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ABSTRACT

Reflectional symmetry detection remains a challenging task in machine percep-
tion, particularly in complex real-world scenarios involving noise, occlusions, and
distortions. We introduce a novel equivariant approach to axis-level reflectional
symmetry detection that effectively leverages dihedral group-equivariant repre-
sentation to detect symmetry axes as line segments. We propose orientational an-
chor expansion for fine-grained rotation-equivariant analysis of diverse symmetry
patterns across multiple orientations. Additionally, we develop reflectional match-
ing with multi-scale kernels to extract effective cues of reflectional correlations,
allowing for robust symmetry detection across different receptive fields. Our ap-
proach unifies axis-level detection with reflectional matching while preserving di-
hedral group equivariance throughout the process. Extensive experiments demon-
strate the efficacy of our method while providing more accurate axis-level predic-
tions than existing pixel-level methods in challenging scenarios.

1 INTRODUCTION

Symmetry is a fundamental concept prevalent in both natural and artificial environ-
ments (Wertheimer, [1938] [Tyler| [1995), appearing at various scales and across different do-
mains (Mgller & Thornhill, 1998 |Giurfa et al.| [1996). Although human vision naturally recognizes
symmetry(Wagemans| [1995)), the task of detecting symmetry remains challenging for machine per-
ception in real-world scenarios (Liu et al.}[2010)). This work focuses on reflectional symmetry, which
is the most basic type of symmetry, also called mirror, bilateral, or line symmetry. Reflectional sym-
metry detection aims to identify and localize axes of symmetry from an image along which visual
elements on one side are mirrored onto the other. The primary challenges of the task involve accu-
rately identifying individual symmetry axes within complex, cluttered images where visual patterns
often include noise, occlusions, and distortions, as well as precisely estimating the orientation and
length of these axes.

Early approaches to symmetry detection relied on pairwise feature matching, where symmetry was
identified by matching features reflected across the axis of symmetry (Loy & Eklundh} 2006} |Cho
& Lee, [2009; (Cornelius et al., |2007; [Sun & Si,[1999; Kiryati & Gofman, [1998). With the advent of
deep learning and the availability of real-world datasets, convolutional neural network (CNN)-based
models significantly advanced symmetry detection. Early work by |Gens & Domingos|(2014) pro-
posed one of the first equivariant architectures for handling symmetries in CNNs, paving the way
for more sophisticated approaches. Subsequently, [Funk & Liu| (2017) exploited deep appearance
features to predict pixel-level reflectional symmetry axis. PMCNet (Seo et al., 202 1)) matched pixels
across potential axes in the spatial dimension, incorporating self-similarity measures for symmetry
detection. Meanwhile, EquiSym (Seo et al.,[2022)) introduced an equivariant network capable of pro-
ducing reflection and rotation-equivariant symmetry detection predictions. Recent work has further
expanded the scope of symmetry detection. Recent works have expanded symmetry detection across
diverse fields: (Zhang et al.|[2023) proposed 3D reflection symmetry prediction from depth images,
(Podgorelec et al.| [2023)) applied it to satellite imagery, and (Hojnyl [2024)) developed techniques for
handling symmetries in optimization problems.

Despite these advancements, existing neural approaches primarily frame 2D reflectional symmetry
detection as a pixel-level heat-map prediction problem (Funk & Liul 2017; Seo et al., 2021} [2022)).
Given that an axis of reflectional symmetry is a line segment with a specific orientation and length,
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these methods fall short in delivering precise axis-level symmetry information. Furthermore, while
the detection of symmetry axes requires consistent recognition of patterns in arbitrary rotation and
reflection, existing neural approaches do not fully consider the structure of symmetry in both feature
representation and output prediction, which limits the performance in accuracy and consistency.

To address the aforementioned limitations, we introduce a novel equivariant approach for 2D axis-
level reflectional symmetry detection that extensively leverages dihedral group-equivariant represen-
tation. We represent an axis of reflectional symmetry as a line segment with its midpoint, length, and
orientation and perform axis-level prediction from dense feature map equivariant to reflection, rota-
tion, and translation. To effectively leverage the group-equivariant features into axis detection, we
propose to create orientational anchors along the dimension of rotation and incorporate reflectional
matching along each orientation that calculates correlations across potential symmetry axes. The
reflectional matching module is further enhanced with multi-scale kernels to capture symmetries
across various receptive fields. The resulting method unifies orientational anchor-based axis-level
detection with reflectional matching and enables more robust and comprehensive symmetry detec-
tion while preserving group equivariance throughout the process.

Through extensive experiments, we demonstrate that our axis-level detection approach, combined
with the orientational anchor and the reflectional matching module based on multi-scale kernel, leads
to significant performance gains across various challenging scenarios, consistently outperforming
existing pixel-level benchmarks. The key contributions of this paper include:

* We introduce a novel axis-level reflectional symmetry detection network that extensively
leverages dihedral group-equivariant representation.

* We propose orientational anchor expansion that enables fine-grained rotation-equivariant
analysis of diverse symmetry patterns across multiple orientations.

* We develop reflectional matching that extracts effective cues of reflectional correlations
with multi-scale kernels for robust symmetry detection across different receptive fields.

* We validate the effectiveness of our proposed components, demonstrating superior perfor-
mance over existing methods in real-world scenarios.

2 RELATED WORK

2.1 REFLECTIONAL SYMMETRY DETECTION

Reflectional symmetry detection has evolved from using hand-crafted features like contours, edges
and histogram (Shen et al.| 2001} |/Atadjanov & Lee, 2016} |Prasad & Davis|, 2005; Wang et al., [ 2014;
20155 Sun & Si, [1999; (Cornelius et al.l |2007), and image gradients (Gnutti et al., 2021; [Sun &
S1,[1999; [Kiryati & Gofman, [1998)) to leveraging deep learning techniques (Fukushima & Kikuchi,
2006; [Funk & Liu, [2017; |Seo et al., [2021; 2022)). Early approaches used SIFT descriptors |Lowe
(2004) for orientation determination (Loy & Eklundh| 2006) and feature matching (Cho & Lee,
2009). Recent advancements include CNN-based methods (Funk & Liul [2017), polar self-similarity
descriptors (Seo et al.| [2021)), and group-equivariant neural networks (Seo et al., 2022)). However,
these methods treat symmetry detection as a point-wise detection(i.e., heatmap-prediction) task,
limiting their ability to accurately localize individual symmetry axes. Our work addresses this limi-
tation by reframing symmetry detection as a axis-wise detection problem, enabling detailed analysis
of symmetry axes.

2.2  EQUIVARIANT NEURAL NETWORKS

Convolutional neural network has been a breakthrough in deep learning with its inductive bias and
parameter sharing via translation equivariance. Afterward, there has been decades of studies to ex-
tend the equivariance of the CNNss to the other symmetry groups such as rotation and reflection for
robust image recognition.

Group equivariant CNNs |Cohen & Welling| (2016ajb) pioneered this field, building on |Gens &
Domingos| (2014)’s early work on symmetry-aware architectures. Subsequent research explored
more specific types of equivariance, with |Dieleman et al| (2015) demonstrating the effectiveness
of rotational invariance through galaxy morphology prediction. These works laid the foundation for
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further advancements including circular harmonics Worrall et al.|(2017), vector fields [Marcos et al.
(2017), and hexagonal lattices |Hoogeboom et al.|(2018)). Recent studies have comprehensively ex-
plored equivariant CNNs in terms of homogeneous spaces and groups Weiler et al.| (2018)); |Cohen
et al.| (2018bjaj; 2019); Weiler & Cesal (2019). Redet Han et al.| (2021) utilized cyclic-group CNNs
for aerial object detection but encountered equivariance breaks due to stride-2 group equivariant
convolutions. Similarly, EquiSym Seo et al.| (2022)) applied Dg-equivariant networks for symmetry
detection but also faced equivariance breaks due to stride-2 group convolutions and lacked explicit
feature matching across symmetry axes. In contrast, our approach maintains full equivariance for
Cx group and incorporates feature matching to detect reflectional symmetry more accurately.

2.3 LINE SEGMENT DETECTION

Axes are usually represented with line segments. Accurate detection of line segments is directly
linked to axes detection via their orientation, length and position. Early line detection techniques
evolved from edge detection methods, leveraging gradients to identify linear features (Cannyl |1986;
Derichel |1987;|Lu et al.,|2015). Subsequent approaches focused on post-processing gradient-derived
features, including connecting edges (Akinlar & Topal, [2011), concatenating edge fragments (Cho
et al.| 2018)), region-growing |Grompone von Gioi et al.|(2010), and Hough transformation |Xu et al.
(2015). Recent deep learning-based methods have adapted object detection principles to line seg-
ment detection. Notable contributions include an indoor dataset Huang et al.[(2018)), the Structural
Average Precision metric Zhou et al.|(2019), 4D attraction fields Xue et al.|(2023)), and transformer-
based approaches Xu et al.| (2021). Alternative representations such as tri-point[Huang et al.| (2020)
and Center-Angle-Length (CAL)Zhang et al.[(2021]) have also been proposed. However, these meth-
ods use a global anchor approach, predicting orientation offsets from a single anchor line. This
approach struggles with overlapping lines of different orientations and has a large orientation pre-
diction range. We address these limitations by introducing a Center-Angle-Length (CAL)-based ori-
entational anchor using multiple anchor lines, improving detection of overlapping lines and reducing
the orientation prediction range.

3 BACKGROUND

3.1 GROUPS, SYMMETRY, AND EQUIVARIANCE

A group is a mathematical structure consisting of a set and an operation that satisfies four fun-
damental properties: closure, associativity, identity, and invertibility (Rotman| 2012). Groups are
particularly useful for describing symmetries—transformations such as rotations or reflections that
leave an object invariant. For example, the cyclic group Cp represents the set of discrete ro-
tations {r®,...,7V=1}, where 7 is the generator for rotation. The group law for cyclic rota-
tions is given by rirJ = p(i+7)mod N The dihedral group Dy, which is especially relevant
for our purposes, incorporates both rotational and reflectional symmetries. It can be expressed as
Dy = {r0rt ...rN=L b brl .. brN =1}, where b and r are generators for reflection and rotation,
respectively. The group laws for Dy are b* = e and b = br~", where e is the identity element.

Equivariance refers to the property of a function f : X — ) that commutes with the action of a
group G. Formally, for linear group representations which map groups to linear spaces, o1 : G —
GL(X) and 02 : G — GL(Y), the function f is equivariant if:

flo1(g) - @) = 02(9) - f(x), VgeG, zel. (1)

In neural networks, equivariance ensures that input transformations lead to predictable and structured
transformations in the output, preserving symmetries in data.

3.2 GROUP REPRESENTATION

A group representation maps each element of a group G to a linear transformation of a vector
space [Cohen & Welling| (2016b); Weiler et al.[ (2018). One important type of representation is the
regular representation (Cohen & Welling|(2016a), which acts on the vector space RIGI, where |G| is
the order of the group.

For a finite group G = {¢1,...,gn}, the regular representation agg (g) for any element g € G is
defined as: .
Ureg(g) = [eggl7" '7eggN]7 (2)
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where e,, € RIG! is a standard basis vector corresponding to the group element g; € G. This
representation permutes these basis vectors according to the group action. Notably, the regular rep-
resentation of the identity element e € G is the identity matrix: agg(e) = || For the cyclic group
Cu, the regular representation of an element " € Cy is a cyclic permutation matrix:

O—?c]gv (?”n) = [ern y €p(n+1) mod Ny .+« y, € (n+N—1) mod N}. (3)
For the dihedral group Dy, which has 2N elements, the regular representation for a general element
r™b permutes both rotational and reflectional symmetries of the group:

D n
Ureg.' (br™) = [€prn, €pp(nt1) mod Ny« v oy €pp(ntN—1) mod N

€rn, €. (nt+1) mod Ny...,€.(n+N—-1) mod N]. (4)

This representation captures the structure of Dy in a 2N x 2N matrix.

3.3 GRoOUP CONVOLUTION

To generalize standard convolution to handle group symmetries, we use group convolutions |Cohen
& Welling|(2016a). For a lifted feature map f, which associates each spatial position with a group
element, group convolution is defined as:

(faxa®)(@:%) =Y Y falg y)blg™ (x—y)(g) Q)

9'€eGyeZ2?

Here, 1) is the group convolution filter, f¢ is the lifted feature map, and ¢,¢’ € G are group el-
ements. The key property of group convolution is its equivariance, meaning that applying a group
transformation to the input results in a corresponding transformation in the output:

(9" fa) xa ¥](x) = ¢ - (fa *c ¥)](x)
=039 (fo*c¥)(g ™" x). (6)

This ensures that symmetries are preserved throughout the convolutional layers. Detailed explana-
tions about the regular representation and group convolution are provided in the

4 PROPOSED METHOD

We introduce a group-equivariant neural network for axis-level reflectional symmetry detection that
effectively learns to detect axes of reflectional symmetry patterns from an image. While previous
approaches such as [Dieleman et al| (2015) handle rotation invariance through input transforma-
tion and ensemble strategies, our method takes a more general and principled approach by using
a dihedral group-equivariant neural network for 2D feature extraction |(Cohen & Welling| (2016a),
which mathematically guarantees equivariance to both rotations and reflections. Basically, the net-
work is designed to classify the presence of a mid-point of a reflectional symmetry axis for each
pixel position and also regress the angle and length of the axis (Sec. 4.1).

To effectively leverage the equivariant representation for reflectional symmetry detection, we cre-
ate anchor lines over orientational dimension (Sec. 4.2), introduce equivariant reflectional matching
that computes reflectional correlations across each anchor line (Sec. 4.3), and expand the equivari-
ant reflectional matching to multi-scales (Sec. 4.4). Note that all these modules are designed to be
dihedral group-equivariant so that the network provides consistent axis predictions over rotation and
reflection. The overall architecture of our method is illustrated in Fig. [I]

4.1 AXIS-LEVEL REFLECTIONAL SYMMETRY DETECTION

While existing neural approaches to reflectional symmetry (Funk & Liu, [2017; [Seo et al.| 2021}
2022)) all aim to predict a pixel-level heat-map for the presence of symmetry axes at each position,
a more complete and direct approach is to detect reflectional symmetry axes as line segments that
specify the angle, length, and position of each symmetry axis. Inspired by recent neural networks for
line detection|Zhang et al.|(2021]), we propose an axis-level reflectional symmetry detection network
that predicts individual symmetry axes as line segments as follows.

We build a Dg-equivariant residual network based on ResNet-34 (He et al., 2016). We address the
issue of broken equivariance caused by stride-2 group convolution |(Cohen & Welling| (2016a), as
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Figure 1: Overall pipeline of our proposed reflectional symmetry detection method. The pipeline
consists of: (a) D y-equivariant backbone for feature extraction (top left), (b) Reflectional matching
module for computing similarity scores across rotations and reflections (bottom, blue), (c) Multi-
scale matching which employs multi-scale kernels (middle left, pink), (d) Cy-equivariant branch
and (e) Orientational axis reconstruction (middle right, green). This architecture maintains equivari-
ance throughout the entire process, enabling efficient and precise symmetry detection across various
orientations.

used in existing networks (2021)) for downsampling. To deal with, we replace stride-2
convolutions with a stride-1 convolution followed by max pooling.

Given an input image, the base feature map F is extracted from our equivariant network backbone.
This feature map is then passed through detection branch 5 to produce the output Y:

Y = B(F) € RFIXW>x3, (7)

The three output channels correspond to the mid-point score p, line length p, and orientation 6,
respectively. At each position (z,y), the output O, ,y = (p, p,0) is obtained. A line at (x,y) is
represented as o = (x, y, p, #). The start and end points are given by:

) =[]+ 5 o)
=l 5]

Since our training objective consists of loss terms for mid-point classification, length regression,

and orientation regression. The mid-point classification loss uses weighted binary cross-entropy
with weight :

®)

9

Liia = E(a ) [-7plog(p) — (1 - p)log(1 - p)]. (10)

The regression losses for length p and orientation 6 are applied only when the ground truth mid-point
is valid (p = 1), as enforced by the indicator function I,—1:

L, = E(q,z,y) Ip=1 - SmoothL1(p, p)], (11
Lo = Ea,zy)[Lp=1 - 16 0. (12)

The overall objective is the weighted sum of the individual terms:
Liotal = Lmid + ApLp + XgLo. (13)
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While this base network is a lightweight adaptation of the existing line detection network [Zhang
et al.[(2021) to symmetry-axis detection, the use of dihedral group-equivariant representation |Cohen
& Welling (2016a)) improves it to produce more consistent prediction over rotation and/or flip trans-
formation, which ensures robustness in dealing with arbitrary orientations of the symmetry axes.

4.2 ORIENTATIONAL ANCHOR EXPANSION

The axis detection network above can be seen as generating axes by placing an anchor line, which
is analogous to an anchor box in object detection |Ren| (2015); [Liu et al.| (2016)), for each position
on the translational dimension of the feature map, i.e. z-y position, and then assigning an angle
displacement and length to the anchor lines. Now that our group-equivariant feature map has an
additional group dimension for rotation, the set of anchor lines can naturally be expanded into the
rotational dimension. This enables our model to better utilize equivariant representations, enhancing
its ability to predict axis orientations. To this end, we expand the output Y for |Cy | orientational
anchors as:

Y:B(Z) eR|(31\;|><H><VV><37 (14)

where the last dimension corresponds to the mid-point score p, line length p, and orientation 6.
Aggregation across cyclic group components is performed as:

Ou=Yo+Yoinp a=1,...,5, (15)

where « is the channel index, and O € R'“N!/2XHXWX3 remains Cy-equivariant when repeated
across the channel dimension. This aggregation accounts for the equivalence of orientations 6 and
0 + m, ensuring symmetrical orientations are handled consistently. Each O, represents an anchor

capturing orientation offsets within the range [—%;, 7-) from its corresponding orientation, 2ra

N
Orientation offsets are predicted rather than absolute orientations to maintain rotational equivari-
ance. While absolute orientations change with rotation, the length, orientation offset, and mid-point
probability remain invariant. At each position («, x, y), the output is O (4 5,y = (p, p,0). A line at

(v, z,y) is represented as 0 = («, x, y, p, 0). The start and end points of the line are computed as:

[52’5] - Bﬂ +5 [2?55333} ’ (16)
] = ] - 5 [t )

where 0, = %Ta + 6. This approach greatly reduces missing detections from overlapping mid-

points and restricts each anchor’s search space to specific orientation offsets, enabling the model to
efficiently detect and differentiate multiple symmetry axes even in complex scenes.

4.3 REFLECTIONAL MATCHING

The most intuitive way of validating a reflectional symmetry pattern is to compare the pattern with
its mirrored or reflectional counterpart along its axis of symmetry, :.e., reflectional matching |Loy
& Eklundh/ (2006); |Cho & Lee|(2009). Unlike hand-crafted local descriptors such as SIFT (Lowe}
2004)), conventional neural feature maps do not provide proper features for this purpose as they
are not equivariant to rotation and reflection. By levaraging our dihedral group-equivariant features,
we introduce a principled technique for reflectional matching, which provide a strong cue for the
presence of reflectional symmetry patterns. Given a single fiber feature f € RCIP~I, where C is
the number of channels and |D | represents the size of the dihedral group, the fiber is structured
according to the dihedral group D . This structure allows the fiber to undergo cyclic rotations and
reflections through the group’s representations. Specifically, the transformation of the fiber under
l-reflections followed by n-rotations is expressed as:

c
£ = P ory O™, (18)
c=1
where f. € RIP~| represents the group-equivariant subset of the fiber, and f = [fy,...,fc] . Here,

agg (b'r™) represents the regular representation of Dy for [ reflections and n rotations. The matrix

pre-multiplying entire f is block-diagonal matrix in RC/IP~XCID~| with each block RIP~ X IP~1 jg
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a single-channel permutation, repeated C times. The reflectional similarity h for two inputs f!, f? €
RCIP~1 is defined as:

h(f!, £?) € RC. (19)
EB ||f1||||f2H

To capture reflectional symmetry across different orientations, similarity scores are computed for
each rotation, both for the rotated and rotated-then-reflected fibers:

[Cnl-1
@ h(F;O’n),F)((l’n)) c RC‘CNl, (20)
n=0

where F&U’n) and FQ’”) represent the fiber at position x under the regular representation for

n rotations, with and without reflection, respectively. The resulting similarity score map H €
REICN[XHXW g equivariant to the cyclic group Cy. A detailed proof demonstrating the equiv-
ariance of reflectional matching is provided in Appendix [B] Unlike Eq. (7), which relies solely on
the base feature map F, the reflectional matching feature H is concatenated with F, enhancing the
robustness of symmetry detection when passed to the detection branches.

4.4 MULTI-SCALE MATCHING

While single-fiber reflectional matching only matches at fixed z-y coordinates, we expand our net-
work to explore the neighborhood through spatial, rotational, and reflectional transformations to
detect broader symmetries. This neighborhood is described by a set of 2D offset vectors Qj:

0, = {(i,j) ije {7(2%21)71’”" (2k+21)—1}} kEN. 21

To compute the similarity between the transformed feature maps, the similarities are summed across
the neighborhood Qy, and over all group transformations:

[Cn -1
k)) _ (0 n) (1,n)
> P rEL G F@): (22)
q€eQr n=0

where b'r™(q) denotes the spatially transformed offset due to [ reflections and n rotations. When
k = 1, the operation simplifies to reflectional matching along a single fiber. To detect symmetries
at multiple scales, we employ different kernel sizes, allowing the model to capture patterns across
various spatial extents. The final feature map, Z, combines the base feature map F with the multi-
scale reflectional similarity features H(*1) ... H*») This combined feature map is then fed into
the detection branch, ensuring a comprehensive and robust symmetry detection process that fully
exploits the network’s equivariant properties.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Dataset. Most existing reflectional symmetry detection datasets either lack diversity in reflec-
tion axes or are no longer available, limiting their usefulness for modern benchmarks (Cicconet
et al., [2016; Liu et al., 2013 |Funk & Liu, [2017; Seo et al., [2021). As a result, we use the DENDI
dataset (Seo et al., [2022), which provides more diverse and comprehensive annotations, including
multiple symmetry axes and continuous symmetry groups. For better generalization of the model,
we use standard augmentations like flipping, rotation, and color jittering. Additionally, we extract 7k
axis-annotated masks from the training set and paste them onto other images, avoiding overlap with
existing annotations. By adding 1 to 6 objects per iteration and repeating the process three times, the
dataset expands 18-fold to contain 30k training images.

Evaluation metrics. For axis-level reflectional symmetry evaluation, we use structural Aver-
age Precision (sAP) (Zhou et al| 2019) with an additional condition to accommodate non-
line annotations in the DENDI dataset. In our evaluation, a predicted line 1, is considered a
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Table 1: Axis-level reflectional symmetry detection on the DENDI dataset.

SAP sAPipg
@5 @10 @15 @5 @10 @15

Axis-level detection base network (Sec. 4.1) 4.8 7.9 10,0 112 143 16.7
+ Orientational anchor expansion (Sec. 4.2) 173 20.8 22.6 24.6 30.1 32.0
+ Reflectional matching (Sec. 4.3) 190 224 238 264 305 322

+ Multi-scale matching (Sec. 4.4) 19.7 239 257 262 31.0 33.6

Method

true positive if it satisfies either of two conditions: 1) Endpoint condition: d? + d3 < T,
where d; and d, are the distances between the endpoints of the predicted line 1, and the
ground truth line 1;. 2) Ellipse condition: d2,,., < 7 with at least 70% overlap, where
dcenter 1s the distance between the center of 1, and the center of the ground truth ellipse.
The overlap is calculated as the percentage of 1,, that lies within
the ellipse mask. We compute sAP at thresholds 7 = 5,10, 15
pixels, denoted as sAP®, sAP'Y, and sAP'® respectively. To pre-
vent bias from images with many lines, we also evaluate an
image-wise SAP: SAP] . = - >~ sAP] where N is the number 5~

N
of images, and sAP] is the sAP for the i-th image. For compari-

son with segmentation-based benchmarks, we use the F1-score,

__ 2Xprecision xrecall .
definedas F'1 = “precision-frecall * Following (Seo et al.,[2022)),

both ground-truth and predicted score maps are dilated by 5 on
pixels (Funk & Liu, 2017) before computing true positives via R I I

. 1 < < Number of Lines in an image
ixel-wise comparison. . . e
P P Figure 2: Line count distribution.

Frequency

Model and training. We use the Dg-equivariant ResNet-34|He et al.| (2016)) as a feature extractor,
keeping it frozen due to overfitting caused by the small amount of data while training. We freeze
the backbone due to overfitting caused by the small amount of data while training. We maintain
the same number of physical channel as the original network while achieving at least 16 times
parameter efficiency. The reflectional matching module uses multi-receptive field processing (1,
3, and 5) with padded feature maps. In the branch network, equivariant deformable convolution
is implemented by rotating the image, permuting the group dimension channels, applying standard
deformable convolutionDai et al.|(2017), and then rotating it back, since this operation is not natively
supported by the e2cnn (Weiler & Cesa, |2019) framework. The model trains with a batch size of
64 for 100 epochs using the AdamW (Kingma & Bal 2015) optimizer, starting with a learning
rate of 1 x 1073, which reduces at the 50th and 75th epochs. The ground truth mid-point map
represents each mid-point as a Gaussian distribution. The loss weights are set as A, = 1 for length,
and g = 150 for orientation to compensate for the smaller radian scale. Weighted binary cross-
entropy with a positive class weight of 3 is used for mid-point detection.

5.2 EVALUATION OF PROPOSED METHOD

Quantitative results. Quantitative analysis of our key contributions is presented in Tab. [I| The
table highlights the impact of accumulating our contributions to naive Axis-level detection (Sec.
4.1). Starting from axis-level detection alone, the addition of orientational anchor expansion signifi-
cantly improves performance across all thresholds. This improvement demonstrates the importance
of utilizing a specific part of the group equivariant feature map that responds to the direction a line
is pointing. This approach is natural because the orientation response of the feature map directly
corresponds to the line’s direction. Incorporating reflectional matching boosts performance, indicat-
ing the benefits of group-aware matching that incorporating both spatial and group dimensions. Our
final model, which incorporates multi-scale matching of the reflectional matching module, achieves
the best results. This outcome demonstrates that capturing multiple receptive fields is crucial for
detecting symmetry across various scales and transformations.

Qualitative results. The qualitative comparisons of the previous (Seo et al.l 2021} 2022}, and
our method are shown in Fig. [3] In the ground truth and our images, symmetry axes are shown in
green and ellipses in blue. Our method shows notable improvements over previous approaches. Un-
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Ground truth PMCNet EquiSym Ground truth PMCNet EquiSym

Figure 3: Qualitative comparison of reflectional symmetry detection methods. Our axis-wise
approach produces clearer, more precise symmetry axes compared to pixel-wise methods
2022), especially for smaller objects and complex scenes. Green lines in ground truth and our
results represent symmetry axes, while blue regions indicate ellipses.

Table 2: Ablation on matching kernels in Reflectional Matching.

Matching kernel SsAP SAP; e
Ix1 3x3 5x5 @5 @I0 @15 @5 @10 @15

- - 173 20.8 22.6 24.6 30.1 32.0

Feature

Base feature (F')

v 119 162 18.7 214 262 284

RM feature (H) Vv v 13.8 179 195 228 273 29.7
v v v  15.6 200 218 21.6 279 304

v 190 224 238 264 305 322

[F, H] v v 18.5 224 237 252 303 326

v v v o197 239 257 262 310 33.6

like pixel-level detection methods (Seo et all 2021}, [2022) that focus on heat-map prediction, our
axis-level detection produces clearer and more accurate results. Across different scenes and object
types, our approach consistently provides more precise and interpretable symmetry axis predictions,
especially in smaller objects where previous methods struggled with localization and orientation pre-
diction. Our method generates sharper, well-defined axis predictions, making it suitable for analysis
of precise reflecitonal symmetry.

5.3 ABLATION STUDY

Matching kernels. The analysis of different kernel configurations in the reflectional matching
module reveals consistent performance improvements with larger receptive fields. Combining 1x1,
3x3, and 5x5 kernels leads to the highest sAP 0f 23.9, compared to 22.4 with a 1x 1 kernel alone
(Tab. [2). This underscores the importance of spatial expansion for detecting various symmetry re-
gions, confirming that multi-scale kernels are key for capturing more complex symmetry patterns.
Notably, the performance gain from increasing kernel size is more pronounced when using reflec-
tional matching alone compared to combining it with base features. This heightened sensitivity to
multi-scale kernels in the reflectional matching module, which directly depends on these kernels,
further emphasizes the effectiveness of this approach in capturing diverse symmetry patterns.

Matching strategies. A comparison of different matching strategies is shown in Tab.[3] This eval-
uation aims to assess the effectiveness of transformations involving the group dimension in matching
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Table 3: Ablati tchi ies.
able 3 ation on matching strategies Table 4: Pixel-level F1 score eval-

SAP SAPimg uation.

Method @5 @10 @15 @5 @10 @I5

- Method F1 score
Spatial-only (wiobase) 108 153 170 192 241 261
Reflectional (wiobase) 15.6  20.0 21.8 21.6 27.9 304  PMCNet(Seoetall2021)  32.6

- EquiSym (Seo et al.|[2022) 36.7
Spatial-only 183 218 229 263 318 335 P

Reflectional 19.7 239 257 262 310 33.6

process, contrasting with spatial-only feature matching|Seo et al.[(2021). The reflectional matching
score involves transforming feature pairs w.rt. rotation angles in both spatial and group dimen-
sions (Eq. (22))), while the spatial-only matching score uses spatial transformations alone, computed
as Hg(k) = Zq coL @‘nczf"o‘_l h(Fx_;’_:r'n,(q), Fx+an(q)). The results show .con.sistent in}provements
with group-aware reflectional matching across both settings, demonstrating its effectiveness over

spatial-only methods. The greater improvement without base features, as seen in kernel ablations,
underscores the importance of reflectional matching in capturing symmetry axes.

Image normalized sAP. In addition to standard sAP [Zhou et al.| (2019), we also evaluate our
model using sAP;,, to mitigate potential bias from images with exceptionally large number of line
annotations. Fig. [2| presents the distribution of the number of lines detected in test images, where
the presence of images with an exceptionally high number of lines could skew the results. While
SAP;n,g generally follows sAP trends, it may understate performance on complex scenes due to its
image-wise normalization. However, the strong correlation between these metrics demonstrates our
model’s consistent effectiveness across varying scene complexities.

5.4 COMPARISON WITH THE STATE-OF-THE-ART METHODS

The results in Tab. ] show a performance com-
parison for reflectional symmetry detection on the 4
DENDI (Seo et al., [2022) test set using the F1-score

for heatmap-based predictions. We exclude ellipse 35
masks in this evaluation as they represent SO(2) con-
tinuous symmetry, which is expressed as a circu-
lar mask formed by an infinite number of symmetry
lines. This is unsuitable for evaluating our method,
which focuses on detecting discrete symmetry axes.
Our method achieves an F1-score of 37.2, surpassing 20— " 3 3
EquiSym (Seo et al.}[2022)’s 36.7 and PMCNet (Seo ] Pistance threshold

et al.l2021))’s 32.6, demonstrating the superior abil- Figure 4: F1-score vs distance thresholds.
ity of our approach in accurately localizing symme-

try axes. In Fig. i Fl-scores for all three methods are plotted across different distance thresholds,
with a true positive defined as within 5, 4, 3, or 2 pixels from ground-truth pixels. The plot high-
lights that our method achieves more precise localization than previous methods, particularly as the
distance threshold tightens, demonstrating its superior accuracy.

—®— Ours
Equisym
—@— PMCNet

F1-Score
w
o

N
o

6 CONCLUSION

We have introduced a novel axis-level reflectional symmetry detection network, leveraging dihedral
group-equivariant representations to move beyond conventional pixel-level approaches. Our method
incorporates several key contributions that significantly enhance performance across various chal-
lenging scenarios. First, we propose an orientational anchor expansion that enables fine-grained,
rotation-equivariant analysis of symmetry patterns across multiple orientations. Second, we develop
a reflectional matching module that uses multi-scale kernels to capture reflectional correlations, im-
proving robustness across different receptive fields. Through extensive experiments, we demonstrate
that our approach consistently outperforms existing methods, establishing a new benchmark in re-
flectional symmetry detection.

Looking ahead, expanding this framework to continuous groups and extending symmetry detection
to 3D spaces, along with addressing viewpoint variations, represents promising directions for future
work. These advancements could further broaden the applicability of symmetry detection in dynamic
and real-world environments.
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A  REGULAR REPRESENTATION AND GROUP CONVOLUTION

A.1 DISCRETE GROUP REPRESENTATION

Regular group representation. The regular representation of a finite group G = {g1,...,9n}

acts on a vector space RIG!. For any element g € G, the regular representation agg( g) is defined as:
G

Ureg(g) = [eg-gla-- '7eg'gN}7 (23)

where each group element g; € G is associated with a basis vector ey, € RI!, In regular represen-
tation representation, agg(g) € RIGIXIG] {5 a permutation matrix that maps each basis vector ey, to
eg.q, forall g; € G.

Cyclic group representation. The cyclic group Cy, consisting of N discrete planar rotations, is
defined as {r%, 7!, ... r(N=1} with rotation generator 7. With the group law 7¢.7> = p(a+b) mod N
the regular representation of 7" is given by:

C
O’rcjgv (Tn) = [ern y €p(n+1) mod Ny .+« €.(n+N—1) mod N}, (24)

where the basis vectors are defined from:

oSN (19) = 1, (25)

reg

where Iy being the NV x N identity matrix. Here, the regular representation of the cyclic group
corresponds to a cyclic permutation matrix.

Dihedral group representation. The dihedral group Dy = {r°, ..., vV =L b, 7b,... , rVN=1b},
consisting of 2N elements, is an extension of the cyclic group that includes an additional reflection
generator b. The regular representation of the element r™b is given by:
D
Ureg (Tnb) = [er"ba €rnpors oo €pnppN-1, €rnp.by €rnporh, - - aer"b-rN_lb]

= [epnp, €ppn—1,...,€ppn—N,€mm,€m—1,...,€mt1-N], (26)

using the group laws b? = e and b = br~". By changing the order of cyclic rotation and reflection,
the equation can be transformed as:

D n
O'reg (bT‘ ) = [ebrn7 Cprn.py .oy Cppn . pN=1, Cppn.p, €ppn.ppy ..., eb,,m.TN—lb]
= [ebrn, €pp(n+t1) mod Ny ...y €pp(n+tN—1) mod N, €pn, €, (n+1) mod Ny...,€.(ntN—1) mod N].
27)
The basis vectors for the dihedral group are defined from:
Dy (,.0p0) _
Ureg (7“ b ) = IQN. (28)

A.2 DISCRETE GROUP CONVOLUTION

Conventional convolutional neural networks (CNNs) are inherently equivariant to translations,
meaning that a translation of the input results in a corresponding translation of the output. The
standard 2D convolution operation can be expressed as:

(fx)(x) =Y f¥)v(x-y), (29)

yEZ?

where f : 72 — RS» is the input function with Cj,, channels, v : 72 — RCnxCout ig the filter, and
X,y € Z? are spatial coordinates. Here, plane feature map is defined only along the spatial dimen-
sion Z2. To associate discrete group within the feature map, an additional dimension corresponding
to the group G should be constructed, resulting in the mapping f¢ : G x Z? — RC. In the discrete
group convolution, this additional dimension is constructed through the lifting operation:

fo =B (f xgv). (30)

geG
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The order of the stack corresponds to the order of group elements in the initial state. Since the lifted
feature map contains features corresponding to each group element, transformations must account
for both spatial changes and the group structure. Applying a specific group element ¢’ € G to the
lifted feature map thus requires both spatial transformation and permutation of the group dimension:

(g/'fG)(X)_ reg( ) fG( X)7 (€29)]

reg(g') is the block diagonal form of the regular representation of g’ repeated C times,

permuting along the group dimension, while ¢'~! - x applies the spatial transformation. Following
the lifting operation, group convolution for the lifted feature map is defined as:

faxa ¥l (g.%) =D > faldy) [o%lo(a™ (x—y))] (¢) (32)

9'€eG yeZ?

where o€

Here, ¢ : G x Z? — RCn»*Cout represents the group convolution filter, where f¢ : G x Z? — RS is
the lifted feature map, and g, g’ € G are group elements of G. The key property of group convolution
is its equivariance to group elements, expressed as:

[(¢" - fa) *a ¥](x) = [¢' - (f& *c ¥)](x)
= 01y(9) - (fa*a )™t %) (33)
forany ¢’ € G.Here, (¢'- f¢)*c 1 represents the group convolution applied to the transformed input,
while ¢’ - (fg *¢ ) is the action of g’ on the result of the group convolution. This equality demon-

strates that the order of applying group transformations and group convolutions is interchangeable,
preserving the group structure throughout the network layers.

B Cx EQUIVARIANCE OF THE REFLECTIONAL MATCHING

B.1 Cpy EQUIVARIANCE OF THE SINGLE FIBER REFLECTIONAL MATCHING

Given a D y-equivariant feature map F € RCIPVIXHXW ynder the regular representation oyeq, We
need to prove that H from Reflectional Matching without spatial expansion is equivariant to the
cyclic group Cp with its element 7*:

@h( o2y (M)F PR, oDy (b PP ) (34)
N-1

= o2y (") @D h (o2 ()LD oRy (brFQP ). (35)
n=0

where F,(f ) is the fiber at position x, with the regular representation corresponding to [ reflections

and n rotations added. Using the property o(g)o(h) = o(gh), the equation can be rewritten as:

N-1
P b (o r"ELD, oLy (b FLD) (36)
n=0
N—-1
= P h (R ™)oRy (LY oDy ()l (rFFLO) 37
n=0
N—-1
= P 1 (R (FHFLO, Ry RO ) (38)
n=0

Here, h is the similarity function defined as:
1 ¢2 f2 c
h(f*,£%) 39
@ ||f1||||f2H &
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Since permutation matrices preserve the norm of a vector, and using the rule ¢t = p-(a+t) mod N

the equation can be reformulated as:

N-1 C

Pt p(0,0) k+n\ 1 (0,0)
@ @ F(00 ||2 ( reg( )F Ureg (br )Fc,x ) (40)
n=0 c=1
C N—-1
1 n n
=D o D (R CHIRLY ol R (1)
=1 [Fex” |2
C k+N—1
1 D n\g(0,0) . D (0,0)
:@ F(Q 0) 2 @ (Ureg (T )Fc,x reg(bT )Fc,x ) (42)
c=1 H || n=k
C 1 N—-1
B —aar o 1) P (R FEY - oRy e FSY) @)
c=1 ‘F || n=0
c N-1
= (D oo oo)||2 D (B (™ FEY oy e FOY) a4
c=1 n=0
N—
= oRy ( 69 (o2 B, o (b BP0 (45)

where F . x denotes the feature at position x in channel c.

B.2 Cpy EQUIVARIANCE OF SPATIALLY EXPANDED REFLECTIONAL MATCHING

We now have to to prove the spatial expansion of single fiber Reflectional Matching is also equiv-
ariant to the cyclic group Cy:

(0,k) D (0,k)
@ Z h ( ng Ferr’“*"(q)’ ch (b?" )Fx+brk+n (q)) (46)
n=0 q€Q
(0 0) D (0,0)
reg @ Z h( reg x+’r"( )? reg (br )Ferbr"(q)) ) (47)
n=0 qeQ

where q € Q is the offset, 7" (q) represents the spatially rotated offset, and br™(q) denotes the
offset that is first rotated and then reflected. Same as single fiber, the equation can be written as:

PRy p(0,0) k4+ny\1(0,0)
@ Z h ( reg )Fx+r’“+”( )’ Ureg (b )Fx+brk+"(q)> (48)
n=0 qeQ
pr+nyp0,0) D k+n\(0,0)
@ Z @ reg )Fc x+rktn(q) leg (b’f’ )Fc X+brk+n(q) (49)
B (0 0)
Pt 1B e T o
C k+N-1 (0,0) D (0,0)
Y Pt L L s
||F<“’°> E
c=1 n=k q€Q c x+r”(q) c,x+brm(q)
¢ (0,0) oD (0 0)
-D @ 912} (" F e prnia ek (7 F et ay (51)
o Ur F(o ,0) F (0,0)
c=1 n=0 q€Q || cx+r”(q |||| c,x+brn q)“
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C ADDITIONAL EXPERIMENTS AND ANALYSIS

C.1 EVALUATION ON DIFFERENT DATASETS

We conduct experiments on the LDRS (Liu et al,[2013)) and SDRW (Seo et al] [2022)) datasets to

demonstrate the generalizability and applicability of our approach across different datasets.

Table 5: Quantitative comparison of Fl-scores for DENDI (Seo et al. [2022), LDRS (Seo et al
2021) and SDRW (Liu et al.}[2013)) datasets.

Method DENDI LDRS SDRW

PMCNet (Seo et al ] 32.6 37.3 68.8
2022)

EquiSym 1, 36.7 40.0 67.5
Ours 37.2 43.4 68.3

Precision-Recall Curves on DENDI dataset Precision-Recall Curves on LDRS dataset Precision-Recall Curves on SDRW dataset

o PMCNet (Best F1: 0.326) e PMCNet (Best F1: 0.373)

10 .
s o EquiSym (Best F1: 0.367) 0 o EquiSym (Best F1: 0.400) -
: o Ours (Best F1: 0.372) : o Ours (Best F1: 0.434) ’
06 06 06

o PMCNet (Best F1: 0.688)
o2 0z °?1 o EquiSym (Best F1: 0.675)
o Ours (Best F1: 0.683)
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00 02 04 3 08 10 00 02 o4 06 08 1o 00 02 4 06 08 10
Recall Recall Recall

Precision
Precision
Precision

Figure 5: Precision-Recall curves and F1-scores evaluated on three different datasets (DENDI

EEal} 023), LDRS (Seo etal} F021), and SDRW (Ciu et al} 20T,

Tab. ] shows that our method achieves state-of-the-art performance with an F1-score of 0.434 on
the LDRS (Seo et al| 2021)) dataset, significantly outperforming previous methods including PM-
CNet (Seo et al| 2021) (0.373) and EquiSym (0.400). For the SDRW
dataset, we achieve competitive results with an Fl-score of 0.683, closely matching the best
performance of PMCNet (0.686). As shown in Fig. [B] the precision-recall curves across differ-
ent datasets demonstrate our method’s characteristics. Notably, our approach exhibits higher pre-
cision but relatively lower recall compared to existing methods. This behavior stems from our post-
processing pipeline, which includes Non-Maximum Suppression (Neubeck & Van Gooll, [2006) and
score-based thresholding on detected lines. In contrast, conventional pixel-level prediction methods
tend to achieve higher recall at lower thresholds by treating all pixels as potential predictions.

C.2 COMPARISON WITH PREVIOUS METHODS

To provide a comprehensive evaluation against existing approaches, we compare our method with a
wide range of previous methods on the SDRW dataset. Beyond recent approaches
like PMCNet [2021), we include comparisons with classical and modern approaches:
SymResNet (Funk & Liu} [2017), LE (Coy & EkIundhl 2006), MIL (Tsogkas & Kokkinos], [2012)),

FSDS (Shen et al.| [2016), and SRF (Teo et al.| 2015)). As shown in Fig. |6} our precision-recall curve
demonstrates competitive performance, achieving an F1-score of 0.683, which is comparable to the

state-of-the-art result achieved by PMCNet (0.686). This comparison with both recent and classical
methods highlights the effectiveness of our approach within the context of symmetry detection.

C.3 ABLATION STUDIES WITH DIFFERENT BACKBONES

To investigate the effectiveness of our approach across different backbone architectures, we conduct
experiments with non-equivariant networks including ResNet-34 (He et al, [2016) and the more re-

cent ConvNeXt (Liu et al.| 2022)). Due to the limited size of the DENDI (Seo et al.| [2022)) dataset

and potential overfitting issues observed in our preliminary experiments, we maintain consistent

experimental settings with our main results by using ImageNet (Deng et al]} [2009) pre-trained en-
coders in a frozen state. For these non-equivariant architectures which lack the group dimension
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Figure 6: PR curve and Fl-score comparison with previous methods on SDRW (2013))
dataset.
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structure, we adapt our method by implementing spatial matching instead of group-aware matching
while maintaining the same orientational anchor setup (four anchors) with each anchor assigned a
different ground truth orientation. Tab. [6] presents the comparative results across different backbone
architectures and matching strategies.

Table 6: Performance comparison of detection architectures with varying matching and anchor con-
figurations.

SAP
Backbone Method @5 @10 @15
ResNet-34 He et al.{ (2016 Single Anchor 4.7 7.9  10.1
ResNet-34|He et al.| (2016 Orientational Anchor 15.6 19.2  20.1
ConvNeXt|Liu et al.| (2022 Single Anchor 1.1 155 173
ConvNeXt|Liu et al.| (2022 Orientational Anchor 18.1 21.1 22.2

Ours(|Cohen & Welling|(2016a)) ~ Orientational Anchor  19.7 23.9  25.7

The results highlight several key findings. The use of orientational anchors consistently improves
performance across all architectures, with significant gains observed in both ResNet-34
(+10.9 in SAP@5) and ConvNeXt (+7.0 in SAP@5). While ConvNeXt
shows stronger performance compared to ResNet-34, particularly in the single anchor setting, both
architectures still fall short of our group-aware approach when using orientational anchors. The su-
perior performance of our group-aware approach (19.7/23.9/25.7) over non-equivariant architectures
suggests that the combination of group-aware matching and orientational anchors aligned with the
group dimension provides advantages that exceed those of using more modern architectures. These
findings further validate our design choices and demonstrate that the equivariance properties and
group-aware design of our approach are crucial to its effectiveness.

C.4 ABLATION STUDIES ON LINE SEGMENT DETECTION

To validate the generalization capability of our method beyond symmetry detection, we conduct
experiments on the line segment detection task using the Wireframe dataset (Huang et al.l 2018)), a
standard benchmark for this task. Tab. [7] presents the comparative results with recent state-of-the-
art methods. Our method achieves competitive performance compared to specialized line detection
approaches, even without eliminating the offset and centerness branches from the original architec-
ture (Zhang et al][202T)). These results demonstrate that our adaptation strategy effectively transfers
to general line detection tasks while maintaining strong performance.
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Table 7: Performance comparison with state-of-the-art methods on the Wireframe dataset.

SAP
@5 @10 @15

L-CNN|Zhou et al.|(2019) 589 629 64.7
HAWP Xu et al.[(2021 62.5 665 68.2
F-Clip [Dai et al[ (2022 64.3  68.3 -

ELSD|Zhang et al[(2021) 64.3 68.9 70.9
ELSD (reproduced) 63.7 68.0 693

Ours 622 66.5 68.3

Method

C.5 ABLATION STUDIES ON COMPUTATIONAL OVERHEAD

We provide a detailed analysis of the computational requirements and performance trade-offs for
different multi-scale configurations of our reflectional matching approach. Tab.[§] presents the com-
putational costs and corresponding performance metrics.

Table 8: Computational overhead analysis for different features

Matching kernel . Memory(GB) SAP
Feare 117353 5x5 Tme® pormorr - OFLOPS @5 @10 @15
F - - - 9.5 14756 39.5 17.3 20.8 22.6
v 13.0 22 /88 58.5 19.0 224 238
[F,H] V v 14.5 26/ 104 81.2 18.5 224 237
v v v 17.0 30/ 120 102.5 19.7 239 257

As shown in Tab. [§] introducing multi-scale reflectional matching significantly increases compu-
tational requirements. Training on four RTX6000ADA GPUs, the base feature (F') requires 39.5
GFLOPs and 56G total GPU memory with a training time of 9.5 hours. Adding larger matching
kernels progressively increases these requirements, with the full three-scale configuration requir-
ing 102.5 GFLOPs, 120G total GPU memory, and 17 hours of training time. This computational
overhead is compensated by performance improvements across evaluation metrics. Using all three
matching kernels achieves the best results, showing improvements of +2.4, +3.1, and +3.1 points
in SAP@5, @10, and @15 respectively compared to using base feature alone. These results sug-
gest that our method is not yet fully optimized, and further improvements in the efficiency of the
matching process could make it even more effective.

D ARCHITECTURE DETAILS: MULTI-SCALE MATCHING AND
ORIENTATIONAL A XIS RECONSTRUCTION

In Fig.[7} we present the detailed architecture for orientational axis reconstruction and multi-scale
matching with the Dg group. The feature maps H are obtained by applying reflectional matching
modules with different offsets (Q) to the base feature FBase, exhibiting cyclic group equivariance
and reflection invariance (a. Multi-scale Matching). We then concatenate H from different offsets
and combine them with the base feature Fp,s.. Subsequently, this concatenated feature is trans-
formed into a single-channel feature map with orientational dimensions through the cyclic group
branch. Since orientation responses from ¢ and 6 + 7 should be identical from a line perspective, we
add the first four channels with the last four channels of a single-channel feature map. Each of the
resulting four channels reconstructs lines using midpoint, length, and orientation parameters, where
each anchor captures lines within a directional range of [~ g, §) from its corresponding orientation.
Finally, these reconstructed axes are concatenated into a single-channel output (b. Orientational Axis
Reconstruction).
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(b) Orientational Axis Reconstruction
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Figure 7: Multi-scale matching and orientational anchor expansion using the Dg group. Blue and
green arrows indicate filter orientations for each orientation channel. The four anchors (in green
background) indicate the directional ranges for lines captured by each anchor, where each anchor
detects lines aligned with its corresponding orientation. 3 and 'Y denote the branch and branch out-
put from Eq. (T4) respectively, while H represents the reflectional matching feature from Eq. (22).
The reflectional matching component from Fig. Elis also included.
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