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Abstract: Self-driving vehicles must perceive and predict the future positions of
nearby actors to avoid collisions and drive safely. A deep learning module is of-
ten responsible for this task, requiring large-scale, high-quality training datasets.
Due to high labeling costs, active learning approaches are an appealing solution
to maximizing model performance for a given labeling budget. However, despite
its appeal, there has been little scientific analysis of active learning approaches for
the perception and prediction (P&P) problem. In this work, we study active learn-
ing techniques for P&P and find that the traditional active learning formulation is
ill-suited. We thus introduce generalizations that ensure that our approach is both
cost-aware and allows for fine-grained selection of examples through partially la-
beled scenes. Extensive experiments on a real-world dataset suggest significant
improvements across perception, prediction, and downstream planning tasks.

1 Introduction

For self-driving vehicles to safely plan a route, they must perceive nearby actors and predict their
future locations. In a self-driving stack, a learned perception and prediction (P&P) model is re-
sponsible for this task, taking raw sensor data as input and producing object detections and future
predictions. These models require large-scale, high-quality training datasets due to the high dimen-
sional sensor inputs and long tail of future outcomes. While self-driving companies collect massive
amounts of data from real-world driving, annotating the data remains a major bottleneck. Further-
more, some of the data may be less interesting for model training – e.g., a prediction dataset with
many parked vehicles is less informative than one with highly interactive, moving actors. Therefore,
the choice of which examples to label is crucial to maximize performance for a given budget.

Given a particular model, we seek to determine the examples most likely to improve performance
when labeled. This problem is well-studied in the field of active learning and recent work has shown
impressive performance gains over random selection in many tasks, including image classification,
semantic segmentation and 2D object detection [1, 2, 3]. Active learning presents a promising
framework to employ in real-world self-driving development, where models can continually improve
as new batches of examples are selected iteratively for labeling (see Figure 1).

Despite the appeal of active learning, few approaches have been developed for self-driving. Sci-
entific analysis is limited to object detection [4, 5], with no approaches designed for P&P. When
applying active selection to this task, we find the traditional formulation to be ill-suited. First, while
approaches typically assume fixed labeling costs per example, annotation costs can vary drastically
as they depend on the number of actors present. Furthermore, the spatial label structure can be ex-
ploited to support partial labeling, enabling fine-grained active selection. Specifically, with small
modifications, P&P models can be trained from partial supervision. This allows the active learner to
select specific actors in a scene without requiring the remaining actors to be selected, as they may be
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Algorithm 1 Active Learning Selection
Params: K, N
Inputs: XU , X(0)

L ,M (model)
Outputs: X(N)

L ,M

1: for i ∈ 1 . . . N do
2: S(i) ← score(M, XU \X(i−1)

L )

3: Q(i) ← select top k(S(i),K)

4: X
(i+1)
L ← X

(i)
L ∪Q(i)

5: M← train(M, X
(i+1)
L )

6: end for
Figure 1: (Left) Overview of fine-grained active selection. (Right) Selection Algorithm.

uninteresting for model improvement. With these differences in mind, we introduce a fine-grained,
cost-aware selection along with specific scoring criteria for active selection in the P&P setting.

We leverage a real-world, large-scale dataset to analyze the effects of partial labeling and active
selection for P&P. First, we study models trained on partial supervision, without active selection,
and observe improved performance from sparser labeling. Next, we analyze the added benefits
of fine-grained active selection and observe significant gains compared to traditional approaches.
Further analysis shows the gains are most signifiant on rare events, translating to improvements in
downstream planning performance. All together, our analysis suggests that the dominant paradigm
of labeling entire self-driving scenes is not the most efficient use of a fixed labeling budget and that
more fine-grained active selection may be required to most effectively select examples for labeling.

2 Related Work
Perception and Prediction: While perception and prediction have traditionally been handled sep-
arately, [6, 7] introduce models to jointly perform both tasks, improving performance and efficiency.
Among the exciting progress made in both tasks over recent years, most relevant to our work are
improvements in prediction representations, allowing models to better characterize uncertainty. Ex-
amples of representations include trajectories [7, 8], probabilistic occupancy maps [9, 10], Gaussian
mixtures [11], implicit latent variable models [12], and auto-regressive models [13].

Active Learning: We focus on pool-based active learning, in which new training examples are
queried from a large, unlabeled pool [14]. One class of approaches seeks to characterize model
uncertainty, measured via model disagreement [15, 16], entropy [17, 18], a learned loss prediction
[1], or a discriminator score [19], and select examples with high uncertainty for labeling. While
often effective, uncertainty based approaches are prone to selecting a subset of similar examples
when computational constraints require large batches of examples to be selected before retraining.
This motivates diversity-based approaches [20, 21, 22, 23] which seek to find a representative subset
of the unlabeled pool. [3, 24, 25] introduce approaches which balance both uncertainty and diversity
in the selection process. Most related to our domain are [4, 5, 26, 27, 28] which study active learning
approaches for object detection. While most approaches assume fixed labeling costs per example,
[29, 30] have explored explicitly modeling individual labeling costs as part of the selection process.
Leveraging partially labeled data for fine-grained active selection has been explored in semantic
segmentation [31, 32] and more generally, in the context of structured prediction problems [33].

Dataset Selection: Many self-driving datasets select examples manually [34], randomly, or via
hardcoded rules. Argoverse describes rules-based criteria to mine interesting trajectories for predic-
tion [35]. More recently, [36] proposed a set of complexity measures for dataset selection. Finally,
[37] proposed tagging attributes of self-driving scenes, enabling retrieval for dataset curation.

3 Active Learning for P&P
Given the high labeling costs of P&P datasets, budgets can be spent more efficiently by intelligently
selecting examples for labeling. Active learning offers a promising solution, selecting examples
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believed most likely to improve model performance. In this section, we review traditional pool-
based active learning, where examples are iteratively selected from an unlabeled pool to build a
high-quality labeled dataset. Then, we address shortcomings in the P&P setting by introducing a
new paradigm which is both cost-aware and enables fine-grained selection through partially labeled
scenes, providing the flexibility to ensure budgets are spent effectively. Finally, we provide concrete
selection criteria used within our framework to optimize the model’s performance.

3.1 Traditional Active Learning

Self-driving companies can collect large-scale unlabeled real-world data when operating their vehi-
cles. Our goal is to select the best subset to label to improve model performance. We assume access
to a large, unlabeled pool of examples, XU , and an initial subset of labeled examples, X(0)

L . Each
example x ∈ XU represents an input to our model f(x) and if selected, a labeling oracle returns the
ground truth supervision, y = L(x). In the P&P setting, inputs x represent raw sensor observations
and HD Maps, and labels y represent actor bounding boxes at the current timestep and for the pre-
diction horizon of T seconds. In each active learning iteration, we select a subset from the remaining
unlabeled examples, Q(i) ⊂ XU \ X(i−1)

L , query the labeling oracle, and add the examples to our
labeled set. With each iteration, the model is retrained or fine-tuned with the latest dataset.

Traditionally, the active learner will select a fixed number of examples at each iteration, |Q(i)| = K.
This implicitly assumes that each example x ∈ XU can be labeled for the same cost, an assumption
clearly violated in the P&P setting, which we will relax in the next section. While a variety of
approaches have been studied for active selection, we focus on methods which produce a scalar score
for each example, S(x) ∈ R. Scores represent some notion of informativeness where highly scored
examples are believed to be most likely to improve model performance. For example, measures
of model uncertainty, such as entropy, are commonly used (see Section 3.3 for concrete scoring
functions for P&P). As different models may benefit from different types of examples, most scoring
approaches depend on the model’s current state. After scores have been computed for the remaining
unlabeled examples, the top K examples can be selected for labeling. This process repeats for N
active learning iterations and is summarized in Algorithm 1.

3.2 Fine-Grained Cost-Aware Active Learning

In this section, we generalize two aspects critical to the P&P setting, allowing for variable labeling
costs and fine-grained selection through partial supervision.

Cost-Aware Active Learning: As a self-driving vehicle operates, the surrounding environment
will change, leading to scenes with different labeling costs. Crowded scenes can contain hundreds
of actors, which are each traditionally labeled with a precise bounding box. Sparser scenes, on the
other hand, can be labeled with little manual effort. To account for these differences, we explicitly
model the cost to label each example, C(x). At each iteration, rather than select a fixedK examples,
the learner is instead given a fixed budget B, which cannot be exceeded,

∑
x∈Q(i) C(x) ≤ B.

This formulation is a generalization of the previous setting, which can be recovered by setting
C(x) = 1 for all examples and B = K. In practice, labeling cost for P&P examples can be
accurately modeled as a linear function of the number of actors in the scene as most annotation time
is spent drawing detailed bounding boxes for each actor. This new formulation requires modifica-
tions to our selection algorithm, since high scoring examples S(x) may also have high costs C(x).
Therefore, rather than sorting by score, we can select examples with the highest value, V (x) = S(x)

C(x) .

Since the cost of labeling a region is unknown before labeling, we approximate it using the number
of detections after non-maximum suppression (NMS) [38]. After labeling, the true cost is known,
and active selection can continue iteratively until the budget is reached. Since examples in the P&P
setting represent large scenes, scores S(x) and costs C(x) can vary significantly as scenes can have
few to many actors, each contributing to the total score and cost. As a consequence, coarse-grained
scoring will be suboptimal as scenes may contain regions with high score and low cost (e.g., a single
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car performing a rare U-Turn) and other regions with low score and high cost (e.g., a parking lot
filled with many static vehicles). This motivates the need for more fine-grained scoring and selection.
Next, we describe modifications to support partially labeled scenes, which will enable fine-grained
selection for better performance in the cost-aware active learning setting.

Partially Labeled Scenes: We generalize the labeling process to allow for partial labeling. Along
with the added flexibility, this setting is also realistic in practice. Even as entire scenes are labeled to-
day, annotation platforms often decompose work into subtasks, which can be more easily distributed
and validated across a labeling team. As a simple extension, platforms could support querying labels
for only particular regions. To support partial labels, we redefine an example xR as the scene aug-
mented with a labeling regionR, xR = (x, R). Given the set of labels for the entire scene y = L(x)
and a region R, each actor’s bounding box label yi will either be fully contained in R, completely
outside of R, or partially inside of R. For simplicity, we assume that if any part of the bounding box
yi of an actor is inside R then it will be provided as a label. In practice, this translates to labelers
annotating all actors, even those that are only partially visible in the labeling region. More formally,
the labeling oracle returns labels for an example xR, L(xR) = {yi : yi ∈ R and yi ∈ L(x)}.

Training from Partial Supervision: We adapt training to support partial supervision by applying
the loss only on the labeled region, R. Importantly, we do not alter the network input x, since we
do not want to bias the network by changing input statistics. Therefore, the forward pass remains
unchanged, ŷ = f(x). To compute the loss, we only consider the labels that we have received in R,

L(y, ŷ, R) = `B(R) +
∑
yi∈R

`P (yi, ŷi) . (1)

Here, `P (·, ·) represents traditional multi-task perception and prediction losses applied over the pos-
itive examples in R and `B(R) represents a “background” loss which encourages the network not
to output detections for negative regions in R. For example, in our experiments, `P includes a prob-
abilistic prediction loss, a bounding box regression loss and cross-entropy on positive examples,
whereas `B(R) represents the hard negative mining loss, sampling only negative anchors from R.

Fine-Grained Selection: Without restrictions on R, there are infinite regions to consider for a
given scene. Therefore, in order to efficiently score and select regions for labeling, we consider the
set obtained by discretizing the entire scene into a rectangular grid. Specifically, we divide each
example x into HW non-overlapping regions, xR = (x, Rh,w). By setting H = W = 1, we
obtain a single region for each scene and recover the original formulation. As H and W increase,
candidate regions become smaller, providing the learner more fine-grained precision for selection.
Most steps of the selection process can remain unchanged. Scoring functions now operate over
examples augmented with regions, S(xR) returning a score that only considers network predictions
in R. Similarly, only the cost of labeling the queried region C(xR) is incurred when selecting xR.

As regions sizes shrink, we observe that the active learner is more likely to select a large number of
scenes, each labeled with very sparse supervision. While this dataset would contain many interest-
ing actors, we also find this unconstrained selection results in significantly longer training times as
examples are less densely labeled. Additionally, we observe training instabilities due to the imbal-
ances between the amount of supervision available for each example. To alleviate these issues, we
introduce a sparsity regularizer, which requires that the active learner select a minimum number of
positive examplesM for any selected scene. Therefore, letting P (xR) represent the number of posi-
tive examples in an example, our new formulation can be summarized by the following optimization
problem solved by the learner at each iteration,

max
Q(i)

∑
xR∈Q(i)

S(xR) s.t.
∑

xR∈Q(i)

C(xR) ≤ B and P (xR) ≥M ∀ xR ∈ Q(i) . (2)

We solve this optimization greedily by first selecting the highest scoring scene remaining, then
selecting the highest regions in the scene until at least M actors are labeled. We continue selecting
new scenes until the budget is reached.
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Figure 2: (Left) P&P performance when trained on partial labels at varying densities, r. (Right)
Performance of various selection approaches over N = 5 active learning iterations.

3.3 Selection Criteria

Our fine-grained, cost-aware active learning formulation introduced above generally supports any
approach which provides an informativeness score S(xR) per example. In this work, we focus
on uncertainty-based approaches, an extremely common active learning paradigm based on the as-
sumption that training on uncertain examples are most likely to improve future performance. As this
approach depends on a model’s characterization of uncertainty, we first describe our probabilistic
P&P model, followed by possible uncertainty-measures that can be used for scoring.

Model: Following [6], we jointly train a model for both perception and prediction from LiDAR
and HD map inputs. A model which naturally characterizes uncertainty over predictions is desirable,
as these uncertainty estimates provide a useful measure of informativeness for scoring. Therefore,
we leverage the output representation of [11], using a mixture ofK Gaussians to represent the distri-
bution of each actor’s future positions. For simplicity, independence is assumed between timesteps
of the prediction horizon. Thus the likelihood of a particular actor trajectory, yi, can be written as,

p(yi) =

K∑
k=1

πk

T∏
t=1

N
(
yi;µ

t
k,Σ

t
k

)
, (3)

where N is the pdf of a 2D multivariate Gaussian with parameters µtk, Σt
k, and πk represent Gaus-

sian mixture weights. These parameters, for each detected actor, are predicted by a deep neural
network trained with negative log likelihood (see Section 4 for more details). With knowledge of
the model, we now introduce measures of uncertainty to use as selection criteria. Due to the multi-
task nature of the task, we present separate selection criteria for the detection and prediction task. In
practice, a mix of both can be used to ensure performance improves across both tasks.

Detection Entropy: We focus on characterizing the uncertainty over the model’s classification
predictions for each anchor. For classification tasks, the uncertainty is typically estimated by cal-
culating the entropy of the model’s predicted probabilities. Given anchors a ∈ A with associated
probabilities pa, the entropy of the predictions are given by,

HD(A) = −
∑
a∈A

pa log pa + (1− pa) log(1− pa) . (4)

To score regions, we assume independence between anchors and sum the entropies of anchors in R.

Prediction Entropy: Computing prediction entropy naturally depends on the model’s output rep-
resentation. Our model outputs a Gaussian mixture for each predicted actor. Unfortunately, there
is no known closed form solution to computing this distribution’s entropy [39]. Therefore, we are
required to estimate the entropy via approximations. We explored various approximations, including
a sample-based monte-carlo estimate, but all performed similarly to or worse than an approximation
via the entropy of the discrete categorical distribution induced by the mixture weights πk,

HP (yi) = −
∑
πk

πk log πk . (5)

Intuitively, this approximation is well-suited to capture cases where the model is uncertain between
multiple possible modes, which is likely representative of the true entropy of distribution. We use
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Prediction (meanADE) ↓ Downstream Planning
Selection Straight Left Right Stationary Collision ↓ L2 ↓ Lat. acc. ↓ Jerk ↓ Progress ↑

(m) (m) (m) (m) (%) (m) (m / s2) (m / s3) (m)

Random Scenes 2.89 5.31 5.68 0.22 5.02 5.89 2.80 2.67 33.5
Random Regions 2.46 4.82 4.96 0.20 5.07 5.71 2.70 2.47 33.6

Core-Set 2.45 4.71 5.01 0.21 5.14 5.72 2.65 2.45 33.6
LearnLoss 2.46 4.74 4.99 0.21 5.15 5.74 2.68 2.47 33.6

Coarse-Grained 2.44 4.79 5.03 0.22 5.17 5.71 2.67 2.44 33.8
Fine-Grained 2.29 4.52 4.91 0.21 4.63 5.56 2.62 2.38 33.7

Table 1: (Left) Prediction Performance By High Level Action (Right) Planning Performance.

this approximation due to its simplicity and computational efficiency while providing similar per-
formance. Finally, we assume independence and sum the actor entropies within each region.

4 Experiments
In this section, we analyze the effects of partial labeling and fine-grained active selection. First,
we explore partial labeling independent of active selection. Next, we explore the improvements
provided by active selection for prediction. We find that a simple prediction entropy combined with
fine-grained active selection outperforms various traditional scene-based approaches. More detailed
analysis shows that fine-grained selection enables the learner to better oversample labels exhibiting
complex driving behaviors, resulting in better performance on these challenging behaviors in the
test-set. In practice, we are most interested in the effects of these improvements on the downstream
motion planning task, where we find significant improvements across most metrics. Finally, we
observe similar improvements for perception when using detection entropy as the selection criterion.

Dataset: We leverage a real-world large-scale dataset collected across multiple cities in North
America. To simulate the active learning setting, we follow standard practice in active learning
research and treat the large labeled dataset as an unlabeled pool. Active learning approaches select
from this pool containing 100K scenes, with roughly 2 million labels. For each scene, we have
access to LiDAR sweeps recorded at 10Hz with a localized HD map given as input to the model.
For evaluation, we use the standard metrics of mAP@0.7 for detection and meanADE for prediction.

Implementation Details: For model implementation, we follow the exact details of the Gaussian
mixture baseline from [12], an implementation of MTP [11] for the joint perception and prediction
setting. To support partial labeling, we find it is necessary to use sum instead of mean to reduce
losses in a batch, ensuring actors in less densely labeled scenes are not up-weighted relative to
those in more densely labeled scenes. All models are trained for 50 epochs, using budgeted training
[40] for the learning rate schedule. We use H = W = 20 to discretize the entire scene into 400
rectangular regions for scoring and selection. Finally, for sparsity regularization, we set M = 5.

4.1 P&P from Partial Supervision

To test the effects of partial labeling, we randomly select labels at varying levels of ground-truth
density per scene. To ensure a fair comparison, the total labeling budget is fixed across densities.
Specifically, let r be the labeling density. When r = 1, we recover the traditional fully labeled
setting. When r = 1

2 , we first sample scenes randomly and then sample regions from half of each
scene, providing labels only for selected regions. Notice that since we fix the labeling budget,
selecting at lower densities r, will result in more scenes. Figure 2 shows the effect of partial labeling
on P&P performance. Across all dataset sizes, we observe improved performance with lower density
datasets. Benefits appear to saturate at r = 1

4 , as the sparser labeling density r = 1
6 does not provide

further improvements. Performance gains can be explained by the fact that more sparsely labeled
datasets naturally include supervision from more scenes, improving the model’s ability to generalize.
Our results suggest adopting sparse labeling to optimize P&P performance under a fixed labeling
budget rather than label scenes entirely. However, we note that in practice there is a tradeoff between
labeling at lower densities and model training times, as datasets with less dense supervision must be
trained for more iterations. We explore this further in our sparsity regularization experiments.
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Figure 3: Qualitative Examples: Labels in regions selected by fine-grained selection shown in red.
Selected regions tend to have moving vehicles performing interesting actions (e.g. U-Turns).

4.2 Fine-Grained Active Selection for Prediction

Experimental Setup: In this experiment, we study active learning approaches for improved pre-
diction. For each method, we sample an initial labeled setX(0)

L of 40K vehicles fromXU . To ensure
that final datasets contain scenes with similar density of supervision, the initial data for fine-grained
methods are partially labeled scenes, whereas coarse-grained approaches sample full scenes. For
fair comparison, we fix the labeling budget at each active learning iteration. Specifically, for each of
the N = 5 active learning iterations, the learner is given a budget of B = 20K vehicles. After each
iteration, the model is re-trained on its current set of labels and evaluated on a seperate held-out test
set. The test-set is held constant across all approaches and contains traditional fully labeled scenes.

Additional Baselines: We compare fine-grained active selection to full scenes selected randomly
(Random Scenes), partially labeled scenes at density r = 1

4 selected randomly (Random Regions),
full scenes selected by prediction entropy (Coarse-Grained), and two additional active learning
baselines adapted to the P&P setting. The first is a recent uncertainty-based approach which learns
to predict the loss of unlabeled examples, which we refer to as LearnLoss [1]. The second is the
common diversity-based approach of Core-Set selection [21]. See the supplementary for details.

Prediction Performance: Results are shown in Figure 2. All active selection techniques offer
significant improvements over random selection. Interestingly, despite large differences in the se-
lection criteria (e.g., uncertainty-based vs. diversity-based), scene-based approaches achieve similar
performance, indicating that gains may be saturated due to the inflexibility of selecting entire scenes.
Surprisingly, simply labeling random regions appears to perform better than or similar to many of
the coarse-grained active learning approaches. Finally, fine-grained selection offers the best per-
formance. While the improvements may appear relatively small, we find consistent results across
random seeds due to the large dataset sizes. Additionally, aggregate prediction metrics are aver-
aged over more than 1M actors in the test-set and may hide large differences between the specific
behaviors of the prediction models, calling for more detailed analysis.

Performance By High Level Action: In Table 1, we break down the prediction performance by
action: driving straight, turning left, turning right, and stationary. We notice that differences between
selection algorithms become more apparent across actions associated with more difficult predictions
(i.e., all non-stationary actions). These results are explained by the fact that fine-grained entropy
selects more unpredictable moving actors compared to other selection approaches.

Planning Performance: Following [12], we evaluate downstream performance on motion plan-
ning, computing the collision rate, L2 error, lateral acceleration, jerk, and progress of a planner
[41] given the predictions from each trained model. The results in Table 1 show that fine-grained
selection leads to a significant reduction in collisions and also outperforms all baselines across the
remaining planning metrics, except progress, for which the differences are not significant (an obser-
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Figure 4: (Left) The effect of sparsity regularization on performance (top) and training time (bot-
tom). (Right) Multi-class detection performance for N = 7 iterations of Active Learning.

vation consistent with [12]). The results demonstrate that the challenging training examples selected
by active selection leads to improved planning, which is ultimately most important for self-driving.

Qualitative Examples and Selection Statistics: Examples of regions selected by fine-grained
selection, seen in Figure 3, tend to include vehicle labels with moving actors, actors at intersections,
or actors performing odd maneuvers (e.g., U-Turn in the top-right example). Non-moving actors are
rarely selected. In the supplementary materials, we plot histograms of label statistics selected by
each method after the final iteration of active learning. As expected, we notice that active-selection
methods tend to sample more non-stationary vehicles and vehicles further from the SDV. This effect
is more apparent for fine-grained selection methods due to the additional flexibility provided by the
partially labeled setup. Please see the supplementary for more detailed analysis.

Sparsity Regularization Ablation: In Figure 4, we ablate the effect of sparsity regularization on
performance and number of scenes selected. As expected, at early iterations, we find unconstrained
selection outperforms the sparsity regularized approach, as the unconstrained approach has the free-
dom to select a larger set of scenes, each with less supervision. However, at later iterations, we
observe the unconstrained selection performance degrades. This is likely caused by the imbalance
between the amount of supervision available for each scene, which we found empirically can lead to
degraded performance. Beyond performance, there is an additional, perhaps more important, benefit
of sparsity regularization. Since the active learner must select at least M actors per scene, the num-
ber of scenes in the dataset grows linearly with each iteration. Alternatively, in the unconstrained
approach, the dataset size explodes at early iterations until there is a label for every scene in XU .

4.3 Fine-Grained Active Selection for Perception

We additionally experiment with fine-grained selection for improved perception. We follow a simi-
lar experimental setup, replacing prediction entropy with detection entropy. As all methods perform
similarly on vehicle detection, we evaluate on the more challenging multi-class setting where cy-
clists and pedestrians must be detected. Similar to the prediction setting, results in Figure 4 show
fine-grained selection is most effective. Interestingly, coarse-grained selection is similar to random
scenes, likely explained by an averaging effect from summing the entropies over the full scene.

5 Conclusion
We studied active learning techniques to intelligently select examples to label from unlabeled self-
driving data logs for perception and prediction models. We found the traditional active learning
setting ill-suited and introduced generalizations to account for variable labeling costs and enable
fine-grained selection through partially labeled scenes. In our experiments, we found significant im-
provements from partial labeling without any active selection, and further gains across perception,
prediction and downstream planning by leveraging fine-grained active selection. Our results demon-
strate that the dominant paradigm of labeling entire self-driving scenes may not be most efficient
under a fixed budget and that fine-grained selection is likely required for maximal efficiency.
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