1:n, (2)

if and only if the following two conditions are satisfied:

Condition 1: The generated token wt at decoding step t appears in the corresponding content k:

wt ∈ k. (3)

Condition 2: The token wt receives the highest attention score among all positions visible to the
current query token in this head:

j∗ = arg max
j∈{1,...,n+t−1}

at[j], xj∗ ∈ x1:n+t−1, xj∗ = wt. (4)

Let gh denote the set containing all tokens copied and pasted by a given head h, we define:

Retrieval score for head h =
|gh ∩ k|

|k|
(5)

4 METHOD

Lin et al. (2024) demonstrates that a well-trained reference model can serve as a proxy to fit the
desired data distribution of the LLM pretraining by comparing the data loss gap between the base
model and the reference model. By comparing the token-level data loss gap between the base
model and the reference model, they can identify important tokens that align better with the target
distribution. Inspired by recent work lin2024rho, ko2024mirrored, we propose AttentionInfluence
to select high-quality pretraining data based on the data loss gap from a <weak model, strong model>
pair. However, while existing approaches (Lin et al., 2024; Ko et al., 2024) focus on building a
stronger reference model as the strong model, AttentionInfluence points out that it is cheaper and
more controllable to degrade the base model to a weaker version, thus constructing a <weak model,
strong model> pair.

Existing studies (Olsson et al., 2022; Wu et al., 2024) point out that specific attention heads
(i.e., retrieval heads) plays a critical role in LLMs’ in-context learning, retrieval, and reasoning
capabilities. We find that the language model’s retrieval heads emerge early in training, gradually
strengthen, and eventually become entrenched in the middle to late stages, playing a crucial role
in the model’s performance, as shown in Figure 32; further details can be found in Appendix B.
Therefore, AttentionInfluence identifies the specific attention heads that are important for targeted
LLM capabilities and obtains a degraded reference model by disabling them. Then, AttentionInfluence

4
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(a) 5B (b) 307B (c) 608B (d) 898B (e) 1200B (f) 1499B

Figure 3: The evolution of retrieval heads in a 1.3B dense model.

selects high-quality pretraining data based on the sample-level data loss gap from the constructed
<weak model, strong model> pair.

We detail the AttentionInfluence method in the following section.

4.1 DETECTING SPECIFIC IMPORTANT HEADS

In this work, we detect the retrieval heads as specifically important heads for reasoning, because
Wu et al. (2024) reveals that retrieval heads are extremely relevant to LLMs’ retrieval and reasoning
ability.

We adopt a Key-Passage Retrieval evaluation task, proposed in CLongEval (Qiu et al., 2024), to
evaluate the retrieval ability of LLMs in a controlled setting, and identify attention heads that are
strongly associated with retrieval and reasoning. To this end, we construct a synthetic test dataset
consisting of 800 samples. Each sample is formatted as a 3-shot retrieval task in natural language,
consisting of a context, three in-context demonstrations, and a query hash_key. The sample
template is detailed in Appendix A. Each context is a JSON object with k key-value pairs,
where each key is a randomly generated 32-character alphanumeric string (hash_key), and each
value (text_val)3 is a natural language sentence sampled from a corpus of web documents. The
task requires the model to retrieve the text_val from the context and output the text_val
corresponding to the given query hash_key. The inclusion of three in-context demonstrations
(i.e., 3-shot) is designed to simulate a few-shot learning scenario and help the model understand the
task. Considering the context length limitation of existing pretrained models, we constrain the total
length of each test sample—including both the input prompt and the answer—to be close to but not
exceeding 4,096 tokens.

Next, we compute retrieval scores for each attention head across test samples, as described in
Section 3. In this work, we use a 1.3B-parameter model based on the Llama2-like architecture as the
small pretrained language model. We use the average score as the head’s final retrieval score and sort
them by it. Referring to Wu et al. (2024), we select the heads ranked in the top 5% as specifically
important heads. In addition, we conduct ablation studies in Appendix F to examine how different
proxy tasks affect the identification of important heads.

4.2 CALCULATING ATTENTIONINFLUENCE SCORE

We obtain a reference model by masking the important heads of the base model detected in the first
phase, and compute the AttentionInfluence score based on the base model and reference model. For
details on the masking operation, refer to Appendix C. First, we use the base model to compute the
mean token-level cross-entropy loss (Lbase) of each sample in the corpus. Subsequently, we compute
the corresponding loss (Lref ) using the reference model. Finally, we use the relative delta between
Lbase and Lref as an AttentionInfluence Score to quantify the reasoning intensity of each sample,
which can be denoted as:

AttentionInfluence Score =
Lref − Lbase

Lbase
(6)

2The vertical axis corresponds to the transformer layer depth, and the horizontal axis denotes the attention
head index within each layer.

3Each text_val is capped at a maximum of 30 tokens.
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Since the loss of a language model for data from different domains (e.g., general/math/code) cannot
be directly compared due to significant distribution differences, we restrict the AttentionInfluence
Score to be compared only within the same domain (e.g., general/math/code). We consider that a
higher AttentionInfluence Score indicates a higher reasoning intensity of the sample.

5 EXPERIMENTS AND RESULTS

In this section, we present experimental analyses to validate the effectiveness of the reasoning-
intensive data selected by AttentionInfluence.

5.1 EXPERIMENTAL DETAILS

We apply AttentionInfluence to a Llama2-like-1.3B pretrained model to rank the SmolLM 4 (Ben Al-
lal et al., 2024) corpus. The specifications of the model are described in Appendix G. Specifically,
we select the top 20% of samples within each domain in the corpus based on the AttentionInfluence
score, yielding approximately 73.1B reasoning-intensive tokens.

To evaluate the effectiveness of AttentionInfluence, we pretrain a 7B dense model using a combination
of the SmolLM corpus and the selected 73.1B tokens. For comparison, we pretrain another model
of identical architecture and size using only the SmolLM corpus, serving as the baseline. Since
AttentionInfluence is unsupervised and training-free, we include two unsupervised baselines: (1)
a Perplexity (PPL) Filter, which selects samples according to their language modeling perplexity
(details in Appendix H.1); and (2) a Scaling Filter (details in Appendix H.2). To further demonstrate
the effectiveness of AttentionInfluence, we include a strong supervised and training-required baseline
— the FineWeb-Edu Classifier5—distilled from LLaMA2-70B-instruct’s responses and serving as an
LLM-judge method (details in Appendix H.3).

The model architecture follows that of Llama 2, with detailed hyperparameters listed in Table 7.
Detailed information about the SmolLM corpus and pretraining configurations can be found in
Appendix G.

Following Grattafiori et al. (2024), we adopt a comprehensive set of benchmark evaluations across
four major categories in the few-shot setting to holistically compare our model with the baseline:
1) Aggregate Benchmarks, 2) Math, Code, and Reasoning, 3) Commonsense Reasoning and
Understanding, and 4) Reading Comprehension. Detailed descriptions of the benchmarks and
evaluation setup are provided in Appendix G.

5.2 RESULTS

Overall Results: As shown in Figure 1, AttentionInfluence consistently outperforms the baseline.
Notably, the performance gap emerges early—well before reaching 100B tokens—and becomes both
clear and stable throughout training, with AttentionInfluence-1.3B consistently outperforming the
baseline on average and across diverse tasks spanning all four benchmark categories. As shown in
Table 1, compared to the baseline, AttentionInfluence yields substantial improvements across all
four benchmark categories, with gains ranging from 0.8pp to 3.5pp on various tasks. Furthermore,
during the middle stage of training, our unsupervised and training-free AttentionInfluence matches
the performance of the strong supervised and training-required FineWeb-Edu Classifier and surpasses
all other unsupervised baselines6, ultimately outperforming all methods upon completion of the
full 1T-token training as shown in Table 2. The full results, encompassing all methods evaluated
throughout the training stages, are provided in Table 9.

4https://github.com/huggingface/smollm/tree/main/text/pretraining
5https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier
6Due to limited computational resources, the training of other unsupervised baselines was halted at the

middle of pretraining, as they had already fallen behind the strong supervised FineWeb-Edu Classifier.

6
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Model #Tokens Avg. Metrics

Baseline w/o LRD 495B 36.39

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
54.35 81.44 67.89 64.40 71.21 32.19 46.20 78.02

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
43.74 35.44 13.12 20.59 22.23 9.44 39.52 28.93
BBH GSM8K MATH HumanEval C-Eval CMMLU
32.29 12.05 6.08 19.94 25.48 27.42

PPL filter w/o LRD 495B 36.54

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
53.07 80.35 66.71 65.51 70.73 39.97 44.40 78.40

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
43.69 39.53 13.33 20.80 22.30 9.20 39.43 27.71
BBH GSM8K MATH HumanEval C-Eval CMMLU
29.50 9.10 5.16 20.27 28.10 26.70

Scaling Filter w/o LRD 495B 36.81

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
52.65 81.31 66.98 63.54 70.43 40.62 42.80 77.48

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
44.05 39.37 13.81 21.20 24.90 9.63 39.71 28.69
BBH GSM8K MATH HumanEval C-Eval CMMLU
30.60 11.60 5.80 18.75 28.50 27.60

FineWeb-Edu Classifier w/o LRD 495B 37.44

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
54.35 81.73 68.04 64.96 70.34 46.60 44.00 77.58

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
43.17 41.00 13.36 20.46 22.94 9.36 40.67 30.08
BBH GSM8K MATH HumanEval C-Eval CMMLU
30.94 12.51 7.10 18.66 28.45 27.97

AttentionInfluence-1.3B w/o LRD 495B 37.39

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
52.13 80.35 66.24 65.19 71.40 44.39 45.20 77.09

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
43.43 39.72 14.38 21.51 24.26 10.04 39.04 29.88
BBH GSM8K MATH HumanEval C-Eval CMMLU
33.45 12.51 6.05 17.87 27.93 29.37

AttentionInfluence-7B w/o LRD 495B 37.96

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
51.28 79.55 65.42 65.04 71.29 52.42 44.60 78.18

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
44.49 42.64 15.66 22.74 21.22 10.73 38.28 29.94
BBH GSM8K MATH HumanEval C-Eval CMMLU
32.25 13.42 6.05 18.63 29.72 29.12

Table 1: Main results on various benchmarks at the middle stage of training ( 500B tokens). The
LRD denotes learning rate decay.

Model #Tokens Avg. Metrics

Baseline w/ LRD 1T 42.46

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
58.79 83.92 71.36 70.24 75.63 59.62 48.00 80.63

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
51.07 50.05 19.32 27.06 24.77 12.10 41.15 36.09
BBH GSM8K MATH HumanEval C-Eval CMMLU
35.42 21.00 8.74 23.02 33.80 31.33

FineWeb-Edu Classifier w/ LRD 1T 42.66

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
57.85 83.67 70.76 68.03 75.21 61.59 47.00 80.09

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
49.93 51.92 20.76 30.27 25.99 12.12 41.82 34.68
BBH GSM8K MATH HumanEval C-Eval CMMLU
35.97 20.62 10.00 24.36 32.54 31.45

AttentionInfluence-1.3B w/ LRD 1T 43.16

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
59.98 84.26 72.12 68.03 75.49 61.59 46.60 79.54

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
51.20 51.48 22.03 27.30 24.26 12.92 42.30 36.52
BBH GSM8K MATH HumanEval C-Eval CMMLU
36.80 23.73 10.00 26.55 33.06 32.75

Table 2: Main results on various benchmarks after full training (1T tokens). The LRD denotes
learning rate decay.

AttentionInfluence Remarkably Enhances LLMs’ Comprehensive Knowledge: On challenging
aggregate benchmarks such as MMLU, MMLU-Pro, and AGIEval-en, AttentionInfluence consistently
outperforms the baseline, indicating stronger comprehensive knowledge and reasoning capabilities.
Improvements of +1.4pp on MMLU, +2.7pp on MMLU-Pro, and +0.8pp on SuperGPQA clearly
demonstrate the effectiveness of AttentionInfluence in selecting diverse pretraining data that supports
both broad knowledge acquisition and reasoning-intensive learning.

AttentionInfluence Brings Significant Improvements for Complex Reasoning Tasks: Attention-
Influence yields substantial improvements on complex multi-step reasoning tasks such as GSM8K
(+2.7pp), MATH (+1.3pp), HumanEval (+3.5pp), and BBH (+1.4pp), suggesting that the selected
data distribution better facilitates problem-solving and advanced reasoning. Additional gains on
ARC-Challenge, DROP, and RACE further demonstrate that AttentionInfluence enhances reasoning
generalization across a wide range of tasks.
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6 DISCUSSION

6.1 RELIABILITY OF ATTENTIONINFLUENCE

To validate the effectiveness of AttentionInfluence, we design two metrics—Education Score and
Reasoning Score—to quantify the quality of the selected data. Specifically, we randomly sample 200
examples from the top 20% ranked by AttentionInfluence and the FineWeb-Edu classifier, respectively,
and employ GPT-4o (Achiam et al., 2023; Hurst et al., 2024) as the evaluator. Detailed scoring
criteria and prompt design for both metrics are provided in Appendix J.

As shown in Table 10, both AttentionInfluence and the FineWeb-Edu classifier yield comparable
scores on education-related content. However, AttentionInfluence achieves substantially higher scores
in reasoning, indicating that samples selected by AttentionInfluence exhibit greater reasoning
intensity.

Additionally, we analyze the length of the selected samples and find that AttentionInfluence con-
sistently selects longer samples on average across domains than the FineWeb-Edu classifier. In
the Python-Edu and OpenWebMath domains, AttentionInfluence selects samples with an average
length nearly twice that of those selected by the FineWeb-Edu classifier. A qualitative inspection of
these samples (see Appendix L) reveals that, in the Python-Edu domain, AttentionInfluence favors
documents that contain not only more complex code but also richer textual context, such as in-depth
programming tutorials that offer detailed explanations of the code. In the OpenWebMath domain,
samples selected by AttentionInfluence demonstrate more elaborate formula-based reasoning. These
findings suggest that AttentionInfluence effectively identifies data with more comprehensive
and complex reasoning structures.

6.2 DIVERSITY OF SELECTED DATA BY ATTENTIONINFLUENCE

6.2.1 CLUSTERING-BASED DISTRIBUTION ANALYSIS

To better understand the distribution of samples selected by different methods (i.e., AttentionInfluence
and the FineWeb-Edu classifier), we perform clustering on the selected subsets and employ GPT-4o
to annotate the resulting clusters. The clustering procedure is detailed in Appendix K.

We derive the following insights:

1) AttentionInfluence produces a more balanced distribution across data categories. As il-
lustrated in Figure 11, both methods cover a broad range of top-level categories. However, the
distribution from AttentionInfluence is notably more balanced.

Health education

Emerging Technologies

Consume Vitamins To Keep Healthy Heart
……

What is Artificial Intelligence in details 
……

Zone1

Zone2

Figure 4: Data selected by Attention-
Influence and FineWeb-Edu Classifier.

2) AttentionInfluence selects a highly diverse set of sam-
ples. We examine two clusters from the AttentionInfluence
subset that exhibit large embedding distances. As illustrated
by examples from the Health Guidelines & Nutrition and In-
formation Technology clusters in Appendix M, the selected
samples differ substantially in both content and style. This
semantic divergence underscores the effectiveness of the
clustering and further enhances the interpretability of the
annotated categories.

6.2.2 THE VISUALIZATION OF DATA DISTRIBUTION

To intuitively illustrate the distributions of samples selected
by the two methods, we apply Principal Component Analy-
sis (PCA) to reduce the dimensionality of document embed-
dings and visualize the results in two-dimensional space.

As shown in Figure 4, AttentionInfluence selects samples
with broader and more balanced coverage. By directly lever-
aging the attention mechanisms of pretrained language models, it facilitates more effective
selection of general and diverse training data than the FineWeb-Edu classifier.
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In addition, the selected samples from the two methods exhibit complementary coverage. We
further examine the distinctive regions covered by AttentionInfluence and the FineWeb-Edu classifier.
For example, the samples in Zone1 are related to Health Education, while most samples in Zone2 fall
under the theme of Emerging Technologies. This suggests that samples selected by the two methods
can be complementary. How to effectively integrate the strengths of both data selection strategies
could be a promising direction for future exploration.

6.3 SCALABILITY OF ATTENTIONINFLUENCE

We compare the samples selected by the AttentionInfluence method using 1.3B and 7B pretrained
language models. We obtain the following insights:

Cooking Doc
Welcome to our Cooking Textbook Unit 
on …

Code Doc
Astronomical Image Simulation with 
GalSim …

Economic Doc
In the world of telemarketing, crafting 
an effective sales script can make all … 

Zone1

Zone2

Zone3

Figure 5: Data selected by Attention-
Influence-1.3B/7B.

1) AttentionInfluence based on a larger LLM selects higher-
quality data. Similar to the setting in Section 6.1, we
use GPT-4o to evaluate selected samples. As shown in Ta-
ble 11, across all domains, samples selected by the 7B model
exhibit higher education scores than those selected by the
1.3B model. Regarding reasoning scores, the 7B model sig-
nificantly outperforms the 1.3B model across all four do-
mains, with a particularly notable improvement of 9 per-
centage points in the FineWeb-Edu-dedup domain. These
results suggest that larger models are more effective at identi-
fying reasoning-intensive samples. Moreover, we also trained
a 7B model on the data selected by AttentionInfluence-7B.
As shown in Table 8, the LLM trained on data selected by
AttentionInfluence-7B perform better than that trained on data
selected by AttentionInfluence-1.3B, which further demonstrates the scalability of AttentionInfluence.

2) AttentionInfluence based on a larger LLM is more generalizable. As shown in the Figure 5, we
compare the distributions of samples selected by the 1.3B and 7B models. We observe that samples
selected by the 7B model are more broadly distributed, covering many regions that the 1.3B model
fails to reach. Notably, regions underrepresented by the 1.3B model are densely populated with
specific categories of samples, which are predominantly captured by the 7B model.

For instance, Zone1 corresponds to cooking, Zone2 relates to code, and Zone3 primarily focuses on
the economy. This suggests that, even without additional training, samples selected by larger models
are more balanced and diverse, capturing a broader range of information. As shown in the appendix
(see Table 8, Figure 7, Figure 9 and Figure 10), AttentionInfluence-7B consistently outperforms
AttentionInfluence-1.3B across various benchmarks during the middle and later stages of training.

Nonetheless, the performance narrows during the final learning rate annealing phase likely due to satu-
ration in the SmolLM corpus and training setup, as suggested by comparisons with SmolLM (Ben Al-
lal et al., 2024) and SmolLM2 (Allal et al., 2025). Importantly, the selected evaluation benchmarks
may not fully capture the generalization benefits of AttentionInfluence-7B. For example, while
the SmolLM corpus is predominantly English with minimal Chinese content, we observe that
AttentionInfluence-7B significantly outperforms AttentionInfluence-1.3B on the Chinese C-Eval
benchmark (see Figure 10), reflecting a broader and more robust generalization capability that remains
underexplored under the current evaluation settings.

7 CONCLUSION

In this paper, we propose AttentionInfluence, an unsupervised and training-free framework for select-
ing high-quality and reasoning-intensive pretraining data by leveraging attention head mechanisms
in pretrained language models. Experimental results on the SmolLM corpus demonstrate that At-
tentionInfluence consistently improves LLMs’ performance on various benchmarks, selects longer
and more diverse data of high quality, and aligns well with the trained-classifier-based selection
pattern—while offering promising Weak-to-Strong generalization. Our findings suggest that internal
model mechanisms can serve as reliable indicators of data quality, offering a scalable and effective
path for LLM pretraining data selection.
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ETHICS STATEMENT

We have adhered to the ICLR Code of Ethics in conducting this research. Our work introduces
AttentionInfluence, a novel unsupervised method for data selection aimed at enhancing the reasoning
capabilities of large language models. We outline the primary ethical considerations associated with
our methodology and its potential applications below.

1. Bias in Data Selection Our method, AttentionInfluence, utilizes a small pretrained language model
as an unsupervised data selector. A significant consideration is that any societal biases (e.g., regarding
gender, race, or culture) inherent in this small selector model could be amplified in the selected data
subset. Pretraining a larger model on this subset may consequently entrench or even exacerbate these
biases. We acknowledge this limitation and suggest that future work could explore integrating bias
mitigation techniques directly into the data selection process to foster greater fairness in the resulting
models.

2. Dual Use of Enhanced Reasoning Models As with any research that advances the capabilities of AI,
improving the reasoning abilities of LLMs carries a risk of dual use. While our intention is to advance
scientific understanding and create more helpful AI systems, we recognize that more powerful
reasoning models could potentially be misappropriated for malicious purposes, such as generating
sophisticated disinformation or automating harmful tasks. We support the ongoing community-wide
dialogue on the responsible development, governance, and deployment of AI technologies to mitigate
such risks.

3. Data Privacy Our experiments utilize the SmolLM corpus, a large-scale open-source dataset.
Like many corpora scraped from the public web, it may contain personally identifiable information
(PII). Our unsupervised data selection method does not inherently identify or remove such sensitive
information. The use of publicly available corpora that may contain PII is a broader challenge in the
field that warrants continued attention and the development of better data anonymization and curation
practices.

4. Responsible Release of Research Artifacts Our primary release consists of the source code for
our AttentionInfluence method, made available under a permissive open-source license. We are not
releasing the selected data subset concurrently with this publication. However, to further facilitate
research, we are open to considering a future release of this subset if there is significant community
interest. Any such release would be preceded by a rigorous screening process to mitigate risks
related to privacy, bias, and harmful content, in accordance with best practices for responsible dataset
publication.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To facilitate this, we have released
the core implementation of our method, AttentionInfluence, along with the code for all baselines
presented in this paper. This is provided both as an anonymous and public GitHub repository and as a
compressed archive in the supplementary materials. While the full codebase is currently undergoing
an internal review, we are confident that the released core implementation is sufficient to easily and
faithfully reproduce all experimental results reported in this paper.

Comprehensive details to support reproducibility are provided in the appendices. Specifically,
Appendix G details our complete experimental setup, including training data, model architecture,
training parameters, and evaluation procedures. Appendix H provides the core implementation details
for all the baselines. For our qualitative and quantitative analyses, implementation specifics for the
LLM-as-a-judge experiments are located in Appendix J, and details of the clustering analysis are
in Appendix K. We plan to release the complete codebase, including all analysis scripts, upon the
completion of the internal review process. Furthermore, to fully support community research, we
also plan to release the high-quality data subsets separately selected by AttentionInfluence and each
baseline method, as well as our intermediate and final trained model checkpoints.
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A SYNTHETIC TEST SAMPLE

model input:
Please extract the value corresponding to the specified key from
the following JSON object. Output only the value of the
corresponding key and nothing else. The JSON data is as follows:
{context}

{question-shot1}
{answer-shot1}

{question-shot2}
{answer-shot2}

{question-shot3}
{answer-shot3}

{question}
answer: {answer}

B EVOLUTION OF RETRIEVAL HEADS IN PRETRAINED MODELS

We apply the method described in Section 4.1 to identify retrieval heads at six checkpoints of the
pretrained 1.3B-parameter model. These checkpoints correspond to training progress at 5B, 307B,
608B, 898B, 1200B, and 1499B tokens, respectively. We also analyze the 7B-parameter model, using
checkpoints corresponding to training progress at 9B, 1800B, 3600B, 5628B, 7204B, and 8964B
tokens, as shown in Figure 6. We observe similar trends to those in the 1.3B model, with retrieval
heads exhibiting early emergence and becoming ever more entrenched as training advances. In
Figure 3 and Figure 6, the vertical axis corresponds to the transformer layer depth, and the horizontal
axis denotes attention head index within each layer.

C MASKING OPERATION

The "mask" operation is to set the attention weights provided by the specific attention heads to equal
weights. And if the length of the sequence is L, the attention weight of each token should be set to 1

L .

D EFFECT OF MASKING RETRIEVAL HEADS VS. RANDOM NON-RETRIEVAL
HEADS

The 3-shot Retrieval task corresponds to the proxy task introduced in Section 4.1. Banking77-ICL is
an internal evaluation task for assessing a model’s in-context learning ability. It requires models to
perform many-shot classification on the Banking77 dataset (Casanueva et al., 2020). Here, "Masked,
Retrieval Heads" refers to masking attention heads ranked in the top 5% by retrieval score, while

(a) 9B (b) 1800B (c) 3600B (d) 5628B (e) 7204B (f) 8964B

Figure 6: The evolution of retrieval heads in a 7B dense model.
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"Random Masked, Non-Retrieval Heads" refers to randomly masking heads ranked between the
top 5% and top 100% (i.e., the remaining 95%) by retrieval score. We conduct the experiments
using the models shown in the Table 5 and find that masking retrieval heads significantly impairs
the model’s reasoning performance, while masking random non-retrieval heads has only a minor
effect—consistent with the findings of Wu et al. (2024). In addition, we find that retrieval heads also
play an essential role in the model’s in-context learning ability, which may suggest a high overlap
between retrieval heads and induction heads.

E MIRROR EFFECTS IN ATTENTIONINFLUENCE

For tasks with performance gains—such as MMLU, MMLU-Pro, AGIEval-en, DROP, BBH and
GSM8K—we observe that masking retrieval heads in the pretrained 1.3B model leads to a significant
performance drop (see Table 3). This suggests a mirror effect: when the performance of the 1.3B
model significantly degrades on certain tasks due to masking certain important heads, the data
selected by AttentionInfluence-1.3B tends to improve performance on these same tasks when used to
train a 7B model. This observation supports the insight discussed in Section 4, demonstrating the
interpretability of AttentionInfluence and its predictive power in identifying evaluation metrics likely
to show improvements prior to any training.

Model Benchmarks

1.3B

Hellaswag WinoGrande MMLU MMLU-Pro AGIEval-en GPQA
0.5715 0.6062 0.4258 0.1290 0.2047 0.2203
DROP BBH GSM8K HumanEval 3-shot Retrieval Banking77-ICL
0.2344 0.3166 0.1820 0.1707 0.4213 0.4148

1.3B (Random Masked, Non-Retrieval Heads)

Hellaswag WinoGrande MMLU MMLU-Pro AGIEval-en GPQA
0.5518 0.6069 0.4165 0.1275 0.2072 0.2071
DROP BBH GSM8K HumanEval 3-shot Retrieval Banking77-ICL
0.2190 0.3005 0.1274 0.1159 0.3838 0.3840

1.3B (Masked, Retrieval Heads)

Hellaswag WinoGrande MMLU MMLU-Pro AGIEval-en GPQA
0.5493 0.5801 0.3089 0.0305 0.1298 0.1827
DROP BBH GSM8K HumanEval 3-shot Retrieval Banking77-ICL
0.1141 0.0429 0.0068 0.1098 0 0.0001

Table 3: Effect of Masking Retrieval Heads vs. Random Non-Retrieval Heads on Reasoning and
In-Context Learning

F ABLATION STUDIES ON THE IDENTIFICATION OF IMPORTANT HEADS

The choice of the task for reasoning-head detection is important. We use a JSON key-value extraction
task due to its highly controllable structure and its nature as an in-context retrieval task decoupled
from prior knowledge, which effectively activates retrieval heads without interference from the
training data (e.g., the model having memorized relevant content or specific samples). In future work,
we intend to investigate other tasks such as multi-hop question answering or mathematical reasoning
to assess the robustness and generality of the identified heads and improve sample selection quality.

To better understand the influence of the proxy task, we conduct an ablation study comparing which
heads are selected as retrieval heads under different tasks. Specifically, we reproduced the needle task
and implementation used in Wu et al. (2024), referred to here as Plain Needle, and the Reasoning
Needle task and implementation from Fu et al. (2024). Using the 1.3B dense checkpoint mentioned
in our paper, we applied our method (JSON key-value extraction), plain needle, and reasoning needle
to identify the top 5% of heads as retrieval heads, then measured the overlaps. The overlap ratios are
summarized in the table below:

Methods Compared Overlap Ratio (%)
Our Method & Plain Needle 70.6
Our Method & Reasoning Needle 29.4
Plain Needle & Reasoning Needle 11.8

Table 4: Overlap ratios of retrieval heads identified under different proxy tasks.
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These results suggest that different proxy tasks highlight different types of heads that play key roles
within the specific settings of each proxy task. Accordingly, we hypothesize that these heads, when
used for data selection, also capture different types of training samples. In addition, we conducted
internal experiments to compare pretraining outcomes using data selected by our method versus data
selected using the selected heads by Reasoning Needle. The results showed that the latter led to
greater improvements on reasoning benchmarks, as expected, though it underperformed slightly in
other dimensions compared to our method, yielding overall comparable performance. Due to policy
restrictions, we are unable to disclose the exact evaluation metrics from these internal experiments.
We plan to further extend this analysis by including reasoning needle–based experiments and results
on the SmolLM corpus in future work.

G EXPERIMENT SETTING

Pretraining Data To ensure reproducibility, we use the SmolLM corpus (Ben Allal et al., 2024) as
the pretraining dataset. The composition of the SmolLM Corpus dataset is shown in the Table 6. We
sample 100 million tokens from SmolLM corpus as the validation dataset.

Pretrained models used by AttentionInfluence In this work, AttentionInfluence employs internal
pretrained models based on the Llama2-like architecture. The hyperparameters of the models are
detailed in Table 5.

model pretraining vocab hidden ffn num num shared seq tie
size tokens size size inner heads layers q_head len emb

1.3B 1.5TB 155136 2,560 10,240 20 16 2 4,096 true
7B 9TB 155136 4,096 16,384 32 32 2 8,192 true

Table 5: Hyperparams of the Pretrained Models Used by AttentionInfluence.

Computation Cost of AttentionInfluence on SmolLM corpus Using the 1.3B model, we compute
AttentionInfluence scores for all samples in the SmolLM corpus (241B tokens) using 128 A100
GPUs (16 machines, each with 8 A100-80GB GPUs and 900GB of CPU memory), which takes
approximately 5 hours. For the 7B model, the same computation requires 160 A100 GPUs (20
machines, each with 8 A100-80GB GPUs and 900GB of CPU memory) and takes around 25 hours.

Model trained in the experiment The hyperparameters are presented in Table 7, and tokenizer
used for training and computing token counts is the same as SmolLM7 with a vocab size of 49,152.

Pretraining setting Following SmolLM (Ben Allal et al., 2024), our experiments adopt the WSD
learning rate scheduler (Hu et al., 2024), with 0.1% warmup steps, 75% steady phase, and a final
25% decay phase. We use the AdamW optimizer (Loshchilov and Hutter, 2017). Pretraining is
conducted on 32 machines, each equipped with 8 H100-80GB GPUs and 2800GB of CPU memory.
Each experiment runs for 96 hours, using a total of 1 TB of training tokens—comprising 750B tokens
during the constant learning rate phase and 250B tokens during the learning rate decay (annealing)
phase.

Dataset FineWeb-Edu-dedup Cosmopedia-V2 Python-Edu OpenWebMath

# Tokens (billions) 193.3 27.9 3.8 13.3

Table 6: Composition of the SmolLM Corpus Dataset.

Benchmarks We evalute the performance of LLMs across 4 domains: 1) Aggregate Benchmarks,
including AGIEval-en (Zhong et al., 2023), MMLU (Hendrycks et al., 2020), MMLU-Pro (Wang
et al., 2024), GPQA (Rein et al., 2023), SuperGPQA (Du et al., 2025), C-Eval (Huang et al., 2023)
and CMMLU (Li et al., 2023); 2) MATH, Code, and Reasoning, comprising GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), HumanEval (Chen et al., 2021), ARC Challenge (Clark

7https://huggingface.co/HuggingFaceTB/cosmo2-tokenizer
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model batch learning hidden ffn num num shared seq tie total
size size rate size inner heads layers q_head len emb params

7B 1,024 4e-4 4,096 8,192 32 32 4 8,192 false 6.98B

Table 7: Hyperparams of the Model Trained in the Experiment.

et al., 2018), DROP (Dua et al., 2019), and BBH (Suzgun et al., 2022); 3) Commonsense Reasoning
and Understanding, including HellaSwag (Zellers et al., 2019), ARC-Easy (Clark et al., 2018),
WinoGrande (Sakaguchi et al., 2021), CommonSenseQA (Talmor et al., 2018), PiQA (Bisk et al.,
2020), OpenBookQA (Mihaylov et al., 2018), and TriviaQA (Joshi et al., 2017); and 4) Reading
Comprehension, represented by RACE (Lai et al., 2017).

Evaluation details To ensure that all demonstrations, along with the question and the generated
prediction, fit within the 8192-token context window, we use a different number of few-shot examples
per evaluation task. Specifically, we use the following numbers of demonstrations (in parentheses):
MATH (minerva_math) (4), DROP (3), BBH (3), GPQA (3), SuperGPQA (3), and 5 for all
other tasks. We report accuracy for most tasks, with the following exceptions: exact_match for
MMLU-Pro, TriviaQA, and BBH; flexible-extract for GSM8K; and F1 score for DROP.
When available, we use the normalized accuracy (acc_norm) metric provided by the lm-evaluation-
harness. ARC(C+E) denotes the average accuracy over ARC-Challenge (ARC-C) and ARC-Easy
(ARC-E). For specific tasks, we adopt the following exceptions:

• For AGIEval, we conduct the official few-shot-CoT evaluation using the official repository8.

• For C-Eval and CMMLU, we conduct the official 5-shot evaluation using the official repository
910, respectively.

• For GPQA and SuperGPQA, we use an internal evaluation framework, with the common 3-shot-
CoT setting.

• For DROP, we fix a known bug in the lm-evaluation-harness implementation, following the
discussion11.

• For BBH, we find that the answer parsing in the lm-evaluation-harness is not entirely accurate,
which makes a slight difference. Therefore, we use an internal evaluation framework to assess
BBH, with the common 3-shot-CoT setting.

• For MATH, we find that the answer parsing in the lm-evaluation-harness is not entirely accurate.
Therefore, we use an internal evaluation framework to assess MATH, with the common 4-shot-
CoT setting.

• For HumanEval, we conduct zero-shot evaluation using the BigCode evaluation harness12 and
report pass@1 using the following generation settings, which are the same as those used in
SmolLM (Ben Allal et al., 2024): temperature = 0.2, top-p = 0.95, n_samples = 20, and
max_length_generation = 1024.

H BASELINE IMPLEMENTATION DETAILS

This appendix provides implementation details for the two unsupervised baselines—the PPL Filter,
and Scaling Filter—as well as the supervised baseline, FineWeb-Edu Classifier, used in our exper-
iments. For the Scaling Filter and FineWeb-Edu Classifier, we rank the corpus using the scores
produced by each model, following the procedure in Section 5.1, and select the top samples totaling
73.1B tokens. For the PPL Filter, we instead sample from medium-perplexity examples to reach the
same total of 73.1B tokens.

8https://github.com/ruixiangcui/AGIEval/tree/main
9https://github.com/SJTU-LIT/ceval

10https://github.com/haonan-li/CMMLU
11https://github.com/EleutherAI/lm-evaluation-harness/issues/2137
12https://github.com/bigcode-project/bigcode-evaluation-harness
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H.1 PERPLEXITY (PPL) FILTER

The Perplexity (PPL) Filter selects samples based on their language modeling perplexity, computed
with Qwen3-1.7B-Base13(Team, 2025). Samples are first ranked by perplexity, and those within the
20%-80% range are then sampled to reach a total of 73.1B tokens. We hypothesize that mid-perplexity
samples offer higher learning efficiency.

H.2 SCALING FILTER

We use Qwen3-0.6B-Base14 as the small model and Qwen3-1.7B-Base as the large model(Team,
2025), and implement the scorer following the method described in Li et al. (2024).

H.3 FINEWEB-EDU CLASSIFIER

We use the score output by the FineWeb-Edu Classifier to rank the corpus using the same procedure
as in Section 5.1, and select the top samples that also sum up to 73.1B tokens.

I DETAILED PERFORMANCE EVOLUTION DURING PRETRAINING

As shown in Figure 7, Figure 9, and Figure 10, we illustrate how the performance of the baseline,
the 1.3B method, the 7B method and the FineWeb-Edu Classifier method evolves across different
benchmarks as the number of training tokens increases.

In addition, panel (b) of Figure 1 and Figure 8 present the training loss comparison among
them. Furthermore, we report the detailed evaluation results of LLMs trained on data selected
by AttentionInfluence-1.3B and AttentionInfluence-7B, as shown in Table 8.

Figure 7: Performance evolution on comprehensive benchmark evaluations during pretraining. The
first 746B tokens correspond to the pretraining phase, represented by solid lines, while the subsequent
254B tokens represent the learning rate annealing phase, represented by dashed lines, using the same
dataset. Once training surpasses 350B tokens, AttentionInfluence-7B exhibits consistently superior
average performance over AttentionInfluence-1.3B, the baseline, and the FineWeb-Edu Classifier
across a broad range of tasks, even during the annealing phase.

13https://huggingface.co/Qwen/Qwen3-1.7B-Base
14https://huggingface.co/Qwen/Qwen3-0.6B-Base
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Figure 8: Training loss

Figure 9: The performance evolution during pretraining on relatively simple benchmarks (i.e.,
ARC-Challenge, ARC-Easy, WinoGrande, HellaSwag, CommonsenseQA, OpenBookQA, PIQA,
TirvialQA). The first 746B tokens correspond to the standard pretraining phase (solid lines), followed
by 254B tokens under learning rate annealing (dashed lines). Curves with the same color (solid and
dashed) indicate training on the same dataset.
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Figure 10: The performance evolution during pretraining on knowledge-intensive and reasoning-
heavy benchmarks (i.e., MMLU, MMLU-Pro, AGIEval-en, C-Eval, CMMLU, GPQA, SuperGPQA,
RACE, DROP, BBH, GSM8K, MATH, and HumanEval). The first 746B tokens correspond to the
standard pretraining phase (solid lines), followed by 254B tokens under learning rate annealing
(dashed lines). Curves with the same color (solid and dashed) indicate training on the same dataset.
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Model #Tokens Avg. Metrics

AttentionInfluence-1.3B w/o LRD 495B 37.39

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
52.13 80.35 66.24 65.19 71.40 44.39 45.20 77.09

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
43.43 39.72 14.38 21.51 24.26 10.04 39.04 29.88
BBH GSM8K MATH HumanEval C-Eval CMMLU
33.45 12.51 6.05 17.87 27.93 29.37

AttentionInfluence-7B w/o LRD 495B 37.96

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
51.28 79.55 65.42 65.04 71.29 52.42 44.60 78.18

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
44.49 42.64 15.66 22.74 21.22 10.73 38.28 29.94
BBH GSM8K MATH HumanEval C-Eval CMMLU
32.25 13.42 6.05 18.63 29.72 29.12

AttentionInfluence-1.3B w/o LRD 746B 39.32

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
56.66 82.03 69.35 65.43 71.90 53.48 43.60 77.58

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
45.68 45.10 17.19 22.99 25.18 10.59 41.72 32.03
BBH GSM8K MATH HumanEval C-Eval CMMLU
33.89 15.77 6.38 19.85 28.45 30.15

AttentionInfluence-7B w/o LRD 746B 39.85

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
55.80 83.25 69.53 64.33 71.94 56.18 44.40 78.51

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
46.14 46.77 17.64 24.77 21.73 11.72 40.29 32.09
BBH GSM8K MATH HumanEval C-Eval CMMLU
33.81 16.45 7.62 21.40 32.17 29.89

AttentionInfluence-1.3B w/ LRD 1T 43.16

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
59.98 84.26 72.12 68.03 75.49 61.59 46.60 79.54

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
51.20 51.48 22.03 27.30 24.26 12.92 42.30 36.52
BBH GSM8K MATH HumanEval C-Eval CMMLU
36.80 23.73 10.00 26.55 33.06 32.75

AttentionInfluence-7B w/ LRD 1T 43.59

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
56.31 84.05 70.18 67.48 75.24 62.90 47.00 79.76

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
51.68 53.18 21.70 30.18 24.87 13.39 42.39 36.25
BBH GSM8K MATH HumanEval C-Eval CMMLU
37.32 25.78 10.90 25.06 36.85 33.04

Table 8: The ablation results on various benchmarks. The LRD denotes learning rate decay.

J LLM-AS-A-JUDGE EXPERIMENT DETAILS

We use GPT-4o to evaluate the performance of different data selection methods on the FineWeb-Edu-
dedup domain. On the one hand, since most of the data in FineWeb-Edu-dedup is related to education,
we aim for the selected high-quality data to be highly relevant to this domain. Therefore, we design
an Education Score based on whether the selected sample content is education-related. On the other
hand, we want the selected samples to contain more complex, reasoning-intensive knowledge. Based
on this criterion, we design a Reasoning Score.

In summary, we use the following prompt to instruct GPT-4o score the selected samples:

LLM-As-A-Judge

PROMPT:

Given a piece of text: <Selected Sample>. Determine whether the text has educational value. If it
does, respond with 1; if not, respond with 0. Then, determine whether the text is reasoning-intensive
— that is, whether it contains explicit or implicit logical reasoning chains. If it does, respond with 1;
if not, respond with 0. Respond in the following format:

\#\#Educational Value Score
<educational value score>

\#\#Reasoning Intensive Score
<reasoning intensive score>

Although GPT-4o can also be used for scoring pretraining data, different domains require specially
designed prompts. Moreover, the computational cost of using GPT-4o for scoring is very high,
whereas AttentionInfluence-1.3B has a much lower computational overhead.

K DETAILS OF CLUSTERING

We obtain document embeddings using Sentence-BERT (Reimers and Gurevych, 2019) and apply
K-means clustering with k = 100. For each cluster, we sample representative documents near the
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Model #Tokens Avg. Metrics

Baseline w/o LRD 495B 36.39

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
54.35 81.44 67.89 64.40 71.21 32.19 46.20 78.02

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
43.74 35.44 13.12 20.59 22.23 9.44 39.52 28.93
BBH GSM8K MATH HumanEval C-Eval CMMLU
32.29 12.05 6.08 19.94 25.48 27.42

PPL filter w/o LRD 495B 36.54

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
53.07 80.35 66.71 65.51 70.73 39.97 44.40 78.40

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
43.69 39.53 13.33 20.80 22.30 9.20 39.43 27.71
BBH GSM8K MATH HumanEval C-Eval CMMLU
29.50 9.10 5.16 20.27 28.10 26.70

Scaling Filter w/o LRD 495B 36.81

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
52.65 81.31 66.98 63.54 70.43 40.62 42.80 77.48

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
44.05 39.37 13.81 21.20 24.90 9.63 39.71 28.69
BBH GSM8K MATH HumanEval C-Eval CMMLU
30.60 11.60 5.80 18.75 28.50 27.60

FineWeb-Edu Classifier w/o LRD 495B 37.44

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
54.35 81.73 68.04 64.96 70.34 46.60 44.00 77.58

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
43.17 41.00 13.36 20.46 22.94 9.36 40.67 30.08
BBH GSM8K MATH HumanEval C-Eval CMMLU
30.94 12.51 7.10 18.66 28.45 27.97

AttentionInfluence-1.3B w/o LRD 495B 37.39

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
52.13 80.35 66.24 65.19 71.40 44.39 45.20 77.09

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
43.43 39.72 14.38 21.51 24.26 10.04 39.04 29.88
BBH GSM8K MATH HumanEval C-Eval CMMLU
33.45 12.51 6.05 17.87 27.93 29.37

AttentionInfluence-7B w/o LRD 495B 37.96

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
51.28 79.55 65.42 65.04 71.29 52.42 44.60 78.18

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
44.49 42.64 15.66 22.74 21.22 10.73 38.28 29.94
BBH GSM8K MATH HumanEval C-Eval CMMLU
32.25 13.42 6.05 18.63 29.72 29.12

Baseline w/o LRD 746B 38.21

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
55.89 81.69 68.79 66.22 71.79 49.14 45.40 79.27

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
45.57 41.76 13.80 22.92 21.93 9.78 40.67 31.71
BBH GSM8K MATH HumanEval C-Eval CMMLU
31.23 12.89 5.48 20.70 26.08 28.40

FineWeb-Edu Classifier w/o LRD 746B 38.77

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
55.12 82.74 68.93 64.33 71.78 53.15 45.00 78.84

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
45.17 45.56 15.12 22.48 22.34 10.04 39.71 31.47
BBH GSM8K MATH HumanEval C-Eval CMMLU
31.79 12.59 7.28 19.21 31.72 28.76

AttentionInfluence-1.3B w/o LRD 746B 39.32

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
56.66 82.03 69.35 65.43 71.90 53.48 43.60 77.58

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
45.68 45.10 17.19 22.99 25.18 10.59 41.72 32.03
BBH GSM8K MATH HumanEval C-Eval CMMLU
33.89 15.77 6.38 19.85 28.45 30.15

AttentionInfluence-7B w/o LRD 746B 39.85

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
55.80 83.25 69.53 64.33 71.94 56.18 44.40 78.51

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
46.14 46.77 17.64 24.77 21.73 11.72 40.29 32.09
BBH GSM8K MATH HumanEval C-Eval CMMLU
33.81 16.45 7.62 21.40 32.17 29.89

Baseline w/ LRD 1T 42.46

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
58.79 83.92 71.36 70.24 75.63 59.62 48.00 80.63

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
51.07 50.05 19.32 27.06 24.77 12.10 41.15 36.09
BBH GSM8K MATH HumanEval C-Eval CMMLU
35.42 21.00 8.74 23.02 33.80 31.33

FineWeb-Edu Classifier w/ LRD 1T 42.66

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
57.85 83.67 70.76 68.03 75.21 61.59 47.00 80.09

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
49.93 51.92 20.76 30.27 25.99 12.12 41.82 34.68
BBH GSM8K MATH HumanEval C-Eval CMMLU
35.97 20.62 10.00 24.36 32.54 31.45

AttentionInfluence-1.3B w/ LRD 1T 43.16

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
59.98 84.26 72.12 68.03 75.49 61.59 46.60 79.54

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
51.20 51.48 22.03 27.30 24.26 12.92 42.30 36.52
BBH GSM8K MATH HumanEval C-Eval CMMLU
36.80 23.73 10.00 26.55 33.06 32.75

AttentionInfluence-7B w/ LRD 1T 43.59

ARC-C ARC-E ARC(C+E) Wino. Hella. CSQA OpenBookQA PIQA
56.31 84.05 70.18 67.48 75.24 62.90 47.00 79.76

TriviaQA MMLU MMLU-Pro AGIEval-en GPQA SuperGPQA RACE DROP
51.68 53.18 21.70 30.18 24.87 13.39 42.39 36.25
BBH GSM8K MATH HumanEval C-Eval CMMLU
37.32 25.78 10.90 25.06 36.85 33.04

Table 9: The full results on various benchmarks. The LRD denotes learning rate decay.
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Domain FineWeb-Edu Classifier AttentionInfluence

Education Score Reasoning Score Token Len Education Score Reasoning Score Token Len

FineWeb-Edu-dedup 0.99 0.52 1610.12 0.99 0.49 1629.73
Cosmopedia-V2 1.00 0.87 825.46 1.00 0.80 893.80
Python-Edu 0.98 0.76 414.15 0.98 0.87 820.71
OpenWebMath 0.99 0.52 1022.86 0.96 0.88 2255.57

Table 10: The quality score of the data selected by AttentionInfluence and FineWeb-Edu Classifier.

Domain 1.3B 7B

Education Score Reasoning Score Token Len Education Score Reasoning Score Token Len

FineWeb-Edu-dedup 0.99 0.49 1895.7 0.97 0.58 3488.8
Cosmopedia-V2 1.0 0.80 2774.6 1.0 0.82 2984.1
Python-Edu 0.97 0.87 909.3 0.98 0.91 1657.2
OpenWebMath 0.96 0.88 2138.6 0.96 0.93 5550.4

Table 11: The quality score of the data selected by AttentionInfluence using 1.3B and 7B models.
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Figure 11: The statistics of clustering. The left is the clustering result of AttentionInfluence, the right
part is that of FineWeb-Edu Classifier.

cluster center and use GPT-4o to generate descriptive fine-grained (i.e., secondary) category labels,
such as Education–Teaching & Resources.

We manually group these secondary labels into six primary categories and report the number of
samples falling into each high-level category for both selection methods, which is shown in Figure 11.

L CASE STUDY

In this section, we present the cases selected by FineWeb-Edu Classifier and AttentionInfluence-1.3B.

Method Ranking Words

AttentionInfluence

0%- 1% frac, len, sklearn, append, pyplot, browser, pre,
mathbf, 3d, employee, __init__

1%- 10% well, part, movement, children, appreciation, involve, remember, family
growth, treatment, principles, business, b, long, work

10%- 50% maximize, paintings, independence, therefore, expenses, regulatory, recall
square, protocols, monitoring, integrity, consistent, channels, inspiring, width

50%- 100% driver, flying, humble, fourier, smoother, longstanding, owl
personnel, lawyers, entrenched, beach, brother, oils, wow, desk

FineWeb-Edu Classifier

0%- 1% dimensional, student, 3d, 19th, eco, anti
israelite, bmatrix, voter, socio, linspace

1%- 10% creative, based, would, sources, do, system, compared, someone
studies, delve, true, turn, only, elements, ultimately

10%- 50% argument, bright, rising, excessive, governments, friendships, complicated, discipline
constitutes, hearing, consequences, institutional, match, meets, holocaust

50%- 100% peek, manifest, reciprocity, obligations, toilet, customized, olive
validity, enriching, profits, presentations, twelve, originating, arithmetic, nazi

Table 12: The high-frequency words of different methods.
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Rank: top 0.24% (AttentionInfluence-1.3B) Rank: top 0.74% (FineWebEdu Classifier)

Consider a board similar to the one below\\
7   8   9   10   \\

6   1   2   11 \\
5   4   3      \\

However, imagine it as being infinite. A die is initially placed at 1 and can 
only move to the next consecutive number (e.g 1 to 2, 2 to 3...)    Prompts 
the user for a natural number N at least equal to 1, and outputs the 
numbers at the top, the front and the  right after the die has been moved to 
cell N.

Written by Benny Hwang 13/08/2017

import math    
def move_right(Current_faces):        
Top_old = Current_faces[0]        
Right_old = Current_faces[2]        
Bottom_old = Current_faces[3]        
Left_old = Current_faces[5]

….

if __name__ == '__main__':        
N = False        
while N == False:

….

# Chapter 01        
# Exercise 04        
# Write a method to replace all spaces in a string with '%20'       
# Pretty basic for Python                
def main():            
test_string = ""This is a test string""            
print spaces(test_string)                
def spaces_easy(input):            
return input.replace(' ','%20')                
if __name__ == ""__main__"":            
main()

Figure 12: The sample in Python-Edu domain ranked within the top 20% according to
AttentionInfluence-1.3B (left) an FineWeb-Edu Classifier (right).

Rank: top 0.24% (AttentionInfluence-1.3B) Rank: top 0.74% (FineWebEdu Classifier)

"17Calculus - Vector Cross Product Application - Triple Scalar Product

17Calculus

The triple scalar product is a result of combining the dot product with 
thecross product. Some other names for the triple scalarproduct are scalar 
triple product, mixed product and box product.First, let's define what it is 
and then discuss a couple of properties.

Definition and Notation

If we have three vectors in space $$\vec{u} = 
u_x\hat{i}+u_y\hat{j}+u_z\hat{k}$$$$\vec{v} = 
v_x\hat{i}+v_y\hat{j}+v_z\hat{k}$$ and$$\vec{w} = 
w_x\hat{i}+w_y\hat{j}+w_z\hat{k}$$, then the triple scalar product is 
defined to be $$\vec{u} \cdot (\vec{v} \times \vec{w})$$ The calculation of 
this can be done as follows$$\vec{u} \cdot (\vec{v} \times \vec{w}) = 
\begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z
\end{vmatrix}$$Let's look at where this comes from.

Theorem: Triple Scalar Product

If we have three vectors in space,$$\vec{u} = 
u_x\hat{i}+u_y\hat{j}+u_z\hat{k}$$, $$\vec{v} = 
v_x\hat{i}+v_y\hat{j}+v_z\hat{k}$$ and $$\vec{w} = 
w_x\hat{i}+w_y\hat{j}+w_z\hat{k}$$, …….

# Compressibility

(Redirected from Incompressible)
"Incompressible" redirects here. For the property of vector fields, see 
Solenoidal vector field. For the topological property, see 
Incompressiblesurface.

In thermodynamics and fluid mechanics, compressibility is a measure 
ofthe relative volume change of a fluid or solid as a response to a 
pressure(or mean stress) change.

$\beta=-\frac{1}{V}\frac{\partial V}{\partial p}$where V is volume and p is 
pressure.

## Definition
...

## Fluid dynamics

The degree of compressibility of a fluid has strong implications for its 
dynamics. Most notably, the propagation of sound is dependent on the 
compressibility of the medium.

### Aeronautical dynamics

Compressibility is an important factor in aerodynamics.  ….

Figure 13: The sample in OpenWebMath domain ranked within the top 20% according to
AttentionInfluence-1.3B (left) and FineWeb-Edu Classifier (right).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Sample1 (Tag: Health & Medicine - Health Guidelines & Nutrition) Sample2 (Tag: Technology and Engineering - Information Technology)
Type 2 diabetes is a chronic illness costing over \$300 billion per year in the United States with an estimated 100 
million individuals with diabetes or pre-diabetes. Complications due to diabetes place individuals at increased 
risk for heart attack, stroke, amputations, blindness, kidney failure, disability, and early death. Education has 
been shown to be effective in improving health behaviors that decrease complications due to diabetes. Common 
risk factors for development of diabetes are modifiable behaviors such as sedentary lifestyle and obesity.A peer-
led approach to diabetes education has the potential to overcome multiple barriers to receiving education. Peer-
led diabetes education can provide education at low or no cost in communities where individuals feel welcomed 
and travel is minimized. Diabetes education has the potential to decrease disability, early death, and the 
economic costs of diabetes.

The purpose of this study was to determine if peer-led sessions on diabetes self-management impacted health 
behaviors, empowerment, and knowledge of diabetes. Four topic-driven educational sessions were provided for 
participants in Northeast Arkansas who had either a diagnosis of pre-diabetes or diabetes. Pre and post-
questionnaires were used to assess changes in knowledge using the Revised Diabetes Knowledge Test, 
empowerment using the Diabetes Empowerment Scale - Short Form, and health behaviors.

A statistically significant difference was found in the empowerment scale with an increase in mean scores from 
31.23 to 36.04. A paired samples t-test found a statistically significant difference in scores on Diabetes 
Knowledge Test, (t (25) = –2.54, p < .05). Significant changes in health behaviors were found for knowledge of 
A1C levels, the frequency of foot exams, and days of exercise per week.Focus groups following intervention 
provided qualitative results indicating satisfaction with the peer-led model. In order to implement peer-led 
education, there is a need to develop improved strategies for recruitment. A peer-led model for diabetes 
education has potential to provide needed education.
|Commitee:||Guffey, James S., Hall, John, Nichols, Joseph, Nix, Elizabeth||School:||Arkansas State 
University||School Location:||United States -- Arkansas||Source:||DAI-A 80/09(E), Dissertation Abstracts 
International||Subjects:||Educational leadership, Public Health Education, Nutrition||Keywords:||Community, 
Diabetes, Education, Peer-led|

Copyright in each Dissertation and Thesis is retained by the author. All Rights ReservedThe supplemental file or 
files you are about to download were provided to ProQuest by the author as part of adissertation or thesis. The 
supplemental files are provided "AS IS" without warranty. ProQuest is not responsible for thecontent, format or 
impact on the supplemental file(s) on our system. in some cases, the file type may be unknown ormay be a .exe 
file. We recommend caution as you open such files.

Bitcoin mining is a process of verifying transactions and recording them on the blockchain ledger. The blockchain 
is a decentralized public ledger that keeps a record of all Bitcoin transactions. Mining involves solving complex 
mathematical problems using specialized software and hardware. Explore qumasai.io for further information.

The Bitcoin network rewards miners for successfully verifying transactions by giving them newly created Bitcoins. 
The mining process involves adding a new block of transactions to the blockchain every 10 minutes. Miners 
compete against each other to add the next block to the chain.

To participate in Bitcoin mining, one needs to have a powerful hardware setup and specialized mining software. 
The hardware required is called an ASIC miner, which is specially designed to solve the mathematical problems 
required to add a block to the blockchain.

The Bitcoin network is designed to gradually decrease the mining reward over time. As the number of Bitcoins in 
circulation increases, the mining reward decreases. This is done to maintain the scarcity and value of 
Bitcoin.Bitcoin mining requires a significant amount of energy, which has led to concerns about its 
environmental impact. However, many miners are taking steps to use renewable energy sources to power their 
mining operations.In summary, Bitcoin mining is a competitive process that involves verifying transactions and 
adding them to the blockchain ledger. It requires specialized hardware and software and rewards miners with 
newly created Bitcoins. Although it consumes a significant amount of energy, advances in renewable energy are 
making Bitcoin mining more sustainable..What exactly is Bitcoin mining?

Bitcoin mining is the process of adding new transactions to the blockchain and verifying them. It's done by 
solving complex mathematical problems and recording those transactions on a public ledger known as the 
blockchain. The miners who successfully solve these problems are rewarded with newly generated bitcoins.The
mining process involves many miners around the world competing to solve these problems, and the first one to 
do so earns the reward, which is currently 6.25 bitcoins. This reward is then divided among the miners who 
participated in the process.But mining bitcoin requires a lot of computing power, which means it requires a lot of 
energy. In fact, according to the Cambridge Bitcoin Electricity Consumption Index, bitcoin mining now consumes 
as much energy as Switzerland, a country with a population of 8 million.Despite its energy consumption, Bitcoin 
mining is essential to the functioning of the currency. Without mining, there would be no way to ensure the 
integrity of the transactions, and the decentralized nature of the currency would be undermined.In recent years, 
some critics have raised concerns about the environmental impact of Bitcoin mining. However, efforts are being 
made to reduce the energy consumption associated with the process, …

Figure 14: The samples of a clustering in data in the Cosmopedia-V2 domain ranked within 20%
according to AttentionInfluence.

M CLUSTERING CASE

As shown in Figure 14, we present the two clustering cases in the Cosmopedia-V2 domain.
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1.3B (Top 0.10%） 1.3B (Top 97.95% ）

## Modeling Dynamic Systems in Python\n\nIn this section, we will explore 
how to model dynamic systems using Python. We will focus on a specific 
example involving the equations of motion for an aircraft, but the concepts 
and techniques we cover will be applicable to a wide range of dynamic 
systems.\n\n### Equations of Motion\n\nThe equations of motion for an 
aircraft can be quite complex, as they involve multiple coordinate systems 
and take into account various forces and moments acting on the aircraft. 
However, we can simplify the problem by considering a specific set of 
equations known as the "flat Earth equations." These equations assume 
that the Earth is flat and non-rotating, which is a reasonable approximation 
for many applications.\n\nThe flat Earth equations can be written in the 
following form:\n```python\not = (q * sin(phi) + r * cos(phi)) / 
cos(theta)\n```\nwhere `ot` is the "out-of-track" error, which represents the 
lateral deviation of the aircraft from its intended course. The variables `q`, 
`r`, `phi`, and `theta` are related to the aircraft\'s angular rates and 
orientation.\n\n### Moment Equations\n\nThe moment equations 
describe how the angular rates of the aircraft change over time. These 
equations take into account the moments generated by the aircraft\'s 
control surfaces, as well as any external disturbances such as wind 
gusts.\n\nThe moment equations can be written in the following 
form:\n```python\np_dot = (j_xz * (j_x - j_y + j_z) * p * q - (j_z * (j_z - j_y) + 
j_xz ** 2) * q * r + j_z * roll + j_xz * yaw )/ gamma\nq_dot = ((j_z - j_x) * p * 
r - j_xz * (p ** 2 - r ** 2) + pitch) / j_y\nr_dot = (((j_x - j_y) * j_x + j_xz ** 2) 
* p * q - j_xz * (j_x - j_y + j_z) * q * r + j_xz * roll + j_x * yaw )/ 
gamma\n```\nwhere `p_dot`, `q_dot`, and `r_dot` are the time derivatives 
of the angular rates, `j_x`, `j_y`, and `j_z` are …

I remember watching this indie film last year that really got me thinking 
about the way society treats certain racial and ethnic groups. It was called 
"Beyond Skin Deep" and told the story of a young African American 
woman named Tasha who moves to a small, predominantly white town in 
the Midwest. Throughout the movie, we see how Tasha faces subtle (and 
not-so-subtle) racism from her neighbors, coworkers, and even some 
friends. But what struck me most were the scenes showing how she 
struggled to fit in and find a sense of belonging in a community that 
seemed to reject her at every turn. One scene in particular has stuck with 
me. Tasha is at a local bar with some colleagues after work, trying to make 
conversation and connect with them. But instead of engaging with her, 
they talk over her, ignore her contributions to the conversation, and 
eventually leave without inviting her along. As she watches them go, tears 
well up in her eyes and she looks around the now-empty bar, feeling 
completely alone and isolated. What made this film so powerful, in my 
opinion, was the way it used depictions of race and ethnicity to shed light 
on broader societal frustrations. By focusing on one character\'s 
experience, it highlighted the systemic issues that many people of color 
face on a daily basis - things like microaggressions, implicit bias, and 
exclusion. But just when you think you know where the story is going, 
there\'s an unexpected plot twist. It turns out that Tasha isn\'t actually 
African American - she\'s Middle Eastern, but had been passing as black 
because she felt more accepted in that community than in her own. This 
revelation forces us to reevaluate everything we thought we knew about 
Tasha\'s struggles, and challenges us to consider the ways in which our 
assumptions and prejudices can blind us to the true complexities ……

7B (Top 0.10%） 7B (Top 97.95%）

## Understanding Dictionaries and Lists in Python\n\nPython is a powerful 
programming language that allows us to work with different types of data. In 
this unit, we will explore two essential data structures: dictionaries and lists. 
We will also learn how to manipulate and analyze data using these 
structures.\n\n### Dictionaries\n\nA dictionary in Python is a collection of 
key-value pairs. It is an unordered collection, meaning that the items do not 
have a specific order. Each key-value pair is called an item. The syntax for 
creating a dictionary is as follows:\n\n```python\nmy_dict = {\n    “key1”: 
“value1”,\n    “key2”: “value2”,\n    “key3”: “value3”\n}\n```\n\nYou can 
access the values in a dictionary using their corresponding 
keys:\n\n```python\nprint(my_dict[“key1”])  # Output: “value1”\n```\n\n### 
Lists\n\nA list in Python is an ordered collection of items. It is similar to an 
array in other programming languages. The syntax for creating a list is as 
follows:\n\n```python\nmy_list = [“item1”, “item2”, “item3”]\n```\n\nYou can 
access the items in a list using their index, which starts at 
0:\n\n```python\nprint(my_list[0])  # Output: “item1”\n```\n\n## Analyzing 
Data with Dictionaries and Lists\n\nNow that we have a basic understanding 
of dictionaries and lists, let\‘s explore how we can use them to analyze data. 
We will use a code snippet from a Python tutorial as an example.\n\n### The 
Code Snippet\n\nHere is the code snippet we will be 
analyzing:\n\n```python\nresult[track.name] = {\n    “cues”: firstK,  # Cues 
candidates\n    “cuesFeature”: {\n        features[j]: len([1 for t in signal.times if 
t in firstK]) / len(firstK) if len(firstK) else 0\n        for j, signal in 
enumerate(peakSignals)\n    },\n}\n\nif any(gttracks):\n    gtCues += 
gttracks[i].features[“boundaries”]\n    result[track.name][“gtCues”] = 
gttracks[i].features[“boundaries”]  # Cues annotated\n    
result[track.name][“gtCuesFeature”] = {\n        features[j]: len([\ …

In today's digital age, businesses rely heavily on complex computer networks 
to connect their operations, communicate with clients, and store vast 
amounts of data. At the heart of these networks lies the work of skilled 
networking professionals who design, implement, and maintain these critical 
systems. If you are interested in pursuing a career in this field, obtaining a 
CCNA (Cisco Certified Network Associate) certification can serve as an 
excellent starting point. In particular, gaining expertise in CCAr (Cisco Certified 
Architect) architecture can set you apart as a true leader in network design 
and strategy. Before diving into the specifics of CCAr architecture, it's 
essential to understand the foundational principles that underpin all 
networking technologies. At its core, networking involves connecting multiple 
devices—such as computers, servers, and smartphones—to enable 
communication and resource sharing. To accomplish this goal, networks 
employ various layers of hardware and software components working 
together to transmit information between nodes efficiently and securely. 
These layers follow well-defined standards and protocols, ensuring seamless 
interoperability across different vendors and platforms. As a leading provider 
of networking equipment and solutions, Cisco has established itself as a 
dominant force within the industry. With a diverse range of products catering 
to organizations of all sizes, Cisco offers numerous certifications designed to 
validate the skills and knowledge of networking professionals at every stage 
of their careers. Among them, the CCNA stands out as an ideal entry point for 
those new to the field, providing a solid foundation in networking 
fundamentals while also serving as a stepping stone toward more advanced 
credentials like the CCAr. Obtaining a CCNA certification requires passing a 
single exam, known as …..

Figure 15: The cases of AttentionInfluence in Cosmopeida-V2 domain.

N CASES OF ATTENTIONINFLUENCE BASED ON 1.3B AND 7B MODELS

As shown in Figure 15, Figure 16, Figure 17, and Figure 18, we present some cases with different
score levels.
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Excel is a popular tool for data analysis, and its usage has increased 
significantly in recent years. It provides numerous features that make 
managing data easier. One such feature is the ‘Save As’ function that helps 
users create a copy of an existing Excel file with a new name and file format. 
In this article, we will discuss the ‘Save As’ function and the keyboard shortcut 
used for it.\nWhat is the ‘Save As’ function in Excel?\nThe ‘Save As’ function 
in Excel allows users to create a copy of an existing file and save it with a new 
name or file format. This function is useful when you want to make a copy of 
an Excel file as a backup, create a new version of the file, or save the file in a 
different format that is compatible with other applications or systems.\nWhy
is the ‘Save As’ function important?\nThe ‘Save As’ function is essential 
because it helps users avoid overwriting their original files accidentally. When 
you save an Excel file using the ‘Save As’ function, a new copy of the file is 
created, and the original file remains unchanged. This way, you can always 
revert to the original file if necessary.\nWhat is the keyboard shortcut for the 
‘Save As’ function in Excel?\nThe keyboard shortcut for the ‘Save As’ function 
in Excel is ‘F12’. Pressing the ‘F12’ key brings up the ‘Save As’ dialog box, 
where you can choose the location, name, and file format for the new copy of 
the file.\nHow to use the ‘Save As’ function using the keyboard 
shortcut?\nUsing the ‘Save As’ function using the keyboard shortcut is easy. 
Follow the steps below:\n- Open the Excel file you want to save as a new 
copy\n- Press ‘F12’ on your keyboard\n- The ‘Save As’ dialog box will 
appear\n- Choose the location where you want to save the new copy of the 
file\n- Enter a new name for the file in the ‘File name’ field\n- Select the file 
format you want to use from the ‘Save as type’ dropdown menu\n- Click the 
‘Save’ button\nWhat are the benefits of using the keyboard shortcut…..

- Nano Fish Limnophila hippuridoides is originally from Asia and the 
stalks grow to be 20-50 cm high and 6-10 cm wide – often with 
beautiful outwards crooked shoot tips. A simple plant, able to adjust 
to various conditions. The leaves are green with a red-violet 
underside, and the whole leaf turns red-violet under ideal growth 
conditions. A vigorously growing plant that willingly creates new, 
solid shoots from the base. Thinning of the oldest and longest 
shoots is recommended, in order to make room for such new shoots. 
Replant the cut-offs, they will soon grow new roots. If either stem or 
leaves are damaged, a strong scent is emitted. Growth rate: 
Medium Height: 20 - 30+ Light demand: Medium CO2 : Low
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An eye-opening look at the life and legacy of Jackie Robinson, the man who 
broke the color barrier in Major League Baseball and became an American 
hero. Baseball, basketball, football — no matter the game, Jackie Robinson 
excelled. His talents would have easily landed another man a career in pro 
sports, but such opportunities were closed to athletes like Jackie for one 
reason: his skin was the wrong color. Settling for playing baseball in the Negro 
Leagues, Jackie chafed at the inability to prove himself where it mattered 
most: the major leagues. Then in 1946, Branch Rickey, manager of the 
Brooklyn Dodgers, recruited Jackie Robinson. Jackie faced cruel and 
sometimes violent hatred and discrimination, but he proved himself again 
and again, exhibiting courage, determination, restraint, and a phenomenal 
ability to play the game. In this compelling biography, award-winning author 
Doreen Rappaport chronicles the extraordinary life of Jackie Robinson and 
how his achievements won over — and changed — a segregated nation. 
Potentially Sensitive Areas: Violence, Racism and racist language Booklist 
(September 1, 2017 (Vol. 114, No. 1)) Grades 5-7. Early on, young Jackie 
Robinson was taught to fight back when faced with racial slurs and prejudice, 
and he did, first as one of the few black kids in his neighborhood and later as 
one of the few black officers on his army base. But those injustices and the 
indignities he endured while playing for Negro league baseball were dwarfed 
by the hostility shown by many white players and fans when he broke the 
color barrier in Major League Baseball. While children’s …..

Understanding the Three Common Causes of Sensor Failure\nIn today’s 
technologically advanced world, sensors play a crucial role in various 
industries, from automotive to healthcare. These devices are designed to 
detect and measure physical properties, enabling machines and systems to 
operate efficiently. However, like any other piece of technology, sensors are 
not immune to failure. Understanding the common causes behind sensor 
failure is essential for businesses and individuals relying on these devices to 
ensure smooth operations and prevent costly disruptions.\nOne of the 
primary causes of sensor failure is environmental factors. Sensors are often 
exposed to harsh conditions, such as extreme temperatures, humidity, or 
corrosive substances. Over time, these factors can degrade the sensor’s 
components, leading to inaccurate readings or complete malfunction. For 
instance, in industrial settings where sensors are exposed to high 
temperatures or corrosive chemicals, the lifespan of the sensor may be 
significantly reduced. It is crucial to select sensors that are specifically 
designed to withstand the environmental conditions they will be exposed to, 
ensuring their longevity and reliability.\nAnother common cause of sensor 
failure is mechanical stress. Sensors are often subjected to physical forces, 
such as vibrations, shocks, or excessive pressure. These external forces can 
damage the delicate internal components of the sensor, resulting in 
inaccurate measurements or complete failure. For example, in automotive 
applications, sensors may be exposed to constant vibrations or sudden 
impacts, which can lead to premature failure if not properly protected. 
Employing appropriate mounting techniques and using protective measures, 
such as shock absorbers or vibration dampeners, can help mitigate the risk of 
mechanical stress-induced sensor failure.\nElectrical issues also contribute 
significantly to sensor failure. Power surges, voltage spikes,  …..

Figure 16: The cases of AttentionInfluence in FineWeb-Edu-dedup domain.
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The Associative Property of Addition is one of four basic properties that 
students will learn in early addition lessons and use later in multiplication 
and pre-algebra. Remembering the formula for commutative property of 
addition is a + b = b + a and you are good to go! The commutative property 
is a fundamental building block of math, but it only works for addition and 
multiplication. By non-commutative, we mean the switching of the order 
will give different results. Example 1: 2 + 4 = 4 + 2 = 6 . What is the 
Commutative Property? The mathematical operations, subtraction and 
division are the two non-commutative operations. You can find them all at 
the bottom of this page. The commutative property for any two numbers, X 
and Y, is X # Y = Y # X where # can stand for addition or multiplication. The 
commutative property of addition essentially states that no matter what 
order the addends are in within a particular number sentence, the sums will 
be the same. The product of any number and 0 is 0 For example: 874 × 0 = 
0 Identity Property of Addition & … Subtraction (Not Commutative) 
Subtraction is probably an example that you know, intuitively, is not 
commutative . 16y + 0 = 16y Associate Property of Addition Zero Property 
of Multiplication Commutative Property of Addition Identity Property of 
Addition 2. d • r = r • d Commutative Property of Multiplication Identity 
Property of . This rule just says that, when you are doing addition, it 
doesn\'t matter which order the numbers are in. Just enter the inputs, the 
commutative property of addition calculator will update you the result. 
Addition and multiplication are both commutative. The properties include 
the commutative, identity, and distributive properties--all of which I cover 
in other math lessons. The commutative property of addition also applies to 
variables similarly. Commutative Property Of Addition: ……

Article  Impact Of Fading Correlation And Unequal Branch Gains On 
The Capacity Of Diversity Systems Dept. of Electr. Eng., California 
Inst. of Technol., Pasadena, CA Vehicular Technology Conference, 
1988, IEEE 38th 11/2001; DOI:10.1109/VETEC.1999.778436 In 
proceeding of: Vehicular Technology Conference, 1999 IEEE 49th, 
Volume: 3 Source: IEEE Xplore ABSTRACT We investigate the effect 
of fading correlation and branch gain imbalance on the Shannon 
capacity of diversity systems in conjunction with adaptive 
transmission techniques. This capacity provides the theoretical 
upper bound for the spectral efficiency of adaptive transmission 
schemes. We obtain closed-form expressions for this capacity for 
Rayleigh fading channels under four adaptation policies: optimal 
power and rate adaptation (opra), optimal rate adaptation with 
constant power (ora), truncated channel inversion with fixed rate 
(tifr), and complete channel inversion with fixed rate (cifr). We give 
numerical examples illustrating the main trends and offer 
comparisons on the behavior of opra, ora, tifr, and cifr under 
variation of different parameters. 1. 0 0 0 Bookmarks 22 Views • 
Source Article: Capacity of Rayleigh fading channels under different 
adaptive transmission and diversity-combining techniques [hide 
abstract] IEEE Transactions on Vehicular Technology 08/1999; · 2.06 
Impact Factor • Source   Article: Capacity of fading channels with 
channel side information [hide abstract] ABSTRACT: …
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## Sunday, February 8, 2009\n\n### 6. How Euler Derived the Continuity 
Equation\n\n[Previous Article: The Reynolds Transport Theorem]\n\nI
thought that it would be interesting to present Euler’s derivation of the 
continuity equation for incompressible flows. Although d’Alembert, in 1752, 
had already presented an equivalent equation in his Essai d’une nouvelle 
théorie de la résistance des fluides (which he had already submitted to the 
Academy of Sciences of Berlin in 1749), the one proposed by Euler in 1756 
(written 1752) is considered to be the most rigorous.\n\nEuler’s contribution 
to Fluid Mechanics goes beyond what a scientist may imagine, and was 
mostly due to four manuscripts published between 1752 and 1755. These 
are\n\n1. Principia Motus Fluidorum (1756) [pdf]\n2. Principes généraux de 
l’état d’équilibre des fluides (1755) [pdf]\n3. Principes généraux du 
mouvement des fluides (1755) [pdf]\n4. Continuation des recherches sur la 
théorie de mouvement des fluides (1755) [pdf]\n\nThe final thing I would like 
to point out is that Euler’s genius lies partly in his ability to synthesize and 
introduce world class notation. In this way, he was able to supersede all his 
predecessors.\n\nEuler starts by saying:\n\n“… I shall posit that the fluid 
cannot be compressed into a smaller space, and its continuity cannot be 
interrupted. I stipulate without qualification that, in the course of the motion 
within the fluid, no empty space is left by the fluid, but it always maintains 
continuity in this motion…” [Paragraph 6, Principia Motus Fluidorum, 
Translated by Enlin Pan]\n\nHe then argues that if one considers any part of a 
fluid of this type (i.e. incompressible), then each individual particles fill the 
same amount of space as they move around. He then infers that if this 
happens for particles, it should happen to the fluid as a whole (which was his 
assumption of incompressibility). One is now able to consider an arbitrary 
fluid element and then track its instantaneous changes ”to determine ……

Gitlab-runner (docker-machine) concurency and request-concurency? Can 
anyone tell me how to set on gitlab-runner ( docker-machine ) parameters: –
limit –request-concurrency –machine-idle-nodes concurency (cannot be set 
from CLI) ? Is --request-concurrency same as concurency parm but just for 
docker-machine executor ? I would like to have 2 idle nodes, 3 parallel jobs 
per node and max limit of nodes 10. I am getting WARN message: WARNING: 
Specified limit (10) larger then current concurrent limit (1). Concurrent limit 
will not be enlarged. Thanks EDIT: concurency should be number of cores + 1 ? 
and also concurency=request-concurrency ? 

Figure 17: The cases of AttentionInfluence in OpenWebMath domain.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

1.3B (Top 0.10%） 1.3B (Top 97.95% ）

import pprint\n\nboard = [\n    [7,8,0,4,0,0,1,2,0],\n    [6,0,0,0,7,5,0,0,9],\n    
[0,0,0,6,0,1,0,7,8],\n    [0,0,7,0,4,0,2,6,0],\n    [0,0,1,0,5,0,9,3,0],\n    
[9,0,4,0,6,0,0,0,5],\n    [0,7,0,3,0,0,0,1,2],\n    [1,2,0,0,0,7,4,0,0],\n    
[0,4,9,2,0,6,0,0,7]\n]\n\ndef solve(brd):\n    """\n    Solves a sudoku board 
using backtracking\n    :param brd: 2d list of ints\n    :return: solution\n    
"""\n    find = find_empty(brd)\n    if not find:\n        return True\n    else:\n        
row, col = find\n\n    for i in range(1,10):\n        if valid(brd, i, (row, col)):\n            
brd[row][col] = i\n\n            if solve(brd):\n                return True\n\n            
brd[row][col] = 0\n\n    return False\n\n\ndef valid(brd, num, pos):\n    # 
Check row\n    for i in range(len(brd[0])):\n        if brd[pos[0]][i] == num and 
pos[1] != i:\n            return False\n\n    # Check column\n    for i in 
range(len(brd)):\n        if brd[i][pos[1]] == num and pos[0] != i:\n            
return False\n\n    # Check box\n    box_x = pos[1] // 3\n    box_y = pos[0] // 
3\n\n    for i in range(box_y*3, box_y*3 + 3):\n        for j in range(box_x * 3, 
box_x*3 + 3):\n            if brd[i][j] == num and (i,j) != pos:\n                return 
False\n\n    return True\ndef print_board(brd):\n    for i in 
range(len(brd)):\n        if i %3 == 0 and i !=0:\n            print("---------------------
")\n\n        for j in range(len(brd[0])):\n            if j % 3 == 0 and j != 0:\n                
print("|", end="")\n\n            if j == 8:\n                print(brd[i][j])\n            
else:\n                print(str(brd[i][j]) + " " , end="")\n\ndef find_empty(brd):\n    
for i in range(len(brd)):\n        for j in range(len(brd[0])):\n            if brd[i][j] 
== 0:\n                return (i, j)               \n    return None\n

Bitcoin mining is a process of verifying transactions and recording them on 
the blockchain ledger. The blockchain is a decentralized public ledger that 
keeps a record of all Bitcoin transactions. Mining involves solving complex 
mathematical problems using specialized software and hardware. Explore 
qumasai.io for further information.

The Bitcoin network rewards miners for successfully verifying transactions by 
giving them newly created Bitcoins. The mining process involves adding a 
new block of transactions to the blockchain every 10 minutes. Miners 
compete against each other to add the next block to the chain.

To participate in Bitcoin mining, one needs to have a powerful hardware 
setup and specialized mining software. The hardware required is called an 
ASIC miner, which is specially designed to solve the mathematical problems 
required to add a block to the blockchain.

7B (Top 0.10%） 7B (Top 97.95%）

#URL: https://leetcode.com/explore/learn/card/hash-table/187/conclusion-
hash-table/1134/\n#Description\n"""\nGiven four integer arrays nums1, 
nums2, nums3, and nums4 all of length n, return the number of \ntuples (i, j, 
k, l) such that:\n0 <= i, j, k, l < n\nnums1[i] + nums2[j] + nums3[k] + nums4[l] 
== 0\n\n\nExample 1:\n\nInput: nums1 = [1,2], nums2 = [-2,-1], nums3 = [-
1,2], nums4 = [0,2]\nOutput: 2\nExplanation:\nThe two tuples are:\n1. (0, 0, 
0, 1) -> nums1[0] + nums2[0] + nums3[0] + nums4[1] = 1 + (-2) + (-1) + 2 = 
0\n2. (1, 1, 0, 0) -> nums1[1] + nums2[1] + nums3[0] + nums4[0] = 2 + (-1) + (-
1) + 0 = 0\n\n\nExample 2:\n\nInput: nums1 = [0], nums2 = [0], nums3 = [0], 
nums4 = [0]\nOutput: 1\n\n\nConstraints:\n\nn == nums1.length\nn == 
nums2.length\nn == nums3.length\nn == nums4.length\n1 <= n <= 200\n-
228 <= nums1[i], nums2[i], nums3[i], nums4[i] <= 228\n"""\ndef
fillSum(nums1, nums2):\n    sz = len(nums1)\n    sum12 = {}\n    for i in 
range(sz):\n        for j in range(sz):\n            sm = nums1[i] + nums2[j]\n            if 
sm in sum12:\n                sum12[sm].append((i, j))\n            else:\n                
sum12[sm] = [(i, j)]\n    return sum12\n\ndef fourSumCount(nums1, nums2, 
nums3, nums4):\n    sum12 = fillSum(nums1, nums2)\n    sum34 = 
fillSum(nums3, nums4)\n    count = 0\n    for sm in sum12:\n        if -sm in 
sum34:\n            count += len(sum12[sm]) * len(sum34[-sm])\n    return count

# --*--coding:utf-8# 
#Author:cnn\nfrom time import sleep\nimport
Multiprocessing

g_num = 0\

# \nmutex = multiprocessing.Lock()
# \nclass
MutiProcess(multiprocessing.Process):
def print_name(self, num):
global g_numfor i in range(0, num + 1):
# mutex.acquire()
g_num += imutex.release()
print(g_num)
sleep(1)
def run(self):
self.print_name(100)
if __name__ == '__main__’:

mu1 = MutiProcess()
mu2 = MutiProcess()
mu1.start()
mu2.start()
# --*--coding:utf-8

Figure 18: The cases of AttentionInfluence in Python-Edu domain.
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Figure 19: The cloud maps of the data selected by AttentionInfluence and FineWeb-Edu Classifier,
respectively. The left part is the cloud map of FineWeb-Edu Classifier, the right part is that of
AttentionInfluence.

O HIGH FREQUENCY WORDS

Ranking (%) Static Method Data Source

FineWeb-Edu-dedup Cosmopedia-v2 Python-Edu OpenWebMath

10 TF 0.84 0.73 0.29 0.57
TF-IDF 0.82 0.72 0.38 0.52

20 TF 0.88 0.81 0.41 0.67
TF-IDF 0.87 0.80 0.43 0.63

50 TF 0.95 0.91 0.67 0.79
TF-IDF 0.92 0.90 0.66 0.78

Table 13: Word overlap by ranking threshold and frequency-based statistical method
We separately select the top 10%, 20%, and 50% of samples ranked by AttentionInfluence and the
FineWeb-Edu classifier, and compute the overlap of high-frequency words using multiple statistical
approaches.

As shown in Table 13, we derive several key insights: 1) AttentionInfluence exhibits a high degree
of overlap with the FineWeb-Edu Classifier, highlighting the reliability of the samples selected
by AttentionInfluence. 2) AttentionInfluence and the FineWeb-Edu Classifier demonstrate
a degree of complementarity. We observe notable domain-specific variations. Specifically, in
the FineWeb-Edu-dedup and Cosmopedia-v2 domains, the overlap exceeds 70%, whereas in the
Python-Edu and OpenWebMath domains, it falls below 60%. To further examine the differences
between AttentionInfluence and FineWeb-Edu Classifier in specific domains, we sample representa-
tive examples from the Python-Edu and OpenWebMath domains, as shown in Appendix L. These
cases reveal that although the two methods display different preferences across domains, both yield
reasonable selections."

As shown in Table 12 of Appendix O, AttentionInfluence places greater emphasis on method-
related terminology, while FineWeb-Edu Classifier is more sensitive to numerical expressions.
We identify two distinctive high-frequency terms: “19th” from subset selected by FineWeb-Edu
Classifier and “sklearn” from AttentionInfluence’s subset. We then retrieve representative documents
from the original corpus containing these terms. The sample containing “19th” is related to historical
topics, whereas the one with “sklearn” discusses K-Nearest Neighbors Classifier and Hyperparameter
Tuning. This suggests that AttentionInfluence prefers samples containing hands-on coding or
procedural mathematical reasoning.

As illustrated in Figure 19, we visualize the respective word clouds of AttentionInfluence-1.3B and
the FineWeb-Edu Classifier after removing overlapping high-frequency words in the Cosmopeida-
V2 domain. The resulting word clouds clearly highlight their distinct focal points, indicating a
complementary relationship between the two models. To gain deeper insights, we further examine
representative samples corresponding to the key terms in each word cloud.
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Specific Word: sklearn Specific Word: 19th

K-Nearest Neighbors Classifier and Hyperparameter Tuning

In this chapter, we will explore the K-Nearest Neighbors (KNN) classifier, a 
fundamental machine learning algorithm, and learn how to optimize its 
performance by tuning hyperparameters. We will use Python, along with 
popular libraries such as pandas, NumPy, scikit-learn, and matplotlib.

K-Nearest Neighbors Classifier

The KNN classifier is a simple yet powerful algorithm used for both 
classification and regression tasks. It is a type of instance-based learning, …

First, let's import the necessary libraries:    
\begin{verbatim}   
import pandas as pd   
import numpy as np  
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
\end{verbatim}

Next, we will load our dataset, which is a pandas DataFrame df containing 
the columns 'cases' and 'date'. We will use only these two columns for our 
analysis: …

Chapter Title: Discovering Sacred Solo Voices in MusicImagine walking into 
a grand cathedral, dimly lit with tall stained glass windows casting colorful 
patterns on the cool stone floors. As you take a deep breath, a single voice 
fills the air, resonating off the walls and ceilings. This soloist sings sacred 
music – songs written specifically for worship services or religious 
ceremonies. Through this chapter, we'll embark on an adventure exploring 
different types of sacred solo voices in various cultures and time 
periods.Section 1: Gregorian Chant - Monks and Nuns Singing Prayers---In 
medieval Europe (around 500–1400 AD), monks and nuns created simple 
yet powerful chants called Gregorian chants. These were sung during 
Catholic Masses as they believed singing was praying twice! They used 
only one melody line, which meant everyone sang together in unison. 
Listen to an example here: 
<https://www.youtube.com/watch?v=zgYQE7jxx28>. How does it make 
you feel?Section 2: Indian Classical Music - Exploring Ragas---Let's travel 
across continents to explore India's rich tradition of classical music. Unlike 
Western music, Indian classical music focuses heavily on improvisation 
within specific rules. One popular form is called khayal, where a singer 
performs a rag (melodic framework) accompanied by a drone instrument 
like the tanpura. Over centuries, many great singers have developed 
unique styles passed down generations. Check out this captivating clip 
featuring renowned vocalist Kishori Amonkar performing a raga based on 
love.Section 3: Spirituals \& Gospel - From Slaves to Freedom Fighters---
During the dark period of slavery in America (16th-19th centuries), 
enslaved Africans preserved their heritage through secretive gatherings 
filled with song and dance. Their spirituals often contained …

Figure 20: The sample of a doc containing the specific word selected by AttentionInfluence-1.3B
(left) and FineWeb-Edu Classifier (right).
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P LIMITATIONS AND OPPORTUNITIES

While our experimental results demonstrate the effectiveness of AttentionInfluence, several important
aspects warrant further investigation. We identify five key areas for future research:

• Our current experiments demonstrate the effectiveness of AttentionInfluence up to 7B parameters
and 1,000B tokens of training budget. Extending this approach to long-horizon training and
larger-scale models requires a highly expensive computational cost, and we leave it for future
research.

• Due to limited manpower, we do not investigate the effects of selected data by AttentionInflu-
ence on the final performance of models, followed by post-training based on open-source data.
However, we have conducted supervised fine-tuning (SFT) using our in-house SFT dataset. In
this experiment, AttentionInfluence still demonstrated advantages over the baseline—this finding
further supports our subsequent hypotheses. Specifically, we hypothesize that reinforcement
learning will amplify the good effects of selected data by AttentionInfluence. Furthermore, we be-
lieve that AttentionInfluence can be adapted beyond pretraining and extended to the post-training
phase, including supervised fine-tuning (SFT) and reinforcement learning (RL), by identifying
high-impact training examples that align with model behaviors and target objectives.

• While this work focuses on selecting data from short texts, AttentionInfluence can be readily
extended to long texts to identify high-quality samples characterized by long-range dependencies.

• We conduct experiments with alternative approaches for identifying important attention heads,
such as the methods proposed by Wu et al. (2024); Fu et al. (2024), which produces a partially
overlapping yet distinct set of heads compared to ours. Training LLMs based on the data selected
by these heads achieves comparable downstream evaluation performance. More recently, Zhu
et al. (2025); Zhang et al. (2025) introduces other compatible methods that can be incorporated
into our framework.
These results demonstrate that AttentionInfluence serves as a flexible and general framework:
by defining an appropriate proxy task, one can identify task-relevant attention heads and select
associated data via masking. The entire pipeline operates without any supervision signals and is
modular by design, allowing the proxy task to be easily replaced depending on the target domain
or task. Moreover, the framework is effective even when applied to small pretrained language
models, making it practical and scalable for a wide range of data selection scenarios.
More comprehensive proxy tasks can also be designed to better capture specific types of data
within the AttentionInfluence framework, further expanding its applicability and customization
potential.
Furthermore, rather than designing specific proxy tasks, we can perform an exhaustive traversal
by systematically disabling each model head across a variety of existing benchmarks. This brute-
force approach may allow us to pinpoint key heads and discover the data that drive improvements
in model performance.

• The combined effect of multiple heads remains unknown. Moreover, this work does not involve
research on the MLP. Substantially more in-depth research endeavors are required to unearth the
more fundamental and intrinsic mechanisms underpinning language models.
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