
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADJOINT MATCHING: FINE-TUNING FLOW
AND DIFFUSION GENERATIVE MODELS WITH
MEMORYLESS STOCHASTIC OPTIMAL CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Dynamical generative models that produce samples through an iterative process,
such as Flow Matching and denoising diffusion models, have seen widespread
use, but there have not been many theoretically-sound methods for improving
these models with reward fine-tuning. In this work, we cast reward fine-tuning
as stochastic optimal control (SOC). Critically, we prove that a very specific mem-
oryless noise schedule must be enforced during fine-tuning, in order to account
for the dependency between the noise variable and the generated samples. We
also propose a new algorithm named Adjoint Matching which outperforms exist-
ing SOC algorithms, by casting SOC problems as a regression problem. We find
that our approach significantly improves over existing methods for reward fine-
tuning, achieving better consistency, realism, and generalization to unseen human
preference reward models, while retaining sample diversity.

Base model (Flow Matching) w/ Guidance Adjoint Matching (Ours)

Figure 1: We introduce Adjoint Matching, a theoretically-driven yet simple algorithm for reward
fine-tuning that works for a large family of dynamical generative models, including for the first
time, Flow Matching models. Text prompts: “Beautiful colorful sunset midst of building in Bangkok
Thailand”, “Beautiful grandma and granddaughter are mixing salad and smiling while cooking in
kitchen”, “The beautiful young woman in sunglasses is standing at the background of field and hill.
She is smiling and looking over shoulder”, “Chess, intellectual games, figure horse, chess board”.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Flow Matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) and denois-
ing diffusion (Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021b; Kingma et al., 2021) models
are being used for many generative modeling applications, including text-to-image (Rombach et al.,
2022; Esser et al., 2024), text-to-video (Singer et al., 2022), and text-to-audio (Le et al., 2024; Vyas
et al., 2023). In most cases, the base generative model does not achieve the desired sample qual-
ity. To improve the generated samples, it is common to resort to techniques such as classifier-free
guidance (Ho & Salimans, 2022; Zheng et al., 2023) to get better text-to-sample alignment, or to
fine-tune using human preference reward models to improve sample quality and realism (Wallace
et al., 2023a; Clark et al., 2024).

In the adjacent field of large language models, the behavior of the model is aligned to human prefer-
ences through fine-tuning with reinforcement learning from human feedback (RLHF). Either explic-
itly or implicitly, RLHF methods (Ziegler et al., 2020; Stiennon et al., 2020; Ouyang et al., 2022;
Bai et al., 2022) assume a reward model r(x) that captures human preferences, with the goal of
modifying the base generative model such that it generates the following tilted distribution:

p∗(x) ∝ pbase(x) exp(r(x)), (1)

where pbase is the base generative model’s sample distribution.

Inspired by this, fine-tuning methods have been developed to improve denoising diffusion models
based on human preference data; either using a reward-based approach (Fan & Lee, 2023; Black
et al., 2024; Fan et al., 2023; Xu et al., 2023; Clark et al., 2024; Uehara et al., 2024a;b), or direct
preference optimization (Wallace et al., 2023a). However, unlike the fine-tuning methods designed
for large language models, most of the existing methods to a large degree ignore pbase and focus
solely on the reward model. Reward models can range from standard evaluation metrics such as
ClipScore (Hessel et al., 2021; Kirstain et al., 2023) to specialized models that have been trained
on human preferences (Schuhmann & Beaumont, 2022; Xu et al., 2023; Wu et al., 2023c). As
these are parameterized by neural networks, they fall pray to adversarial examples which lead to
the generation of undesirable artifacts (Goodfellow et al., 2014; Mordvintsev et al., 2015). This has
led some works to consider adding regularization during fine-tuning (Fan et al., 2024; Uehara et al.,
2024b) to incentivize staying close to the base model distribution; however, there does not yet exist
a simple, generic approach which actually provably generates from the tilted distribution (1).

The main contributions of our paper are as follows:

(i) We present a stochastic optimal control (SOC) formulation for reward fine-tuning of dynamical
generative models. Importantly, we prove that the naı̈ve approach considered by prior works
lead to a value function bias problem that biases the fine-tuned model away from the tilted
distribution (1). This problem has also been observed by Uehara et al. (2024b) but they propose
a more complicated solution which involves training a separate generative model.

(ii) Instead, we propose a very simple solution: the memoryless noise schedule. This is a unique
noise schedule that completely removes the dependency between noise variables and the gen-
erated samples, resulting in provable convergence to the tilted distribution. This allows us to
fine-tune dynamical generative models in full generality, including being the first to fine-tune
noiseless Flow Matching models.

(iii) We also propose a new method for solving SOC problems, called Adjoint Matching, which com-
bines the scalability of gradient-based methods and the simplicity of a least-squares regression
objective. This can be applied to general SOC problems, beyond reward fine-tuning.

(iv) We perform extensive comparisons to baseline approaches, and analyze them from multiple
perspectives such as realism, consistency, and diversity. We find that our proposed method
provides generalization to unseen human preference reward models, better text-to-sample con-
sistency, and retains good diversity.

2 PRELIMINARIES ON DYNAMICAL GENERATIVE MODELS

We are interested in fine-tuning base generative models pbase(X1) where samples are generated
through the simulation of a stochastic process. That is, these models transform noise variables into a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

sample through an iterative process. In particular, we discuss the specific constructions and sampling
processes of Flow Matching (Lipman et al., 2023; Liu et al., 2023; Liu, 2022; Albergo & Vanden-
Eijnden, 2023) and Denoising Diffusion Models (Ho et al., 2020; Song et al., 2021b;a). The goal of
this section is to provide background information on these methods.

Given random variables from an initial distribution X̄0 ∼ p0 = N (0, I), and X̄1 which are dis-
tributed according to some data distribution, we define the reference flow X̄ = (X̄t)t∈[0,1] where

X̄t = βtX̄0 + αtX̄1, (2)

where (αt)t∈[0,1], (βt)t∈[0,1] are functions such that α0 = β1 = 0 and α1 = β0 = 1. Diffusion
models and Flow Matching construct generative Markov processes Xt with initial distribution X0 ∼
N (0, I) that result in flows X = (Xt)t∈[0,1] with the same time marginals as the reference flow X̄ ,
i.e., the random variables Xt and X̄t have identical distribution for all times t ∈ [0, 1]. This implies
X1 has the same distribution as the data distribution, so simulating the Markov process from random
noise X0 is a way to generate artificial samples1.

Flow Matching. We focus on Flow Matching here, and defer the overview of denoising diffusion
models (DDIM; Song et al. (2021a), DDPM; Ho et al. (2020)) to App. C.1. In its simplest form, the
generative Markov process of a Flow Matching model is an ordinary differential equation (ODE) of
the form:

dXt = v(Xt, t) dt, X0 ∼ N (0, I). (3)

where v(Xt, t) is a parametric velocity that is optimized to match the derivative of the reference
flow, i.e., v(Xt, t) = argminv̂ E

∥∥v̂(X̄t, t) − d
dtX̄t

∥∥2 (see e.g. Lipman et al. (2023) for details on
pre-training Flow Matching models). It can then be proven that the solution of the generative process
(3) has the same time marginals as the reference flow (Lipman et al., 2023; Liu, 2022; Albergo &
Vanden-Eijnden, 2023), and a commonly used choice is αt = t and βt = 1 − t. One can also
consider a family of stochastic differential equations (SDEs) with an arbitrary state-independent
diffusion coefficient2:

dXt =

(
v(Xt, t) +

σ(t)2

2βt(
α̇t
αt

βt−β̇t)

(
v(Xt, t)− α̇t

αt
Xt

))
dt+ σ(t) dBt, X0 ∼ N (0, I), (4)

where (Bt)t≥0 is a Brownian motion. The generative processes in (3) and (4) have the same time
marginals. This can be seen by writing down the Fokker-Planck equations for (3) and (4), and
observing that they are the same up to a cancellation of terms (Maoutsa et al., 2020). The diffusion
coefficient σ(t) in (4) is compensated by the second term in the drift.

Flow Matching in terms of the score function. We can unify both the Flow Matching and
continuous-time DDIM generative processes as:

dXt = b(Xt, t) dt+ σ(t) dBt, X0 ∼ N (0, I), (5)

where b(x, t) = κtx+
(σ(t)2

2 + ηt
)
s(x, t), κt =

α̇t

αt
, ηt = βt(

α̇t

αt
βt − β̇t) (6)

where (αt, βt) are coefficients of the reference flow (2), and s(x, t) is the score function—defined
as the gradient of the log density of the random variable Xt. See App. C.4 and App. C.5 for the
derivation of (5)-(6) for DDIM and Flow Matching. In Subsec. 3.3, we rely on this characterization
to derive our fine-tuning procedure. This expression has been written before for DDIM, e.g. Bartosh
et al. (2024a;b).

3 FINE-TUNING AS “MEMORYLESS” STOCHASTIC OPTIMAL CONTROL

We now discuss the crux of the problem: how to produce a fine-tuned generative model that pro-
duces samples X1 which follow the tilted distribution involving a reward model (1). An obvious
direction is to construct a fine-tuning objective involving both the base generative model and the

1In our derivations, we assume the base model has been trained perfectly during the pre-training phase.
2We use the common short-hand “over-dot” notation to denote the time derivative, i.e., ẋt =

d
dt
xt.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

reward model, where the optimal solution results in a fine-tuned generative model for the tilted dis-
tribution. However, as we will explain, this turns out to be non-trivial, because a naı̈ve formulation
will introduce bias into the solution.

In Subsec. 3.1, we discuss the problem formulation of stochastic optimal control, a general frame-
work for optimizing SDEs, and its relation to the maximum entropy reinforcement learning frame-
work commonly used for RLHF fine-tuning. Next, in Subsec. 3.2, we discuss the initial value
function bias problem which plagues existing approaches and so far has seen no simple solution.
Finally, in Subsec. 3.3, we propose a novel simple solution that circumvents the bias problem, by
enforcing a particular diffusion coefficient, the memoryless noise schedule, to be used during fine-
tuning. This results in an extremely simple fine-tuning objective that provably converges to a model
which generates the tilted distribution (1) without any statistical bias.

3.1 PRELIMINARIES ON THE STOCHASTIC OPTIMAL CONTROL PROBLEM FORMULATION

Stochastic optimal control (SOC; Bellman (1957); Fleming & Rishel (2012); Sethi (2018)) considers
general optimization problems over stochastic differential equations, but we only need to consider a
common instantiation, the control-affine problem formulation:

min
u∈U

E
[∫ 1

0

(
1
2∥u(X

u
t , t)∥2 + f(Xu

t , t)
)
dt+ g(Xu

1)
]
, (7)

s.t. dXu
t =

(
b(Xu

t , t) + σ(t)u(Xu
t , t)

)
dt+ σ(t)dBt, Xu

0 ∼ p0 (8)

where in (8), Xu
t ∈ Rd is the state of the stochastic process, u : Rd × [0, 1] → Rd is commonly

referred to as the control vector field, b : Rd × [0, 1]→ Rd is a base drift, and σ : [0, 1]→ Rd×d is
the diffusion coefficient. These jointly define the controlled process Xu ∼ pu that we are interested
in optimizing; often both b and σ are fixed and we only optimize over the control u.

As part of the objective functional (7), we have an affine control cost 1
2∥u(X

u
t , t)∥2, a running state

cost f : Rd × [0, 1]→ R and a terminal state cost g : Rd → R.

The stochastic optimal control (SOC) objective (7) can be decomposed recursively from the final
time value. It is common to define the cost functional which is the expected future cost starting from
state x at time t:

J(u;x, t) := EX∼pu

[∫ 1

t

(
1
2∥u(Xs, s)∥2 + f(Xs, s)

)
ds+ g(X1)

∣∣ Xt = x
]
. (9)

From here, the value function is defined as the optimal value of the cost functional3 : V (x, t) :=
minu∈U J(u;x, t) = J(u∗;x, t), where u∗ is the optimal control, i.e., minimizer of (7). Further-
more, a classical result is that the value function can be expressed in terms of the uncontrolled base
process pbase (Kappen (2005), see Domingo-Enrich et al. 2023, Eq. 8, App. B for a self-contained
proof):

V (x, t) = − logEX∼pbase

[
exp(−

∫ 1

t
f(Xs, s)ds− g(X1))

∣∣ Xt = x
]
. (10)

A useful expression for the optimal control (which we will make use of in deriving the Adjoint
Matching objective in Sec. 4) is that it is related to the gradient of the value function:

u∗(x, t) = −σ(t)⊤∇xV (x, t) = −σ(t)⊤∇xJ(u
∗, x, t). (11)

Relation to MaxEnt RL. Stochastic optimal control with the control-affine formulation (7) is the
continuous-time equivalence of maximum entropy reinforcement learning (MaxEnt RL; Todorov
(2006); Ziebart et al. (2008)) with a KL regularization instead of only an entropy regularization.
In particular, by the Girsanov theorem (Thm. 2), the affine control cost is equivalent to a Kull-
back–Leibler (KL) divergence between the base process pbase, when u = 0, and the controlled
process pu, when conditioned on the same initial state X0 (see App. D.4):

DKL
(
pu(X|X0)

∥∥ pbase(X|X0)
)
= EXu∼pu

[∫ 1

0
1
2∥u(X

u
t , t)∥2dt

]
, (12)

3Note that there is a slight difference in terminology between SOC and reinforcement learning, where our
cost functional is referred to as the state value function and our value function is the optimal state value function
in RL.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

resulting in the KL-regularized RL interpretation of (7):

max
u∈U

EX0∼p0

[
EX∼pu(·|X0)

[∫ 1

0
−f(Xu

t , t)dt−g(Xu
1)
]
−DKL(p

u(X|X0) ∥ pbase(X|X0))
]
,

(13)
where the negative state costs correspond to intermediate and terminal rewards in the RL interpreta-
tion. The KL divergence forces the optimal process to stay close to the base process.

3.2 THE INITIAL VALUE FUNCTION BIAS PROBLEM

We next discuss why naı̈vely adding a KL regularization does not lead to the tilted distribution (1).
From (13), we can show that the optimal distribution conditioned on X0 is4

p∗(X|X0) ∝ pbase(X|X0) exp
(
−

∫ 1

0
f(Xt, t) dt− g(X1)

)
. (14)

This is analogous to the exponentiated reward distribution in MaxEnt RL (Rawlik et al., 2013), but
the entropy regularizer is generalized to a KL regularization with respect to a prior distribution pbase.
In order to relate this to the tilted distribution (1) that we want to achieve for fine-tuning, first notice
that the normalization constant of the right-hand side (RHS) of (14) is exactly the value function at
t = 0:

EX∼pbase(X|X0)

[
exp

(
−

∫ 1

0
f(Xt, t) dt− g(X1)

)]
= exp

(
−V (X0, 0)

)
, (15)

where the equality is due to (10). Dividing the RHS of (14) by (15) and multiplying by p0(X0), we
obtain the normalized distribution over the full path X ,

p∗(X) = pbase(X) exp
(
−

∫ 1

0
f(Xt, t) dt− g(X1) + V (X0, 0)

)
. (16)

Setting f = 0 and g = −r, we arrive at an expression for the optimal distribution
p∗(X0, X1) = pbase(X0, X1) exp

(
r(X1) + V (X0, 0)

)
. (17)

This unfortunately does not lead to the tilted distribution (1) because we have a bias in the optimal
distribution that is due to the value function of the initial distribution V (X0, 0). That is to say,
naı̈vely adding a KL regularization (12) to the fine-tuning objective in the sense of (13) leads to
a biased distribution (16) after fine-tuning and is not equivalent to the tilted distribution (1). For
instance, when the sampling procedure is noiseless, i.e., σ(t) = 0, fine-tuning naı̈vely will not have
any effect because X0 completely determines X1.

This is unlike the situation for large language models (Ouyang et al., 2022; Rafailov et al., 2023),
where there is no dynamical process that samples X1 iteratively and hence no dependence on the
initial noise variable X0. Although this KL regularization is a common objective for RLHF of large
language models, it has seen seldom use in fine-tuning diffusion models, likely due to this issue of
the initial value function bias. In the context of diffusion models, KL regularization (13) has been
explored in prior works (Fan et al., 2024), but its behavior was not well-understood and they did not
relate the fine-tuned model to the tilted distribution (1). Another direction that has been proposed
is to learn the initial distribution p0 to cancel out the bias (Uehara et al., 2024b; Tang, 2024) but
this simply shifts the work into tilting the initial distribution and requires an auxiliary model for
parameterizing the optimal initial distribution. In contrast, we show in the next section that it is
possible to remove the value function bias by simply choosing a very particular noise schedule
during the fine-tuning procedure.

3.3 THE MEMORYLESS NOISE SCHEDULE TO FINE-TUNE DYNAMICAL GENERATIVE MODELS

In this subsection, we propose a very simple method of turning (17) into the tilted distribution (1)
through the use of memoryless noise schedules. We provide an intuitive explanation of why such
noise schedules are sufficient for fine-tuning, and show that if we want to sample the fine-tuned
model with an arbitrary noise schedule, we must use a particular memoryless noise schedule.

Intuitively, the main reason we cannot arrive at the tilted distribution from (17) is due to the
pbase(X0, X1) distribution not factoring into X0 and X1. Hence, we define a memoryless gener-
ative process as follows:

4Note (14) is informal because densities over continuous-time processes are ill-defined; the formal statement
is dP∗

dPbase (X|X0) = exp(−
∫ 1

0
f(Xt, t) dt − g(X1)), where dP∗

dPbase denotes the Radon-Nikodym derivative.
We treat this formally in the proofs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

κt ηt Diffusion coefficient σ(t) Memoryless Xt

Flow Matching (3) α̇t
αt

βt

(
α̇t
αt

βt − β̇t

)
General (commonly 0) No

Memoryless Flow Matching (4) α̇t
αt

βt

(
α̇t
αt

βt − β̇t

) √
2ηt Yes

DDIM (29) ˙̄αt
2ᾱt

˙̄αt
2ᾱt

General (commonly 0) No

DDPM (30) ˙̄αt
2ᾱt

˙̄αt
2ᾱt

√
2ηt Yes

Table 1: Diffusion coefficient σ(t) and the factors κt, ηt for the Flow Matching, Memoryless Flow
Matching, DDIM, and DDPM generative processes. When the diffusion coefficient is σ(t) =

√
2ηt,

the generative process is memoryless, i.e., samples X1 will be independent of the initial noise X0.

Definition 1 (Memoryless generative process). A generative process of the form (5)-(6) is memory-
less if X0 and X1 are independent, i.e., pbase(X0, X1) = pbase(X0)p

base(X1).

When the base generative process is memoryless, this implies:
p∗(X1) =

∫
pbase(X0)p

base(X1) exp(r(X1) + V (X0, 0))dX0 ∝ pbase(X1) exp(r(X1)). (18)
That is, solving the SOC problem (7)-(8) with a memoryless base model will result in a fine-tuned
model that generates samples p∗(X1) according to the tilted distribution (1). This memoryless
property is not satisfied generally by the family of generative processes captured by (7)-(8). For
instance, the Flow Matching and DDIM generative processes with zero diffusion coefficient (i.e.,
σ(t) = 0) are definitely not memoryless due to X0 and X1 being theoretically invertible. Below, we
provide the sufficient and necessary condition for the noise schedule in order to have a memoryless
generative process.
Proposition 1 (Memoryless noise schedules). Within the family of generative processes (5)-(6), a
generative process is memoryless if and only if the noise schedule is chosen as:

σ(t)2 = 2ηt + χ(t), where χ : [0, 1]→ R is s.t. ∀t ∈ (0, 1], limt′→0+ αt′ exp
(
−
∫ t

t′
χ(s)
2β2

s
ds

)
= 0,

(19)

where ηt is defined in (6). In particular, we refer to σ(t) =
√
2ηt as the memoryless noise schedule.

Due to the endpoint constraints of (αt, βt) for the reference flow (2), the memoryless noise schedule
σ(t) is infinite at t = 0 and approaches zero at t = 1. This provides a way for the generative process
to mix when close to noise X0 while stay steadying when close to the sample X1. Hence, the sample
will have no information about X0 due to the enormous amount of mixing with a large diffusion
coefficient. Furthermore, while we have intuitively justified the memoryless noise schedule through
its independence property, our theoretical result is actually even stronger: all generative models of
the form (5)-(6) must be fine-tuned using the memoryless noise schedule. We formalize this in the
following theorem, which we prove in App. E.2:
Theorem 1 (Fine-tuning recipe for general noise schedule sampling). Within the family of gener-
ative processes (5)-(6), in order to allow the use of arbitrary noise schedules and still generate
samples according to the tilted distribution (1), the fine-tuning problem (7)-(8) with f = 0 and
g = −r must be done with the memoryless noise schedule σ(t) =

√
2ηt.

Thm. 1 states that we need to use the memoryless noise schedule for fine-tuning with the SOC
objective—or equivalently, the KL regularized reward objective (13). This is the only noise sched-
ule that retains the relationship between the velocity and score function, allowing the conversion to
arbitrary noise schedules (e.g., σ(t) = 0) after fine-tuning. It is worth noting that when using the
memoryless noise schedule for DDIM, this recovers what we derived as the continuous-time limit
of the DDPM generative process (30). However, the DDPM sampler (Ho et al., 2020) is not com-
monly used as the DDIM sampler (Song et al., 2021a) and Flow Matching models typically generate
samples using σ(t) = 0, so an explicit conversion to the memoryless noise schedule is necessary for
fine-tuning. Tab. 1 summarizes the memoryless schedule for diffusion and Flow Matching models,
which we refer to as Memoryless Flow Matching. In Fig. 2, we visualize fine-tuning a 1D model,
where we see that constant σ(t) leads to biased distributions whereas the memoryless noise schedule
perfectly converges to the tilted distribution (1). In App. E.2.1, we express the base drift b and the
control u in terms of the base and fine-tuned Flow Matching vector fields vbase and vfinetune, and do
the same for DDIM.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Pretrained FM vbase (b) Fine-tuned FM vfinetune

with σ(t) = 0.2
(c) Fine-tuned FM vfinetune

with σ(t) = 1.0
(d) Fine-tuned FM vfinetune

with memoryless σ(t) =√
2ηt

Figure 2: Visualization of Thm. 1 showing that fine-tuning must be done with the memoryless noise
schedule to ensure convergence to the tilted distribution (1). (a) Shows the base Flow Matching
model. (b, c) Fine-tuning using a constant σ(t) leads to biased distributions. (d) Fine-tuning using
the memoryless noise schedule leads to the correct tilted distribution. Note that sample generation
can use any noise schedule after fine-tuning, including σ(t) = 0.

4 ADJOINT MATCHING FOR STOCHASTIC OPTIMAL CONTROL

Although several deep learning methods have been proposed to solve SOC problems using deep
learning (Domingo-Enrich et al., 2023; Nüsken & Richter, 2021), the preferred approach is the ad-
joint method, which performs gradient-based optimization on the control objective (7) with respect
to a parameterized control function. There are two approaches which yield the same gradient in
the small step size limit (see App. F.1.1 for more detail): the discrete adjoint method, where the
control objective is discretized and an automatic differentiation engine is used to backpropagate
through it (Han & E, 2016), and the continuous adjoint method, where the continuous-time structure
is exploited by solving the adjoint ODE backwards in time:

da
dt (t;X, u)=−

[
a(t;X, u)T

(
∇Xt(b(Xt, t)+σ(t)u(Xt, t))

)
+∇Xt

(
f(Xt, t) +

1
2∥u(Xt, t)∥2

)]
,

(20)

with initial condition a(1;X, u) = ∇g(X1). The gradient of the continuous adjoint loss is given by

dL
dθ = 1

2

∫ 1

0
∂
∂θ∥u(Xt, t)∥2dt+

∫ 1

0
∂u(Xt,t)

∂θ

T
σ(t)Ta(t;X, u)dt, (21)

The following proposition introduces and studies a loss whose gradient is also (21).
Proposition 2. Let us define, for now, the basic Adjoint Matching objective as:

LBasic−Adj−Match(u;X) := 1
2

∫ 1

0

∥∥u(Xt, t)+σ(t)Ta(t;X, ū)
∥∥2 dt, X ∼ pū, ū = stopgrad(u),

(22)

where ū = stopgrad(u) means that the gradients of ū with respect to the parameters θ of the con-
trol u are artificially set to zero. The gradient of LBasic−Adj−Match(u;X) with respect to θ is equal
to the gradient dL

dθ in equation (21). Importantly, the only critical point of E
[
LBasic−Adj−Match

]
is

the optimal control u∗.

Critical points of L are controls u such that δ
δuL(u) = 0, where δ

δuL denotes the first variation
of the functional L. In other words, Prop. 2 states that the only control that satisfies the first-order
optimality condition for the basic Adjoint Matching objective is the optimal control, which provides
theoretical grounding for gradient-based optimization algorithms. An intuitive way to understand the
basic Adjoint Matching objective is that it is a consistency loss. The Adjoint Matching objective is
based off of the observation that the optimal control u∗(x, t) is the unique fixed-point of the relation
u(x, t) = −σ(t)T∇xJ(u;x, t) (see Lemma 6 in App. F.3) and so we are directly optimizing for a
control that fits this relation, while using the adjoint state as a stochastic estimator of∇xJ(u;x, t).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We can see that the basic Adjoint Matching objective produces the same gradient w.r.t. θ as the
continuous adjoint method (21) by expanding the square in (22) and removing terms that do not
depend on θ. And while the basic Adjoint Matching is not entirely novel, it provides the means of
deriving a simpler leaner objective function.

The “Lean” Adjoint. The minimizer of a least-squares objective is the conditional expectation of
the regression target, so for the Adjoint Matching objective, at the optimum we have that

u∗(x, t) = EX∼p∗
[
−σ(t)Ta(t;X, u∗)|Xt = x

]
. (23)

Multiplying both sides by the Jacobian∇xu
∗(x, t) and re-arranging, we get the relation

EX∼p∗
[
u∗(x, t)T∇xu

∗(x, t) + a(t;X, u∗)Tσ(t)∇xu
∗(x, t) | Xt = x

]
= 0. (24)

Notice that the terms inside the expectation in (24) show up as part of the adjoint ODE (20). There-
fore, we motivate the definition of a lean adjoint state ã with the terms in (24) removed. Plugging
this lean adjoint back into the least-squares objective, we obtain our final proposed Adjoint Matching
objective:

LAdj−Match(u;X) := 1
2

∫ 1

0

∥∥u(Xt, t) + σ(t)Tã(t;X)
∥∥2 dt, X ∼ pū, ū = stopgrad(u),

(25)

where d
dt ã(t;X) = −(ã(t;X)⊤∇xb(Xt, t) +∇xf(Xt, t)), (26)

ã(1;X) = ∇xg(X1). (27)

Equations (26)-(27) define the lean adjoint state, and (25) is the complete Adjoint Matching objec-
tive. The unique critical point of E[LAdj−Match] is the optimal control, which we prove relying on
Prop. 2 and equation (24) (see Prop. 7 in App. F.4).

Compared to the adjoint method (App. F.1.1), Adjoint Matching produces a different gradient in
expectation than the continuous adjoint. This is because the lean adjoint state is not related to the
gradient of the cost functional anymore, i.e., (171) is not true, except at the optimum when u = u∗.
Even at the optimal solution, since Adjoint Matching removes terms that have expectation zero, it
can potentially exhibit better convergence and lower variance than the continuous adjoint method.
Additionally, computation of the lean adjoint state (26) also exhibits a smaller computational cost
due to the removal of the extra terms (no longer need the Jacobian of the control ∇xu). We provide
a rigorous derivation of Adjoint Matching and the above claims in App. F.4.

Adjoint Matching can be applied to reward fine-tuning of dynamical generative models through the
memoryless SOC formulation discussed in Sec. 3. In App. F.5, we provide pseudo-code for Flow
Matching models (Alg. 1) and for denoising diffusion models (Alg. 2).

5 EXPERIMENTS

We experimentally validate our proposed method on reward fine-tuning a Flow Matching base model
(Lipman et al., 2023). In particular, we use the usual setup of pre-training an autoencoder for
512×512 resolution images, then training a text-conditional Flow Matching model on the latent
variables with a U-net architecture (Long et al., 2015), similar to the setup in Rombach et al. (2022).
We pre-trained our base model using a dataset of licensed text and image pairs. Then for fine-tuning,
we consider the reward function: r(x) := λ×RewardModel(x) corresponding to a scaled version
of the reward model, which we take to be ImageReward (Xu et al., 2023). Different values of λ
provide different tradeoffs between the KL regularization and the reward model (13). For evaluation
and benchmarking purposes, we report metrics that separately quantify text-to-image consistency,
human preference, and sample diversity, capturing the tradeoff between each aspect of generative
models (Astolfi et al., 2024). For consistency, we make use of the standard ClipScore (Hessel et al.,
2021) and PickScore (Kirstain et al., 2023); for generalization to unseen human preferences, we use
the HPSv2 model (Wu et al., 2023b); and for diversity, we compute averages of pairwise distances
of the DreamSim features (Fu et al., 2023). More details are provided in App. H.4. As our baselines,
we consider the DPO (Wallace et al., 2023a), ReFL (Xu et al., 2023), and DRaFT-K algorithms
(Clark et al., 2024). DPO does not use gradients from the reward function, while ReFL and DRaFT
make use of heuristic gradient stopping approaches to stay close to the base generative model. Out

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Fine-tuning Fine-tuning Sampling ClipScore ↑ PickScore ↑ HPS v2 ↑ DreamSim
Method σ(t) σ(t) Diversity ↑
None N/A

√
2ηt 24.15±0.26 17.25±0.06 16.19±0.17 53.60±1.37

(Base model) 0 28.32±0.22 18.15±0.07 17.89±0.16 56.53±1.52
B

as
el

in
es

DRaFT-1
√
2ηt

√
2ηt 30.18±0.24 19.38±0.08 24.61±0.17 25.54±0.99

0 0 30.95±0.28 19.37±0.06 24.37±0.17 27.39±1.14

DRaFT-40
√
2ηt

√
2ηt 26.94±0.28 18.34±0.19 19.98±1.02 41.98±2.14

0 0 30.07±0.39 19.45±0.08 24.06±0.24 36.53±1.69

DPO
√
2ηt

√
2ηt 24.11±0.22 17.24±0.06 16.15±0.14 53.27±1.36

0 0 27.77±0.18 17.92±0.07 17.30±0.20 54.11±1.50

ReFL
√
2ηt

√
2ηt 28.59±0.31 18.68±0.10 22.24±0.46 32.71±2.76

0 0 30.06±0.63 19.07±0.21 23.06±0.41 32.69±1.28

M
em

or
yl

es
s

SO
C

Cont. Adjoint √
2ηt

√
2ηt 26.99±0.43 18.33±0.16 20.83±0.63 46.59±1.40

λ = 12500 0 29.49±0.32 18.98±0.16 21.34±0.53 48.41±1.44

Disc. Adjoint √
2ηt

√
2ηt 28.04±0.57 18.44±0.21 20.04±0.39 54.90±2.03

λ = 12500 0 29.28±0.17 18.82±0.14 19.73±0.17 53.36±2.48

Adj.-Matching √
2ηt

√
2ηt 30.36±0.22 19.29±0.08 24.12±0.17 40.89±1.50

λ = 1000 0 31.41±0.22 19.57±0.09 23.29±0.18 43.10±1.76

Adj.-Matching √
2ηt

√
2ηt 30.59±0.40 19.49±0.10 24.85±0.23 37.07±1.47

λ = 2500 0 31.64±0.21 19.71±0.09 24.12±0.27 39.88±1.59

Adj.-Matching √
2ηt

√
2ηt 30.62±0.30 19.50±0.09 24.95±0.28 34.50±1.33

λ = 12500 0 31.65±0.19 19.76±0.08 24.49±0.27 37.24±1.57

Table 2: Evaluation metrics of different fine-tuning methods for text-to-image generation. The
second and third columns show the noise schedules σ(t) used for fine-tuning and for sampling:
σ(t) =

√
2ηt corresponds to Memoryless Flow Matching, and σ(t) = 0 to the Flow Matching ODE

(3). We report standard errors estimated over 3 runs of the fine-tuning algorithm on random sets of
40000 training prompts, each evaluated over a random set of 1000 test prompts.

λ
=

1
0
0
0

λ
=

2
5
0
0

λ
=

1
2
5
0
0

Adjoint Matching (Ours)

1
0
0
0

itrs.
2
0
0
0

itrs.
4
0
0
0

itrs.

DRaFT-1

Figure 3: Our proposed Adjoint Matching using the memoryless SOC formulation introduces a
much more principled way of trading off how close to stay to the base model while optimizing the
reward model. In contrast, baseline methods such as DRaFT-1 only optimize the reward model and
must rely on early stopping to perform this trade off, resulting in a much more sensitive hyperparam-
eter. Samples are produced using σ(t) = 0 with the same noise sample. Text prompts: “Handsome
Smiling man in blue jacket portrait” and “Quinoa and Feta Stuffed Baby Bell Peppers”.

of these baseline methods, we find that DRaFT-1 performs the best, so we perform additional ab-
lation experiments comparing to this method. Within the same SOC formulation, we also consider
the discrete and continuous adjoint methods. We provide full experimental details in App. H; an
important implementation detail is that we slightly offset σ(t) in order to avoid division by zero.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Adj. Match. w=0
DRaFT-1 w=0

Adj. Match. w=1
DRaFT-1 w=1

Adj. Match. w=4
DRaFT-1 w=4

20 25 30 35 40

DreamSim Diversity

30.5

31.0

31.5

32.0

32.5

33.0

33.5

Cl
ip

Sc
or

e

20 25 30 35 40

DreamSim Diversity
21.5

22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

HP
S

v2

21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5

HPS v2

30.5

31.0

31.5

32.0

32.5

33.0

33.5

Cl
ip

Sc
or

e

Figure 4: Tradeoffs between different aspects of generative models: text-to-image consistency (Clip-
Score), sample diversity for each prompt (DreamSim Diversity), and generalization to unseen human
preferences (HPS v2). Different points are obtained from varying values of λ for Adjoint Matching
and varying number of fine-tuning iterations for the DRaFT-1 baseline. Overall, we find our pro-
posed method Adjoint Matching has the best Pareto fronts.

Evaluation results. In Tab. 2 we report the evaluation metrics for the baselines as well as our
proposed Adjoint Matching approach. We compare each method at roughly the same wall clock time
(see the times and number of iterations in Tab. 3, and comments in App. H.5). We find that across
all metrics, our proposed memoryless SOC formulation outperforms existing baseline methods. The
choice of SOC algorithms also obviously favors Adjoint Matching over continuous and discrete
adjoint methods, which result in poorer consistency and human preference metrics.
Ablation: base model vs. reward tradeoff. We note that the scaling in front of the reward model
λ determines how strongly the we should prefer the reward model over the base model. As such,
we see a natural tradeoff curve: higher λ results in better consistency and human preference, but
lower diversity in the generated samples. Overall, we find that Adjoint Matching performs stably
across all values of λ. Our method of regularizing the fine-tuning procedure through memoryless
SOC works much better than baseline methods which often must employ early stopping. We show
the qualitative effect of varying λ in Fig. 3, while for the DRaFT-1 baseline we show the effect of
varying the number of fine-tuning iterations.
Ablation: classifier-free guidance. We note that it is possible to apply classifier-free guidance
(CFG; Ho & Salimans (2022); Zheng et al. (2023)) after fine-tuning. We use the formula (1 +
w)v(x, t|y) − wv(x, t), where w is the guidance weight, v(x, t|y) is a fine-tuned text-to-image
model while v(x, t) is an unconditional image model. This is not principled as only the conditional
model is fine-tuned, but generally it is unclear what distribution guided models sample from anyhow.
In Fig. 4 we show the evaluation metrics with classifier-free guidance applied. Comparing three
different guidance weight values, we see a higher weight does improve text-to-image consistency,
and to some extent, human preference, but this comes at the cost of being worse in terms of diversity.
We show qualitative differences in Fig. 6 (App. A).

6 CONCLUSION

We investigate the problem of fine-tuning dynamical generative models such as Flow Matching and
propose the use of a stochastic optimal control (SOC) formulation with a memoryless noise schedule.
This ensures we converge to the same tilted distribution that the large language modeling literature
uses for learning from human feedback. In particular, the memoryless noise schedule corresponds
to DDPM sampling for diffusion models and a new Memoryless Flow Matching generative process
for flow models. In conjunction, we propose a novel training algorithm for solving stochastic opti-
mal control problems, by casting SOC as a regression problem, which we call the Adjoint Matching
objective. Empirically, we find that our memoryless SOC formulation works better than multiple
existing works on fine-tuning diffusion models, and our Adjoint Matching algorithm outperforms
related gradient-based methods. In summary, we are the first to provide a theoretically-driven algo-
rithm for fine-tuning Flow Matching models, and we find that our approach significantly outperforms
baseline methods across multiple axes of evaluation—text-to-image consistency, generalization to
unseen human preference, and sample diversity—on large-scale text-to-image generation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023.

Brandon Amos et al. Tutorial on amortized optimization. Foundations and Trends® in Machine
Learning, 16(5):592–732, 2023.

Pietro Astolfi, Marlene Careil, Melissa Hall, Oscar Mañas, Matthew Muckley, Jakob Verbeek, Adri-
ana Romero Soriano, and Michal Drozdzal. Consistency-diversity-realism pareto fronts of condi-
tional image generative models. arXiv preprint arXiv:2406.10429, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Ka-
plan. Training a helpful and harmless assistant with reinforcement learning from human feedback.
arXiv preprint arXiv:2204.05862, 2022.

Grigory Bartosh, Dmitry Vetrov, and Christian A. Naesseth. Neural diffusion models. arXiv preprint
arXiv:2310.08337, 2024a.

Grigory Bartosh, Dmitry Vetrov, and Christian A. Naesseth. Neural flow diffusion models: Learn-
able forward process for improved diffusion modelling. arXiv preprint arXiv:2404.12940, 2024b.

Richard Bellman. Dynamic programming. Princeton Landmarks in Mathematics. Princeton Univer-
sity Press, Princeton, NJ, 2010., 1957.

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-flow:
Differentiating through flows for controlled generation. arXiv preprint arXiv:2402.14017, 2024.

Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
generative modeling. arXiv preprint arXiv:2211.01364, 2023.

Joris Bierkens and Hilbert J Kappen. Explicit solution of relative entropy weighted control. Systems
& Control Letters, 72:36–43, 2014.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. In The Twelfth International Conference on Learning Rep-
resentations, 2024.

Joan Bruna and Jiequn Han. Posterior sampling with denoising oracles via tilted transport. arXiv
preprint arXiv:2407.00745, 2024.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Learning neural event functions for
ordinary differential equations. In International Conference on Learning Representations, 2021.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
on differentiable rewards. In The Twelfth International Conference on Learning Representations,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. In Advances in Neural Information
Processing Systems, volume 34, pp. 17695–17709. Curran Associates, Inc., 2021.

Alexander Denker, Francisco Vargas, Shreyas Padhy, Kieran Didi, Simon Mathis, Vincent Dutordoir,
Riccardo Barbano, Emile Mathieu, Urszula Julia Komorowska, and Pietro Lio. Deft: Efficient
finetuning of conditional diffusion models by learning the generalised h-transform. arXiv preprint
arXiv:2406.01781, 2024.

Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, and Ricky T. Q. Chen. Stochastic
optimal control matching. arXiv preprint arXiv:2312.02027, 2023.

Yuanqi Du, Michael Plainer, Rob Brekelmans, Chenru Duan, Frank Noé, Carla P. Gomes, Alan
Apsuru-Guzik, and Kirill Neklyudov. Doob’s lagrangian: A sample-efficient variational approach
to transition path sampling. arXiv preprint arXiv:2410.07974, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Ying Fan and Kangwook Lee. Optimizing ddpm sampling with shortcut fine-tuning. In International
Conference on Machine Learning, 2023.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models. arXiv preprint arXiv:2305.16381, 2023.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
tuning text-to-image diffusion models. Advances in Neural Information Processing Systems, 36,
2024.

W.H. Fleming and R.W. Rishel. Deterministic and Stochastic Optimal Control. Stochastic Mod-
elling and Applied Probability. Springer New York, 2012.

Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic
data. arXiv preprint arXiv:2306.09344, 2023.

Vicenç Gómez, Hilbert J Kappen, Jan Peters, and Gerhard Neumann. Policy search for path inte-
gral control. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 482–497. Springer, 2014.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse problems,
34(1):014004, 2017.

Jiequn Han and Weinan E. Deep learning approximation for stochastic control problems. arXiv
preprint arXiv:1611.07422, 2016.

Carsten Hartmann and Christof Schütte. Efficient rare event simulation by optimal nonequilibrium
forcing. Journal of Statistical Mechanics: Theory and Experiment, 2012(11):P11004, 2012.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems, volume 33. Curran Associates, Inc., 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yujia Huang, Adishree Ghatare, Yuanzhe Liu, Ziniu Hu, Qinsheng Zhang, Chandramouli S Sas-
try, Siddharth Gururani, Sageev Oore, and Yisong Yue. Symbolic music generation with non-
differentiable rule guided diffusion. arXiv preprint arXiv:2402.14285, 2024.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021.

H J Kappen. Path integrals and symmetry breaking for optimal control theory. Journal of Statistical
Mechanics: Theory and Experiment, 2005(11), nov 2005.

Hilbert J Kappen, Vicenç Gómez, and Manfred Opper. Optimal control as a graphical model infer-
ence problem. Machine learning, 87(2):159–182, 2012.

Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. On density estimation with diffu-
sion models. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, 2021.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
a-pic: An open dataset of user preferences for text-to-image generation. In Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023.

Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer, Leda Sari, Rashel Moritz, Mary Williamson,
Vimal Manohar, Yossi Adi, Jay Mahadeokar, et al. Voicebox: Text-guided multilingual universal
speech generation at scale. Advances in neural information processing systems, 36, 2024.

Dongzhuo Li. Differentiable gaussianization layers for inverse problems regularized by deep gener-
ative models. arXiv preprint arXiv:2112.03860, 2021.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In International Conference on Artificial Intelligence and
Statistics, pp. 3870–3882. PMLR, 2020.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos Theodorou, and
Ricky T. Q. Chen. Generalized schrödinger bridge matching. In The Twelfth International Con-
ference on Learning Representations, 2024.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. arXiv preprint arXiv:2201.13259, 2023.

Dimitra Maoutsa, Sebastian Reich, and Manfred Opper. Interacting particle solutions of fokker–
planck equations through gradient–log–density estimation. Entropy, 22(8):802, 2020.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient esti-
mation in machine learning. Journal of Machine Learning Research, 21(132):1–62, 2020.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper into neural
networks. Google research blog, 20(14):5, 2015.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nikolas Nüsken and Lorenz Richter. Solving high-dimensional Hamilton–Jacobi–Bellman pdes
using neural networks: perspectives from the theory of controlled diffusions and measures on
path space. Partial differential equations and applications, 2:1–48, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
Advances in Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran As-
sociates, Inc., 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Ashwini Pokle, Matthew J Muckley, Ricky T. Q. Chen, and Brian Karrer. Training-free linear image
inversion via flows. arXiv preprint arXiv:2310.04432, 2023.

L.S. Pontryagin. The Mathematical Theory of Optimal Processes. Interscience Publishers, 1962.

Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky T. Q. Chen, and Brandon Amos. Neural
optimal transport with lagrangian costs. arXiv preprint arXiv:2406.00288, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. In Twenty-Third International Joint Conference on
Artificial Intelligence, 2013.

Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Lorenz Richter, Ayman Boustati, Nikolas Nüsken, Francisco Ruiz, and Omer Deniz Akyildiz. Var-
Grad: A low-variance gradient estimator for variational inference. Advances in Neural Informa-
tion Processing Systems, 33, 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Litu Rout, Yujia Chen, Nataniel Ruiz, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai,
and Wen-Sheng Chu. Rb-modulation: Training-free personalization of diffusion models using
stochastic optimal control. arXiv preprint arXiv:2405.17401, 2024.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combina-
torial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business
Media, 2013.

Christoph Schuhmann and Romain Beaumont. Laion-aesthetics, 2022.

S.P. Sethi. Optimal Control Theory: Applications to Management Science and Economics. Springer
International Publishing, 2018.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
data. arXiv preprint arXiv:2209.14792, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
arXiv preprint arXiv:1907.05600, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR 2021), 2021b.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. In Advances
in Neural Information Processing Systems, volume 33, pp. 3008–3021. Curran Associates, Inc.,
2020.

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In International Conference on Machine Learning, pp. 20668–
20696. PMLR, 2022.

Wenpin Tang. Fine-tuning of diffusion models via stochastic control: entropy regularization and
beyond. arXiv preprint arXiv:2403.06279, 2024.

Emanuel Todorov. Linearly-solvable markov decision problems. Advances in neural information
processing systems, 19, 2006.

Belinda Tzen and Maxim Raginsky. Theoretical guarantees for sampling and inference in generative
models with latent diffusions. arXiv:1903.01608, 2019.

Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
forcement learning-based fine-tuning of diffusion models: A tutorial and review. arXiv preprint
arXiv:2407.13734, 2024a.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-
time diffusion models as entropy-regularized control. arXiv preprint arXiv:2402.15194, 2024b.

Francisco Vargas, Andrius Ovsianas, David Lopes Fernandes, Mark Girolami, Neil D Lawrence, and
Nikolas Nüsken. Bayesian learning via neural schrödinger-föllmer flows. In Fourth Symposium
on Advances in Approximate Bayesian Inference, 2022.

Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. In
The Eleventh International Conference on Learning Representations, 2023.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Apoorv Vyas, Bowen Shi, Matthew Le, Andros Tjandra, Yi-Chiao Wu, Baishan Guo, Jiemin Zhang,
Xinyue Zhang, Robert Adkins, William Ngan, et al. Audiobox: Unified audio generation with
natural language prompts. arXiv preprint arXiv:2312.15821, 2023.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. arXiv preprint arXiv:2311.12908, 2023a.

Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik. End-to-end diffusion latent opti-
mization improves classifier guidance. arXiv preprint arXiv:2303.13703, 2023b.

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and
asymptotically exact conditional sampling in diffusion models. In Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 31372–31403. Curran Associates, Inc., 2023a.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
image synthesis. arXiv preprint arXiv:2306.09341, 2023b.

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
image synthesis. arXiv preprint arXiv:2306.09341, 2023c.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Dinghuai Zhang, Yizhe Zhang, Jiatao Gu, Ruixiang Zhang, Josh Susskind, Navdeep Jaitly, and
Shuangfei Zhai. Improving gflownets for text-to-image diffusion alignment. arXiv preprint
arXiv:2406.00633, 2024.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for sam-
pling. In International Conference on Learning Representations, 2022.

Wei Zhang, Han Wang, Carsten Hartmann, Marcus Weber, and Christof Schütte. Applications of the
cross-entropy method to importance sampling and optimal control of diffusions. SIAM Journal
on Scientific Computing, 36(6):A2654–A2672, 2014.

Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky T. Q. Chen. Guided
flows for generative modeling and decision making. arXiv preprint arXiv:2311.13443, 2023.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2020.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Contents
A Additional Figures & Tables 18

B Related work 27

C Results on DDIM and Flow Matching 28
C.1 Denoising Diffusion Models . 28
C.2 The continuous-time limit of DDIM . 28
C.3 Forward and backward stochastic differential equations 29

C.3.1 Proof of Lemma 1 . 31
C.3.2 Proof of Lemma 2 . 31
C.3.3 Proof of Prop. 4 . 32

C.4 The relationship between the noise predictor ϵ and the score function 34
C.5 The relationship between the vector field v and the score function 34

D Stochastic optimal control as maximum entropy RL in continuous space and time 35
D.1 Maximum entropy RL . 35
D.2 From maximum entropy RL to stochastic optimal control 36
D.3 Proof of Prop. 5: from MaxEnt RL to SOC . 37
D.4 Proof of equation (12): the control cost is a KL regularizer 39

E Proofs of Subsec. 3.3: memoryless noise schedule and fine-tuning recipe 39
E.1 Proof of Prop. 1: the memoryless noise schedule 39
E.2 Fine-tuning recipe for general noise schedules . 41

E.2.1 Expressing b, u in terms of v or ϵ . 41
E.2.2 Proof of Thm. 1 . 42

F Methods to solve SOC problems 44
F.1 Existing methods . 44

F.1.1 The adjoint method . 44
F.1.2 Importance-weighted matching objectives for regressing onto the optimal

control . 45
F.2 Derivation of the Continuous Adjoint method . 45
F.3 Proof of Prop. 2: Theoretical guarantees of the basic Adjoint Matching loss 47
F.4 Theoretical guarantees of the Adjoint Matching loss 48
F.5 Pseudo-code of Adjoint Matching for Flow Matching and DDIM fine-tuning 50

G Adapting diffusion fine-tuning baselines to flow matching 50
G.1 Adapting ReFL (Xu et al., 2023) to flow matching 50
G.2 Adapting Diffusion-DPO (Wallace et al., 2023a) to flow matching 51

H Experimental details 53
H.1 Noise schedule details . 53
H.2 Selection of gradient evaluation timesteps . 54
H.3 Loss function clipping: the LCT hyperparameter 54
H.4 Computation of evaluation metrics . 55
H.5 Remarks on computational costs . 55
H.6 Remarks on number of sampling timesteps . 55

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A ADDITIONAL FIGURES & TABLES

Figure 5: Average values of ImageReward (reward function), control cost (
∫ t

0
1
2∥u(X

u
t , t)∥2 dt), and

ClipScore vs. wall-clock time for Adjoint Matching and our baselines. Lines show averages over
three fine-tuning runs, evaluating on separate test datasets of size 200. Confidence intervals show
standard errors of estimates.

w
=

0.
0

w
=

1.
0

w
=

4.
0

Text prompt: “Man sitting on sofa at home in front of
fireplace and using laptop computer, rear view”

Text prompt: “3D World Food Day Morocco”

Figure 6: Generated samples from varying classifier-free guidance weight w, from an Adjoint
Matching fine-tuned model. Higher guidance increases text-to-image consistency but loses diversity
and has use cases for generating highly structured images such as 3D renderings. Corresponding
samples from the base model can be found in Fig. 7.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Fine-tuning Fine-tuning Sampling ImageReward ↑ ClipScore PickScore Total time (s) /
loss σ(t) σ(t) diversity ↑ diversity ↑ # iterations

None N/A
√
2ηt −1.384±0.040 28.07±1.40 1.63±0.08 N/A(CFG = 1.0) 0 −0.920±0.042 30.29±1.53 1.82±0.09

DRaFT-1
√
2ηt

√
2ηt 1.357±0.039 16.86±0.98 1.21±0.07 140k±5.9k

0 0 1.251±0.040 16.76±1.06 1.27±0.07 / 4000

DRaFT-40
√
2ηt

√
2ηt −0.560±0.138 24.07±1.37 1.64±0.12 148k±4.2k

0 0 0.424±0.042 20.99±1.54 1.67±0.08 / 1500

DPO
√
2ηt

√
2ηt −1.386±0.033 27.80±1.40 1.62±0.08 118k±0.6k

0 0 −0.957±0.040 29.81±1.43 1.68±0.10 / 1000

ReFL
√
2ηt

√
2ηt 0.687±0.085 19.49±1.76 1.22±0.08 173k±10.9k

0 0 0.709±0.080 18.39±1.11 1.31±0.10 / 6000

Cont. Adjoint √
2ηt

√
2ηt −0.448±0.135 26.97±1.37 1.82±0.09 153k±0.9k

λ = 12500 0 −0.249±0.116 26.25±1.30 1.90±0.10 / 750

Disc. Adjoint √
2ηt

√
2ηt −0.557±0.113 30.40±2.39 1.91±0.09 152k±1.5k

λ = 12500 0 −0.552±0.041 28.37±2.26 1.97±0.09 / 1000

Adj.-Matching √
2ηt

√
2ηt 0.550±0.043 23.00±1.27 1.65±0.08

λ = 1000 0 0.454±0.055 22.76±1.40 1.73±0.09

Adj.-Matching √
2ηt

√
2ηt 0.755±0.040 21.33±1.71 1.55±0.08 156k±1.9k

λ = 2500 0 0.671±0.047 21.42±1.54 1.64±0.08 / 1000

Adj.-Matching √
2ηt

√
2ηt 0.882±0.058 20.49±1.48 1.50±0.09

λ = 12500 0 0.778±0.050 20.34±1.49 1.57±0.09

Table 3: Metrics for various fine-tuning methods for text-to-image generation. The second and third
columns show the noise schedules σ(t) used for fine-tuning and for inference: σ(t) =

√
2ηt corre-

sponds to Memoryless Flow Matching, and σ(t) = 0 to the Flow Matching ODE (3). Confidence
intervals show standard errors of estimates; computed over 3 runs of the fine-tuning algorithm on
separate fine-tuning prompt datasets of size 40000 each. Test prompt sets are of size 1000, and also
different for each run.

Fine-tun. Fine-tun. Generat.
ImageReward ↑ ClipScore ↑ PickScore ↑ HPS v2 ↑

DreamSim Runtime/
loss σ(t) σ(t) diversity ↑ #iter.

ReFL
√
2ηt

√
2ηt 0.459±0.096 28.46±0.25 18.77±0.09 22.54±0.17 37.51±3.50 43k±2.7k

0 0 0.330±0.114 29.63±0.61 19.08±0.18 22.46±0.77 39.51±1.30 / 1500

DRaFT-1
√
2ηt

√
2ηt 0.913±0.068 29.80±0.22 19.16±0.06 23.63±0.16 35.21±1.93 35k±1.5k

0 0 0.626±0.195 30.48±0.32 18.91±0.34 21.92±1.63 38.52±2.01 / 1000

Draft-40
√
2ηt

√
2ηt −1.427±0.267 23.39±1.72 17.24±0.45 15.72±1.80 41.98±2.14 49k±1.4k

0 0 −0.097±0.052 29.12±0.41 18.97±0.14 21.93±0.20 46.35±1.34 / 500

Adj.-Match. √
2ηt

√
2ηt 0.107±0.046 29.37±0.25 19.05±0.07 22.79±0.20 46.38±1.36

λ = 1000 0 0.051±0.044 30.58±0.17 19.31±0.07 21.93±0.23 48.12±1.56

Adj.-Match. √
2ηt

√
2ηt 0.199±0.068 29.27±0.21 19.07±0.10 22.98±0.30 45.03±1.61 39k±0.5k

λ = 2500 0 0.106±0.067 30.43±0.24 19.32±0.11 22.16±0.33 47.61±1.49 / 250

Adj.-Match. √
2ηt

√
2ηt 0.299±0.095 29.61±0.37 19.26±0.14 23.67±0.27 43.36±1.93

λ = 12500 0 0.224±0.051 30.70±0.23 19.52±0.11 22.93±0.21 44.62±1.79

Cont. Adj. √
2ηt

√
2ηt −0.910±0.116 26.29±0.44 18.06±0.16 18.86±0.88 51.60±1.97 51k±0.3k

λ = 12500 0 −0.681±0.051 28.50±0.19 18.69±0.11 19.90±0.50 50.87±1.52 / 250

Disc. Adj. √
2ηt

√
2ηt −0.978±0.123 26.68±0.76 18.51±0.11 18.53±0.28 55.95±1.70 38k±0.4k

λ = 12500 0 −0.791±0.065 28.66±0.33 18.51±0.11 18.53±0.28 54.78±2.00 / 250

Table 4: Additional metrics for various fine-tuning methods for text-to-image generation, which
complement the ones in Tab. 2 (both tables correspond to the same runs). The second and third
columns show the noise schedules σ(t) used for fine-tuning and for inference: σ(t) =

√
2ηt corre-

sponds to Memoryless Flow Matching, and σ(t) = 0 to the Flow Matching ODE (3).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

w
Fine-tuning #iter. Fine-tun. Sampl.

ImageReward ↑ ClipScore ↑ PickScore ↑ HPS v2 ↑
DreamSim

loss / λ σ(t) σ(t) diversity ↑

0.0 None N/A N/A
√
2ηt −1.384±0.040 24.15±0.26 17.25±0.06 16.19±0.17 53.60±1.37

0 −0.920±0.042 28.32±0.22 18.15±0.07 17.89±0.16 56.53±1.52

0.0 DRaFT-1

1000
√
2ηt

√
2ηt 0.913±0.068 29.80±0.22 19.16±0.06 23.63±0.16 35.21±1.93

0 0 0.626±0.195 30.48±0.32 18.91±0.34 21.92±1.63 38.52±2.01

2000
√
2ηt

√
2ηt 1.204±0.046 29.90±0.43 19.29±0.12 24.40±0.27 28.51±1.68

0 0 1.052±0.088 30.65±0.24 19.27±0.11 23.81±0.44 32.11±2.37

3000
√
2ηt

√
2ηt 1.307±0.041 29.96±0.22 19.31±0.06 24.42±0.13 26.57±1.32

0 0 1.173±0.058 30.86±0.25 19.37±0.06 24.17±0.23 29.69±1.30

4000
√
2ηt

√
2ηt 1.357±0.039 30.18±0.24 19.38±0.08 24.61±0.17 25.54±0.99

0 0 1.251±0.040 30.95±0.28 19.37±0.06 24.37±0.17 27.39±1.14

0.0 Adj.-Match.

1000
√
2ηt

√
2ηt 0.550±0.043 30.36±0.22 19.29±0.08 24.12±0.17 40.89±1.50

0 0 0.454±0.055 31.41±0.22 19.57±0.09 23.29±0.18 43.10±1.76

2500
√
2ηt

√
2ηt 0.755±0.040 30.59±0.40 19.49±0.10 24.85±0.23 37.07±1.47

0 0 0.671±0.047 31.64±0.21 19.71±0.09 24.12±0.27 39.88±1.59

12500
√
2ηt

√
2ηt 0.882±0.058 30.62±0.30 19.50±0.09 24.95±0.28 34.50±1.33

0 0 0.778±0.050 31.65±0.19 19.76±0.08 24.49±0.27 37.24±1.57

1.0 None N/A N/A
√
2ηt −0.269±0.050 30.41±0.22 18.74±0.07 20.47±0.18 43.82±1.24

0 −0.123±0.041 31.83±0.17 19.28±0.07 20.95±0.16 42.59±1.23

1.0 DRaFT-1

1000
√
2ηt

√
2ηt 1.123±0.051 32.06±0.19 19.69±0.06 24.56±0.17 28.25±1.55

0 0 0.856±0.167 32.32±0.25 19.38±0.34 22.88±1.54 29.98±1.86

2000 0 0 1.177±0.053 32.36±0.18 19.67±0.08 24.48±0.28 25.09±1.82

3000 0 0 1.255±0.038 32.36±0.19 19.70±0.06 24.64±0.17 23.24±1.19

4000 0 0 1.296±0.033 32.30±0.19 19.68±0.06 24.71±0.14 21.54±0.96

1.0 Adj.-Match.

1000 0 0 0.782±0.044 33.05±0.22 20.20±0.09 24.81±0.18 32.67±1.26

2500
√
2ηt

√
2ηt 1.027±0.038 32.85±0.21 20.08±0.08 25.88±0.20 29.83±1.00

0 0 0.910±0.040 33.20±0.17 20.29±0.09 25.39±0.24 30.34±1.51

12500 0 0 0.985±0.041 33.10±0.18 20.28±0.08 25.61±0.27 28.86±1.37

4.0 None N/A N/A
√
2ηt 0.277±0.043 32.68±0.18 19.50±0.07 22.29±0.16 35.12±0.92

0 0.209±0.046 32.83±0.17 19.79±0.07 22.30±0.17 32.05±1.05

4.0 DRaFT-1

1000
√
2ηt

√
2ηt 1.062±0.045 32.29±0.16 19.48±0.06 23.67±0.13 25.03±1.32

0 0 0.604±0.395 31.80±0.86 19.09±0.53 21.69±2.10 25.92±2.57

2000 0 0 1.112±0.046 32.29±0.20 19.34±0.11 23.31±0.22 21.02±1.67

3000 0 0 1.151±0.036 32.31±0.21 19.36±0.06 23.29±0.14 19.53±1.24

4000 0 0 1.172±0.040 32.20±0.22 19.30±0.07 23.20±0.15 18.45±1.06

4.0 Adj.-Match.

1000 0 0 0.852±0.046 33.50±0.22 20.31±0.08 24.97±0.19 25.83±0.82

2500
√
2ηt

√
2ηt 1.052±0.039 33.51±0.19 20.15±0.07 25.56±0.18 26.21±0.73

0 0 0.942±0.042 33.61±0.19 20.35±0.08 25.34±0.21 24.30±0.86

12500 0 0 1.007±0.052 33.48±0.20 20.29±0.08 25.50±0.29 23.48±0.81

Table 5: Evaluation metrics when using classifier-free guidance (CFG; Ho & Salimans (2022)).

LR / Fine-tuning Fine-tun. Generat.
ImageReward ↑ ClipScore ↑ PickScore ↑ HPS v2 ↑

DreamSim
Adam β1 loss σ(t) σ(t) diversity ↑

3 × 10−5 DRaFT-1
√
2ηt

√
2ηt 1.467±0.029 30.28±0.56 19.37±0.09 24.70±0.15 21.20±0.93

/ 0.97 Adj.-Match. √
2ηt

√
2ηt 1.130±0.034 31.01±0.27 19.60±0.08 25.01±0.25 26.73±0.88

λ = 12500

2 × 10−5 Disc. Adj.
√
2ηt

√
2ηt −1.186±0.553 21.95±4.29 16.94±0.95 12.34±4.40 28.33±10.26

/ 0.95 λ = 12500 0 0 −0.961±0.653 24.07±4.71 17.86±1.17 15.93±5.80 33.62±7.80

Table 6: Metrics for alternative optimization hyperparameters (learning rate and Adam β1).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Fine-tuning Fine-tuning Generative
ImageReward ↑ ClipScore ↑ PickScore ↑ HPS v2 ↑

DreamSim
loss σ(t) σ(t) diversity ↑

Adj.-Matching
1

1 0.009±0.077 29.18±0.51 18.66±0.09 20.75±0.32 41.33±1.24

λ = 12500 0 0.454±0.055 31.41±0.22 19.57±0.09 23.29±0.18 43.10±1.76

Adj.-Matching √
2ηt

√
2ηt 0.882±0.058 30.62±0.30 19.50±0.09 24.95±0.28 34.50±1.33

λ = 12500 0 0.778±0.050 31.65±0.19 19.76±0.08 24.49±0.27 37.24±1.57

Table 7: Comparison with an alternative fine-tuning noise schedule σ(t) = 1. We see that the
initial value function bias (Subsec. 3.2) results in the model not having a high reward function
(ImageReward is the reward function used for fine-tuning). Its performance on other metrics are
also lower than when fine-tuning with the memoryless noise schedule, except for diversity.

#sampl. Fine-tuning Fine-tun. Sampl.
ImageReward ↑ ClipScore ↑ PickScore ↑ HPS v2 ↑

DreamSim
timesteps loss σ(t) σ(t) diversity ↑

10

None (Base) N/A
√
2ηt −2.279±0.001 13.99±0.12 14.98±0.05 7.37±0.10 5.07±0.13

0 −1.386±0.040 26.26±0.24 17.64±0.07 14.92±0.17 51.26±1.38

DRaFT-1
√
2ηt

√
2ηt 1.033±0.051 25.98±0.25 18.28±0.07 22.08±0.18 14.47±0.67

0 0 1.236±0.038 31.54±0.27 19.53±0.07 24.47±0.19 24.78±0.88

Adj.-Match. √
2ηt

√
2ηt −2.104±0.074 17.12±0.56 15.76±0.20 11.48±1.03 9.88±0.81

λ = 12500 0 0.607±0.055 31.36±0.20 19.56±0.08 23.23±0.28 33.75±1.48

20

None (Base) N/A
√
2ηt −2.275±0.002 14.58±0.13 15.07±0.05 7.47±0.10 11.27±0.33

0 −1.017±0.055 27.92±0.19 18.01±0.07 17.17±0.15 54.69±1.45

DRaFT-1
√
2ηt

√
2ηt 1.301±0.039 27.09±0.24 18.93±0.07 23.78±0.20 21.05±1.12

0 0 1.255±0.038 31.14±0.25 19.43±0.06 24.52±0.16 26.15±1.11

Adj.-Match. √
2ηt

√
2ηt −0.032±0.072 25.07±0.27 18.01±0.07 20.75±0.23 29.06±2.34

λ = 12500 0 0.768±0.048 31.70±0.17 19.73±0.08 24.30±0.26 35.90±1.52

40

None (Base) N/A
√
2ηt −1.384±0.040 24.15±0.26 17.25±0.06 16.19±0.17 53.60±1.37

0 −0.920±0.042 28.32±0.22 18.15±0.07 17.89±0.16 56.53±1.52

DRaFT-1
√
2ηt

√
2ηt 1.357±0.039 30.18±0.24 19.38±0.08 24.61±0.17 25.54±0.99

0 0 1.251±0.040 30.95±0.28 19.37±0.06 24.37±0.17 27.39±1.14

Adj.-Match. √
2ηt

√
2ηt 0.882±0.058 30.62±0.30 19.50±0.09 24.95±0.28 34.50±1.33

λ = 12500 0 0.778±0.050 31.65±0.19 19.76±0.08 24.49±0.27 37.24±1.57

100

None (Base) N/A
√
2ηt −0.881±0.041 27.83±0.19 18.10±0.07 18.43±0.17 57.21±1.50

0 −0.881±0.036 28.65±0.18 18.22±0.06 18.20±0.17 57.73±1.68

DRaFT-1
√
2ηt

√
2ηt 1.343±0.040 30.64±0.20 19.38±0.08 24.37±0.17 25.51±1.10

0 0 1.239±0.037 30.74±0.28 19.33±0.06 24.24±0.17 28.70±1.11

Adj.-Match. √
2ηt

√
2ηt 0.892±0.044 31.23±0.23 19.65±0.08 24.92±0.23 35.13±1.40

λ = 12500 0 0.779±0.048 31.64±0.17 19.76±0.08 24.57±0.25 38.26±1.65

200

None (Base) N/A
√
2ηt −0.848±0.048 28.37±0.21 18.27±0.08 18.56±0.19 58.00±1.58

0 −0.871±0.036 28.50±0.18 18.23±0.06 18.25±0.14 57.84±1.60

DRaFT-1
√
2ηt

√
2ηt 1.331±0.044 30.69±0.23 19.36±0.07 24.21±0.17 26.41±1.18

0 0 1.222±0.042 30.77±0.27 19.32±0.06 24.18±0.16 29.09±1.07

Adj.-Match. √
2ηt

√
2ηt 0.869±0.062 31.33±0.21 19.68±0.09 24.81±0.30 35.90±1.55

λ = 12500 0 0.766±0.050 31.61±0.16 19.75±0.08 24.52±0.24 38.60±1.38

Table 8: Performance metrics for different number of sampling steps. Only the number of sampling
steps is ablated; the fine-tuned models used in all cases are the ones fine-tuned using 40 steps.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

w
=

0.
0

w
=

1.
0

w
=

4.
0

Text prompt: “Man sitting on sofa at home in front of
fireplace and using laptop computer, rear view”

Text prompt: “3D World Food Day Morocco”

Figure 7: Generated samples from varying classifier-free guidance weights, from the pre-trained
Flow Matching model. Corresponding samples from the fine-tuned model can be found in Fig. 6.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Base Flow Matching model Adjoint Matching (Ours) DRaFT-1

Figure 8: Generated samples with classifier-free guidance (w = 1) and σ(t) = 0 across ten selected
prompts. Each row corresponds to a different prompt and each image corresponds to a different
random seed consistent across models.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Base Flow Matching model Adjoint Matching (Ours) DRaFT-1

Figure 9: Generated samples with classifier-free guidance (w = 1) and σ(t) = 0 across ten selected
prompts with people. Each row corresponds to a different prompt and each image corresponds to a
different random seed consistent across models.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

N
on

e
(B

as
e)

D
R

aF
T-

1
D

R
aF

T-
40

R
eF

L
C

on
t.

A
dj

.
λ
=

1
2
5
0
0

D
is

c.
A

dj
.

λ
=

1
2
5
0
0

A
dj

.m
at

ch
.

λ
=

1
0
0
0

A
dj

.m
at

ch
.

λ
=

2
5
0
0

A
dj

.m
at

ch
.

λ
=

1
2
5
0
0

Figure 10: Generated samples without guidance (w = 0) and σ(t) = 0 across seven selected
prompts. Each row corresponds to a different finetuning algorithm. Prompts: “Seaside view poster
with palm trees vector image”, “Cayucos Beach Inn”, “Happy Summer Life- Aloha Flowers and
Melon - Pattern Metal Print”, “Castle Square, Warsaw Old Town”, “Funny girl blowing soap bub-
bles. High quality photo”, “Colombian man with sweatshirt over yellow wall listening to something
by putting hand on the ear”, “man in the hood black mask masquerade”.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

N
on

e
(B

as
e)

D
R

aF
T-

1
D

R
aF

T-
40

R
eF

L
C

on
t.

A
dj

.
λ
=

1
2
5
0
0

D
is

c.
A

dj
.

λ
=

1
2
5
0
0

A
dj

.m
at

ch
.

λ
=

1
0
0
0

A
dj

.m
at

ch
.

λ
=

2
5
0
0

A
dj

.m
at

ch
.

λ
=

1
2
5
0
0

Figure 11: Generated samples without guidance (w = 0) and σ(t) =
√
2ηt across seven selected

prompts. Each row corresponds to a different finetuning algorithm. The prompts are the same as in
Fig. 10.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

B RELATED WORK

Fine-tuning from human feedback. There are two main overarching approaches to RLHF: the
reward-based approach (Ziegler et al., 2020; Stiennon et al., 2020; Ouyang et al., 2022; Bai et al.,
2022) and direct preference optimization (DPO; Rafailov et al. (2023)). The reward-based approach
(Ziegler et al., 2020; Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022) consists in learn-
ing the reward model r(x) from human preference data, and then solving a maximum entropy RL
problem with rewards produced by r(x). DPO merges the two previous steps into one: there is no
need to learn r(x) as human preference data is directly used to fine-tune the model. However, DPO
is typically only applied with a filtered dataset, and does not work explicitly with a reward model.
Furthermore, for flow and diffusion models specifically, it is possible to differentiate the reward
function, so there is a larger emphasis on reward-based approaches.

Fine-tuning for diffusion models. Among existing reward-based diffusion fine-tuning methods,
Fan & Lee (2023) interpret the denoising process as a multi-step decision-making task and use policy
gradient algorithms to fine-tune diffusion samplers. Black et al. (2024) makes use of proximal policy
gradients for fine-tuning but this does not make use of the differentiability of the reward model. Fan
et al. (2023) also consider KL-regularized rewards (13) but do not make the critical connection
to the tilted distribution (1) that we flesh out in Subsec. 3.2. The fine-tuning algorithms of Xu
et al. (2023); Clark et al. (2024) directly take gradients of the reward model and use heuristics to
try to stay close to the original base generative model, but their behavior is not well understood
and unrelated to the tilted distribution: Xu et al. (2023) takes gradients of the reward applied on
the denoised sample at different points in time, and Clark et al. (2024) backpropagates the reward
function through all or part of the diffusion trajectory. Finally, Uehara et al. (2024b) also fine-tune
diffusion models with the goal of sampling from the tilted distribution (1), but their approach is
much more involved than ours as it requires learning a value function, and solving two stochastic
optimal control problems. Additional reward fine-tuning works include Bruna & Han (2024), that
provide theoretical guarantees to sample from the tilted distribution when the reward is a quadratic
function, and Zhang et al. (2024), that propose a reward fine-tuning algorithm for the GFlowNet
architecture.

Inference-time optimization methods. Some have proposed methods that do not update the base
model but instead modify the generation process directly. One approach is to add a guidance term
to the velocity (Chung et al., 2022; Song et al., 2023; Pokle et al., 2023); however, this is a heuristic
and it is not well-understood what particular distribution is being generated. Another approach is
to directly optimize the initial noise distribution (Li, 2021; Wallace et al., 2023b; Ben-Hamu et al.,
2024); this is taking an opposite approach to the inital value bias problem than us by moving all
of the work into optimizing the initial distribution. A more computationally intensive approach
is to perform online estimation of the optimal control, for the purpose of heuristically solving an
optimal control problem within the sampling process (Huang et al., 2024; Rout et al., 2024); these
approaches aim to solve a separate control problem for each generated sample, instead of performing
amortization (Amos et al., 2023) to learn a fine-tuned generative model.

Optimal control in generative modeling. Methods from optimal control have been used to train
dynamical generative models parameterized by ODEs (Chen et al., 2018), SDEs (Li et al., 2020),
and jump processes (?), enabled through the adjoint method. They can be used to train arbitrary
generative processes, but for simplified constructions these have fallen in favor of simulation-free
matching objectives such as denoising score matching (Vincent, 2011) and Flow Matching (Lipman
et al., 2023). The optimal control formalism also has significance in sampling from un-normalized
distributions (Zhang & Chen, 2022; Berner et al., 2023; Vargas et al., 2023; 2022; Richter & Berner,
2024; Tzen & Raginsky, 2019). The inclusion of a state cost has been used to solve transport
problems where intermediate path distributions are of importance (Liu et al., 2024; Pooladian et al.,
2024). These collective advances naturally lead to the consideration of the optimal control formalism
for reward fine-tuning.

Conditional sampling in inverse problems. Denker et al. (2024) and Wu et al. (2023a) indepen-
dently consider a pre-trained diffusion model p(x), and an observation y on the generated sample
x, as well as the analytic likelihood p(y|x). Their aim is to sample from the posterior p(x)p(y|x),

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

and their applications include inpainting, class-conditional generation, super-resolution, phase re-
trieval, non-linear deblurring, computed tomography, and protein design. Their setting reduces to
a particular case of our reward fine-tuning framework by setting r(x) = log p(y|x). Denker et al.
(2024) formulate an SOC problem, and they solve it via the log-variance loss (Richter et al. (2020);
Nüsken & Richter (2021)), and the moment loss (Nüsken & Richter, 2021), which they refer to
as the trajectory balance loss (Malkin et al., 2023). Wu et al. (2023a) propose Twisted Diffusion
Sampler, an algorithm based on Sequential Monte Carlo that can be understood as a poor man’s
SOC solver combined with importance reweighting to reduce the bias introduced by the suboptimal
control. A third work that also tackles the conditional sampling problem is Du et al. (2024), which
use a Lagrangian formulation that they solve approximately using Gaussian paths.

C RESULTS ON DDIM AND FLOW MATCHING

C.1 DENOISING DIFFUSION MODELS

We next discuss diffusion models, in particular the sampling scheme proposed by Denoising Diffu-
sion Implicit Model (DDIM; Song et al. (2021a)) which we will later relate to Denoising Diffusion
Probabilistic Models (DDPM; Ho et al. (2020)) as a particular case of the former. For sampling from
a diffusion model, the DDIM update rule5 (Song et al. (2021a), Eq. 12), typically stated in discrete
time with k ∈ {0, . . . ,K}, is:

Xk+1 =
√
ᾱk+1

(Xk−
√
1−ᾱkϵ(Xk,k)√

ᾱk

)
+

√
1− ᾱk+1 − σ2

kϵ(Xk, k) + σkεk, (28)

where εk ∼ N (0, I), X0 ∼ N (0, I), (ᾱk) is an increasing sequence such that ᾱ0 = 0, ᾱK = 1,
and the sequence σk is arbitrary. That is, one samples an initial Gaussian random variable x0, and
applies the stochastic update (28) iteratively K times in order to obtain an artificial sample XK .
Updates can be interpreted as progressively denoising the iterate: x0 is completely noisy and xK is
fully denoised. The noise predictor model ϵ(xk, k) is trained to predict the noise of xk (see e.g. Ho
et al. (2020) for details on pre-training denoising diffusion models).

To convert DDIM to a continuous-time stochastic process, we can show that the DDIM update rule
(28), up to a first-order approximation, is equivalent to the Euler-Maruyama discretization of the
following SDE:

dXt =
(˙̄αt

2ᾱt
Xt −

(˙̄αt

2ᾱt
+ σ(t)2

2

) ϵbase(Xt,t)√
1−ᾱt

)
dt+ σ(t)dBt, X0 ∼ N (0, I). (29)

See App. C.2 for the full derivation. To go from (28) to (29), we assumed a uniform discretiza-
tion of time, i.e. t = k

K . This results in identifying the discrete-time process (Xk)k∈{0,...,K}
with a continuous-time process (Xt)t∈[0,1], where ᾱk := ᾱt, σk := 1√

K
σ(t), and ϵ(Xk, k) with

ϵbase(Xk, t). In relation to the reference flow (2), the generative process in (29) has the same time
marginals when αt =

√
ᾱt and βt =

√
1− ᾱt (Ho et al., 2020).

Furthermore, when viewed up to first order approximations, the DDPM sampling scheme (Ho et al.
(2020); Algorithm 2) can be seen as special instance of the DDIM sampling scheme when σ(t) =√

˙̄αt/ᾱt. This results in the following generative process:

dXt =
(˙̄αt

2ᾱt
Xt − ˙̄αt

ᾱt

ϵbase(Xt,t)√
1−ᾱt

)
dt+

√
˙̄αt

ᾱt
dBt, X0 ∼ N (0, I), (30)

C.2 THE CONTINUOUS-TIME LIMIT OF DDIM

The DDIM inference update (Song et al., 2021a, Eq. 12) is

xk+1 =
√
ᾱk+1

(xk−
√
1−ᾱkϵ(xk,k)√

ᾱk

)
+
√
1− ᾱk+1 − σ2

kϵ(xk, k) + σkϵk, xK ∼ N(0, I).

(31)

If we let ∆ᾱk = ᾱk+1 − ᾱk, we have that√
ᾱk+1

ᾱk
=

√
ᾱk+ᾱk+1−ᾱk

ᾱk
=

√
1 + ᾱk+1−ᾱk

ᾱk
=

√
1 + ∆ᾱk

ᾱk
≈ 1 + ∆ᾱk

2ᾱk
, (32)

5We slightly depart from the notation in Song et al. (2021a) by flipping the direction of time and using ᾱk

which corresponds to the αk in Song et al. (2021a) while it corresponds to the ᾱk in Ho et al. (2020).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

where we used the first-order Taylor approximation of
√
1 + x. And

−
√

ᾱk+1

ᾱk
(1− ᾱk) +

√
1− ᾱk+1 − σ2

k = −
√(

1 + ∆ᾱk

ᾱk

)
(1− ᾱk) +

√
1− ᾱk+1 − σ2

k

= −
√
1 + ∆ᾱk

ᾱk
− ᾱk −∆ᾱk +

√
1− ᾱk+1 − σ2

k = −
√

1− ᾱk+1 +
∆ᾱk

ᾱk
+
√

1− ᾱk+1 − σ2
k

=
√
1− ᾱk+1

(
−
√
1 + ∆ᾱk

ᾱk(1−ᾱk+1)
+

√
1− σ2

k

1−ᾱk+1

)
≈
√
1− ᾱk+1

(
−
(
1 + ∆ᾱk

2ᾱk(1−ᾱk+1)

)
+ 1− σ2

k

2(1−ᾱk+1)

)
= −

(
∆ᾱk

2ᾱk
+

σ2
k

2

)
1√

1−ᾱk+1

,

(33)

where we used the same first-order Taylor approximation. Thus, up to first-order approximations,
(31) is equivalent to

xk−1 =
(
1 + ∆ᾱk

2ᾱk

)
xk −

(
∆ᾱk

2ᾱk
+

σ2
k

2

) ϵ(xk,k)√
1−ᾱk+1

+ σkϵk, xK ∼ N(0, I). (34)

If we modify our notation slightly, we can rewrite this as

X(k+1)h =
(
1− h ˙̄αkh

2ᾱkh

)
Xkh +

(
h ˙̄αkh

2ᾱkh
− hσ(kh)2

2

) ϵ(Xkh,kh)√
1−ᾱkh

+
√
hσ(kh)ϵk, X0 ∼ N(0, I).

(35)

To go from (34) to (35), we introduced a continuous time variable and a step size h = 1/K, and we
regard the increment hᾱk as approximately equal to h times the derivative of ᾱ. We also identified
σk with

√
hσ(kh), where σ(kh) plays the role of a diffusion coefficient. Note that equation (35) can

be reverse-engineered as the Euler-Maruyama discretization of the SDE

dXt =
(
− ˙̄αt

2ᾱt
+
(˙̄αt

2ᾱt
− σ(t)2

2

) ϵ(Xt,t)√
1−ᾱt

)
dt+ σ(t)dBt, X0 ∼ N(0, I). (36)

C.3 FORWARD AND BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

Let (κt)t∈[0,1] and (ηt)t∈[0,1] such that

∀t ∈ [0, 1], ηt ≥ 0,
∫ 1

0
κ1−s ds = +∞, 2

∫ 1

0
η1−t′ exp

(
− 2

∫ t

t′
κ1−s ds

)
dt′ = 1.
(37)

As shown in Tab. 1, DDIM corresponds to κt =
˙̄αt

2ᾱt
, ηt =

˙̄αt

2ᾱt
, and Flow Matching corresponds to

κt =
α̇t

αt
, ηt = βt

(
α̇t

αt
βt − β̇t

)
.

Lemma 1 (DDIM and Flow Matching fulfill the conditions (37)). The choices of (κt)t∈[0,1] and
(ηt)t∈[0,1] for DDIM and Flow Matching fulfill the conditions (37). For DDIM, we have that∫ t

0
κ1−s ds = − 1

2 log ᾱ1−t =⇒
∫ 1

0
κ1−s ds = +∞,

2
∫ t

0
ηt′ exp

(
− 2

∫ t

t′
κs ds

)
dt′ = 1− ᾱ1−t =⇒ 2

∫ 1

0
ηt′ exp

(
− 2

∫ t

t′
κs ds

)
dt′ = 1.

(38)

For Flow Matching,∫ t

0
κ1−s ds = − logα1−t =⇒

∫ 1

0
κ1−s ds = +∞, (39)

2
∫ t

0
ηt′ exp

(
− 2

∫ t

t′
κs ds

)
dt′ = β2

1−t =⇒ 2
∫ 1

0
ηt′ exp

(
− 2

∫ t

t′
κs ds

)
dt′ = 1. (40)

Forward and backward SDEs Consider the forward and backward SDEs

dX⃗t = −κ1−tX⃗t dt+
√
2η1−t dBt, X⃗0 ∼ pdata, (41)

dXt =
(
κtXt + 2ηts(Xt, t)

)
dt+

√
2ηt dBt, X0 ∼ N(0, I), (42)

where we let p⃗t be the density of X⃗t, and we define the score function as s(x, t) := ∇ log p⃗1−t(x).
Similarly, we let pt be the density of Xt. p⃗t and pt solve the Fokker-Planck equations:

∂tp⃗t = ∇ ·
(
κ1−txp⃗t

)
+ η1−t∆p⃗t, p⃗0 = pdata, (43)

∂tpt = ∇ ·
((
− κtx− 2ηt∇ log p⃗1−t(Xt)

)
pt
)
+ ηt∆pt, p0 = N(0, I). (44)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Lemma 2 (Solution of the forward SDE). Let (κt)t≥0, (ηt)t≥0 with ηt ≥ 0, and (ξt)t≥0 be arbi-
trary. The solution X⃗t of the SDE

dX⃗t =
(
− κ1−tX⃗t + ξt

)
dt+

√
2η1−t dBt, X⃗0 ∼ pdata (45)

is

X⃗t=X⃗0 exp
(
−
∫ t

0
κ1−s ds

)
+
∫ t

0
exp

(
−
∫ t

t′
κ1−s ds

)
ξ1−t′ dt

′+
∫ t

0

√
2η1−t′ exp

(
−
∫ t

t′
κ1−s ds

)
dBt′ ,

(46)

which has the same distribution as the random variable

X̂t=X⃗0 exp
(
−
∫ t

0
κ1−s ds

)
+
∫ t

0
exp

(
−
∫ t

t′
κ1−s ds

)
ξ1−t′ dt

′ +
√

2
∫ t

0
η1−t′ exp

(
−2

∫ t

t′
κ1−s ds

)
dt′ϵ,

ϵ ∼ N(0, I).
(47)

Applying Lemma 2 with ξt ≡ 0, we obtain that p⃗1 is also the distribution of

X̂1 = X⃗0 exp
(
−
∫ t

0
κ1−s ds

)
+
√
2
∫ t

0
η1−t′ exp

(
− 2

∫ t

t′
κ1−s ds

)
dt′ϵ = ϵ, (48)

where ϵ ∼ N(0, I). The third equality in (48) holds by (37). Hence we obtain that p⃗1 = N(0, I).
Note also that

∂tp⃗1−t = −∇ ·
(
κtxp⃗1−t

)
− ηt∆p⃗1−t = −∇ ·

((
− κtx− 2ηt∇ log p⃗1−t(x)

)
p⃗1−t

)
+ ηt∆p⃗1−t

(49)

Thus, p⃗1−t is a solution of the backward Fokker-Planck equation (44), which proves the following:

Proposition 3 (Equality of marginal distributions). For any time t ∈ [0, 1], the densities of the
solutions X⃗t, Xt of the forward and backward SDEs are equal up to a time flip: pt = p⃗1−t.

Forward and backward SDEs with arbitrary noise schedule Next, we look at the following
pair of forward-backward SDEs:

dX⃗t =
(
− κ1−tX⃗t +

(σ(1−t)2

2 − η1−t

)
s(X⃗t, 1− t)

)
dt+ σ(1− t) dBt, X⃗0 ∼ pdata, (50)

dXt =
(
κtXt +

(σ(t)2

2 + ηt
)
s(Xt, t)

)
dt+ σ(t) dBt, X0 ∼ N(0, I), (51)

Here, the score function s is the same vector field as in (51). Remark that equations (41)-(42) are a
particular case of (50)-(51) for which σ(t) =

√
2ηt. The Fokker-Planck equations for (50)-(51) are:

∂tp⃗t = ∇ ·
((
κ1−tx+

(
− σ(1−t)2

2 + η1−t

)
s(Xt, t)

)
p⃗t
)
+ η1−t∆p⃗t, p⃗0 = pdata, (52)

∂tpt = ∇ ·
((
− κtx−

(σ(t)2

2 + ηt
)
s(Xt, t)

)
pt
)
+ σ(t)2

2 ∆pt, p0 = N(0, I). (53)

It is straight-forward to see that for any σ, the solutions p⃗t and pt of (52)-(53) are also solutions of
(43)-(44). Hence, the marginals X⃗t and Xt are equally distributed for all noise schedules σ, and
they are equal to each other up to a time flip.

Equality of distributions over trajectories The result in Prop. 3 can be made even stronger:

Proposition 4 (Equality of distributions over trajectories). Let X⃗ , X be the solutions of the SDEs
(50)-(51) with arbitrary noise schedule. For any sequence of times (ti)0≤i≤I , the joint distribution of
(X⃗ti)0≤i≤I is equal to the joint distribution of (X1−ti)0≤i≤I , or equivalently, that the probability
measures P⃗, P of the forward and backward processes X⃗ , X are equal, up to a flip in the time
direction.

This result states that sampling trajectories from the backward process is equivalent to sampling
them from the forward process and then flipping their order.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

C.3.1 PROOF OF LEMMA 1

As shown in Tab. 1, DDIM corresponds to κt =
˙̄αt

2ᾱt
, ηt =

˙̄αt

2ᾱt
. Thus, ηt ≥ 0 because ᾱt is

increasing, and∫ t

0
κ1−s ds =

∫ t

0

˙̄α1−s

2ᾱ1−s
ds = − 1

2

∫ t

0
∂s log ᾱ1−s ds = − 1

2 (log ᾱ1−t − log ᾱ1) = − 1
2 log ᾱ1−t,

=⇒
∫ 1

0
κ1−s ds = − 1

2 log ᾱ0 = +∞

(54)

2
∫ t

0
ηt′ exp

(
− 2

∫ t

t′
κs ds

)
dt′ =

∫ t

0

˙̄α1−t′

ᾱ1−t′
exp

(
−

∫ t

t′
˙̄α1−s

ᾱ1−s
ds

)
dt′

=
∫ t

0

˙̄α1−t′

ᾱ1−t′

ᾱ1−t

ᾱ1−t′
dt′ = ᾱ1−t

∫ t

0
∂t′

(
1

ᾱ1−t′

)
dt′ = ᾱ1−t

(
1

ᾱ1−t
− 1

ᾱ1

)
= 1− ᾱ1−t,

=⇒ 2
∫ 1

0
ηt′ exp

(
− 2

∫ t

t′
κs ds

)
dt′ = 1− ᾱ0 = 1.

(55)

where we used that ᾱ1 = 1 and ᾱ0 = 0. And Flow Matching corresponds to κt = α̇t

αt
, ηt =

βt

(
α̇t

αt
βt − β̇t

)
. We have that ηt ≥ 0 because αt is increasing and βt is decreasing, and∫ t

0
κ1−s ds =

∫ t

0
α̇1−s

α1−s
ds = −

∫ t

0
∂s logα1−s ds = −(logα1−t − logα1) = − logα1−t,

=⇒
∫ 1

0
κ1−s ds = − logα0 = +∞,

(56)

and

2
∫ t

0
η1−t′ exp

(
− 2

∫ t

t′
κ1−s ds

)
dt′ = 2

∫ t

0
β1−t′

(α̇1−t′

α1−t′
β1−t′ − β̇1−t′

)
exp

(
− 2

∫ t

t′
α̇1−s

α1−s
ds

)
dt′

= 2
∫ t

0
β1−t′

(α̇1−t′

α1−t′
β1−t′ − β̇1−t′

)(α1−t

α1−t′

)2
dt′,

(57)

To develop the right-hand side, note that by integration by parts,∫ t

0
β̇1−t′β1−t′

(α1−t

α1−t′

)2
dt′ = −

∫ t

0
∂t′

(β2
1−t′

2

)(α1−t

α1−t′

)2
dt′

= −
[β2

1−t′

2

(α1−t

α1−t′

)2]1
0
+
∫ t

0

β2
1−t′

2 ∂t′
(α1−t

α1−t′

)2
dt′ = −

[β2
1−t′

2

(α1−t

α1−t′

)2]t
0
+

∫ t

0
β2
1−t′

α2
1−tα̇1−t′

α3
1−t′

dt′.

(58)

And if we plug this into the right-hand side of (57), we obtain

2
∫ t

0
η1−t′ exp

(
− 2

∫ t

t′
κ1−s ds

)
dt′ =

[
β2
1−t′

(α1−t

α1−t′

)2]t
0
= β2

1−t − β2
1

(α1−t

α1

)2
= β2

1−t, (59)

=⇒ 2
∫ 1

0
η1−t′ exp

(
− 2

∫ t

t′
κ1−s ds

)
dt′ = β2

1 = 1. (60)

where we used that β1 = 0, α1 = 1.

C.3.2 PROOF OF LEMMA 2

We can solve this equation by variation of parameters. To simplify the notation, we replace κ1−s,
η1−s and ξ1−s by κs, ηs and ξs. Defining f(X⃗t, t) = X⃗t exp

(∫ t

0
κ1−s ds

)
, we get that

df(X⃗t, t) = κ1−tX⃗t exp
(∫ t

0
κ1−s ds

)
dt+ exp

(∫ t

0
κ1−s ds

)
dX⃗t

= κ1−tX⃗t exp
(∫ t

0
κ1−s ds

)
dt+exp

(∫ t

0
κ1−s ds

)(
(−κ1−tX⃗t + ξ1−t) dt+

√
2η1−t dBt

)
= exp

(∫ t

0
κ1−s ds

)
ξ1−t dt+

√
2ηt exp

(∫ t

0
κ1−s ds

)
dBt.

(61)

Integrating from 0 to t, we get that

X⃗t exp
(∫ t

0
κ1−s ds

)
=X⃗0+

∫ t

0
exp

(∫ t′

0
κ1−s ds

)
ξ1−t′ dt

′+
∫ t

0

√
2η1−t′ exp

(∫ t′

0
κ1−s ds

)
dBt′ ,

(62)

⇐⇒ X⃗t = X⃗0 exp
(
−
∫ t

0
κ1−s ds

)
+
∫ t

0
exp

(
−

∫ t

t′
κ1−s ds

)
ξ1−t′ dt

′ (63)

+
∫ t

0

√
2η1−t′ exp

(
−

∫ t

t′
κ1−s ds

)
dBt′ . (64)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Since

E
[(∫ t

0

√
2η1−t′ exp

(
−
∫ t

t′
κ1−s ds

)
dBt′

)2]
= 2

∫ t

0
η1−t′ exp

(
− 2

∫ t

t′
κ1−s ds

)
dt′, (65)

we obtain that
∫ t

0

√
2η1−t′ exp

(
−

∫ t

t′
κ1−s ds

)
dBt′ has the same distribution as√

2
∫ t

0
η1−t′ exp

(
− 2

∫ t

t′
κ1−s ds

)
dt′ϵ, where ϵ ∼ N(0, 1).

C.3.3 PROOF OF PROP. 4

This is a result that has been used by previous works, e.g. (De Bortoli et al., 2021, Sec. 2.1), but
their derivation lacks rigor as it uses some unexplained approximations. While natural, the result
is not common knowledge in the area. We provide a derivation which is still in discrete time, and
hence not completely formal, but that corrects the gaps in the proof of De Bortoli et al. (2021).

We introduce the short-hand

b⃗(x, t) = −κ1−tx+
(σ(1−t)2

2 − η1−t

)
s(x, 1− t), (66)

b(x, t) = κtXt +
(σ(t)2

2 + ηt
)
s(Xt, t), (67)

σ⃗(t) = σ(1− t). (68)

Remark that b(x, t) = −b⃗(x, 1− t) + σ(t)2s(Xt, t).

Suppose that we discretize the forward process X⃗ using K + 1 equispaced timesteps:

xk+1 = xk + h⃗b(xk, kh) +
√
hσ⃗(kh)ϵk, with ϵk ∼ N(0, 1). (69)

It is important to remark that xk+1 − xk = O(h1/2). Throughout the proof we will keep track of all
terms up to linear order in h, while neglecting terms of order O(h3/2) and higher. The distribution
of the discretized forward process is:

p⃗(x0:K) = p⃗0(x0)
∏K−1

k=0 p⃗k+1|k(xk+1|xk), where p⃗k+1|k(xk+1|xk) =
exp

(
−

∥xk+1−xk−h⃗b(xk,kh)∥2

2hσ⃗(kh)2

)
(2πhσ⃗(kh)2)d/2

.

(70)

Using telescoping products, we have that

p⃗(x0:K) = p⃗K(xK)
∏K−1

k=0 p⃗k+1|k(xk+1|xk)
p⃗k(xk)

p⃗k+1(xk+1)

= p⃗K(xK)
∏K−1

k=0 p⃗k+1|k(xk+1|xk) exp
(
log(p⃗k(xk))− log(p⃗k+1(xk+1))

) (71)

We can use a discrete time version of Ito’s lemma:

log p⃗(xk+1, (k + 1)h) ≈ log p⃗(xk, kh) + h
(
∂t log p⃗(xk, kh) +

σ⃗(kh)2

2 ∆ log p⃗(xk, kh)
)

(72)

+ ⟨∇ log p⃗(xk, kh), xk+1 − xk⟩+O(h3/2). (73)

Using equation (69) and a Taylor approximation, observe that

⟨∇ log p(xk, kh), xk+1 − xk⟩
= ⟨∇ log p(xk+1, (k + 1)h)−∇2 log p(xk+1, (k + 1)h)(xk+1 − xk), xk+1 − xk⟩+O(h3/2)

= ⟨∇ log p(xk+1, (k + 1)h), xk+1 − xk⟩

− ⟨h⃗b(xk, kh) +
√
hσ⃗(kh)ϵk,∇2 log p(xk+1, (k + 1)h)

(
h⃗b(xk, kh) +

√
hσ⃗(kh)ϵk

)
⟩+O(h3/2)

= ⟨∇ log p(xk+1, (k + 1)h), xk+1 − xk⟩ − hσ⃗(kh)2∆ log p(xk+1, (k + 1)h) +O(h3/2).
(74)

And since p⃗ satisfies the Fokker-Planck equation

∂tp⃗t = ∇ ·
(
(−b⃗(x, t) + σ⃗(t)2

2 ∇ log p⃗t(x))p⃗t
)
, (75)

we have that

∂t log p⃗t =
∂tp⃗t

p⃗t
=

∇·
(
(−b⃗(x,t)+

σ⃗(t)2

2 ∇ log p⃗t(x))p⃗t

)
p⃗t

= −∇ · b⃗(x, t) + σ⃗(t)2

2 ∆ log p⃗t(x) + ⟨−b⃗(x, t) + σ⃗(t)2

2 ∇ log p⃗t(x),∇ log p⃗t(x)⟩.
(76)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Hence,

∂t log p(xk, kh) = ∂t log p(xk+1, (k + 1)h) +O(h1/2)

= −∇ · b⃗(xk+1, (k + 1)h) + σ⃗((k+1)h)2

2 ∆ log p⃗(xk+1, (k + 1)h)

+ ⟨−b⃗(xk+1, (k + 1)h) + σ⃗((k+1)h)2

2 ∇ log p⃗(xk+1, (k + 1)h),∇ log p⃗(xk+1, (k + 1)h)⟩+O(h1/2).
(77)

If we plug (74) and (77) into (72), we obtain

log p(xk+1, (k + 1)h)− log p(xk, kh)

= h
(
−∇ · b⃗(xk+1, (k + 1)h)+⟨−b⃗(xk+1, (k + 1)h)

+ σ⃗((k+1)h)2

2 ∇ log p⃗(xk+1, (k + 1)h),∇ log p⃗(xk+1, (k + 1)h)⟩
)

+ ⟨∇ log p(xk+1, (k + 1)h), xk+1 − xk⟩+O(h3/2)

= ⟨2hσ⃗(kh)2∇ log p(xk+1,(k+1)h),xk+1−xk−h⃗b(xk+1,(k+1)h)⟩
2hσ⃗(kh)2

+ h
(
−∇ · b⃗(xk+1, (k + 1)h) + σ⃗((k+1)h)2

2 ∥∇ log p⃗(xk+1, (k + 1)h)∥2
)
+O(h3/2).

(78)

Applying a discrete time version of Ito’s lemma again, we have that

b⃗(xk, kh) = b⃗(xk+1, (k + 1)h)− h
(
∂t⃗b(xk+1, (k + 1)h) + σ⃗((k+1)h)2

2 ∆b⃗(xk+1, (k + 1)h)
)

+∇b⃗(xk+1, (k + 1)h)⊤(xk − xk+1) +O(h3/2)

= b⃗(xk+1, (k + 1)h) +∇b⃗(xk+1, (k + 1)h)⊤(xk − xk+1) +O(h).
(79)

where ∆b⃗ denotes the component-wise Laplacian of b⃗. Thus,

log p⃗k+1|k(xk+1|xk)

=−d
2 log

(
2πhσ⃗(kh)2

)
− ∥xk+1−xk−h⃗b(xk,kh)∥2

2hσ⃗(kh)2

=−d
2 log

(
2πhσ⃗(kh)2

)
− ∥xk+1−xk−h(⃗b(xk+1,(k+1)h)+∇b⃗(xk+1,(k+1)h)⊤(xk−xk+1))∥2

2hσ⃗(kh)2 +O(h3/2)

=−d
2 log

(
2πhσ⃗(kh)2

)
− ∥xk+1−xk−h⃗b(xk+1,(k+1)h)∥2

2hσ⃗(kh)2 + ⟨xk+1−xk,∇b⃗(xk+1,(k+1)h)⊤(xk−xk+1)⟩
σ⃗(kh)2 +O(h3/2)

=−d
2 log

(
2πhσ⃗(kh)2

)
− ∥xk+1−xk−h⃗b(xk+1,(k+1)h)∥2

hσ⃗(kh)2 − hσ⃗(kh)2⟨ϵk,∇b⃗(xk+1,(k+1)h)⊤ϵk⟩
σ⃗(kh)2 +O(h3/2)

=−d
2 log

(
2πhσ⃗(kh)2

)
− ∥xk+1−xk−h⃗b(xk+1,(k+1)h)∥2

hσ⃗(kh)2 −h∆b⃗(xk+1, (k + 1)h) +O(h3/2)

(80)

Combining (78) and (80), we obtain that

log p⃗k+1|k(xk+1|xk)−
(
log p(xk+1, (k + 1)h)− log p(xk, kh)

)
= −d

2 log
(
2πhσ⃗(kh)2

)
− ∥xk+1−xk−h⃗b(xk+1,(k+1)h)+hσ⃗(kh)2∇ log p(xk+1,(k+1)h)∥2

hσ⃗(kh)2 +O(h3/2)

= −d
2 log

(
2πhσ⃗((k + 1)h)2

)
− ∥xk+1−xk−h⃗b(xk+1,(k+1)h)+hσ⃗((k+1)h)2∇ log p(xk+1,(k+1)h)∥2

hσ⃗((k+1)h)2 +O(h3/2).

(81)

By Bayes rule, and taking the exponential of this equation, we obtain

p⃗k+1|k(xk+1|xk) := p⃗k+1|k(xk+1|xk)
p⃗k(xk)

p⃗k+1(xk+1)

=
exp

(
−

∥xk−xk+1+h⃗b(xk+1,(k+1)h)−hσ⃗((k+1)h)2∇ log p(xk+1,(k+1)h)∥2

2hσ⃗((k+1)h)2

)
(2πhσ⃗((k+1)h)2)d/2

+O(h3/2).

(82)

Up to the O(h3/2) term, the right-hand side is the conditional Gaussian corresponding to the update

xk = xk+1 + h
(
− b⃗(xk+1, (k + 1)h) + σ⃗((k + 1)h)2∇ log p(xk+1, (k + 1)h)

)
+
√
hσ⃗((k + 1)h)ϵk+1, ϵk+1 ∼ N(0, I).

(83)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

If we define yk = xK−k, and we use that b(x, t) = −b⃗(x, 1 − t) + σ⃗(t)2∇ log p(x, 1 − t), we can
rewrite (83) as

yK−k=yK−k−1+h
(
− b⃗(yK−k−1, (K − k − 1)h)+σ⃗((K−k−1)h)2∇ log p(yK−k−1, (K−k−1)h)

)
+
√
hσ⃗((K − k − 1)h)ϵk = yK−k−1 + hb(yK−k−1, kh) +

√
hσ(kh)ϵK−k−1,

=⇒ yk+1 = yk + hb(yk, kh) +
√
hσ(kh)ϵk.

(84)

And this is the Euler-Maruyama discretization of the backward process ⃗X . If we plug (82) into (71),
we obtain that

p⃗(x0:K) ≈ p⃗K(xK)
∏K−1

k=0 p⃗k+1|k(xk+1|xk). (85)

which concludes the proof, as p⃗K(xK) is the initial distribution of the backward process, and
p⃗k+1|k(xk+1|xk) are its transition kernels.

C.4 THE RELATIONSHIP BETWEEN THE NOISE PREDICTOR ϵ AND THE SCORE FUNCTION

Applying Lemma 2 with the choices of (κt)t≥0 and (ηt)t≥0 for DDIM, we obtain that X⃗t has the
same distribution as

X̂t =
√
ᾱ1−tX⃗0 +

√
1− ᾱ1−tϵ, ϵ ∼ N(0, 1). (86)

Since X⃗t and X̂t have the same distribution, predicting the noise of X⃗t is equivalent to predicting
the noise of X̂t. The noise predictor ϵ can be written as:

ϵ(x, t) :=E[ϵ|X̂1−t = x]=E
[
ϵ|
√
ᾱtX⃗0 +

√
1− ᾱtϵ = x

]
=E

[x−√
ᾱtX⃗0√

1−ᾱt
|
√
ᾱtX⃗0 +

√
1− ᾱtϵ = x

]
.

(87)

And the score function s(x, t) := ∇ log p⃗1−t(x) admits the expression

s(x, t) := ∇ log p⃗1−t(x) =
∇p⃗1−t(x)
p⃗1−t(x)

=
∇E[p⃗1−t|0(x|X⃗0)]

p⃗1−t(x)
=

E[∇ log p⃗1−t|0(x|X⃗0)p⃗1−t|0(x|X⃗0)]

p⃗1−t(x)
, (88)

where

p⃗1−t|0(x|X⃗0) =
exp(−∥x−

√
ᾱtY1∥2/(2(1−ᾱt)))

(2π(1−ᾱt))d/2
=⇒ ∇ log p⃗t|1(x|Y1) = −x−

√
ᾱtY1

1−ᾱt
. (89)

Plugging this into the right-hand side of (88) and using Bayes’ rule, we get

s(x, t) = E
[
− x−

√
ᾱtX⃗0

1−ᾱt
|
√
ᾱtX⃗0 +

√
1− ᾱtϵ = x

]
. (90)

Comparing the right-hand sides of (87) and (90), we obtain that s(x, t) = − ϵ(x,t)√
1−ᾱt

.

C.5 THE RELATIONSHIP BETWEEN THE VECTOR FIELD v AND THE SCORE FUNCTION

By construction (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023), we
have that

v(x, t) = E[α̇tY1 + β̇tY0|x = αtY1 + βtY0]

= E[α̇t(x−βtY0)
αt

+ β̇tY0|x = αtY1 + βtY0]

= α̇t

αt
x+ (β̇t − α̇t

αt
βt)E[Y0|x = αtY1 + βtY0],

(91)

where we used that Y1 = (x− βtY0)/αt. Also, we can write the score as follows

s(x, t) :=∇ log pt(x)=
∇pt(x)
pt(x)

=
∇E[pt|1(x|Y1)]

pt(x)
=

E[∇pt|1(x|Y1)]

pt(x)
=

E[pt|1(x|Y1)∇ log pt|1(x|Y1)]

pt(x)
, (92)

where

pt|1(x|Y1) =
exp(−∥x−αtY1∥2/(2β2

t))

(2πβ2
t)

d/2 =⇒ ∇ log p⃗t|1(x|Y1) = −x−αtY1

β2
t

(93)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Plugging this back into the right-hand side of (92), we obtain

s(x, t) = −
E[pt|1(x|Y1)

x−αtY1
β2
t

]

pt(x)
= −

∫
p⃗t|1(x|Y1)p1(Y1)

x−αtY1
β2
t

dY1

p⃗t(x)

= −
∫
p1|t(Y1|x)x−αtY1

β2
t

dY1 = −E[x−αtY1

β2
t
|x = αtY1 + βtY0] = −E[Y0|x=αtY1+βtY0]

βt

(94)

The last equality holds because (x− αtY1)/βt = Y0. Putting together (91) and (94), we obtain that

v(x, t) = α̇t

αt
x+ βt(

α̇t

αt
βt − β̇t)s(x, t) ⇐⇒ s(x, t) = 1

βt(
α̇t
αt

βt−β̇t)

(
v(x, t)− α̇t

αt
x
)

(95)

Thus, the ODE (3) can be rewritten like this:
dXt

dt = α̇t

αt
Xt + βt(

α̇t

αt
βt − β̇t)s(Xt, t), X0 ∼ p0. (96)

To allow for an arbitrary diffusion coefficient, we need to add a correction term to the drift:

dXt =
(
α̇t

αt
Xt +

(σ(t)2

2 + βt(
α̇t

αt
βt − β̇t)

)
s(Xt, t)

)
dt+ σ(t)dBt, X0 ∼ p0. (97)

This can be easily shown by writing down the Fokker-Planck equations for (96) and (97), and ob-
serving that they are the same up to a cancellation of terms. Finally, if we plug the right-hand side
of (95) into (97), we obtain the SDE for Flow Matching with arbitrary noise schedule (equation (4)).

D STOCHASTIC OPTIMAL CONTROL AS MAXIMUM ENTROPY RL IN
CONTINUOUS SPACE AND TIME

In this section, we bridge KL-regularized (or MaxEnt) reinforcement learning and stochastic opti-
mal control. We show that when the action space is Euclidean and the transition probabilities are
conditional Gaussians, taking the limit in which the step size goes to zero on the KL-regularized RL
problem gives rise to the SOC problem. A consequence of this connection is that all algorithms for
KL-regularized RL admit an analog for diffusion fine-tuning. This is not novel, but it may be useful
for researchers that are familiar with RL fine-tuning formulations.

App. D.4 is providing a more direct, rigorous, continuous-time connection between SOC and Max-
Ent RL, as it shows that the expected control cost is equal to the KL divergence between the distri-
butions over trajectories, conditioned on the starting points (see equation (12)).

D.1 MAXIMUM ENTROPY RL

Several diffusion fine-tuning methods (Black et al., 2024; Uehara et al., 2024b) are based on KL-
regularized RL, also known as maximum entropy RL, which we review in the following. In the
classical reinforcement learning (RL) setting, we have an agent that, starting from state s0 ∼ p0,
iteratively observes a state sk, takes an action ak according to a policy π(ak; sk, k) which leads
to a new state sk+1 according to a fixed transition probability p(sk+1|ak, sk), and obtains rewards
rk(sk, ak). This can be summarized into a trajectory τ = ((sk, ak))

K
k=0. The goal is to optimize the

policy π in order to maximize the expected total reward, i.e. maxπ Eτ∼π,p[
∑K

k=0 rk(sk, ak)].

Maximum entropy RL (MaxEnt RL; Ziebart et al. (2008)) amounts to adding the entropy H(π) of
the policy π(·; sk, k) to the reward for each step k, in order to encourage exploration and improve
robustness to changes in the environment: maxπ Eτ∼π,p[

∑K
k=0 rk(sk, ak)+

∑K−1
k=0 H(π(·; sk, k))]

6. As a generalization, one can regularize using the negative KL divergence between π(·; sk, k) and
a base policy πbase(·; sk, k):

maxπ Eτ∼π,p[
∑K

k=0 rk(sk, ak)−
∑K−1

k=0 KL(π(·; sk, k)||πbase(·; sk, k))], (98)

which prevents the learned policy to deviate too much from the base policy. Each policy π induces
a distribution q(τ) over trajectories τ , and the MaxEnt RL problem (98) can be expressed solely in
terms of such distributions (Lemma 3 in App. D.3):

maxq Eτ∼q[
∑K

k=0 rk(sk, ak)]−KL(q||qbase), (99)

6The entropy terms are usually multiplied by a factor to tune their magnitude, but one can equivalently
rescale the rewards, which is why we do not add any factor.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

where qbase is the distribution induced by the base policy πbase, and the maximization is over all
distributions q such that their marginal for s0 is p0. We can further recast this problem as (Lemma 4
in App. D.3):

minq KL(q||q∗), where q∗(τ) := qbase(τ) exp
(∑K

k=0 rk(sk, ak)− V(s0, 0)
)
, (100)

where

V(sk, k) := log
(
Eτ∼πbase,p[exp

(∑K
k′=k rk′(sk′ , ak′)

)
|sk]

)
= maxπ Eτ∼π,p

[∑K
k′=k rk′(sk′ , ak′)−

∑K−1
k′=k KL(π(·; sk′ , k′)||πbase(·; sk′ , k′))|sk

]
(101)

is the value function. Problem (100) directly implies that the distribution induced by the optimal
policy π∗ is the tilted distribution q∗ (which has initial marginal p0).

D.2 FROM MAXIMUM ENTROPY RL TO STOCHASTIC OPTIMAL CONTROL

The following well-known result, which we prove in App. D.3, shows that in a natural sense, the
continuous-time continuous-space version of MaxEnt RL is the SOC framework introduced in Sub-
sec. 3.1. In particular, when states and actions are vectors in Rd, policies are specified by a vector
field u (the control), and transition probabilities are conditional Gaussians, the MaxEnt RL problem
becomes an SOC problem when the number of timesteps grows to infinity.

Proposition 5. Suppose that

(i) The state space and the action space are Rd,

(ii) Policies π are specified as π(ak; sk, k) = δ(ak − u(sk, kh)), where u : Rd × [0, T]→ Rd

is a vector field, and δ denotes the Dirac delta,

(iii) Transition probabilities are conditional Gaussian densities: p(sk+1|ak, sk) = N(sk +
h(b(sk, kh) + σ(kh)ak), hσ(kh)σ(kh)

⊤), where h = T/K is the step size, and b and σ
are defined as in Subsec. 3.1.

Then, in the limit in which the number of steps K grows to infinity, the problem (98) is equivalent to
the SOC problem (7)-(8), identifying

• the sequence of states (sk)kk=0 with the trajectory Xu = (Xu
t)t∈[0,1],

• the running reward
∑K−1

k=0 rk(sk, ak) with the negative running cost −
∫ T

0
f(Xu

t , t) dt,

• the terminal reward rK(sK , aK) with the negative terminal cost −g(Xu
T),

• the KL regularization Eτ∼π,p[
∑K−1

k=0 KL(π(·; sk, k)||πbase(·; sk, k))] with 1
2 times the ex-

pected L2 norm of the control 1
2E

[∫ T

0
∥u(Xu

t , t)∥2 dt
]
,

• and the value function V(sk, k) defined in (101) with the negative value function −V (x, t)
defined in Subsec. 3.1.

A first consequence of this result is that every loss function designed for generic MaxEnt RL prob-
lems has a corresponding loss function for SOC problems. The geometric structure of the latter
allows for additional losses that do not have an analog in the classical MaxEnt RL setting; in partic-
ular, we can differentiate the state and terminal costs.

A second consequence of Prop. 5 is that the characterization (100) can be translated to the SOC
setting. The analogs of the distributions q∗, qbase induced by the optimal policy π∗ and the base
policy πbase are the distributions p∗, pbase induced by the optimal control u∗ and the null control.
For an arbitrary trajectory X = (Xt)t∈[0,T], the relation between P∗ and Pbase is given by

dP∗

dPbase (X) = exp(−
∫ T

0
f(Xt, t) dt− g(XT) + V (X0, 0)) (102)

where V is the value function as defined in Subsec. 3.1. Note that this matches the statement in (16).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

D.3 PROOF OF PROP. 5: FROM MAXENT RL TO SOC

Since the transition p(sk+1|ak, sk) is fixed, for each π we can define

π̃(ak, sk+1; sk, k) = π(ak; sk, k)p(sk+1|ak, sk)
and π̃base(ak, sk+1; sk, k) = πbase(ak; sk, k)p(sk+1|ak, sk),

(103)

and reexpress (98) as (see Lemma 3)

minπ̃ Eτ∼π̃[
∑K

k=0 rk(sk, ak)−
∑K−1

k=0 KL(π̃(·, ·; sk, k)||π̃base(·, ·; sk, k))]. (104)

Using the hypothesis of the proposition, we can write

π̃(ak, sk+1; sk, k) = δ(ak − u(sk, kη))N(sk + η(b(sk, kη) + σ(kη)ak), ησ(kη)σ(kη)
⊤)

= δ(ak − u(sk, kη))π̃(sk+1; sk, k),
(105)

where π̃(sk+1; sk, k) = N(sk + η(b(sk, kη) + σ(kη)u(sk, kη)), ησ(kη)σ(kη)
⊤) is the state

transition kernel. We set the base policy as πbase(ak; sk, k) = δ(ak), and we obtain anal-
ogously that π̃(ak, sk+1; sk, k) = δ(ak)π̃base(sk+1; sk, k) with π̃base(sk+1; sk, k) = N(sk +
ηb(sk, kη), ησ(kη)σ(kη)

⊤). Now, if we take K large, the trajectory (sk)
K
k=0 generated by π̃ can be

regarded as the Euler-Maruyama discretization of a solution Xu of the controlled SDE (8), while
the trajectory generated by π̃base is the discretization of the uncontrolled process X0 obtained by
setting u = 0. As a consequence

limK→∞ Eτ∼π̃[
∑K−1

k=0 KL(π̃(·, ·; sk, k)||π̃base(·, ·; sk, k))]

= limK→∞ Eτ∼π̃[
∑K−1

k=0 KL(π̃(·; sk, k)||π̃base(·; sk, k))] = EXu∼Pu [log dPu

dP0 (X
u)],

(106)

where Pu and P0 are the measures of the processes Xu and X0, respectively. The Girsanov theorem
(Thm. 2) implies that log dPu

dP0 (X
u) = −

∫ T

0
⟨u(Xu

t , t),dBt⟩ − 1
2

∫ T

0
∥u(Xu

t , t)∥2 dt, which implies
that EXu∼Pu [log dPu

dP0 (X
u)] = − 1

2EXu∼Pu [
∫ T

0
∥u(Xu

t , t)∥2 dt]. Setting the rewards rk(ak, sk) =
ηf(sk, kη) for k ∈ {0, . . . ,K−1} and rK(aK , sK) = ηg(sk), where f and g are as in Subsec. 3.1,
yields the following limiting object:

limK→∞ Eτ∼π̃[
∑K

k=0 rk(sk, ak)] = EXu∼Pu [
∫ T

0
f(Xu

t , t) dt+ g(Xu
T)]. (107)

Hence, the limit of the MaxEnt RL loss (104) is the SOC loss (7).

Lemma 3. Let π̃(ak, sk+1; sk, k) and π̃base(ak, sk+1; sk, k) be as defined in (103).
KL(π̃(·, ·; sk, k)||π̃base(·, ·; sk, k))] and KL(π(·; sk, k)||πbase(·; sk, k))] are equal. Moreover,
if q, qbase denote the distributions over trajectories induced by π, πbase, we have that

KL(q||qbase) = E[
∑K−1

k=0 KL(π(·; sk, k)||πbase(·; sk, k))]. (108)

Proof. We have that

KL(π̃(·, ·; sk, k)||π̃base(·, ·; sk, k))] =
∑

ak,sk+1
π̃(ak, sk+1; sk, k) log

π̃(ak,sk+1;sk,k)
π̃base(ak,sk+1;sk,k)

=
∑

ak,sk+1
π(ak; sk, k)p(sk+1|ak, sk) log π(ak;sk,k)p(sk+1|ak,sk)

πbase(ak;sk,k)p(sk+1|ak,sk)

=
∑

ak,sk+1
π(ak; sk, k)p(sk+1|ak, sk) log π(ak;sk,k)

πbase(ak;sk,k)

=
∑

ak
π(ak; sk, k)

(∑
sk+1

p(sk+1|ak, sk)
)
log π(ak;sk,k)

πbase(ak;sk,k)

=
∑

ak
π(ak; sk, k) log

π(ak;sk,k)
πbase(ak;sk,k)

= KL(π(·; sk, k)||πbase(·; sk, k))].

(109)

To prove (108), by construction we can write

q(τ) = p0(s0)
∏K−1

k=0 π̃(ak, sk+1; sk, k), qbase(τ) = p0(s0)
∏K−1

k=0 π̃base(ak, sk+1; sk, k),
(110)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

which means that

KL(q||qbase) = Eτ∼q[log
q(τ)

qbase(τ)
] = Eτ∼q[

∑K−1
k=0 log π̃(ak,sk+1;sk,k)

π̃base(ak,sk+1;sk,k)
]

=
∑K−1

k=0 Eτ∼q0:(k+1) [log
π̃(ak,sk+1;sk,k)

π̃base(ak,sk+1;sk,k)
]

=
∑K−1

k=0 Eτ∼q0:k [
∑

ak,sk+1
π̃(ak, sk+1; sk, k) log

π̃(ak,sk+1;sk,k)
π̃base(ak,sk+1;sk,k)

]

=
∑K−1

k=0 Eτ∼q0:k [KL(π̃(·, ·; sk, k)||π̃base(·, ·; sk, k))]

=
∑K−1

k=0 Eτ∼q0:k [KL(π(·; sk, k)||πbase(·; sk, k))]

= Eτ∼q0:k [
∑K−1

k=0 KL(π(·; sk, k)||πbase(·; sk, k))]

(111)

Here, the notation q0:k denotes the trajectory q up to the state sk.

Lemma 4. The distribution-based MaxEnt RL formulation in (99) is equivalent to the the following
problem:

minq KL(q||q∗), where q∗(τ) :=
qbase(τ) exp

(∑K
k=0 rk(sk,ak)

)
1

p0(s0)

∑
{τ′|s′0=s0} qbase(τ ′) exp

(∑K
k=0 rk(s′k,a

′
k)
) , (112)

where the minimization is over q with marginal p0 at step zero. The optimum of the problem is q∗,
which satisfies the marginal constraint. The following alternative characterization of q∗ holds:

q∗(τ) = qbase(τ) exp
(∑K

k=0 rk(sk, ak)− V(s0, 0)
)
, (113)

where V(x, k) = maxπ Eτ∼π,p

[∑K
k′=k rk′(sk′ , ak′)−

∑K−1
k′=k KL(π(·; sk′ , k′)||πbase(·; sk′ , k′))|sk = x

]
.

(114)

Proof. Let us expand KL(q||q∗):

KL(q||q∗) = Eτ∼q

[
log q(τ)

q∗(τ)

]
= Eτ∼q

[
log q(τ)− log qbase(τ)−

∑K
k=0 rk(sk, ak)

+ log
(

1
p0(s0)

∑
{τ ′|s′0=s0} q

base(τ ′) exp
(∑K

k=0 rk(s
′
k, a

′
k)
))]

= KL(q||qbase)− Eτ∼q

[∑K
k=0 rk(sk, ak)

]
+ Es0∼p0

[
log

(
1

p0(s0)

∑
{τ ′|s′0=s0} q

base(τ ′) exp
(∑K

k=0 rk(s
′
k, a

′
k)
))]

,

(115)

where the third equality holds because the marginal of q at step zero is p0 by hypothesis. Since the
third term in the right-hand side is independent of q, this proves the equivalence between (99) and
(112).

Next, we prove that the marginal of q∗ at step zero is p0:∑
{τ |s0=x} q

∗(τ) :=
∑

{τ |s0=x}
qbase(τ) exp

(∑K
k=0 rk(sk,ak)

)
1

p0(x)

∑
{τ′|s′0=x} qbase(τ ′) exp

(∑K
k=0 rk(s′k,a

′
k)
) = p0(x). (116)

Now, for an arbitrary s0, let qs0 , q∗s0 be the distributions q, q∗ conditioned on the initial state being
s0. We can write an analog to equation (115) for qs0 , q∗s0 :

KL(qs0 ||q∗s0) = Eτ∼qs0

[
log

qs0 (τ)

q∗s0
(τ)

]
= Eτ∼qs0

[
log qs0(τ)− log qbases0 (τ)−

∑K
k=0 rk(sk, ak)

+ log
(

1
p0(s0)

∑
{τ ′|s′0=s0} q

base
s0 (τ ′) exp

(∑K
k=0 rk(s

′
k, a

′
k)
))]

= KL(qs0 ||qbases0)− Eτ∼qs0

[∑K
k=0 rk(sk, ak)

]
+ log

(
1

p0(s0)

∑
{τ ′|s′0=s0} q

base(τ ′) exp
(∑K

k=0 rk(s
′
k, a

′
k)
))
,

(117)

Hence,

0 = minqs0 KL(qs0 ||q∗s0) = −maxqs0{Eτ∼qs0

[∑K
k=0 rk(sk, ak)

]
−KL(qs0 ||qbases0)}

+ log
(

1
p0(s0)

∑
{τ ′|s′0=s0} q

base(τ ′) exp
(∑K

k=0 rk(s
′
k, a

′
k)
))
.

(118)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

And applying (108) from (108), we obtain that

log
(

1
p0(s0)

∑
{τ ′|s′0=s0} q

base(τ ′) exp
(∑K

k=0 rk(s
′
k, a

′
k)
))

= maxπ Eτ∼π,p

[∑K
k=0 rk(sk, ak)−

∑K−1
k=0 KL(π(·; sk, k)||πbase(·; sk, k))|s0

]
= V(s0, 0),

(119)

which concludes the proof.

D.4 PROOF OF EQUATION (12): THE CONTROL COST IS A KL REGULARIZER

Theorem 2 (Girsanov theorem for SDEs). If the two SDEs

dXt = b1(Xt, t) dt+ σ(Xt, t) dBt, X0 = xinit (120)
dYt = (b1(Yt, t) + b2(Yt, t)) dt+ σ(Yt, t) dBt, Y0 = xinit (121)

admit unique strong solutions on [0, T], then for any bounded continuous functional Φ on C([0, T]),
we have that

E[Φ(X)] = E
[
Φ(Y) exp

(
−
∫ T

0
σ(Yt, t)

−1b2(Yt, t) dBt − 1
2

∫ T

0
∥σ(Yt, t)

−1b2(Yt, t)∥2 dt
)]

= E
[
Φ(Y) exp

(
−
∫ T

0
σ(Yt, t)

−1b2(Yt, t) dB̃t +
1
2

∫ T

0
∥σ(Yt, t)

−1b2(Yt, t)∥2 dt
)]
,

(122)

where B̃t = Bt +
∫ t

0
σ(Ys, s)

−1b2(Ys, s) ds. More generally, b1 and b2 can be random processes
that are adapted to filtration of B.

Consider the SDEs

dXt = b(Xt, t) dt+ σ(t)dBt, X0 = x0, (123)

dXu
t =

(
b(Xu

t , t) + σ(t)u(Xu
t , t)

)
dt+ σ(t)dBt, Xu

0 = x0. (124)

If we let P|x0
, Pu|x0

be the probability measures of the solutions of (123) and (124), Thm. 2 implies
that

log
dP|x0

dPu|x0
(Xu) = −

∫ 1

0
u(Xu

t , t) dBt − 1
2

∫ 1

0
∥u(Xu

t , t)∥2 dt. (125)

Hence,

DKL
(
Pu|x0

∥∥ P|x0

)
= E

[
log

dPu|x0

dP|x0
(Xu)|Xu

0 = x0

]
= −E

[
log

dP|x0

dPu|x0
(Xu)|Xu

0 = x0

]
= E

[∫ 1

0
u(Xu

t , t) dBt +
1
2

∫ 1

0
∥u(Xu

t , t)∥2 dt|Xu
0 = x0

]
= E

[
1
2

∫ 1

0
∥u(Xu

t , t)∥2 dt|Xu
0 = x0

]
,

(126)

where we used that stochastic integrals are martingales.

E PROOFS OF SUBSEC. 3.3: MEMORYLESS NOISE SCHEDULE AND
FINE-TUNING RECIPE

E.1 PROOF OF PROP. 1: THE MEMORYLESS NOISE SCHEDULE

We consider the forward-backward SDEs (50)-(51) with arbitrary noise schedule. By Prop. 4, the
trajectories X⃗ , X of these two processes are equally distributed up to a time flip, which also means
that their marginals satisfy p⃗t = p1−t, for all t ∈ [0, 1]. First, we develop an explicit expression for
the score function s(x, t) = ∇ log pt(x). By the properties of flow matching, we know that pt is the
distribution of the interpolation variable X̄t = βtX̄0 +αtX̄1, where X̄0 ∼ N(0, I), X̄1 ∼ pdata are
independent. Thus, X̄t−αtX̄1

βt
∼ N(0, I), which means that we can express the density pt as

pt(x) =
∫
Rd

exp
(
− ∥x−αty∥2

2β2
t

)
(2πβ2

t)
d/2 pdata(y) dy. (127)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Thus,

s(x, t) = ∇ log pt(x) = − x
β2
t
+ αt

β2
t

∫
Rd y exp

(
− ∥x−αty∥2

2β2
t

)
pdata(y) dy∫

Rd exp
(
− ∥x−αty∥2

2β2
t

)
pdata(y) dy

:= −x−αtξt(x)
β2
t

, (128)

where we defined

ξt(x) =

∫
Rd y exp

(
− ∥x−αty∥2

2β2
t

)
pdata(y) dy∫

Rd exp
(
− ∥x−αty∥2

2β2
t

)
pdata(y) dy

. (129)

Hence, we can rewrite the forward SDE (50) as

dX⃗t =
(
− κ1−tX⃗t −

(σ(1−t)2

2 − η1−t

) X⃗t−α1−tξ1−t(X⃗t)
β2
1−t

)
dt+ σ(1− t) dBt, X⃗0 ∼ pdata

(130)

Hence, if we substitute κ1−t ← κ1−t +
σ(1−t)2−2η1−t

2β2
1−t

, ξ1−t ← α1−t(σ(1−t)2−2η1−t)
2β2

1−t
ξ1−t(X⃗t)

(where we ignore the dependency on X⃗t),
√
2η1−t ← σ(1 − t), we can apply Lemma 2, which

yields

X⃗t = X⃗0 exp
(
−
∫ t

0

(
κ1−s +

σ(1−s)2−2η1−s

2β2
1−s

)
ds

)
+
∫ t

0
exp

(
−
∫ t

t′

(
κ1−s +

σ(1−s)2−2η1−s

2β2
1−s

)
ds

)α1−t′ (σ(1−t′)2−2η1−t′)

2β2
1−t′

ξ1−t′(X⃗t′) dt
′

+
∫ t

0
σ(1− t′) exp

(
−
∫ t

t′

(
κ1−s +

σ(1−s)2−2η1−s

2β2
1−s

)
ds

)
dBt′ .

(131)

We simplify the recurring expression:

κ1−s +
σ(1−s)2−2η1−s

2β2
1−s

= α̇1−s

α1−s
+

σ(1−s)2−2β1−s

(
α̇1−s
α1−s

β1−s−β̇1−s

)
2β2

1−s
= σ(1−s)2

2β2
1−s

+ β̇1−s

β1−s
(132)

Thus,∫ t

t′

(
κ1−s +

σ(1−s)2−2η1−s

2β2
1−s

)
ds =

∫ t

t′

(σ(1−s)2

2β2
1−s

− ∂s log β1−s

)
ds =

∫ t

t′
σ(1−s)2

2β2
1−s

ds−
(
log β1−t − log β1−t′

)
,

(133)

which means that

exp
(
−
∫ t

t′

(
κ1−s +

σ(1−s)2−2η1−s

2β2
1−s

)
ds

)
= exp

(
−

∫ t

t′
σ(1−s)2

2β2
1−s

ds
) β1−t

β1−t′
, (134)

α1−t′ (σ(1−t′)2−2η1−t′)

2β2
1−t′

ξ1−t′(X⃗t′) =
(σ(1−t′)2

2β2
1−t′

+
β̇1−t′

β1−t′
− α̇1−t′

α1−t′

)
ξ1−t′(X⃗t′). (135)

If we define σ̄2(1− s) such that σ2(1− s) = 2β1−s

(α̇1−s

α1−s
β1−s − β̇1−s

)
+χ(1− s), we obtain that

exp
(
−
∫ t

t′
σ(1−s)2

2β2
1−s

ds
) β1−t

β1−t′
= exp

(
−

∫ t

t′

(α̇1−s

α1−s
− β̇1−s

β1−s
+ χ(1−s)

2β2
1−s

)
ds

) β1−t

β1−t′

= exp
(∫ t

t′

(
∂s logα1−s − ∂s log β1−s − χ(1−s)

2β2
1−s

)
ds

) β1−t

β1−t′
= exp

(
−
∫ t

t′
χ(1−s)
2β2

1−s
ds

) α1−t

α1−t′
,

(136)(σ(1−t′)2

2β2
1−t′

+
β̇1−t′

β1−t′
− α̇1−t′

α1−t′

)
ξ1−t′(X⃗t′) =

χ(1−t′)
2β2

1−t′
ξ1−t′(X⃗t′) (137)

If we plug equations (136)-(137) into (134)-(135), and then those into (131), we obtain that

X⃗t = X⃗0 exp
(
−
∫ t

0
χ(1−s)
2β2

1−s
ds

)α1−t

α1
+
∫ t

0
exp

(
−

∫ t

t′
χ(1−s)
2β2

1−s
ds

) α1−t

α1−t′

χ(1−t′)
2β2

1−t′
ξ1−t′(X⃗t′) dt

′

+
∫ t

0

(
2β1−t′

(α̇1−t′

α1−t′
β1−t′ − β̇1−t′

)
+ χ(1− t′)

)
exp

(
−
∫ t

t′
χ(1−s)
2β2

1−s
ds

) α1−t

α1−t′
dBt′ .

(138)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

and if we take the limit t→ 1− and use that α1 = 1,

X⃗1 = X⃗0

(
limt→1− exp

(
−
∫ t

0
χ(1−s)
2β2

1−s
ds

)
α1−t

)
+ limt→1−

∫ t

0
exp

(
−
∫ t

t′
χ(1−s)
2β2

1−s
ds

) α1−t

α1−t′

χ(1−t′)
2β2

1−t′
ξ1−t′(X⃗t′) dt

′

+ limt→1−
∫ t

0

(
2β1−t′

(α̇1−t′

α1−t′
β1−t′ − β̇1−t′

)
+ χ(1− t′)

)
exp

(
−

∫ t

t′
χ(1−s)
2β2

1−s
ds

) α1−t

α1−t′
dBt′ .

(139)
The assumption on χ in (19) is equivalent, up to a rearrangement of the notation and a flip in the
time variable, to the statement that for all t′ ∈ [0, 1),

limt→1− exp
(
−

∫ t

t′
χ(1−s)
2β2

1−s
ds

)
α1−t = 0. (140)

Hence, under assumption (19), the factor accompanying X⃗0 in equation (139) is zero. Moreover,
this assumption also implies that

limt→1−
∫ t

0
exp

(
−
∫ t

t′
χ(1−s)
2β2

1−s
ds

) α1−t

α1−t′

χ(1−t′)
2β2

1−t′
ξ1−t′(X⃗t′) dt

′

=
∫ 1

0

(
limt→1− exp

(
−
∫ t

t′
χ(1−s)
2β2

1−s
ds

)
α1−t

)
1

α1−t′

χ(1−t′)
2β2

1−t′
ξ1−t′(X⃗t′) dt

′ = 0.
(141)

If we plug (140) and (141) into (139), we obtain that

X⃗1 = limt→1−
∫ t

0

(
2β1−t′

(α̇1−t′

α1−t′
β1−t′ − β̇1−t′

)
+ χ(1− t′)

)
exp

(
−

∫ t

t′
χ(1−s)
2β2

1−s
ds

) α1−t

α1−t′
dBt′ ,

(142)

which shows that X⃗1 is independent of X⃗0. Next, we leverage that X⃗ and X have equal distributions
over trajectories (Prop. 4). In particular, the joint distribution of (X⃗0, X⃗1) is equal to the joint
distribution of (X1, X0). We conclude that X1 and X0 are independent, which is the definition of
the memorylessness property. Hence, the assumption (19) is sufficient for memorylessness to hold.

It remains to prove that the assumption (19) is necessary. Looking at equation (138) we deduce that
generally, for any t ∈ [0, 1), X⃗0 and X⃗t are not independent, because the first two terms in (138)
are different from zero. Thus, if there existed a t′ ∈ [0, 1) such that the limit (140) is different from
zero, then X⃗1 would not be independent from X⃗t′ , which means that in general it would not be
independent of X⃗0 either.

E.2 FINE-TUNING RECIPE FOR GENERAL NOISE SCHEDULES

E.2.1 EXPRESSING b, u IN TERMS OF v OR ϵ

Before proving the result we clarify the relation between the DDIM and Flow Matching vector fields
ϵ, v, and the base drift b and the control u. Let ϵbase, vbase denote the pre-trained vector fields and
ϵfinetune, vfinetune the fine-tuned vector fields. Then we have the following expressions for the full
drift b(x, t) + σ(t)u(x, t) and control u(x, t) when σ(t) =

√
2ηt:

DDIM / DDPM:

b(x, t)+σ(t)u(x, t)=
˙̄αt

2ᾱt
x− ˙̄αt

ᾱt

ϵfinetune(x,t)√
1−ᾱt

, u(x, t)=−
√

˙̄αt

ᾱt(1−ᾱt)
(ϵfinetune(x, t)−ϵbase(x, t)).

(143)

Memoryless Flow Matching:

b(x, t)+σ(t)u(x, t)=2vfinetune(x, t)− α̇t

αt
x, u(x, t)=

√
2

βt(
α̇t
αt

βt−β̇t)
(vfinetune(x, t)−vbase(x, t)).

(144)

Thus, to solve the SOC problem (7)-(8) in practice, we parameterize the control u in terms of
ϵfinetune or vfinetune and optimize these vector fields instead. After plugging in (143)-(144), the
SOC problem (7)-(8) can then be solved using any SOC algorithm in order to perform fine-tuning,
and we propose an especially effective algorithm in Sec. 4: Adjoint Matching. After fine-tuning,
ϵfinetune and vfinetune can simply be plugged back into their respective generative processes (3)-(30)
to sample from the tilted distribution (1) using any choice of diffusion coefficient.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

E.2.2 PROOF OF THM. 1

The proof of Thm. 1 relies heavily on the properties of the Hamilton-Jacobi-Bellman equation:
Theorem 3 (Hamilton-Jacobi-Bellman equation). If we define the infinitesimal generator

L := 1
2

∑d
i,j=1(σσ

⊤)ij(t)∂xi
∂xj

+
∑d

i=1 bi(x, t)∂xi
, (145)

the value function V for the SOC problem (7)-(8) solves the following Hamilton-Jacobi-Bellman
(HJB) partial differential equation:

∂tV (x, t) = −LV (x, t) + 1
2∥(σ

⊤∇V)(x, t)∥2 − f(x, t),

V (x, T) = g(x).
(146)

Consider forward SDEs like (50), starting from the distributions pbase and p∗, where p∗(x) ∝
pbase(x) exp(r(x)).

dX⃗t = b⃗(X⃗t, t) dt+ σ(t) dBt, X⃗0 ∼ pbase, (147)

dX⃗∗
t = b⃗∗(X⃗∗

t , t) dt+ σ(t) dBt, X⃗0 ∼ p∗. (148)

where the drifts are defined as

b⃗(x, t) = −κ1−tx+
(σ(1−t)2

2 − η1−t

)
s(x, 1− t) = −κ1−tx+

(σ(1−t)2

2 − η1−t

)
∇ log p⃗t(x),

b⃗∗(x, t) = −κ1−tx+
(σ(1−t)2

2 − η1−t

)
s∗(x, 1− t) = −κ1−tx+

(σ(1−t)2

2 − η1−t

)
∇ log p⃗∗t (x),

(149)

and p⃗t, p⃗∗t are the densities of Xt, X⃗t, respectively. p⃗t, p⃗∗t satisfy Fokker-Planck equations:

∂tp⃗t = ∇ · (⃗b(x, t)p⃗t) +∇ · (σ(1−t)2

2 ∇p⃗t), p⃗0 = pbase,

∂tp⃗
∗
t = ∇ · (⃗b∗(x, t)p⃗∗t) +∇ · (

σ(1−t)2

2 ∇p⃗∗t), p⃗0 = p∗.
(150)

Plugging (149) into (150), we obtain

∂tp⃗t = ∇ · (κ1−txp⃗t) +∇ ·
(
η1−t∇p⃗t

)
, p⃗0 = pbase,

∂tp⃗
∗
t = ∇ · (κ1−txp⃗

∗
t) +∇ ·

(
η1−t∇p⃗∗t

)
, p⃗0 = p∗.

(151)

We apply the Hopf-Cole transformation to obtain PDEs for − log p⃗t (and − log p⃗∗t analogously):

−∂t(− log p⃗t) =
∂tpt

pt
=

∇·(κ1−txp⃗t)+∇·
(
η1−t∇p⃗t

)
pt

= κ1−t∇ · x+ κ1−t⟨x,∇ log p⃗t⟩+ η1−t
∇·(∇ log p⃗t exp(log pt))

pt

= κ1−td+ κ1−t⟨x,∇ log p⃗t⟩+ η1−t

(
∆ log p⃗t + ∥∇ log p⃗t∥2

)
.

(152)

Hence, if we define V (x, t) = − log p⃗t(x), V ∗(x, t) = − log p⃗∗t (x), then V and V ∗ satisfy the
following Hamilton-Jacobi-Bellman equations:

−∂tV = κ1−td− κ1−t⟨x,∇V ⟩+ η1−t

(
−∆V + ∥∇V ∥2

)
, V (x, 0) = − log pbase(x),

(153)

−∂tV ∗ = κ1−td− κ1−t⟨x,∇V ∗⟩+ η1−t

(
−∆V ∗ + ∥∇V ∗∥2

)
, V ∗(x, 0) = − log p∗(x).

(154)

Now, define V̂ (x, t) = V ∗(x, t)− V (x, t). Subtracting (154) from (153), we obtain

−∂tV̂ = −κ1−t⟨x,∇V̂ ⟩+ η1−t

(
−∆V̂ + ∥∇V ∗∥2 − ∥∇V ∥2

)
= −κ1−t⟨x,∇V̂ ⟩+ η1−t

(
−∆V̂ + ∥∇(V̂ + V)∥2 − ∥∇V ∥2

)
= −κ1−t⟨x,∇V̂ ⟩+ η1−t

(
−∆V̂ + ∥∇V̂ ∥2 + 2⟨∇V ,∇V̂ ⟩

)
= ⟨−κ1−tx+ 2η1−t∇V ,∇V̂ ⟩+ η1−t

(
−∆V̂ + ∥∇V̂ ∥2

)
= ⟨−κ1−tx− 2η1−ts(x, 1− t),∇V̂ ⟩+ η1−t

(
−∆V̂ + ∥∇V̂ ∥2

)
,

V̂ (x, 0) = − log p∗(x) + log pbase(x) = −r(x) + log
(∫

pbase(y) exp(r(y)) dy
)
.

(155)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Hence, V̂ also satisfies a Hamilton-Jacobi-Bellman equation. If we define V such that V̂ (x, t) =
V (x, 1− t), we have that

∂tV = ⟨−κtx− 2ηts(x, t),∇V ⟩+ ηt
(
−∆V + ∥∇V ∥2

)
,

V (x, 1) = r(x)− log
(∫

pbase(y) exp(r(y)) dy
)
.

(156)

Using Thm. 3, we can reverse-engineer V as the value function of the following SOC problem:

min
u∈U

E
[
1
2

∫ 1

0
∥u(Xu

t , t)∥2 dt−r(x)+log
(∫

pbase(y) exp(r(y)) dy
)]
, (157)

s.t. dXu
t =

(
κtx+ 2ηts(x, t)+

√
2ηtu(X

u
t , t)

)
dt+
√
2ηtdBt, Xu

0 ∼ p0. (158)

Note that this SOC problem is equal to the problem (7)-(8) with the choices f = 0, g = −r, and
σ(t) =

√
2ηt. By equation (11), the optimal control of the problem (157)-(158) is of the form:

u∗(x, t) = −
√
2ηt∇V (x, t) = −

√
2ηt∇V̂ (x, 1− t) = −

√
2ηt

(
∇V ∗(x, 1− t)−∇V (x, 1− t)

)
= −
√
2ηt

(
−∇ log p⃗∗1−t(x) +∇ log p⃗1−t(x)

)
=
√
2ηt

(
s∗(x, t)− s(x, t)

)
,

(159)

⇐⇒ s∗(x, t) = s(x, t) + u∗(x, t)/
√
2ηt. (160)

As in (51), the backward SDEs corresponding to the forward SDEs (148) take the following form:

dX∗
t =

(
κtX

∗
t +

(σ(t)2

2 + ηt
)
s∗(X∗

t , t)
)
dt+ σ(t) dBt, X∗

0 ∼ N(0, I). (161)

If we plug (160) into this equation, we obtain

dX∗
t =

(
κtX

∗
t +

(σ(t)2

2 + ηt
)(
s(X∗

t , t) +
u∗(X∗

t ,t)√
2ηt

))
dt+ σ(t) dBt, X∗

0 ∼ N(0, I), (162)

⇐⇒ dX∗
t =

(
b(X∗

t , t) +
σ(t)2

2 +ηt√
2ηt

u∗(X∗
t , t)

)
dt+ σ(t) dBt, X∗

0 ∼ N(0, I). (163)

where we used that b(x, t) = κtx+
(σ(t)2

2 + ηt
)
s(x, t) by definition in equation (6).

The fine-tuned inference SDE for DDIM Now, for DDIM, we have that u∗(x, t) =

−
√

α̇t

αt(1−αt)
(ϵ∗(x, t)− ϵbase(x, t)) by (143). Hence,

σ(t)2

2 +ηt√
2ηt

u∗(x, t) = −
σ(t)2

2 +
α̇t
2αt√

α̇t
αt

√
α̇t

αt(1−αt)
(ϵ∗(x, t)− ϵbase(x, t)) = −

σ(t)2

2 +
α̇t
2αt√

1−αt
(ϵ∗(x, t)− ϵbase(x, t)),

(164)

=⇒ b(x, t) +
σ(t)2

2 +ηt√
2ηt

u∗(x, t) = α̇t

2αt
Xt −

(
α̇t

2αt
+ σ(t)2

2

) ϵbase(Xt,t)√
1−αt

−
σ(t)2

2 +
α̇t
2αt√

1−αt
(ϵ∗(x, t)− ϵbase(x, t))

= α̇t

2αt
Xt −

(
α̇t

2αt
+ σ(t)2

2

) ϵ∗(Xt,t)√
1−αt

.

(165)

We obtain that the fine-tuned inference SDE for DDIM is

dX∗
t =

(
α̇t

2αt
X∗

t −
(

α̇t

2αt
+ σ(t)2

2

) ϵ∗(X∗
t ,t)√

1−αt

)
dt+ σ(t) dBt, X∗

0 ∼ N(0, I), (166)

which is matches the SDE (29) with the choice ϵ = ϵ∗.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

The fine-tuned inference SDE for Flow Matching For Flow Matching, we have that u∗(x, t) =√
2

βt(
α̇t
αt

βt−β̇t)
(v∗(x, t)− vbase(x, t)) by (144). Hence,

σ(t)2

2 +ηt√
2ηt

u∗(x, t) =
σ(t)2

2 +βt(
α̇t
αt

βt−β̇t)√
2βt(

α̇t
αt

βt−β̇t)

√
2

βt(
α̇t
αt

βt−β̇t)
(v∗(x, t)− vbase(x, t))

=
(
1 + σ(t)2

2βt(
α̇t
αt

βt−β̇t)

)
(v∗(x, t)− vbase(x, t)).

(167)

=⇒ b(x, t) +
σ(t)2

2 +ηt√
2ηt

u∗(x, t) = vbase(x, t) + σ(t)2

2βt(
α̇t
αt

βt−β̇t)

(
vbase(x, t)− α̇t

αt
x
)

+
(
1 + σ(t)2

2βt(
α̇t
αt

βt−β̇t)

)
(v∗(x, t)− vbase(x, t))

= v∗(x, t) + σ(t)2

2βt(
α̇t
αt

βt−β̇t)

(
v∗(x, t)− α̇t

αt
x
)
.

(168)

We obtain that the fine-tuned inference SDE for Flow Matching is

dX∗
t =

(
v(X∗

t , t) +
σ(t)2

2βt(
α̇t
αt

βt−β̇t)

(
v∗(X∗

t , t)− α̇t

αt
X∗

t

))
dt+ σ(t) dBt, X∗

0 ∼ N(0, I),

(169)

which matches equation (4) with the choice v = v∗.

F METHODS TO SOLVE SOC PROBLEMS

F.1 EXISTING METHODS

F.1.1 THE ADJOINT METHOD

The most basic method of optimizing the simulation of an SDE is to directly differentiate through
the simulation using gradients from the SOC objective function. The adjoint method simply uses
the objective:

L(u;X) :=
∫ 1

0

(
1
2∥u(Xt, t)∥2+f(Xt, t)

)
dt+g(X1), X ∼ pu. (170)

This is a stochastic estimate of the control objective in (7), and the goal is to take compute the
gradient of L(u;X) with respect to the parameters θ of the control u. Due to the continuous-
time nature of SDEs, there are two main approaches to implementing this numerically. Firstly, the
Discrete Adjoint method uses a “discretize-then-differentiate” approach, where the numerical solver
for simulating the SDE is simply stored in memory then differentiated through, and it has been
studied extensively (e.g., Bierkens & Kappen (2014); Gómez et al. (2014); Hartmann & Schütte
(2012); Kappen et al. (2012); Rawlik et al. (2013); Haber & Ruthotto (2017)). This approach,
however, uses an extremely large amount of memory as the full computational graph of the numerical
solver must be stored in memory and implementations often must rely on gradient checkpointing
(Chen et al., 2016) to reduce memory usage.

Secondly, the Continuous Adjoint method exploits the continuous-time nature of SDEs and uses an
analytical expression for the gradient of the control objective with respect to the intermediate states
Xt, expressed as an adjoint ODE, and then applies a numerical method to simulate this gradient
itself, hence it is referred to as a “differentiate-then-discretize” approach (Pontryagin, 1962; Chen
et al., 2018; Li et al., 2020). We first define the adjoint state as:

a(t;X, u) := ∇Xt

(∫ 1

t

(
1
2∥u(Xt′ , t

′)∥2+f(Xt′ , t
′)
)
dt′+g(X1)

)
,

where X solves dXt =
(
b(Xt, t) + σ(t)u(Xt, t)

)
dt+ σ(t)dBt.

(171)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

This implies that EX∼pu

[
a(t;X, u) | Xt = x

]
= ∇xJ(u;x, t), where J denotes the cost func-

tional defined in (9). It can then be shown that this adjoint state satisfies 7:

d
dta(t;X, u)=−

[
a(t;X, u)T

(
∇Xt

(b(Xt, t)+σ(t)u(Xt, t))
)
+∇Xt

(
f(Xt, t) +

1
2∥u(Xt, t)∥2

)]
,

(172)
a(1;X, u)=∇g(X1). (173)

The adjoint state is solved backwards in time, starting from the terminal condition (173). Com-
pututation of (172) can be done with a vector-Jacobian product which can be efficiently done on
automatic differentiation software (Paszke et al., 2019). Once the adjoint state has been solved
for t ∈ [0, 1], then the gradient of L(u;X) with respect to the parameters θ can be obtained by
integrating over the entire time interval:

dL
dθ = 1

2

∫ 1

0
∂
∂θ∥u(Xt, t)∥2dt+

∫ 1

0
∂u(Xt,t)

∂θ

T
σ(t)Ta(t;X, u)dt, (174)

where the first term is the partial derivative of L w.r.t. θ and the second term is the partial derivative
through the sample trajectory X . See Prop. 6 in App. F.2 for a statement and proof of this result.
The discrete and continuous adjoint methods converge to the same gradient as the step size of the
numerical solvers go to zero. Both are scalable to high dimensions and have seen their fair share of
usage in optimizing neural ODE/SDEs (Chen et al., 2018; 2021; Li et al., 2020). As the adjoint meth-
ods are essentially gradient-based optimization algorithms applied on a highly non-convex problem,
many have also reported they can be unstable empirically (Mohamed et al., 2020; Suh et al., 2022;
Domingo-Enrich et al., 2023).

F.1.2 IMPORTANCE-WEIGHTED MATCHING OBJECTIVES FOR REGRESSING ONTO THE
OPTIMAL CONTROL

An alternative is to consider regressing onto the optimal control u∗, which is the approach of the
cross-entropy method (Rubinstein & Kroese, 2013; Zhang et al., 2014) and stochastic optimal con-
trol matching (SOCM; Domingo-Enrich et al. (2023)). These methods make use of path integral
theory (Kappen, 2005) to express the optimal control through importance sampling, resulting in an
importance-weighted least-squares objective function

LSOCM(u;X) :=
∫ 1

0
∥u(Xt, t)− û∗(Xt, t)∥2dt× ω(u,X), X ∼ pu, (175)

where ω is an importance weighting that approximates sampling from the optimal distribution p∗,
and û∗ is a stochastic estimator of the optimal control relying on having sampled from the optimal
process. We defer to Domingo-Enrich et al. (2023) for the exact details. The functional landscape
of this objective is convex, which is argued to help yield stable training. However, the need for
importance sampling renders this impractical for high dimensional applications: the variance of the
importance weighting ω grows exponentially with dimension of the stochastic process, leading to
catastrophic failure. This unfortunately means that such importance-weighted matching objectives
are impractical for fine-tuning dynamical generative models; however, a least-squares objective is
greatly coveted as it can lead to stable training and simple interpretations.

F.2 DERIVATION OF THE CONTINUOUS ADJOINT METHOD

Proposition 6. The gradient dL
dθ of the adjoint loss L(u;X) defined in (170) with respect to the

parameters θ of the control can be expressed as in (174).

Proof. First, note that we can write

∇θE
[∫ T

0

(
1
2∥uθ(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)
]

= E
[∫ T

0
∇θuθ(X

uθ
t , t)uθ(X

uθ
t , t) dt

]
+∇θE

[∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)
]
|v=stopgrad(uθ).

(176)

7Note we use the convention that a Jacobian matrix J = ∇xv(x) is defined as Jij = ∂vi(x)
∂xj

.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

To develop the second term, we apply Lemma 5. Namely, by the Leibniz rule and equation (181),
we have that

∇θE
[∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)
]
|v=stopgrad(uθ)

= E
[
∇θ

(∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)
)
|v=stopgrad(uθ)

]
= E

[∫ T

0
(∇θuθ)(X

uθ
t (ω), t)⊤σ(t)⊤at(ω) dt

]
.

(177)

Plugging the right-hand side of this equation into (176) concludes the proof.

Lemma 5. Let v be an arbitrary fixed vector field. The unique solution of the ODE

d
dta(t;X

u, u) = −
[(
∇Xu

t
(b(Xu

t , t) + σ(t)u(Xu
t , t))

)T
a(t;Xu, u) +∇Xu

t

(
f(Xu

t , t) +
1
2∥v(X

u
t , t)∥2

)]
,

(178)
a(1;Xu, u) = ∇g(Xu

1), (179)

satisfies:

a(t;Xu, u) := ∇Xu
t

(∫ 1

t

(
1
2∥u(X

u
t′ , t

′)∥2+f(Xu
t′ , t

′)
)
dt′+g(Xu

1)
)
,

where Xu solves dXu
t =

(
b(Xu

t , t) + σ(t)u(Xu
t , t)

)
dt+ σ(t)dBt.

(180)

Moreover, when u = uθ is parameterized by θ we have that

∇θ

(∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)
)
=

∫ T

0
(∇θuθ)(X

uθ
t (ω), t)σ(t)⊤at(ω) dt.

(181)

Proof. We use an approach based on Lagrange multipliers which mirrors and extends the derivation
of the adjoint ODE (Domingo-Enrich et al., 2023, Lemma 8). For shortness, we use the notation
b̃θ(x, t) := b(x, t) + σ(t)uθ(x, t). Define a process a : Ω × [0, T] → Rd such that for any ω ∈ Ω,
a(ω, ·) is differentiable. For a given ω ∈ Ω, we can write∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)

=
∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)

−
∫ T

0
⟨at(ω), (dXuθ

t (ω)− b̃θ(X
uθ
t (ω), t) dt− σ(t) dBt)⟩.

(182)

By stochastic integration by parts (Domingo-Enrich et al., 2023, Lemma 9), we have that∫ T

0
⟨at(ω), dXuθ

t (ω)⟩ = ⟨aT (ω), Xuθ

T (ω)⟩ − ⟨a0(ω), Xuθ
0 (ω)⟩ −

∫ T

0
⟨Xuθ

t (ω), dat

dt (ω)⟩dt. (183)

Hence, if Xuθ
0 = x0 is the initial condition, we have that8

∇x0

(∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)
)

= ∇x0

(∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)

− ⟨aT (ω), Xuθ

T (ω)⟩+ ⟨a0(ω), Xuθ
0 (ω)⟩+

∫ T

0

(
⟨at(ω), b̃θ(Xuθ

t (ω), t)⟩+ ⟨dat

dt (ω), X
uθ
t (ω)⟩

)
dt

+
∫ T

0
⟨at(ω), σ(t) dBt⟩

)
=

∫ T

0
∇x0

Xuθ
t (ω)⊤∇x

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t (ω), t)
)
dt+∇x0

Xuθ

T (ω)⊤∇xg(X
uθ

T (ω))

−∇x0X
uθ

T (ω)⊤aT (ω) +∇x0X
uθ
0 (ω)⊤a0(ω)

+
∫ T

0

(
∇x0

Xuθ
t (ω)⊤∇xb̃θ(X

uθ
t (ω), t)⊤at(ω) +∇x0

Xuθ
t (ω)⊤ dat

dt (ω)
)
dt

=
∫ T

0
∇x0X

uθ
t (ω)⊤

(
∇x

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t (ω), t)
)
+∇xb̃θ(X

uθ
t (ω), t)⊤at(ω) +

dat

dt (ω)
)
dt

+∇x0
Xuθ

T (ω)⊤
(
∇xg(X

uθ

T (ω))− aT (ω)
)
+ a0(ω).

(184)

8Unlike (Domingo-Enrich et al., 2023, Lemma 8), we use the convention that a Jacobian matrix J =

∇xv(x) is defined as Jij = ∂vi(x)
∂xj

. Their definition of ∇xv is the transpose of ours.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

In the last line we used that∇x0
Xuθ

0 (ω) = ∇x0
x0 = I. If choose a such that

dat(ω) =
(
−∇xb̃θ(X

uθ
t (ω), t)⊤at(ω)−∇x

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t (ω), t)
))

dt,

aT (ω) = ∇xg(X
uθ

T (ω)),
(185)

which is the ODE (178)-(179), then we obtain that

∇x0

(∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)
)
= a0(ω) (186)

Without loss of generality, this argument can be extended from t = 0 to an arbitrary t ∈ [0, 1], which
proves the first statement of the lemma.

To prove (181), we similarly write

∇θ

(∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)
)

= ∇θ

(∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)

− ⟨aT (ω), Xuθ

T (ω)⟩+ ⟨a0(ω), Xuθ
0 (ω)⟩+

∫ T

0

(
⟨at(ω), b̃θ(Xuθ

t (ω), t)⟩+ ⟨dat

dt (ω), X
uθ
t (ω)⟩

)
dt

+
∫ T

0
⟨at(ω), σ(t) dBt⟩

)
=

∫ T

0
∇θX

uθ
t (ω)⊤∇x

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t (ω), t)
)
dt+∇θX

uθ

T (ω)⊤∇xg(X
uθ

T (ω))

−∇θX
uθ

T (ω)⊤aT (ω) +∇θX
uθ
0 (ω)⊤a0(ω)

+
∫ T

0

(
∇θX

uθ
t (ω)⊤∇xb̃θ(X

uθ
t (ω), t)⊤at(ω) +∇θ b̃θ(X

uθ
t (ω), t)⊤at(ω) +∇θX

uθ
t (ω)⊤ dat

dt (ω)
)
dt

=
∫ T

0
∇θX

uθ
t (ω)⊤

(
∇x

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t (ω), t)
)
+∇xb̃θ(X

uθ
t (ω), t)⊤at(ω) +

dat

dt (ω)
)
dt

+∇θX
uθ

T (ω)⊤
(
∇xg(X

uθ

T (ω))− aT (ω)
)
+

∫ T

0
(∇θ b̃θ)(X

uθ
t (ω), t)⊤at(ω) dt.

(187)

In the last line we used that∇θX
uθ
0 (ω) = ∇θx = 0. When a satisfies (185), we obtain that

∇θ

(∫ T

0

(
1
2∥v(X

uθ
t , t)∥2+f(Xuθ

t , t)
)
dt+g(Xuθ

T)
)

=
∫ T

0
(∇θ b̃θ)(X

uθ
t (ω), t)at(ω) dt =

∫ T

0
(∇θuθ)(X

uθ
t (ω), t)⊤σ(t)⊤at(ω) dt.

(188)

The last equality holds because b̃θ(x, t) := b(x, t) + σ(t)uθ(x, t).

F.3 PROOF OF PROP. 2: THEORETICAL GUARANTEES OF THE BASIC ADJOINT MATCHING
LOSS

Let ū = stopgrad(uθ). We can rewrite equation (174) as:

∇θL(uθ;X
ū) = 1

2

∫ 1

0
∇θ∥uθ(X

ū
t , t)∥2dt+

∫ 1

0
∇θu(X

ū
t , t)

Tσ(t)Ta(t;X ū, ū)dt (189)

= 1
2

∫ 1

0
∇θ∥uθ(X

ū
t , t) + σ(t)Ta(t;X ū, ū)∥2dt = ∇θLBasic−Adj−Match(uθ;X

ū)
(190)

This proves the first statement of the proposition. To prove that the only critical point of the ex-
pected basic Adjoint Matching loss is the optimal control, we first compute the first variation of
E[LBasic−Adj−Match]. Letting v : Rd × [0, T]→ Rd be arbitrary, we have that

d
dϵE[LBasic−Adj−Match(u+ ϵv;X ū)] = d

dϵE
[
1
2

∫ T

0
∥(u+ ϵv)(X ū

t , t) + σ(t)⊤a(t,X ū, ū)∥2 dt
]

= E
[∫ T

0
⟨v(X ū

t , t), u(X
ū
t , t) + σ(t)⊤a(t,X ū, ū)⟩dt

]
= E

[∫ T

0
⟨v(X ū

t , t), u(X
ū
t , t) + σ(t)⊤E

[
a(t,X ū, ū)|X ū

t

]
⟩dt

]
=⇒ δ

δuE[LBasic−Adj−Match(u)(x, t) = u(x, t) + E
[
a(t,X ū, ū)|X ū

t = x
]

(191)

Hence, critical points satisfy that

u(x, t) = −σ(t)⊤E[a(t,Xu, u)|Xu
t = x] = −σ(t)⊤E

[
∇Xv

t

∫ T

t

(
1
2∥v(X

v
t , t)∥2+f(Xv

t , t)
)
dt+g(Xv

T)|Xv
0 = x

]
= −σ(t)⊤∇xE

[∫ T

t

(
1
2∥v(X

v
t , t)∥2+f(Xv

t , t)
)
dt+g(Xv

T)|Xv
0 = x

]
= −σ(t)⊤∇J(u;x, t),

(192)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

In this equation, the second equality holds by equation (180) from Lemma 5, and the third equality
holds by the Leibniz rule.

Lemma 6 shows that any control u that satisfies (192) is equal to the optimal control, which con-
cludes the proof.
Lemma 6. Suppose that for any x ∈ Rd, t ∈ [0, T], u(x, t) = −σ(t)⊤∇xJ(u;x, t). Then, J(u; ·, ·)
satisfies the Hamilton-Jacobi-Bellman equation (146). By the uniqueness of the solution to the
HJB equation, we have that J(u;x, t) = V (x, t) for any x ∈ Rd, t ∈ [0, T]. Hence, u(x, t) =
−σ(t)⊤∇xV (x, t) is the optimal control.

Proof. Since J(u;x, t) = E
[∫ T

t

(
1
2∥u(X

u
t , t)∥2 + f(Xu

t , t)
)
ds+ g(Xu

T)|Xu
t = x

]
, we have that

J(u;x, t) = E
[
J(u;Xu

t+∆t, t+∆t)|Xt = x
]
+ E

[∫ t+∆t

t

(
1
2∥u(X

u
s , s)∥2 + f(Xu

s , s)
)
ds|Xt = x

]
,

(193)

which means that

0 =
E[J(u;Xu

t+∆t, t+∆t)|Xt = x]− J(u;x, t)

∆t
+

E
[∫ t+∆t

t

(
1
2∥u(X

u
s , s)∥2 + f(Xu

s , s)
)
ds|Xt = x

]
∆t

(194)

Recall that the generator T u of the controlled SDE (8) takes the form:

T uf(x, t) := lim∆t→0
E
[
f(Xu

t+∆t,t)|Xt=x
]
−f(x,t)

∆t

= ∂tf(x, t) + ⟨∇f(x, t), b(x, t) + σ(t)u(x, t)⟩+Tr
(σ(t)σ(t)⊤

2 ∇2f(x, t)
) (195)

Hence, if we take the limit ∆t→ 0 on equation (194), we obtain that:

0 = T uJ(u;x, t) + 1
2∥u(x, t)∥

2 + f(x, t)

= ∂tJ(u;x, t) + ⟨∇J(u;x, t), b(x, t) + σ(t)u(x, t)⟩+Tr
(σ(t)σ(t)⊤

2 ∇2J(u;x, t)
)
+ 1

2∥u(x, t)∥
2 + f(x, t).

(196)

Now using that u(x, t) = −σ(t)⊤∇xJ(u;x, t), we have that

⟨∇J(u;x, t), σ(t)u(x, t)⟩+ 1
2∥u(x, t)∥

2 = −∥σ(t)⊤∇xJ(u;x, t)∥2 + 1
2∥σ(t)

⊤∇xJ(u;x, t)∥2

= − 1
2∥σ(t)

⊤∇xJ(u;x, t)∥2.
(197)

Plugging this back into (196), we obtain that

0 = ∂tJ(u;x, t) + ⟨∇J(u;x, t), b(x, t)⟩+Tr
(σ(t)σ(t)⊤

2 ∇2J(u;x, t)
)
− 1

2∥σ(t)
⊤∇xJ(u;x, t)∥2 + f(x, t).

(198)

And since J(u;x, T) = g(x) by construction, we conclude that J(u;x, t) satisfies the HJB equation
(146).

F.4 THEORETICAL GUARANTEES OF THE ADJOINT MATCHING LOSS

Proposition 7 (Theoretical guarantee of the Adjoint Matching loss). The only critical point of the
loss E[LAdj−Match] is the optimal control u∗.

Proof. Let v be an arbitrary control. If ã(t;Xv) is the solution of the Lean Adjoint ODE (26)-(27),
it satisfies the integral equation

ã(t;Xv) =
∫ T

t

(
∇xb(X

v
s , s)

⊤ã(s;Xv) +∇xf(X
v
s , s)

)
ds+∇g(Xv

T). (199)

Hence,

E
[
ã(t;Xv)

∣∣Xv
t

]
= E

[∫ T

t

(
∇xb(X

v
s , s)

⊤ã(s;Xv) +∇xf(X
v
s , s)

)
ds+∇g(Xv

T)
∣∣Xv

t

]
= E

[∫ T

t

(
∇xb(X

v
s , s)

⊤E
[
ã(s;Xv)

∣∣Xv
s

]
+∇xf(X

v
s , s)

)
ds+∇g(Xv

T)
∣∣Xv

t

]
,

(200)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

where we used the tower property of conditional expectation in the second equality.

Similarly, if a(t;Xv, v) is the solution of the Adjoint ODE (172)-(173), it satisfies the integral
equation

a(t;Xv, v) =
∫ T

t

(
∇x

(
b(Xv

s , s)
⊤a(s;Xv, v) + σ(s)v(Xv

s , s)
)
+∇x

(
f(Xv

s , s) +
1
2∥v(X

v
s , s)∥2

))
ds+∇g(Xv

T),
(201)

and its expected value satisfies

E
[
a(t;Xv, v)

∣∣Xv
t

]
= E

[∫ T

t

(
∇x

(
b(Xv

s , s) + σ(s)v(Xv
s , s)

)⊤
a(s;Xv, v) +∇x

(
f(Xv

s , s) +
1
2∥v(X

v
s , s)∥2

))
ds+∇g(Xv

T)
∣∣Xv

t

]
=E

[∫ T

t

(
∇x

(
b(Xv

s , s)+σ(s)v(Xv
s , s)

)⊤E[a(s;Xv, v)
∣∣Xv

s

]
+∇x

(
f(Xv

s , s)+
1
2∥v(X

v
s , s)∥2

))
ds+∇g(Xv

T)
∣∣Xv

t

]
.

(202)

Let us rewrite E[LAdj−Match] as follows:

E[LAdj−Match(u)] := E
[∫ T

0

∥∥u(Xv
t , t) + σ(t)⊤E

[
ã(t,Xv)|Xv

t

]∥∥2 dt]|v=stopgrad(u)

+ E
[∫ T

0

∥∥σ(t)⊤(E[ã(t,Xv)|Xv
t

]
− ã(t,Xv)

)∥∥2 dt]|v=stopgrad(u),
(203)

Now, suppose that û is a critical point of E[LAdj−Match]. By definition, this implies that the first
variation of E[LAdj−Match] is zero. Using (203), we can write this as follows:

0 = δ
δuE[LAdj−Match(û)](x) = 2

(
û(x, t) + σ(t)⊤E[ã(t,Xû)|X û

t = x]
)
, (204)

=⇒ û(x, t) = −σ(t)⊤E[ã(t,Xû)|X û
t = x]. (205)

Hence, we have

∇xû(X
û
t , t)

⊤σ(t)⊤E[ã(t,Xû)|X û
t] +∇xû(X

û
t , t)

⊤û(X û
t , t) = 0, (206)

=⇒ E
[∫ T

t

(
∇x

(
σ(s)û(X û

s , s)
)⊤E[ã(s;Xû)

∣∣X û
s

]
+∇x

(
1
2∥û(X

û
s , s)∥2

))
ds

∣∣X û
t

]
= 0. (207)

If we set v = û in equation (200), and add (207) to its right-hand side, we obtain that E[ã(t,X û)|X û
t]

also solves the integral equation

E
[
ã(t;Xû)

∣∣X û
t

]
=E

[∫ T

t

(
∇x

(
b(X û

s , s)+σ(s)û(X û
s , s)

)⊤E[ã(s;Xû)
∣∣X û

s

]
+∇x

(
f(X û

s , s)+
1
2∥û(X

û
s , s)∥2

))
ds+∇g(X û

T)
∣∣X û

t

]
.

(208)

Note that this integral equation is the same one as equation (202) when we set v = û in the
latter. Prop. 8 states that the solution of the integral equation is unique, which means that
E
[
ã(t;Xû)

∣∣X û
t

]
= E

[
a(t;Xû, û)

∣∣X û
t

]
for all t ∈ [0, T].

Since we can reexpress the basic Adjoint Matching loss as

E[LBasic−Adj−Match(u)] := E
[∫ T

0

∥∥u(Xv
t , t) + σ(t)⊤E

[
a(t;Xv, v)|Xv

t

]∥∥2 dt]|v=stopgrad(u)

+ E
[∫ T

0

∥∥σ(t)⊤(E[a(t;Xv, v)|Xv
t

]
− a(t;Xv, v)

)∥∥2 dt]|v=stopgrad(u),
(209)

we obtain that when û is a critical point of E[LAdj−Match],

d
duE[LBasic−Adj−Match(û)](x) = 2

(
û(x, t) + σ(t)⊤E[a(t;Xû, û)|X û

t = x]
)

= 2
(
û(x, t) + σ(t)⊤E[ã(t;Xû)|X û

t = x]
)
= 0,

(210)

where the second equality holds because E
[
ã(t;Xû)

∣∣X û
t

]
= E

[
a(t;Xû, û)

∣∣X û
t

]
, and the third

equality holds by equation (205). Thus, we deduce that the critical points of E[LAdj−Match] are
critical points of E[LBasic−Adj−Match]. By Prop. 2, E[LBasic−Adj−Match] has a single critical point,
which is the optimal control u∗, which concludes the proof of the statement for E[LAdj−Match].

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Proposition 8. Let v be an arbitrary control. Consider the integral equation:

Yt = E
[∫ T

t

(
∇x

(
b(Xv

s , s)+σ(s)v(Xv
s , s)

)⊤
Ys+∇x

(
f(Xv

s , s)+
1
2∥v(X

v
s , s)∥2

))
ds+∇g(Xv

T)
∣∣Xv

t

]
,

(211)

where t ∈ [0, T]. This equation has a unique solution, i.e. if Y 1, Y 2 are two solutions then Y1 = Y2.

Proof. Let Y 1, Y 2 be two solutions of the integral equation. We have that

Y 1
t − Y 2

t = E
[∫ T

t

(
(Y 1

s − Y 2
s)

⊤∇xb(X
∗
s , s)

)
ds

∣∣X∗
t

]
. (212)

Thus,

∥Y 1
t − Y 2

t ∥

≤ E
[∥∥ ∫ T

t

(
(Y 1

s − Y 2
s)

⊤∇xb(X
∗
s , s)

)
ds

∥∥∣∣X∗
t

]
≤ E

[∫ T

t

∥∥((Y 1
s − Y 2

s)
⊤∇xb(X

∗
s , s)

)∥∥ds∣∣X∗
t

]
≤ E

[∫ T

t

∥∥Y 1
s − Y 2

s

∥∥ · ∥∥∇xb(X
∗
s , s)

)∥∥ds∣∣X∗
t

]
=

∫ T

t
E
[∥∥Y 1

s − Y 2
s

∥∥ · ∥∥∇xb(X
∗
s , s)

)∥∥∣∣X∗
t

]
ds

≤
∫ T

t

(
E
[∥∥Y 1

s − Y 2
s

∥∥2∣∣X∗
t

])1/2 · (E[∥∥∇xb(X
∗
s , s)

∥∥2∣∣X∗
t

])1/2
ds

(213)

And this implies that

supt′∈[0,t]

(
E[∥Y 1

t − Y 2
t ∥2|X∗

t′]
)1/2

≤
∫ T

t

(
E
[∥∥Y 1

s − Y 2
s

∥∥2∣∣X∗
t

])1/2 · (E[∥∥∇xb(X
∗
s , s)

∥∥2∣∣X∗
t

])1/2
ds

≤
∫ T

t
supt′∈[0,s]

(
E
[∥∥Y 1

s − Y 2
s

∥∥2∣∣X∗
t′

])1/2 · supt′∈[0,s]

(
E
[∥∥∇xb(X

∗
s , s)

∥∥2∣∣X∗
t′

])1/2
ds.

(214)

Applying Grönwall’s inequality on the function f(t) = supt′∈[0,t]

(
E[∥Y 1

t − Y 2
t ∥2|X∗

t′]
)1/2

,

we obtain that supt′∈[0,t]

(
E[∥Y 1

t − Y 2
t ∥2|X∗

t′]
)1/2

= 0 for all t ∈ [0, T], which means

that Y 1
t = Y 2

t almost surely. And since ∥Y 1
t − Y 2

t ∥ ≤
∫ T

t

(
E
[∥∥Y 1

s − Y 2
s

∥∥2|X∗
t

])1/2 ·(
E
[∥∥∇xb(X

∗
s , s)

∥∥2|X∗
t

])1/2
ds = 0, we obtain that Y 1 = Y 2.

F.5 PSEUDO-CODE OF ADJOINT MATCHING FOR FLOW MATCHING AND DDIM
FINE-TUNING

Note that for each pair of equations (218)-(219), (220)-(221), (222)-(223), the first equation corre-
sponds to the updates in the DDPM paper, while the second equation is an Euler-Maruyama / Euler
discretization of the continuous-time object. To check that both discretizations are equal up to first
order, remark that√

ᾱk+1

ᾱk
=

√
1 + ᾱk+1−ᾱk

ᾱk
≈ 1 + ᾱk+1−ᾱk

2ᾱk
+O((ᾱk+1 − ᾱk)

2). (224)

G ADAPTING DIFFUSION FINE-TUNING BASELINES TO FLOW MATCHING

G.1 ADAPTING REFL (XU ET AL., 2023) TO FLOW MATCHING

Reward Feedback Learning (ReFL) is a diffusion fine-tuning algorithm introduced by Xu et al.
(2023) which tries to increase the reward on denoised samples. Namely, if X = (Xt)t∈[0,1] is the
solution of the DDPM SDE (30), we can denoise Xt as

X̂1(Xt) =
Xt−

√
1−ᾱtϵ(Xt,t)√

ᾱt
. (225)

This equation follows from the stochastic interpolant equation (2) if we replace X̄0 with the noise
predictor ϵ(Xt, t). And then, the ReFL optimization update is based on the gradient:

∇θr(X̂1(Xt)) = ∇θr
(Xt−

√
1−ᾱtϵθ(Xt,t)√

ᾱt

)
, (226)

where the trajectories have been detached.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Algorithm 1 Adjoint Matching for fine-tuning Flow Matching models
Input: Pre-trained FM velocity field vbase, step size h, number of fine-tuning iterations N .
Initialize fine-tuned vector fields: vfinetune = vbase with parameters θ.
for n ∈ {0, . . . , N − 1} do

Sample m trajectories X = (Xt)t∈{0,...,1} with memoryless noise schedule σ(t) =
√

2βt(
α̇t
αt

βt − β̇t),
e.g.:

Xt+h = Xt + h
(
2vfinetuneθ (Xt, t)− α̇t

αt
Xt

)
+

√
hσ(t)εt, εt ∼ N (0, I), X0 ∼ N (0, I).

(215)

For each trajectory, solve the lean adjoint ODE (26)-(27) backwards in time from t = 1 to 0, e.g.:

ãt−h = ãt + hãTt∇Xt

(
2vbase(Xt, t)− α̇t

αt
Xt

)
, ã1 = −∇X1r(X1). (216)

Note that Xt and ãt should be computed without gradients, i.e., Xt = stopgrad(Xt), ãt =
stopgrad(ãt).

For each trajectory, compute the Adjoint Matching objective (25):

LAdj−Match(θ) =
∑

t∈{0,...,1−h}

∥∥ 2
σ(t)

(
vfinetuneθ (Xt, t)− vbase(Xt, t)

)
+ σ(t)ãt

∥∥2
. (217)

Compute the gradient ∇θL(θ) and update θ using favorite gradient descent algorithm.
end
Output: Fine-tuned vector field vfinetune

To adapt ReFL to Flow Matching, we need to express the denoiser map in terms of the vector field
v. We have that

v(x, t) = E
[
β̇tX̄0 + α̇tX̄1

∣∣βtX̄0 + αtX̄1 = x
]

= E
[
β̇t

βt

(
βtX̄0 + αtX̄1

)
+
(
α̇t − β̇t

βt
αt

)
X̄1

∣∣βtX̄0 + αtX̄1 = x
]

= β̇t

βt
x+

(
α̇t − β̇t

βt
αt

)
X̂1(x, t).

(227)

where we defined the denoiser map X̂1(x, t) := E
[
X̄1|βtX̄0 + αtX̄1 = x

]
. Hence,

X̂1(x, t) =
v(x,t)− β̇t

βt
x

α̇t− β̇t
βt

αt

. (228)

G.2 ADAPTING DIFFUSION-DPO (WALLACE ET AL., 2023A) TO FLOW MATCHING

The Diffusion-DPO loss assumes access to ranked pairs of generated samples xw
1 ≻ xl

1, where xw

and xl are the winning and losing samples. For DDPM, the loss implemented in practice reads
(Wallace et al., 2023a, Eq. 46):

LDPO(θ) = −E(xw
1 ,xl

1)∼D,k∼U [0,K],xw
kh∼q(xw

kh|x
w
1),xl

t∼q(xl
kh|x

l
1)

[
logS

(
− β̃

2

(
∥εw − ϵθ(x

w
kh, kh)∥2 − ∥εw − ϵref(x

w
kh, kh)∥2

−
(
∥εl − ϵθ(x

l
kh, kh)∥2 − ∥εl − ϵref(x

l
kh, kh)∥2

)))]
,

(229)

where S(x) = 1
1+e−x denotes the sigmoid function, and q(x∗

kh|x∗
1) is the conditional distribution of

the forward process, i.e. x∗
kh is sampled as x∗

kh =
√
γkhx

∗
1 +
√
1− γkhϵ, ϵ ∼ N(0, I). Following

the derivation of the Diffusion-DPO loss in (Wallace et al., 2023a, Sec. S4), we observe that the term
− β̃

2 ∥ε
w − ϵθ(x

w
kh, kh)∥2 arises from

− β̃

2
1−γkh
γkh

∥x̂1(x
w
kh)− xw

1 ∥2, (230)

up to a constant term in θ. If we switch to the more general flow matching scheme, the analog of
this term is

− β̃

2
β2
kh

α2
kh

∥x̂1(x
w
kh)− xw

1 ∥2. (231)

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Algorithm 2 Adjoint Matching for fine-tuning DDIM
Input: Pre-trained denoiser ϵbase, number of fine-tuning iterations N .
Initialize fine-tuned denoiser: ϵfinetune = ϵbase with parameters θ.
for n ∈ {0, . . . , N − 1} do

Sample m trajectories X = (Xt)t∈{0,...,1} according to DDPM, e.g.:

Xk+1=
√

ᾱk+1

ᾱk

(
Xk− 1−ᾱk/ᾱk+1√

1−ᾱk
ϵfinetune(Xk, k)

)
+
√

1−ᾱk+1

1−ᾱk

(
1− ᾱk

ᾱk+1

)
εk, (218)

or Xk+1 = Xk +
ᾱk+1−ᾱk

2ᾱk
Xk − ᾱk+1−ᾱk

ᾱk
√
1−ᾱk

ϵfinetune(Xk, k) +
√

ᾱk+1−ᾱk

ᾱk
εk, (219)

where εk ∼ N (0, I), X0 ∼ N (0, I).
For each trajectory, solve the lean adjoint ODE (26)-(27) backwards in time from k = K to 0, e.g.:

ãk = ãk+1 + ãTk+1∇Xk

(√
ᾱk+1

ᾱk

(
Xk − 1−ᾱk/ᾱk+1√

1−ᾱk
ϵbase(Xk, k)

)
−Xk

)
, ãK = ∇XK r(XK),

(220)

or ãk = ãk+1 + ãTk+1∇Xt

(
ᾱk+1−ᾱk

2ᾱk
Xk − ᾱk+1−ᾱk

ᾱk
√
1−ᾱk

ϵbase(Xk, k)
)
, ãK = ∇XK r(XK).

(221)

Note that Xk and ãk should be computed without gradients, i.e., Xk = stopgrad(Xk), ãk =
stopgrad(ãk).

For each trajectory, compute the Adjoint Matching objective (25):

LAdj−Match(θ) =
∑

k∈{0,...,K−1}

∥∥√ ᾱk+1

ᾱk(1−ᾱk+1)

(
1− ᾱk

ᾱk+1

)
(ϵfinetune(Xk, k)− ϵbase(Xk, k))

−
√

1−ᾱk+1

1−ᾱk

(
1− ᾱk

ᾱk+1

)
ãk

∥∥2
,

(222)

or LAdj−Match(θ) =
∑

k∈{0,...,K−1}

∥∥√ ᾱk+1−ᾱk

ᾱk(1−ᾱk)
(ϵfinetune(Xk, k)− ϵbase(Xk, k))−

√
ᾱk+1−ᾱk

ᾱk
ãk

∥∥2
.

(223)

Compute the gradient ∇θL(θ) and update θ using favorite gradient descent algorithm.
end
Output: Fine-tuned vector field vfinetune

Using the expression of the denoiser map in terms of the vector field v in equation (228), we can
rewrite (231) as:

− β̃

2
β2
kh

α2
kh

∥∥ v(xw
kh,kh)−

β̇kh
βkh

xw
kh

α̇kh−
β̇kh
βkh

αkh

− xw
1

∥∥2 = − β̃
2

∥∥ v(xw
kh,kh)−

β̇kh
βkh

xw
kh

α̇kh
αkh

βkh−β̇kh

− αkh

βkh
xw
1

∥∥2. (232)

Thus, the Diffusion-DPO loss for Flow Matching reads

LDPO(θ) = −E(xw
1 ,xl

1)∼D,k∼U [0,K],xw
kh∼q(xw

kh|x
w
1),xl

t∼q(xl
kh|x

l
1)

[
logS

(
− β̃

2

(∥∥vθ(x
w
kh,kh)−

β̇kh
βkh

xw
kh

α̇kh
αkh

βkh−β̇kh

− αkh

βkh
xw
1

∥∥2 − ∥∥vref (x
w
kh,kh)−

β̇kh
βkh

xw
kh

α̇kh
αkh

βkh−β̇kh

− αkh

βkh
xw
1

∥∥2
−
(∥∥ vθ(x

l
kh,kh)−

β̇kh
βkh

xl
kh

α̇kh
αkh

βkh−β̇kh

− αkh

βkh
xl
1

∥∥2 − ∥∥vref (x
l
kh,kh)−

β̇kh
βkh

xl
kh

α̇kh
αkh

βkh−β̇kh

− αkh

βkh
xl
1

∥∥2)))],
(233)

(Wallace et al., 2023a, Sec. 5.1) claim that β ∈ [2000, 5000] yields good performance on Stable
Diffusion 1.5 and Stable Diffusion XL-1.0, which if we translate to our notation corresponds to
β̃ ∈ [4000, 10000].

When we have access to the reward function r, instead of a winning sample xw
1 and a los-

ing sample xl
1, we have a pair of samples (xa

1 , x
b
1) with winning weights S(r(xa

1) − r(xb
1)) =

1

1+exp
(
r(xb

1)−r(xa
1)
) , S(−(r(xa

1) − r(xb
1))) = 1

1+exp
(
−(r(xb

1)−r(xa
1))

) . Hence, the loss (233) be-

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

comes:

LDPO(θ) = −E(xa
1 ,x

b
1)∼D,k∼U [0,K],xa

kh∼q(xa
kh|x

a
1),x

b
t∼q(xb

kh|x
b
1)

[∑
s∈{±1} S

(
s(r(xa

1)− r(xb
1))

)
×

logS
(
− sβ̃

2

(∥∥vθ(x
a
kh,kh)−

β̇kh
βkh

xa
kh

α̇kh
αkh

βkh−β̇kh

− αkh

βkh
xa
1

∥∥2 − ∥∥ vref (x
a
kh,kh)−

β̇kh
βkh

xa
kh

α̇kh
αkh

βkh−β̇kh

− αkh

βkh
xa
1

∥∥2
−
(∥∥ vθ(x

b
kh,kh)−

β̇kh
βkh

xb
kh

α̇kh
αkh

βkh−β̇kh

− αkh

βkh
xb
1

∥∥2 − ∥∥vref (x
b
kh,kh)−

β̇kh
βkh

xb
kh

α̇kh
αkh

βkh−β̇kh

− αkh

βkh
xb
1

∥∥2)))].
(234)

We want to emphasize that despite the similarities, even though the loss LDPO that we use (equation
(234)) is very similar to the one implemented by Wallace et al. (2023a), the preference data pairs
that we use are very different from theirs. We sample the preference data from the current model,
which results in imperfect samples, while they consider off-policy, high-quality, curated preference
samples. The reason for this discrepancy is that the starting point of our work is a reward model, not
a set of preference data, and we only benchmark against approaches that leverage reward models for
an apples-to-apples comparison. Our experimental results on DPO (Tab. 2, Fig. 5, Tab. 3) show that
the resulting model performs like the base model, or a bit worse according to some metrics. Hence,
we conclude that DPO is not a competitive alternative for on-policy fine-tune when the base model
is not already good.

H EXPERIMENTAL DETAILS

Unless otherwise specified, we used the same hyperparameters across all fine-tuning methods.
Namely, we used:

• K = 40 timesteps.

• Adam optimizer with learning rate 2 × 10−5 and parameters β1 = 0.95, β2 = 0.999,
ϵ = 1 × 10−8, weight decay 1 × 10−2, gradient norm clipping value 1. For Discrete
Adjoint, these hyperparameters resulted in fine-tuning instability (see Tab. 6); the results
that we report in all other tables for Discrete Adjoint were obtained with learning rate
1× 10−5.

• Bfloat16 precision.

• Effective batch size 40; for each run we used two 80GB A100 GPUs with batch size 20
each.

• A set of 40k fine-tuning prompts taken from a licensed dataset consisting of text and image
pairs (note that we disregarded the images). Thus, each epoch lasts 1000 iterations; see the
total amount of fine-tuning iterations for each algorithm in Tab. 3. For each of the three
runs that we perform for each data point that we report, the set of 40k prompts is sampled
independently among a total set of 100k prompts.

H.1 NOISE SCHEDULE DETAILS

Since we use K = 40 discretization steps, the timesteps are t ∈
{0, 0.025, 0.05, 0.075, 0.1, . . . , 0.95, 0.975}. To sample Xt+h from Xt we use equation (215).

We use the choices αt = t, βt = 1 − t, which means that σ(t) =
√
2βt(

α̇t

αt
βt − β̇t) =√

2(1− t)(1−t
t + 1) =

√
2(1−t)

t .

Note that if we plug t = 0 into this expression, we obtain infinity, and if we plug t ⪅ 1, we obtain
σ(t) ≈ 0. For obvious reasons, the former issue requires a fix: we simply add a small offset to the
denominator of σ(t), replacing

√
1/t by

√
1/(t+ h) (note that h := 1/K = 0.025). But the latter

issue is also not completely satisfactory from a practical standpoint, because looking at the adjoint
matching loss (25), we observe that u(X ū

t , t) is trained to approximate the conditional expectation
of σ(t)Tã(t;X ū). Thus, if we set σ(t) very close to zero for t ⪅ 1, we are forcing the control u
to be close to zero as well, or equivalently preventing vfinetune from deviating from vbase. While

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

this is the right thing to do from a theoretical perspective, we concluded experimentally that setting
σ(t) just slightly larger results in substantially faster fine-tuning, thanks to the additional leeway
provided to vfinetune to deviate from vbase. In particular, we added a small offset to the factor 1− t
in the numerator 1− t of σ(t): we replaced 1− t by 1− t+ h. Thus, the expression that we used to
compute the diffusion coefficient in our experiments is

σ(t) =
√

2(1−t+h)
t+h . (235)

When solving the lean adjoint ODE (26)-(27) backwards in time via the Euler scheme (216), the
timesteps we use are t ∈ {1, 0.975, 0.95, 0.925, 0.9, . . . , 0.05, 0.025}. We do not actually initialize
the adjoint state as ∇xg(X1), but rather as ∇xg(X̂1), where X̂1 := X1−h + hvbase(X1−h, 1− h).
That is, X̂1 is obtained by performing a final noiseless update, instead of using noise σ(1−h) =

√
4h

given by equation (235). The reason for this is that the regular final iterate X1 contains some noise
that was added in the final step, and that can distort the gradient ∇xg(X1). By setting ã(1;X) =

∇xg(X1), we get rid of this bias. Note that in the continuous time limit h → 0, X̂1 = X1, which
means that this small trick is consistent.

H.2 SELECTION OF GRADIENT EVALUATION TIMESTEPS

In Alg. 1, equation (217), we state that the term
∥∥ 2
σ(t)

(
vfinetuneθ (Xt, t) − vbase(Xt, t)

)
+ σ(t)ãt

∥∥2
must be computed for all K steps in {0, . . . , 1 − h}. However, the gradient signal provided by
backpropagating through this expression for consecutive times t and t + h is quite similar. In the
interest of computational efficiency, we sample a subset K of timesteps, and we only compute and
backpropagate the terms

∥∥ 2
σ(t)

(
vfinetuneθ (Xt, t)− vbase(Xt, t)

)
+ σ(t)ãt

∥∥2 for those timesteps. We
construct K by sampling ten timesteps uniformly without repetition among {0, . . . , 0.725}, and
always sampling the last ten timesteps {0.75, . . . , 0.975}. This is because fine-tuning the last ten
steps (25% of the total) well is critical for good empirical performance, while the initial steps are
not as important.

H.3 LOSS FUNCTION CLIPPING: THE LCT HYPERPARAMETER

Note that the magnitude of σ(t)Ta(t;X ū, ū) is much larger for times t ⪆ 0 than for times t ⪅ 1.
The reason is two-fold:

• As discussed in App. H.1, σ(t) is much larger for t ⪆ 0 than for t ⪅ 1.
• The magnitude of the lean adjoint state ã grows roughly exponentially as t goes backward

in time. In fact, if we assumed that∇xb(Xt, t) is constant in time, this statement would be
exact.

Observe that when σ(t)Ta(t;X ū, ū) is large, the gradient ∇θ

∥∥ 2
σ(t)

(
vfinetuneθ (Xt, t) −

vbase(Xt, t)
)
+ σ(t)ãt

∥∥2 also has a high magnitude. Including such terms in our gradient com-
putation decreases the signal to noise ratio of the gradient. Even more so, as discussed in App. H.2
for good practical performance it is critical to get a good gradient signal from the last 25% steps.
Hence, including the high-magnitude terms for t ⪅ 0 in our gradients can muffle these other impor-
tant, low-magnitude terms.

To fix this issue, we clip the terms such that
∥∥ 2
σ(t)

(
vfinetuneθ (Xt, t) − vbase(Xt, t)

)
+ σ(t)ãt

∥∥2 >

LCT, where LCT stands for the loss clipping threshold. That is, the adjoint matching loss that we
use in our experiments is of the form:

L̂Adj−Match(θ) =
∑

t∈K min
{
LCT,

∥∥ 2
σ(t)

(
vfinetuneθ (Xt, t)− vbase(Xt, t)

)
+ σ(t)ãt

∥∥2}, (236)

where K is the random timestep subset described in App. H.2.

For adjoint matching, we set LCT = 1.6× λ2. Remark that LCT needs to grow quadratically with
λ, because the magnitude of the lean adjoint ã grows quadratically with λ. We set the constant 1.6
through experimentation; all or almost all of the terms for the last ten timesteps fall below LCT, but
only a fraction of the terms (≈ 25%) for the first ten steps fall below LCT. The constant for LCT is
a relevant hyperparameter that needs to be tuned to obtain a similar behavior.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

We also used loss function clipping on the continuous adjoint loss. For that loss we set LCT =
1600× λ2. The reason is that the magnitude of the regular adjoint states is significantly larger than
the magnitude of the lean adjoint states (which is a big reason why adjoint matching outperforms
the continuous adjoint).

H.4 COMPUTATION OF EVALUATION METRICS

We used the open_clip library (Ilharco et al., 2021) to compute ClipScores. We computed Clip-
Score diversity as the variance of Clip embeddings of 40 generations for a given prompt, averaged
across 25 prompts. Namely,

ClipScore Diversity = 1
40

∑40
k=1

2
25·24

∑
1≤i<j≤25 ∥Clip(gki)− Clip(gkj)∥2, (237)

where gki denotes the i-th generation for the k-th prompt.

We used the transformers library to compute the PickScore processor and model (Kirstain et al.,
2023). PickScore diversity is computed in analogy with ClipScore diversity.

We used the hps library to compute values of Human Preference Score v2 (Wu et al., 2023b).

To compute Dreamsim diversity we use the dreamsim library (Fu et al., 2023). Dreamsim diversity
is computed in analogy with ClipScore diversity.

H.5 REMARKS ON COMPUTATIONAL COSTS

Observe from the figures reported in Tab. 3 that the per iteration wall-clock time of Adjoint Matching
(156 seconds) is very similar to that of the Discrete Adjoint loss (152 seconds). We report hardware
and hyperparameter details at the beginning of App. H. The reason for which both algorithms take
a similar time is that they perform a similar amount of forward and backward passes on the flow
matching model and the reward model. Namely, for each sample in the batch, both algorithms
perform K forward passes on the flow model to obtain the trajectories. In order to compute the
gradient of the training loss, the Discrete Adjoint loss does K additional forward passes to evaluate
the base flow model, one forward and backward pass on the reward model, and K backward passes
on the current flow model, which typically use gradient checkpointing to avoid memory overflow.
In the case of Adjoint Matching, solving the lean adjoint ODE requires one forward and backward
pass on the reward model, and K backward passes on the base flow model. Finally, computing the
gradient of the loss takes K/2 additional backward passes if we evaluate at only half of the timesteps
as we do, although this computation is much quicker because it can be fully parallelized.

Meanwhile, computing the gradient of the Continuous Adjoint loss takes 204 seconds. With respect
to Adjoint Matching, Continuous Adjoint performs additional backward passes to compute the gra-
dients∇Xt

∥u(Xt, t)∥2 when solving the adjoint ODE. Finally, we observe that models that directly
fine-tune the reward are quicker, but that comes with its own set of issues that we discuss throughout
the paper.

H.6 REMARKS ON NUMBER OF SAMPLING TIMESTEPS

In our experiments and all baselines, we used 40 timesteps in the fine-tuning procedure (h = 1/40
in Alg. 1). The experiments reported in all tables and figures except for Tab. 8 were performed at
40 inference timesteps. In Tab. 8 (App. A), we show experimental results at 10, 20, 40, 100, and
200 inference timesteps, for the base model and the models fine-tuned with adjoint matching and
DRaFT-1. We make the following observations about the results:

• The metrics for Adjoint Matching at 100 and 200 timesteps are statistically equal to the
ones for 40 timesteps, with slight increases in Dreamsim diversity. This suggests that fine-
tuning at large numbers of timesteps is a good idea if we want to perform inference at a large
number of timesteps, as otherwise the capabilities of the model are limited by the number
of fine-tuning timesteps instead of the inference compute. Also, at 100 and 200 timesteps
the difference in performance of Adjoint Matching relative to DRaFT-1 increases.

• The metrics for Adjoint Matching at 10 and 20 timesteps are worse than at 40 timesteps,
especially for 10. The difference in performance between Adjoint Matching and DRaFT-1

55

open_clip
transformers
hps
dreamsim

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

vanishes at 10 timesteps for all metrics except for diversity, for which Adjoint Matching is
still clearly better.

56

	Additional Figures & Tables
	Related work
	Results on DDIM and Flow Matching
	Denoising Diffusion Models
	The continuous-time limit of DDIM
	Forward and backward stochastic differential equations
	Proof of lem:DDIMFMconditions
	Proof of lem:OUprocess
	Proof of lem:equalprocessdistributions

	The relationship between the noise predictor and the score function
	The relationship between the vector field v and the score function

	Stochastic optimal control as maximum entropy RL in continuous space and time
	Maximum entropy RL
	From maximum entropy RL to stochastic optimal control
	Proof of prop:maxentstochasticoptimalcontrol: from MaxEnt RL to SOC
	Proof of equation (12): the control cost is a KL regularizer

	Proofs of sec:memorylessschedule: memoryless noise schedule and fine-tuning recipe
	Proof of prop:memorylessnessnoiseschedule: the memoryless noise schedule
	Fine-tuning recipe for general noise schedules
	Expressing b, u in terms of v or
	Proof of thm:generalfine-tuning

	Methods to solve SOC problems
	Existing methods
	The adjoint method
	Importance-weighted matching objectives for regressing onto the optimal control

	Derivation of the Continuous Adjoint method
	Proof of prop:continuousadjointlossmain: Theoretical guarantees of the basic Adjoint Matching loss
	Theoretical guarantees of the Adjoint Matching loss
	Pseudo-code of Adjoint Matching for Flow Matching and DDIM fine-tuning

	Adapting diffusion fine-tuning baselines to flow matching
	Adapting ReFL xu2023imagereward to flow matching
	Adapting Diffusion-DPO wallace2023diffusion to flow matching

	Experimental details
	Noise schedule details
	Selection of gradient evaluation timesteps
	Loss function clipping: the LCT hyperparameter
	Computation of evaluation metrics
	Remarks on computational costs
	Remarks on number of sampling timesteps

