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ABSTRACT

Survival analysis appears in various fields such as medicine, economics, engineer-
ing, and business. Recent studies showed that the Ordinary Differential Equation
(ODE) modeling framework integrates many existing survival models while the
framework is flexible and widely applicable. However, naively applying the ODE
framework to survival analysis problems may model fiercely changing density
function with respect to covariates which may worsen the model’s performance.
Though we can apply L1 or L2 regularizers to the ODE model, their effect on
the ODE modeling framework is barely known. In this paper, we propose hazard
gradient penalty (HGP) to enhance the performance of a survival analysis model.
Our method imposes constraints on local data points by regularizing the gradi-
ent of hazard function with respect to the data point. Our method applies to any
survival analysis model including the ODE modeling framework and is easy to
implement. We theoretically show that our method is related to minimizing the
KL divergence between the density function at a data point and that of the neigh-
borhood points. Experimental results on three public benchmarks show that our
approach outperforms other regularization methods.

1 INTRODUCTION

Survival analysis (a.k.a time-to-event modeling) is a branch of statistics that predicts the duration
of time until an event occurs (Kleinbaum & Klein, 2012). Survival analysis appears in various
fields such as medicine (Schwab et al., 2021), economics (Meyer, 1988), engineering (O’Connor &
Kleyner, 2011), and business (Jing & Smola, 2017; Li et al., 2021). Due to the presence of right-
censored data, which is data whose event has not occurred yet, survival analysis models require
special considerations. Cox proportional hazard model (CoxPH) (Cox, 1972; Katzman et al., 2018)
and accelerated time failure model (AFT) (Wei, 1992) are widely used to handle right-censored data.
Yet the assumptions made by these models are frequently violated in the real world (Lee et al., 2018;
Tang et al., 2022a). Recent studies showed that the Ordinary Differential Equation (ODE) modeling
framework integrates many existing survival analysis models including CoxPH and AFT (Groha
et al., 2020; Tang et al., 2022a;b). They also showed that the ODE modeling framework is flexible
and widely applicable.

However, naively applying the ODE framework to survival analysis problems may result in wildly
oscillating density function that may worsen the model’s performance. Regularization techniques
that can regularize this undesirable behavior are understudied. Though applying L1 or L2 regulariz-
ers to the ODE model is one option, their effects on the ODE modeling framework are barely known.
The cluster assumption from semi-supervised learning states that the decision boundaries should not
cross high-density regions (Chapelle et al., 2006). Likewise, survival analysis models need hazard
functions that slowly change in high-density regions.

Suppose we attempt to predict the time to death of three individuals A, B, and C. Assume the traits
of A and B are similar and the traits of B and C are dissimilar. It is natural to expect that the
probability distribution of time-to-death of A should be close to that of B while far from that of C.
The expectation aligns with the cluster assumption. Explicitly modeling the assumption enhances
the performance as long as it holds.

In this paper, we propose hazard gradient penalty to make a slowly changing (with respect to co-
variates) survival analysis model in high-density regions. In a nutshell, the hazard gradient penalty
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regularizes the gradient of the hazard function with respect to the data point from the real data dis-
tribution. Our method has several advantages. 1) The method is computationally efficient. 2) The
method is theoretically sound. 3) The method is applicable to any survival analysis model including
the ODE modeling framework as long as it models hazard function. 4) It is easy to implement. We
theoretically show that our method is related to minimizing the KL divergence between the density
function at a data point and that of the neighborhood points of the data point.

Experimental results on three public benchmarks show that our approach outperforms other regular-
ization methods.

2 PRELIMINARIES

Survival analysis data comprises of an observed covariate x, a failure event time t, and an event
indicator e. If an event is observed, t corresponds to the duration time from the beginning of the
follow-up of an individual until the event occurs. In this case, the event indicator e = 1. If an event
is unobserved, t corresponds to the duration time from the beginning of follow-up of an individual
until the last follow-up. In this case, we cannot know the exact time of the event occur and event
indicator e = 0. An individual is said to be right-censored if e = 0. The presence of right-censored
data differentiates survival analysis from regression problems. In this paper, we only focus on the
single-risk problem where event e is a binary-valued variable.

Given a set of triplet D = {(xi, ti, ei)}Ni=1, the goal of survival analysis is to predict the likelihood
of an event occur p(t | x) or the survival probability S(t | x). The likelihood and the survival
probability have the following relationship:

S(t | x) = 1−
∫ t

0

p(τ | x)dτ (1)

Modeling p(t | x) or S(t | x) should satisfy the following constraints:

p(t | x) > 0,

∫ ∞

0

p(τ | x)dτ = 1

S(0 | x) = 1, lim
t→∞

S(t | x) = 0, S(t1 | x) ≥ S(t2 | x) if t1 ≤ t2

Previous works instead modeled the hazard function (a.k.a conditional failure rate) h(t | x) (Cox,
1972; Katzman et al., 2018; Wei, 1992; Zhong et al., 2021).

h(t | x) := lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t,x)

∆t
=

p(t | x)
S(t | x)

(2)

As the hazard function is a probability per unit time, it is unbounded upwards. Hence, the only
constraint of the hazard function is that the function is non-negative: h(t | x) ≥ 0

2.1 THE ODE MODELING FRAMEWORK

We can obtain an ODE which explains the relationship between the hazard function and the survival
function by putting derivative of equation 1 into equation 2 (Kleinbaum & Klein, 2012).

h(t | x) = p(t | x)
S(t | x)

=
1

S(t | x)

(
−dS(t | x)

dt

)
= −d logS(t | x)

dt
(3)

Starting from initial value logS(0 | x) = 0, we can define logS(t | x) as the solution of the ODE
initial value problem where the ODE is defined as equation 3 1.

logS(t | x) = logS(0 | x) +
∫ t

0

−h(τ | x)dτ =

∫ t

0

−h(τ | x)dτ

1Tang et al. (2022b)’s formulation is slightly different in that their hazard function also depends on the
cumulative hazard. To our understanding, depending on cumulative hazard is redundant so we conduct experi-
ments without it.
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We can train the ODE model by minimizing the negative log-likelihood.

Lx = −e log pθ(t | x)− (1− e) logSθ(t | x) (4)
= −e (log hθ(t | x) + logSθ(t | x))− (1− e) logSθ(t | x)

Following Groha et al. (2020), we update the model parameters using Neural ODEs (Chen et al.,
2018). The hazard function hθ(t | x) is modeled using a neural network followed by the softplus
activation function to ensure that the output is always non-negative.

2.2 NEURAL ODES

Neural ODEs model the continuous dynamics of variables (Chen et al., 2018). Starting from z(0),
we can define the output z(T ) to be the solution of the following ordinary differential equation
(ODE) initial value problem.

dz(t)

dt
= f(z(t), t, θ), z(T ) = z(0) +

∫ T

0

f(z(t), t, θ)dt

Naively applying an ODE solver to an ODE initial value problem leads to practical difficulties.
An ODE solver builds a big computation graph which incurs high memory cost and additional
numerical errors may occur in backpropagation steps. Chen et al. (2018) showed that we can obtain
the gradients of a scalar-valued loss w.r.t all inputs of any ODE solver with constant memory cost.
We can calculate the gradients without backpropagating through the operations of the solver but
with another call to an ODE solver.

3 METHODS

Figure 1: Graphical overview of our
proposed method. Our method min-
imize the hazard gradient penalty
ESθ(t|x) ∥∇xhθ(t | x)∥2 and the nega-
tive log-likelihood in equation 4 at the same
time. Intuitively speaking, we regularize the
model so that the hazard function does not
vary much when a small noise ν is added or
subtracted to the data point x. In section 3.2,
we show that minimizing the hazard gradient
penalty is connected to minimizing the KL
divergence between the density at x and the
density at x′ ∈ B(x, ϵ).

In this section, we introduce the hazard gradient
penalty and show that it is related to minimizing the
KL divergence between the density function at a data
point and that of its neighbours. See Figure 1 for the
graphical overview of our method.

The cluster assumption from semi-supervised learn-
ing states that the decision boundaries should not
cross high-density regions (Chapelle et al., 2006). In
a similar vein, hazard functions of survival analy-
sis models should change slowly in high-density re-
gions.

Consider a case where two data points x1,x2 ∈ Rd

failed at t1, t2(t1 < t2) each. Under the cluster
assumption, a point x′

2 ∈ B(x2, ϵ)
2 should fail at

t′2 ≈ t2. If p̂(t | x′
2) is skewed for some reason and

puts high density at t′1 < t1, it worsens the model’s
performance. To evade such situation, p̂(t | x′

2)
should not deviate too much from p̂(t | x2). To
achieve this, we propose the following regularizer.3

Rx = Et∼Sθ(t|x) [∥∇xhθ(t | x)∥2] (5)

2B(x, ϵ) is a ϵ-ball centered at x
3In practice, we implement hθ(t | x) using a neural network whose input is a combination (concatenation,

addition or both) of t and x. Hence we can write hθ(t | x) and hθ(t,x) interchangeably. The gradient
∇xhθ(t,x) is naturally defined and so is ∇xhθ(t | x).
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3.1 EFFICIENT
SAMPLING FROM THE SURVIVAL DENSITY

The sampling operation t ∼ S(t | x)4 in equation 5
may induce computational overhead. To boost the sampling operation, we use logSθ(t | x) which
was computed during the negative log-likelihood calculation in equation 4. Let [t1, . . . , tK ] be the
union of the time points in minibatch. The time points are sorted in increasing order. The adaptive
time stepping in ODE solvers are sensitive to the time interval tK − t1 rather than the number of
time points (Rubanova et al., 2019). We can access logSθ(tk | x) with negligible overhead as long
as t1 < tk < tK .

We sample tk from a categorical distribution whose k-th weight is defined as Sθ(tk | x) =

exp(−
∫ tk
0

h(τ | x)dτ). We finalize the sampling process by sampling t from the uniform dis-
tribution U([tk, tk+1]). In this way, we don’t have to calculate S(t | x) again for sampling t. See
Algorithm 1 in Appendix for the pseudo code of ODE based survival analysis with the hazard gra-
dient penalty.

3.2 CONNECTION TO KL DIVERGENCE

We now show that the hazard gradient penalty in equation 5 is equivalent to minimizing the ap-
proximation of the upper bound of the KL divergence between the density function at a data point
and that of the neighborhood points of the data point. Henceforth, we denote X by the subset of
d-dimensional real space Rd.

Theorem 1 Suppose the hazard function is strictly positive function for all data point x,x′ ∈ X .
The KL divergence

Ep(t|x) [log p(t | x)− log p(t | x′)]

is upper bounded by

Ep(t|x) ∥log h(t | x)− log h(t | x′)∥2 + ES(t|x) ∥h(t | x)− h(t | x′)∥2 (6)

To prove Theorem 1, we need the following lemma.

Lemma 1 The expectation of survival densities difference under the density is the negative of the
expectation of hazard functions difference under the survival density. In other words,

Ep(t|x) [logS(t | x)− logS(t | x′)] = −ES(t|x) [h(t | x)− h(t | x′)]

for all x,x′ ∈ X
Proof) We use the fact that ES(t|x) (logS(t | x)− logS(t | x′)) is constant with respect to t.

d

dt
ES(t|x) (logS(t | x)− logS(t | x′))

=
d

dt

∫
S(t | x) (logS(t | x)− logS(t | x′)) dt

= −
∫

p(t | x) (logS(t | x)− logS(t | x′)) dt+

∫
S(t | x) (−h(t | x) + h(t | x′)) dt = 0

Hence,

Ep(t|x) [logS(t | x)− logS(t | x′)] = −ES(t|x) [h(t | x)− h(t | x′)]■

4S(t | x) is not a valid probability distribution as we cannot guarantee
∫
S(t | x)dt = 1. Rigorously, we

sample t ∼ s(t | x) where s(t | x) = S(t | x)/
∫
S(t | x)dt. We use t ∼ S(t | x) for notational simplicity.

See Appendix C for the existence of sθ(t | x).
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We now go back to Theorem 1 and prove the theorem.

Ep(t|x) [log p(t | x)− log p(t | x′)]

=
∥∥Ep(t|x) [log p(t | x)− log p(t | x′)]

∥∥
2
(∵ DKL ≥ 0)

=
∥∥Ep(t|x) [log h(t | x)− log h(t | x′)]− Ep(t|x) [logS(t | x)− logS(t | x′)]

∥∥
2
(∵ equation 2)

=
∥∥Ep(t|x) [log h(t | x)− log h(t | x′)] + ES(t|x) [h(t | x)− h(t | x′)]

∥∥
2
(∵ Lemma 1)

≤
∥∥Ep(t|x) [log h(t | x)− log h(t | x′)]

∥∥
2
+

∥∥ES(t|x) [h(t | x)− h(t | x′)]
∥∥
2
(∵ triangle inequality)

≤ Ep(t|x) ∥log h(t | x)− log h(t | x′)∥2 + ES(t|x) ∥h(t | x)− h(t | x′)∥2 ■

Theorem 2 An approximation of the upper bound of the KL divergence given in equation 6 is upper
bounded by 2ϵES(t|x) ∥∇xh(t | x)∥2 if x′ is in the epsilon ball centered at x, i.e. x′ ∈ B(x, ϵ).

To prove the theorem, we first find the approximation.

Lemma 2 2ϵES(t|x)∥∇xh(t | x)T (x′ − x)∥2 is an approximation of the upper bound of the KL
divergence which is given in equation 6.

Ep(t|x) ∥log h(t | x)− log h(t | x′)∥2 + ES(t|x) ∥h(t | x)− h(t | x′)∥2
≈ Ep(t|x)

∥∥∇x log h(t | x)T (x′ − x)
∥∥
2
+ ES(t|x)

∥∥∇xh(t | x)T (x′ − x)
∥∥
2

(∵ log h(t | x′) ≈ log h(t | x) +∇x log h(t | x)T (x′ − x)

and h(t | x′) ≈ h(t | x) +∇xh(t | x)T (x′ − x))

= Ep(t|x)

∥∥∥∥∇xh(t | x)T

h(t | x)
(x′ − x)

∥∥∥∥
2

+ ES(t|x)
∥∥∇xh(t | x)T (x′ − x)

∥∥
2

=

∫
p(t | x)
h(t | x)

∥∥∇xh(t | x)T (x′ − x)
∥∥
2
dt+ ES(t|x)

∥∥∇xh(t | x)T (x′ − x)
∥∥
2
(∵ h(t | x) > 0)

= 2ES(t|x)
∥∥∇xh(t | x)T (x′ − x)

∥∥
2
■

Obviously, 2ES(t|x)
∥∥∇xh(t | x)T (x′ − x)

∥∥
2
≤ 2ES(t|x) maxx′∈X

∥∥∇xh(t | x)T (x′ − x)
∥∥
2
. As

we assumed x′ ∈ B(x, ϵ) in Theorem 2, maxx′∈X
∥∥∇xh(t | x)T (x′ − x)

∥∥
2

is achieved when
x′ − x = ϵ∇xh(t | x)/∥∇xh(t | x)∥2. Hence,

2ES(t|x)
∥∥∇xh(t | x)T (x′ − x)

∥∥
2
≤ 2ϵES(t|x) ∥∇xh(t | x)∥2

and this concludes the proof. ■

Theorem 2 shows that regularizating the hazard gradient penalty in equation 5 is equivalent to min-
imizing the approximation of the upper bound of the KL divergence Ep(t|x)[log p(t | x)− log p(t |
x′)]. To incorporate the regularizer into the negative log-likelihood loss, we minimize the Lagrange
multiplier defined as the sum of the negative log-likelihood and the hazard gradient penalty regular-
izer.

L = E(x,t,e)∼D [Lx + λRx] (7)
Here, λ is a coefficient that balances the negative log-likelihood and the regularizer. See Appendix
B for the code snippet of our JAX implementation (Bradbury et al., 2018).

Minimizing the hazard gradient penalty in equation 5 has two advantages over minimizing the KL
divergence directly: a) computational efficiency and b) reduced burden of hyperparameter tuning.
To compute the KL divergence, we first sample x′ ∈ B(x, ϵ). We then need to compute four
values: h(t|x), S(t|x), h(t|x′) and S(t|x′). In this case, we have to compute hazard values of every
t ∼ S(t|x). Further, we need one more hazard function integration S(t | x′) = exp(−

∫
h(t | x′)).

On the other hand, regularizing the hazard gradient penalty only need to calculate the gradient of the
hazard function.

When it comes to regularizing the KL divergence, we have to set the appropriate value of the reg-
ularizing coefficient λ′ and the size of the ball ϵ. On the other hand, if we regularize the hazard
gradient penalty, we don’t need to tune ϵ as λ in equation 5 incorporates ϵ.
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4 EXPERIMENTS

In this section, we experimentally show that the hazard gradient penalty outperforms other regular-
izers. Further, we check the hyperparameter sensitivity of hazard gradient penalty. Throughout the
experiments, we use three public datasets: Study to Understand Prognoses Preferences Outcomes
and Risks of Treatment (SUPPORT) 5, the Molecular Taxonomy of Breast Cancer International Con-
sortium (METABRIC) 6, and the Rotterdam tumor bank and German Breast Cancer Study Group
(RotGBSG) 7. Table 4 summarizes the statistics of the datasets. See Appendix A for evaluation
metrics and experimental details.

4.1 METHODS COMPARED

We compare ODE + HGP with four methods: vanilla ODE, ODE + L1, ODE + L2 ODE + LCI.
Vanilla ODE minimizes the expectation of the negative log-likelihood in equation 4. ODE + L1 min-
imizes the Lagrange multiplier defined as the sum of the expectation of the negative log-likelihood
and the L1 penalty term: E(x,t,e)∼DLx + α

∑P
p=1 |wp|

Here, wps are model parameters and α is a coefficient that balances the negative log-likelihood and
the L1 penalty term. This is an extension of Lasso-Cox (Tibshirani, 1997) to the ODE modeling
framework. ODE + L2 minimizes the Lagrange multiplier defined as the sum of the expectation of
the negative log-likelihood and the L2 penalty term: E(x,t,e)∼DLx + α

∑P
p=1 w

2
p

Here, wps are model parameters and α is a coefficient that balances the negative log-likelihood and
the L2 penalty term. This is an extension of Ridge-Cox (Verweij & Van Houwelingen, 1994) to the
ODE modeling framework. ODE + LCI minimizes the Lagrange multiplier defined as the sum of
the expectation of the negative log-likelihood and the negative of the lower bound of a simplified
version of time-dependent C-index. The regularizer is defined as

−
∑
t

∑N
i=1

∑N
j=1 eiI(Ti < Tj , Ti < t)(1 + (log σ(Sθ(t | xi) < Sθ(t | xj))/ log 2)∑N

i=1

∑N
j=1 eiI(Ti < Tj , Ti < t)

This is equivalent to time dependent concordance index in Section A.1.1 if we don’t take the Kaplan-
Meier estimator into account. The regularizer is a reminiscent of the lower bound of C-index (Steck
et al., 2007). Although the lower bound of C-index was originally proposed as a substitute of the
negative log-likelihood, Chapfuwa et al. (2018) used the lower bound (Steck et al., 2007) as a regu-
larizer of the AFT model (Wei, 1992).

4.2 RESULTS

Table 1 shows the mCtd,mAUC, and iNBLL scores 8. The hazard gradient penalty outperforms
other methods across almost all metrics and datasets. The interesting point is that both L1 and L2
penalties do not affect the ODE model’s performance in most cases. We speculate that regularizing
the weight norm is effective in CoxPH as the model is simple and has a strong assumption that the
hazard rate is constant. On the contrary, regularizing the norm of the weight may not be able to
affect the ODE model’s performance as ODE models are much more complex than CoxPH. Also,
the experimental results highlight the possibility that the performance of the survival analysis models
is more related to the local information such as the gradient at each data point rather than the global
information such as the weight norm of the model. Figure 2 shows that the ODE + HGP effectively
regularized the variation of the density with respect to the input while other methods could not.

Table 1 also shows that regularizing the lower bound of the C-index is not effective in many cases.
We conjecture that the method is ineffective as the ODE modeling framework is flexible and optimiz-
ing the negative log-likelihood can discriminate each data point’s rank. Furthermore, regularizing
the lower bound of the C-index does not harness the information of neighbors of data points. We
also compare HGP against a Neural ODEs specific regularizer. See Appendix D for details.

5https://github.com/autonlab/auton-survival/blob/master/dsm/datasets/support2.csv
6https://github.com/jaredleekatzman/DeepSurv/tree/master/experiments/data/metabric
7https://github.com/jaredleekatzman/DeepSurv/tree/master/experiments/data/gbsg
8See Appendix A.1 for the details of mCtd,mAUC, and iNBLL.
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Table 1: Experimental Results on three datasets. Averages and standard deviations of 7 different
random seeds for each setting are shown. See Appendix A.2 for the details of experimental setups.
The dagger mark indicates that the result is statistically significant (p < 0.05) compared to the result
of vanilla ODE.

(a) mCtd(↑)

Method SUPPORT METABRIC RotGBSG

CoxPH 0.672 ± 0.008 0.649 ± 0.012 0.710 ± 0.007
DeepHit 0.762 ± 0.004 0.688 ± 0.010 0.711 ± 0.009

ODE 0.771 ± 0.003 0.695 ± 0.008 0.718 ± 0.005
ODE + L1 0.771 ± 0.002 0.697 ± 0.008 0.715 ± 0.006
ODE + L2 0.770 ± 0.006 0.695 ± 0.006 0.716 ± 0.005
ODE + LCI 0.771 ± 0.003 0.698 ± 0.002 0.716 ± 0.005

ODE + HGP 0.775 ± 0.004† 0.702 ± 0.009 0.723 ± 0.006
(b) mAUC(↑)

Method SUPPORT METABRIC RotGBSG

CoxPH 0.706 ± 0.010 0.685 ± 0.008 0.739 ± 0.009
DeepHit 0.800 ± 0.004 0.720 ± 0.012 0.741 ± 0.010

ODE 0.810 ± 0.002 0.729 ± 0.005 0.746 ± 0.006
ODE + L1 0.810 ± 0.002 0.729 ± 0.005 0.742 ± 0.006
ODE + L2 0.809 ± 0.005 0.728 ± 0.005 0.742 ± 0.006
ODE + LCI 0.810 ± 0.002 0.731 ± 0.003 0.743 ± 0.006

ODE + HGP 0.814 ± 0.002† 0.732 ± 0.005† 0.753 ± 0.005†

(c) iNBLL(↓)

Method SUPPORT METABRIC RotGBSG

CoxPH 0.564 ± 0.025 0.474 ± 0.005 0.530 ± 0.005
DeepHit 0.519 ± 0.004 0.515 ± 0.008 0.531 ± 0.006

ODE 0.516 ± 0.015 0.472 ± 0.005 0.530 ± 0.012
ODE + L1 0.515 ± 0.015 0.470 ± 0.005 0.533 ± 0.013
ODE + L2 0.517 ± 0.017 0.470 ± 0.004 0.537 ± 0.010
ODE + LCI 0.516 ± 0.015 0.469 ± 0.002 0.528 ± 0.010

ODE + HGP 0.506 ± 0.011† 0.479 ± 0.003 0.530 ± 0.003

Table 2: Experimental Results on SUPPORT ablated in terms of sample size M . We set λ = 10.

Method mCtd(↑) mAUC(↑) iNBLL(↓)
No reg. 0.771 ± 0.003 0.810 ± 0.002 0.516 ± 0.015
M = 1 0.775 ± 0.004 0.814 ± 0.002 0.505 ± 0.010
M = 5 0.775 ± 0.004 0.814 ± 0.002 0.506 ± 0.011
M = 10 0.775 ± 0.004 0.815 ± 0.002 0.505 ± 0.009

Table 2 shows the results by varying the number of samples M in the sampling process t ∼ S(t | x)
in equation 5. As long as the regularizer is applied, the number of samples M does not affect
the performance. Even when M = 1, the regularizer works well. Figure 3 shows the results on
SUPPORT and RotGBSG datasets by varying the coefficient λ in equation 7. Since the performance
variation by λ is stable, the hyperparameter λ can be tuned without much difficulty in practical
setups.

Table 3 shows the time taken for training/evaluation step for each methods. The time it takes to
train ODE + L1 and to train ODE + L2 is slightly faster than vanilla ODE training time. It is
straightforward to see that the L1 and L2 penalty makes smooth dynamics as the number of function
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(a) SUPPORT (b) METABRIC (c) RotGBSG

Figure 2: A boxplot of the log-likelihood variation with respect to the input perturbation
E(x,t)∼De=1

∥ log pθ(t | x) − log pθ(t | x′)∥2 on three datasets. We denote De=1 by the set
of uncensored data. We choose x′ = x + ϵg/∥g∥2 where g = ∇x log pθ(t | x) so that
∥ log pθ(t | x) − log pθ(t | x′)∥2 is maximized under x′ ∈ B(x, ϵ) constraint. We set ϵ = 1e − 2
across all experiments. The hazard gradient penalty effectively regularizes the variation. As the
density of probability distribution p(· | x) should be concentrated at t for uncensored data (x, t),
the figures show that the hazard gradient penalty effectively regularizes the KL divergence between
the density function at a point x and that of neighborhood points x′ ∈ B(x, ϵ).

(a) SUPPORT mCtd(↑) (b) SUPPORT mAUC(↑) (c) SUPPORT iNBLL(↓)

(d) RotGBSG mCtd(↑) (e) RotGBSG mAUC(↑) (f) RotGBSG iNBLL(↓)

Figure 3: Violin plots of experimental results on SUPPORT and RotGBSG by varying λ. Red,
green, and blue denote mCtd, mAUC, and iNBLL. The thickness of a plot denotes the probability
density of the results. The hazard gradient penalty may conflict with the negative log-likelihood if
we set high λ. The λ that achieves the best scores across all metrics on the RotGBSG dataset could
have been acquired between λ = 5 and λ = 10. However, we report the result at λ = 5 on the
RotGBSG dataset in Table 1c for consistency.

evaluations (NFE) in the training time of ODE + L1 and ODE + L2 are lower than that of vanilla
ODE. The decrease in NFE compensates for the overheads of calculating L1 and L2 penalties,
which makes the training time of ODE + L1 and ODE + L2 faster than that of vanilla ODE. The
same applies to ODE + HGP. Despite the additional sampling process and gradient calculation, the
training time of ODE + HGP is on par with vanilla ODE. The decreased NFE thanks to smooth
dynamics made by the hazard gradient penalty compensates for the additional computations. The
smooth dynamics made by L1, L2, and the hazard gradient penalty can also be observed in the
evaluation phase. The NFE of ODE + L1, ODE + L2, and ODE + HGP is much smaller than that of
vanilla ODE. Not all regularizers make smooth dynamics. The NFE of ODE + LCI is comparable
to the NFE of vanilla ODE. Clearly, there’s no point in regularizing LCI in terms of inference speed.

8
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Table 3: The taken time (in seconds) and the number of function evaluations (NFE) for each step in
the training/evaluation time on RotGBSG. The numbers in parenthesis indicate relative performance
against vanilla ODE. HGP incurs negligible overhead (1% slowdown) on training time while gives
rise to 10% speedup on evaluation time. See Table 6 for the taken time and the NFE for each step of
regularizers on SUPPORT.

ODE ODE + L1 ODE + L2 ODE + LCI ODE + HGP

train time 0.1163 (1) 0.1043 (0.90) 0.1125 (0.97) 0.1173 (1.01) 0.1179 (1.01)
eval time 0.0020 (1) 0.0016 (0.80) 0.0014 (0.71) 0.0019 (0.97) 0.0016 (0.80)

train NFE 13.207 (1) 11.519 (0.87) 10.637 (0.80) 13.207 (1.00) 12.129 (0.91)
eval NFE 11.893 (1) 9.946 (0.83) 8.411 (0.70) 11.643 (0.97) 9.929 (0.85)

5 RELATED WORKS

A line of research integrated deep neural networks to CoxPH (Faraggi & Simon, 1995; Katzman
et al., 2018) and Extended Hazards (Zhong et al., 2021) for more model flexibility. Another line
of research proposed distribution-free survival analysis models via the time domain discretization
(Lee et al., 2018), adversarial learning approach (Chapfuwa et al., 2018), or derivative-based models
(Danks & Yau, 2022). Previous works (Goldstein et al., 2020; Han et al., 2021) proposed new
objectives to optimize Brier score (Graf et al., 1999), Binomial log-likelihood, or distributional
calibration directly. Yet to the best of our knowledge, none of the previous works focused on the
effect of gradient penalty on survival analysis models.

Previous works proposed L1 and L2 regularization in the survival analysis literature (Tibshirani,
1997; Verweij & Van Houwelingen, 1994). Those methods regularize the survival analysis models
so that the L1 or L2 norm of the model parameters does not increase so much. Our method is
different from those methods in that we penalize the norm of the gradient on each local data point.

Our method is closely related to semi-supervised learning (Chapelle et al., 2006). Among many
semi-supervised learning methods, our method is germane to virtual adversarial training (Miyato
et al., 2018) in that it regularizes function variation between a local data point and its neighbours.
However, virtual adversarial training is different from ours in that the method was demonstrated in
the classification setting and the output is a discrete distribution.

In Generative Adversarial Nets (GANs) literature (Goodfellow et al., 2014), the gradient penalty had
been studied actively. Gulrajani et al. (2017) proposed the gradient penalty to satisfy the 1-Lipschitz
function constraint in Kantrovich-Rubinstein duality. Mescheder et al. (2018) proposed the gradient
penalty to penalize the discriminator for deviating from the Nash equilibrium. Ours is different from
these works in that we propose gradient penalty so that the density at x does not deviate much from
that of x’s neighborhood points.

6 CONCLUSION

In this paper, we introduced a novel regularizer for survival analysis. Unlike previous methods, we
focus on individual local data point rather than global information. We theoretically showed that
regularizing the norm of the gradient of hazard function with respect to the data point is related
to minimizing the KL divergence between the data point and that of its neighbours. Empirically,
we showed that the proposed regularizer outperforms other regularizers and it is not sensitive to
hyperparameters. Furthermore, the proposed regularizer is computationally efficient and incurs an
ignorable overhead. Nonetheless, as minimizing the proposed regularizer may conflict with opti-
mizing the negative log-likelihood, practitioners should tune the balancing coefficient λ for each
dataset. The paper highlights the new possibility that the recent advancements in semi-supervised
learning could enhance the performance of survival analysis models.
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Table 4: Summary statistics of the datasets used in our experiments. N denotes the number of data
points and d denotes the dimension of each data points.

Dataset N d Censoring (%) Durations Event Quantiles
# unique domain t = 25% t = 50% t = 75%

SUPPORT 9105 43 31.89% 1724 N+ 14 58 252
METABRIC 1904 9 42.06% 1686 R+ 42.68 85.86 145.33
RotGBSG 2232 7 43.23% 1230 R+ 13.61 24.01 40.32

Algorithm 1 Hazard Gradient Penalty

Require: hθ, learning rate γ
repeat

sample (x, t, e) ∼ D
Retrieve unique times t1, . . . , tK from minibatch.
integrate −hθ(t | x) from 0 to tK and store logSθ(t1 | x), . . . , logSθ(tK | x)
logSθ(t | x)← choose from logSθ(t1 | x), . . . , logSθ(tK | x) that corresponds to (x, t, e)
log pθ(t | x)← log hθ(t | x) + logSθ(t | x)
Lx ← −e log pθ(t | x)− (1− e) logSθ(t | x) ▷ Negative log-likelihood
sample i1, . . . , iM ∼ Categorical(Sθ(t1 | x), . . . , Sθ(tK | x)) ▷ t ∼ Sθ(t | x)
t′m ← tim−1 +Uniform(tim−1, tim) ▷ t0 = 0

Rx ← 1
M

∑M
m=1 ∥∇xhθ(t

′
m | x)∥2 ▷ Hazard gradient penalty

θ ← θ − γ∇θ(Lx + λRx)
until Convergence

A EVALUATION METRICS AND EXPERIMENTAL DETAILS

A.1 EVALUATION METRICS

Throughout this subsection, we denote Ŝ(t | x) as the estimate of S(t | x), I(·) as the indicator
function, (xi, Ti, ei) as the ith covariate, time, event indicator of the dataset, Ĝ(t) as the Kaplan-
Meier estimator for censoring distribution (Kaplan & Meier, 1958), and ωi as 1/Ĝ(Ti).

A.1.1 TIME DEPENDENT CONCORDANCE INDEX (Ctd)

The concordance index, or C-index is defined as the proportion of correctly ordered pairs among
all comparable pairs. We use time dependent variant of C-index that truncates pairs within the
prespecified time point Uno et al. (2011). The time dependent concordance index at t, Ctd(t), is
defined as ∑N

i=1

∑N
j=1 ei{Ĝ(Ti)}−2I(Ti < Tj , Ti < t)I(Ŝ(t | xi) < Ŝ(t | xj))∑N

i=1

∑N
j=1 ei{Ĝ(Ti)}−2I(Ti < Tj , Ti < t)

To evaluate Ctd at [t1, . . . , tL] at the same time, we take its mean mCtd = 1
L

∑L
l=1 C

td(tl).

A.1.2 TIME DEPENDENT AREA UNDER CURVE (AUC)

is an extension of the ROC-AUC to survival data Hung & Chiang (2010). It measures how well a
model can distinguish individuals who fail before the given time (Ti < t) and who fail after the
given time (Tj > t).

The AUC at time t, AUC(t), is defined as∑N
i=1

∑N
j=1 I(Tj > t)I(Ti ≤ t)ωiI(Ŝ(t | xi) ≤ Ŝ(t | xj))

(
∑N

i=1 I(Ti > t))(
∑N

i=1 I(Ti ≤ t)ωi)

To evaluate AUC at [t1, . . . , tL] at the same time, we take its mean mAUC = 1
L

∑L
l=1 AUC(tl).
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A.1.3 NEGATIVE BINOMIAL LOG-LIKELIHOOD

We can evaluate the negative binomial log-likelihood (NBLL) to measure both discrimination and
calibration performance Kvamme et al. (2019). The negative binomial log-likelihood at t measures
how close the survival probability is to 1 if the given data survived at t and how close the survival
probability is to 0 if the given data failed before t. The NBLL at t, NBLL(t), is defined as

− 1

N

N∑
i=1

[
log(1− Ŝ(t | xi))I(Ti ≤ t, ei = 1)

Ĝ(Ti)
+

log Ŝ(t | xi)I(Ti > t)

Ĝ(t)

]

For the convenience of evaluation, we integrate the NBLL, iNBLL = 1
t2−t1

∫ t2
t1

NBLL(t)dt.

A.2 EXPERIMENTAL DETAILS

Across all datasets, we split training set, validation set and test set into 70%, 10% and 20% each
using PyTorch’s random split function Paszke et al. (2019). We set seed = 42 when split-
ting.

Across all experiments, we use an MLP with two hidden layers where each layer has 64 hidden
units. Across all layers, we apply Layer normalization Ba et al. (2016). Instead of naively feeding
time t into the neural network, we feed scaled time t̃ = (t − t2)/(t3 − t1) where t1, t2, and t3
are first, second, and third quartile of failure event times. We found that this strategy enhances the
ODE model’s performance and boosts training time. To incorporate time t into the survival analysis
model, we project the time into an eight dimensional vector using a single layer MLP and then
concatenate it to the input data. The time t is also specified by adding projected output into each
layer output. We use the AdamW optimizer Loshchilov & Hutter (2019) and clipped the gradient
norm so that it does not exceed 1. We set the learning rate to 0.001. We have implemented the code
using JAX Bradbury et al. (2018) and Diffrax Kidger (2021) 9.

To find the best λ in equation 7, we run experiments with λ = 1, 5, 10, 50 and report the results
at λ = 10 as it shows decent performance across all metrics and datasets. We also have to set
the number of samples M from the time sampling process t ∼ pθ(t | x) in equation 5. We set
M = 5 across all the hazard gradient penalty experiments. To find the best coefficient α in ODE
+ L1, ODE + L2, and ODE + LCI experiments, we set α = 1e − 1, 1e − 2, 1e − 3 and run the
experiments. We report the best α in terms of mAUC. To report mCtd and mAUC, we calcu-
late Ctd and AUC at 10%, 20%, . . . , 90% event quantiles and average them. To report iNBLL,
we integrate from the minimum time of the test set to the maximum time of the test set. We use
scikit-survival Pölsterl (2020) to report mCtd and mAUC. We use pycox Kvamme et al.
(2019) to report iNBLL. Across all experiments, we run 7 experiments with different seeds and
report their mean and the standard deviation.

B CODE SNIPPET OF HGP

1 import jax
2 import jax.random as jrandom
3 import jax.nn as jnn
4 import jax.numpy as jnp
5

6 odeint = get_odeint(hazard_func, args.rtol, args.atol)
7

8 @jax.jit
9 def calc_dh_dx(

10 params: optax.Params, t: jnp.ndarray, X: jnp.ndarray
11 ):
12 def sum_h_func(params, t, X):
13 zeros = jnp.zeros((X.shape[0], 1))
14 states_t0 = jnp.concatenate((X, zeros), axis=-1)
15 return jnp.sum(hazard_func(t, states_t0, args=params)[:, -1])

9The code will be made publicly available in the near future.
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16

17 return jax.grad(sum_h_func, argnums=2)(params, t, X)
18

19 @jax.jit
20 def loss_func(
21 params: optax.Params, X: jnp.ndarray, event: jnp.ndarray,
22 t: jnp.ndarray, timestamp: jnp.ndarray, unique_idx: jnp.ndarray,
23 key: jnp.ndarray
24 ):
25 batch_size = X.shape[0]
26 time_size = jnp.size(timestamp)
27

28 timestamp = jnp.insert(timestamp, 0, 0)
29 int_hazard_t0 = jnp.zeros((X.shape[0], 1))
30 states_t0 = jnp.concatenate((X, int_hazard_t0), axis=-1)
31 ys = odeint(timestamp, states_t0, params)
32 int_hazard = ys[1:, :, -1]
33

34 log_surv = - int_hazard
35 log_surv_t = log_surv[unique_idx, jnp.arange(X.shape[0])]
36 hazard_t = hazard_func(t, states_t0, args=params)[:, -1]
37

38 log_prob_t = jnp.log(hazard_t + 1e-6) + log_surv_t
39

40 assert log_surv_t.shape == log_prob_t.shape
41 assert event.shape == log_prob_t.shape
42

43 nll = - (event * log_prob_t + (1. - event) * log_surv_t).mean()
44

45 # now [batch_size, time_size]
46 logits = jnp.transpose(jax.lax.stop_gradient(log_surv), (1, 0))
47 time_idx = jrandom.categorical(
48 key, jnp.tile(logits[:, :, None], (1, 1, args.sample_size)),
49 axis=1
50 )
51

52 t0 = timestamp[0:][time_idx]
53 t1 = timestamp[1:][time_idx]
54 t_prime = t0 + (t1-t0) * jrandom.uniform(key, shape=t0.shape)
55 assert t_prime.shape == (batch_size, args.sample_size)
56

57 # E_{S(t | x)} || \nabla_x h(t | x) ||
58 dh_dx = jax.vmap(calc_dh_dx, in_axes=(None, 1, None))(params, t_prime

, X)
59 assert dh_dx.shape == (args.sample_size, batch_size, X.shape[1])
60 dh_dx_norm = jnp.linalg.norm(dh_dx, ord=2, axis=-1).mean()
61

62 loss = nll + args.lambda_ * dh_dx_norm
63

64 return loss, (nll, dh_dx_norm)

C THE EXISTENCE OF THE PROBABILITY DISTRIBUTION sθ(t | x)

In general, we cannot guarantee the existence of probability distribution

sθ(t | x) =
Sθ(t | x)∫
Sθ(t | x)dt

as the integration
∫
Sθ(t | x)dt may not exist.

To ensure the existence of
∫
Sθ(t | x)dt, we simply add a constraint: hθ(t | x) ≥ ϵ. Here, ϵ is a

very small constant (e.g. ϵ = 1e− 8). As ϵ is a very small constant, it has a negligible impact on the
algorithm. The constraint can be achieved easily by adding ϵ to the softplus output of the hazard
function.
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Table 5: Comparison against STEER.

(a) mCtd(↑)

Method SUPPORT METABRIC RotGBSG

ODE 0.771 ± 0.003 0.695 ± 0.008 0.718 ± 0.005
STEER 0.772 ± 0.002 0.699 ± 0.010 0.718 ± 0.006
HGP 0.775 ± 0.004 0.702 ± 0.009 0.723 ± 0.006

(b) mAUC(↑)

Method SUPPORT METABRIC RotGBSG

ODE 0.810 ± 0.002 0.729 ± 0.005 0.746 ± 0.006
STEER 0.810 ± 0.001 0.730 ± 0.006 0.745 ± 0.006
HGP 0.814 ± 0.002 0.732 ± 0.005 0.753 ± 0.005

(c) iNBLL(↓)

Method SUPPORT METABRIC RotGBSG

ODE 0.516 ± 0.015 0.472 ± 0.005 0.530 ± 0.012
STEER 0.521 ± 0.012 0.475 ± 0.011 0.523 ± 0.006
HGP 0.506 ± 0.011 0.479 ± 0.003 0.530 ± 0.003

Table 6: The taken time (in seconds) and the number of function evaluations (NFE) for each step
in the training/evaluation time on SUPPORT. The numbers in parenthesis indicate relative perfor-
mance against vanilla ODE. HGP boosts training time (8% faster) and gives rise to 9% speedup on
evaluation time.

ODE ODE + L1 ODE + L2 ODE + LCI ODE + HGP

train time 0.3392 (1) 0.2688 (0.79) 0.2758 (0.81) 0.3434 (1.01) 0.3135 (0.92)
eval time 0.0019 (1) 0.0015 (0.77) 0.0015 (0.78) 0.0018 (0.95) 0.0018 (0.91)

train NFE 10.980 (1) 9.214 (0.83) 9.151 (0.83) 10.973 (0.99) 10.556 (0.96)
eval NFE 8.580 (1) 7.073 (0.81) 7.073 (0.82) 8.446 (0.98) 7.988 (0.93)

Under the constraint, Sθ(t | x) is bounded by an exponential function:

Sθ(t | x) = exp

(
−
∫ t

0

h(τ | x)dτ
)
≤ exp(−at)

Also,
∫
Sθ(t | x)dt is bounded:∫

Sθ(t | x)dt ≤
∫

exp(−ϵt)dt = 1

ϵ

D COMPARISON AGAINST NEURAL ODES SPECIFIC REGULARIZER

In this section, we compare HGP against Neural ODEs specific regularizer: STEER (Ghosh et al.,
2020). STEER regularizes Neural ODEs by perturbing the final time of the integration. Table 5
compares the performance of HGP against STEER. Overall, HGP outperforms STEER on various
setups.

E THE TAKEN TIME AND THE NUMBER OF FUNCTION EVALUATIONS

In this section, we compare HGP against competing regularizers in terms of the taken time and the
number of function evaluations on SUPPORT dataset. See Table 6 for the details. Overall, the result
aligns with that of Table 3.
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