
Neural Production Systems

Aniket Didolkar*, 1, Anirudh Goyal *, 1, Nan Rosemary Ke 2, Charles Blundell 2,
Philippe Beaudoin 3 Nicolas Heess 2, Michael Mozer 4, **, Yoshua Bengio 1, **

Abstract

Visual environments are structured, consisting of distinct objects or entities. These
entities have properties—visible or latent—that determine the manner in which
they interact with one another. To partition images into entities, deep-learning re-
searchers have proposed structural inductive biases such as slot-based architectures.
To model interactions among entities, equivariant graph neural nets (GNNs) are
used, but these are not particularly well suited to the task for two reasons. First,
GNNs do not predispose interactions to be sparse, as relationships among inde-
pendent entities are likely to be. Second, GNNs do not factorize knowledge about
interactions in an entity-conditional manner. As an alternative, we take inspiration
from cognitive science and resurrect a classic approach, production systems, which
consist of a set of rule templates that are applied by binding placeholder variables in
the rules to specific entities. Rules are scored on their match to entities, and the best
fitting rules are applied to update entity properties. In a series of experiments, we
demonstrate that this architecture achieves a flexible, dynamic flow of control and
serves to factorize entity-specific and rule-based information. This disentangling of
knowledge achieves robust future-state prediction in rich visual environments, out-
performing state-of-the-art methods using GNNs, and allows for the extrapolation
from simple (few object) environments to more complex environments.

1 Introduction

Despite never having taken a physics course, every child beyond a young age appreciates that pushing
a plate off the dining table will cause the plate to break. The laws of physics accurately characterize
the dynamics of our natural world, and although explicit knowledge of these laws is not necessary to
reason, we can reason explicitly about objects interacting through these laws. Humans can verbalize
knowledge in propositional expressions such as “If a plate drops from table height, it will break,” and
“If a video-game opponent approaches from behind and they are carrying a weapon, they are likely to
attack you.” Expressing propositional knowledge is not a strength of current deep learning methods
for several reasons. First, propositions are discrete and independent from one another. Second,
propositions must be quantified in the manner of first-order logic; for example, the video-game
proposition applies to any X for which X is an opponent and has a weapon. Incorporating the ability
to express and reason about propositions should improve generalization in deep learning methods
because this knowledge is modular— propositions can be formulated independently of each other—
and can therefore be acquired incrementally. Propositions can also be composed with each other and
applied consistently to all entities that match, yielding a powerful form of systematic generalization.

The classical AI literature from the 1980s can offer deep learning researchers a valuable perspective.
In this era, reasoning, planning, and prediction were handled by architectures that performed proposi-
tional inference on symbolic knowledge representations. A simple example of such an architecture is

* Equal Contribution, ** Equal Advising 1 Mila, University of Montreal, 2 Google Deepmind, 3

Waverly, 4 Google Research, Brain Team. Corresponding authors: anirudhgoyal9119@gmail.com,
adidolkar123@gmail.com

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

...

NPS

GNN

Ball-Ball interaction rule

Ball-Wall interaction rule

GNN common interaction rule

Red ball slot

Purple ball slot

Green ball slot

Slot repersenting the wall

...

Figure 1: In this figure we show a visual comparison between NPS and dense architectures like
GNNs. In NPS, a rule is only applied when an interaction takes place and it is applied only to the slots
affected by the interaction. NPS also uses different rules for different kinds of interactions, while in
GNN a common rule is applied to all slots irrespective of whether an interaction takes place or not
(because of parameter sharing). Note the dynamic nature of the interaction graph in NPS, while in
GNN, the graph is static.

the production system (Laird et al., 1986; Anderson, 1987), which expresses knowledge by condition-
action rules. The rules operate on a working memory: rule conditions are matched to entities in
working memory inspired by cognitive science, and such a match can trigger computational actions
that update working memory or external actions that operate on the outside world.

Production systems were typically used to model high-level cognition, e.g., mathematical problem
solving or procedure following; perception was not the focus of these models. It was assumed
that the results of perception were placed into working memory in a symbolic form that could be
operated on with the rules. In this article, we revisit production systems but from a deep learning
perspective which naturally integrates perceptual processing and subsequent inference for visual
reasoning problems. We describe an end-to-end deep learning model that constructs object-centric
representations of entities in videos, and then operates on these entities with differentiable—and
thus learnable—production rules. The essence of these rules, carried over from traditional symbolic
system, is that they operate on variables that are bound, or linked, to the entities in the world. In the
deep learning implementation, each production rule is represented by a distinct MLP with query-key
attention mechanisms to specify the rule-entity binding and to determine when the rule should be
triggered for a given entity. We are not the first to propose a neural instantiation of a production system
architecture. Touretzky & Hinton (1988) gave a proof of principle that neural net hardware could be
hardwired to implement a production system for symbolic reasoning; our work fundamentally differs
from theirs in that (1) we focus on perceptual inference problems and (2) we use the architecture as
an inductive bias for learning.

1.1 Variables and entities

What makes a rule general-purpose is that it incorporates placeholder variables that can be bound to
arbitrary values or—the term we prefer in this article—entities. This notion of binding is familiar in
functional programming languages, where these variables are called arguments. Analogously, the use
of variables in the production rules we describe enable a model to reason about any set of entities that
satisfy the selection criteria of the rule.

Consider a simple function in C like int add(int a, int b). This function binds its two integer
operands to variables a and b. The function does not apply if the operands are, say, character strings.
The use of variables enables a programmer to reuse the same function to add any two integer values

In order for rules to operate on entities, these entities must be represented explicitly. That is, the
visual world needs to be parsed in a task-relevant manner, e.g., distinguishing the sprites in a video
game or the vehicles and pedestrians approaching an autonomous vehicle. Only in the past few years
have deep learning vision researchers developed methods for object-centric representation (Le Roux
et al., 2011; Eslami et al., 2016; Greff et al., 2016; Raposo et al., 2017; Van Steenkiste et al., 2018;
Kosiorek et al., 2018; Engelcke et al., 2019; Burgess et al., 2019; Greff et al., 2019; Locatello et al.,
2020a; Ahmed et al., 2020; Goyal et al., 2019; Zablotskaia et al., 2020; Rahaman et al., 2020; Du
et al., 2020; Ding et al., 2020; Goyal et al., 2020; Ke et al., 2021). These methods differ in details but
share the notion of a fixed number of slots (see Figure 1 for example), also known as object files, each
encapsulating information about a single object. Importantly, the slots are interchangeable, meaning
that it doesn’t matter if a scene with an apple and an orange encodes the apple in slot 1 and orange in
slot 2 or vice-versa.

2

A model of visual reasoning must not only be able to represent entities but must also express
knowledge about entity dynamics and interactions. To ensure systematic predictions, a model must
be capable of applying knowledge to an entity regardless of the slot it is in and must be capable of
applying the same knowledge to multiple instances of an entity. Several distinct approaches exist in
the literature. The predominant approach uses graph neural networks to model slot-to-slot interactions
(Scarselli et al., 2008; Bronstein et al., 2017; Watters et al., 2017; Van Steenkiste et al., 2018; Kipf
et al., 2018; Battaglia et al., 2018; Tacchetti et al., 2018). To ensure systematicity, the GNN must
share parameters among the edges. In a recent article, Goyal et al. (2020) developed a more general
framework in which parameters are shared but slots can dynamically select which parameters to use in
a state-dependent manner. Each set of parameters is referred to as a schema, and slots use a query-key
attention mechanism to select which schema to apply at each time step. Multiple slots can select the
same schema. In both GNNs and SCOFF, modeling dynamics involves each slot interacting with
each other slot. In the work we describe in this article, we replace the direct slot-to-slot interactions
with rules, which mediate sparse interactions among slots (See arrows in Figure 1).

Thus our main contribution is that we introduce NPS, which offers a way to model dynamic and
sparse interactions among the variables in a graph and also allows dynamic sharing of multiple sets of
parameters among these interactions. Most architectures used for modelling interactions in the current
literature use statically instantiated graph which model all possible interactions for a given variable
at each step i.e. dense interactions. Also such dense architectures share a single set of parameters
across all interactions which maybe quite restrictive in terms of representational capacity. A visual
comparison between these two kinds of architectures is shown in Figure 1. Through our experiments
we show the advantage of modeling interactions in the proposed manner using NPS in visually rich
physical environments. We also show that our method results in an intuitive factorization of rules and
entities.

2 Production System

Formally, our notion of a production system consists of a set of entities and a set of rules, along
with a mechanism for selecting rules to apply on subsets of the entities. Implicit in a rule is a
specification of the properties of relevant entities, e.g., a rule might apply to one type of sprite in a
video game but not another. The control flow of a production system dynamically selects rules as
well as bindings between rules and entities, allowing different rules to be chosen and different entities
to be manipulated at each point in time.

The neural production system we describe shares essential properties with traditional production
system, particularly with regard to the compositionality and generality of the knowledge they embody.
Lovett & Anderson (2005) describe four desirable properties commonly attributed to symbolic
systems that apply to our work as well.

Production rules are modular. Each production rule represents a unit of knowledge and are atomic
such that any production rule can be intervened (added, modified or deleted) independently of other
production rules in the system.

Production rules are abstract. Production rules allow for generalization because their conditions
may be represented as high-level abstract knowledge that match to a wide range of patterns. These
conditions specify the attributes of relationship(s) between entities without specifying the entities
themselves. The ability to represent abstract knowledge allows for the transfer of learning across
different environments as long as they fit within the conditions of the given production rule.

Production rules are sparse. In order that production rules have broad applicability, they involve
only a subset of entities. This assumption imposes a strong prior that dependencies among entities
are sparse. In the context of visual reasoning, we conjecture that this prior is superior to what has
often been assumed in the past, particularly in the disentanglement literature—independence among
entities Higgins et al. (2016); Chen et al. (2018).

Production rules represent causal knowledge and are thus asymmetric. Each rule can be decomposed
into a {condition, action} pair, where the action reflects a state change that is a causal consequence of
the conditions being met.

These four properties are sufficient conditions for knowledge to be expressed in production rule form.
These properties specify how knowledge is represented, but not what knowledge is represented. The

3

latter is inferred by learning mechanisms under the inductive bias provided by the form of production
rules.

3 Neural Production System: Slots and Sparse Rules
The Neural Production System (NPS), illustrated in Figure 2, provides an architectural backbone
that supports the detection and inference of entity (object) representations in an input sequence, and
the underlying rules which govern the interactions between these entities in time and space. The
input sequence indexed by time step t, {x1, . . . ,xt, . . . ,xT }, for instance the frames in a video, are
processed by a neural encoder (Burgess et al., 2019; Greff et al., 2019; Goyal et al., 2019, 2020)
applied to each xt, to obtain a set of M entity representations {V t

1 , . . . , . . . ,V
t
M}, one for each of

the M slots. These representations describe an entity and are updated based on both the previous
state, V t−1 and the current input, xt.

NPS consists of N separately encoded rules, {R1,R2, ..,RN}. Each rule consists of two compo-
nents, Ri = (~Ri,MLPi), where ~Ri is a learned rule embedding vector, which can be thought of as
a template defining the condition for when a rule applies; and MLPi, which determines the action
taken by a rule. Both ~Ri and the parameters of MLPi are learned along with the other parameters of
the model using back-propagation on an objective optimized end-to-end.

RuleN
Rule2
Rule1

…

slot1 slot2 slot3 slot4
sl
ot

1
sl
ot

2
sl
ot

3
sl
ot

4

Figure 2: Rule and slot combinatorics.
Condition-action rules specify how entities inter-
act. Slots maintain the time-varying state of an
entity. Every rule is matched to every pair of slots.
Through key-value attention, a goodness of match
is determined, and a rule is selected along with its
binding to slots.

In the general form of the model, each slot se-
lects a rule that will be applied to it to change its
state. This can potentially be performed several
times, with possibly different rules applied at
each step. Rule selection is done using an atten-
tion mechanism described in detail below. Each
rule specifies conditions and actions on a pair
of slots. Therefore, while modifying the state
of a slot using a rule, it can take the state of an-
other slot into account. The slot which is being
modified is called the primary slot and other is
called the contextual slot. The contextual slot
is also selected using an attention mechanism
described in detail below.

3.1 Computational Steps in NPS
In this section, we give a detailed description of the rule selection and application procedure for the
slots. First, we will formalize the definitions of a few terms that we will use to explain our method.
We use the term primary slot to refer to slot Vp whose state gets modified by a rule Rr. We use the
term contextual slot to refer to the slot Vc that the rule Rr takes into account while modifying the
state of the primary slot Vp.

Notation. We consider a set of N rules {R1,R2, . . . ,RN} and a set of T input frames
{x1,x2, . . . ,xT }. Each frame xt is encoded into a set of M slots {V t

1 ,V
t
2 , . . . ,V

t
M}. In the

following discussion, we omit the index over t for simplicity.

Step 1. is external to NPS and involves parsing an input image, xt, into slot-based entities conditioned
on the previous state of the slot-based entities. Any of the methods proposed in the literature to obtain
a slot-wise representation of entities can be used (Burgess et al., 2019; Greff et al., 2019; Goyal et al.,
2019, 2020). The next three steps constitute the rule selection and application procedure.

Step 2. For each primary slot Vp, we attend to a rule Rr to be applied. Here, the queries come from
the primary slot: qp = VpW

q, and the keys come from the rules: ki = ~RiW
k ∀i ∈ {1, . . . ,N}.

The rule is selected using a straight-through Gumbel softmax (Jang et al., 2016) to achieve a learnable
hard decision: r = argmaxi(qpki + γ), where γ ∼ Gumbel(0, 1). This competition is a noisy
version of rule matching and prioritization in traditional production systems.

Step 3. For a given primary slot Vp and selected rule Rr, a contextual slot Vc is selected using another
attention mechanism. In this case the query comes from the primary slot: qp = VpW

q, and the
keys from all the slots: kj = VjW

q ∀j ∈ {1, . . . ,M}. The selection takes place using a straight-
through Gumbel softmax similar to step 2: c = argmaxj(qpkj + γ), where γ ∼ Gumbel(0, 1).
Note that each rule application is sparse since it takes into account only 1 contextual slot for modifying

4

a primary slot, while other methods like GNNs take into account all slots for modifying a primary
slot.

Step 4. Rule Application: the selected rule Rr is applied to the primary slot Vp based on the rule and
the current contents of the primary and contextual slots. The rule-specific MLPr, takes as input the
concatenated representation of the state of the primary and contextual slots, Vp and Vc, and produces
an output, which is then used to change the state of the primary slot Vp by residual addition.

3.2 Rule Application: Sequential vs Parallel Rule Application
In the previous section, we have described how each rule application only considers another contextual
slot for the given primary slot i.e., contextual sparsity. We can also consider application sparsity,
wherein we use the rules to update the states of only a subset of the slots. In this scenario, only
the selected slots would be primary slots. This setting will be helpful when there is an entity in an
environment that is stationary, or it is following its own default dynamics unaffected by other entities.
Therefore, it does not need to consider other entities to update its state. We explore two scenarios for
enabling application sparsity.

Slots

Sequential

Slots

Rules

Parallel

State Change

No State Change

Figure 3: This figure demonstrates the sequential
and parallel rule application.

Parallel Rule Application. Each of theM slots
selects a rule to potentially change its state. To
enable sparse changes, we provide an extra Null
Rule in addition to the available N rules. If a
slot picks the null rule in step 2 of the above
procedure, we do not update its state.

Sequential Rule Application. In this setting,
only one slot gets updated in each rule applica-
tion step. Therefore, only one slot is selected
as the primary slot. This can be facilitated by
modifying step 2 above to select one {primary
slot, rule} pair among NM {rule, slot} pairs. The queries come from each slot: qj = VjW

q ∀j ∈
{1, . . . ,M}, the keys come from the rules: ki = RiW

k ∀i ∈ {1, . . . ,N}. The straight-through
Gumbel softmax selects one (primary slot, rule) pair: p, r = argmaxi,j(qpki + γ), where γ ∼
Gumbel(0, 1). In the sequential regime, we allow the rule application procedure (step 2, 3, 4 above)
to be performed multiple times iteratively in K rule application stages for each time-step t.

A pictorial demonstration of both rule application regimes can be found in Figure 3. We provide
detailed algorithms for the sequential and parallel regimes in Appendix.

4 Experiments

Table 1: This table shows the segrega-
tion of rules for the MNIST Transforma-
tion task. Each cell indicates the number
of times the corresponding rule is used
for the given operation. We can see that
NPS automatically and perfectly learns
a separate rule for each operation.

Rule 1 Rule 2 Rule 3 Rule 4
Translate Down 5039 0 0 0

Translate Up 0 4950 0 0
Rotate Right 0 0 5030 0
Rotate Left 0 0 0 4981

We demonstrate the effectiveness of NPS on multiple tasks
and compare to a comprehensive set of baselines. To show
that NPS can learn intuitive rules from the data generating
distribution, we design a couple of simple toy experiments
with well-defined discrete operations. Results show that
NPS can accurately recover each operation defined by the
data and learn to represent each operation using a separate
rule. We then move to a much more complicated and
visually rich setting with abstract physical rules and show
that factorization of knowledge into rules as offered by
NPS does scale up to such settings. We study and compare
the parallel and sequential rule application procedures and
try to understand the settings which favour each. We then
evaluate the benefits of reusable, dynamic and sparse interactions as offered by NPS in a wide variety
of physical environments by comparing it against various baselines. We conduct ablation studies to
assess the contribution of different components of NPS. Here we briefly outline the tasks considered
and direct the reader to the Appendix for full details on each task and details on hyperparameter
settings.

Discussion of baselines. NPS is an interaction network, therefore we use other widely used interac-
tion networks such as multihead attention and graph neural networks (Goyal et al. (2019), Goyal et al.
(2020), Veerapaneni et al. (2019), Kipf et al. (2019)) for comparison. Goyal et al. (2019) and Goyal

5

et al. (2020) use an attention based interaction network to capture interactions between the slots,
while Veerapaneni et al. (2019) and Kipf et al. (2019) use a GNN based interaction network. We
also consider the recently introduced convolutional interaction network (CIN) (Qi et al., 2021) which
captures dense pairwise interactions like GNN but uses a convolutional network instead of MLPs
to better utilize spatial information. The proposed method, similar to other interaction networks, is
agnostic to the encoder backbone used to encode the input image into slots, therefore we compare
NPS to other interaction networks across a wide-variety of encoder backbones.

4.1 Learning intuitive rules with NPS: Toy Simulations

We designed a couple of simple tasks with well-defined discrete rules to show that NPS can learn
intuitive and interpretable rules. We also show the efficiency and effectiveness of the selection
procedure (step 2 and step 3 in section 3.1) by comparing against a baseline with many more
parameters. Both tasks require a single modification of only one of the available entities, therefore
the use of sequential or parallel rule application would not make a difference here since parallel rule
application in which all-but-one slots select the null rule is similar to sequential rule application with
1 rule application step. To simplify the presentation, we describe the setup for both tasks using the
sequential rule application procedure.

MNIST Transformation. We test whether NPS can learn simple rules for performing transforma-
tions on MNIST digits. We generate data with four transformations: {Translate Up, Translate Down,
Rotate Right, Rotate Left}. We feed the input image (X) and the transformation (o) to be performed
as a one-hot vector to the model. The detailed setup is described in Appendix. For this task, we
evaluate whether NPS can learn to use a unique rule for each transformation.

We use 4 rules corresponding to the 4 transformations with the hope that the correct transforma-
tions are recovered. Indeed, we observe that NPS successfully learns to represent each trans-
formation using a separate rule as shown in Table 1. Our model achieves an MSE of 0.02.
A visualization of the outputs from our model and further details can be found in Appendix C.

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

X A
ddition

X Subtraction
Y A

ddition
Y Subtraction

Epochs Epochs

NPS Baseline

Rule 1 Rule 2 Rule 3 Rule 4
Rule No.

Figure 4: Coordinate Arithmetic Task. Here,
we compare NPS to the baseline model in terms
of segregation of rules as the training progresses.
X-axis shows the epochs and Y-axis shows the
frequency with which Rule i is used for the given
operation. We can see that NPS disentangles the
operations perfectly as training progresses with a
unique rule specializing to every operation while
the baseline model fails to do so.

Coordinate Arithmetic Task. The model is
tasked with performing arithmetic operations on
2D coordinates. Given (X0, Y0) and (X1, Y1),
we can apply the following operations: {X Ad-
dition: (Xr, Yr) = (X0 + X1, Y0), X Sub-
traction: (Xr, Yr) = (X0 − X1, Y0), Y Ad-
dition: (Xr, Yr) = (X0, Y0 + Y1), Y Subtrac-
tion: Xr, Yr = (X0, Y0−Y1)}, where (Xr, Yr)
is the resultant coordinate.

In this task, the model is given 2 input coordi-
nates X = [(xi, yi), (xj , yj)] and the expected
output coordinates Y = [(x̂i, ŷi), (x̂j , ŷj)] . The
model is supposed to infer the correct rule to
produce the correct output coordinates. Dur-
ing data collection, the true output is obtained
by performing a random transformation on a
randomly selected coordinate in X (primary co-
ordinate), taking another randomly selected co-
ordinate from X (contextual coordinate) into
account. The detailed setup is described in Ap-
pendix D. We use an NPS model with 4 rules
for this task. We use the the selection procedure
in step 2 and step 3 of algorithm 1 to select the
primary coordinate, contextual coordinate, and
the rule. For the baseline we replace the selec-
tion procedure in NPS (i.e. step 2 and step 3 in
algorithm 1) with a routing MLP similar to Fedus et al. (2021).

This routing MLP has 3 heads (one each for selecting the primary coordinate, contextual coordinate,
and the rule). The baseline has 4 times more parameters than NPS. The final output is produced by

6

the rule MLP which does not have access to the true output, hence the model cannot simply copy the
true output to produce the actual output. Unlike the MNIST transformation task, we do not provide
the operation to be performed as a one-hot vector input to the model, therefore it needs to infer the
available operations from the data demonstrations.

Table 2: This table shows segregation
of rules when we use NPS with 5 rules
but the data generation distributions de-
scribes only 4 possible operations. We
can see that only 4 rules get majorly uti-
lized thus confirming that NPS success-
fully recovers all possible operations de-
scribed by the data.

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

X Addition 360 99 45 13 0
X Subtraction 0 482 0 1 0
Y Subtraction 0 39 453 2 0

Y Addition 0 57 15 99 335

We show the segregation of rules for NPS and the baseline
in Figure 4. We can see that NPS learns to use a unique
rule for each operation while the baseline struggles to
disentangle the underlying operations properly. NPS
also outperforms the baseline in terms of MSE achiev-
ing an MSE of 0.01±0.001 while the baseline achieves an
MSE of 0.04±0.008. To further confirm that NPS learns all
the available operations correctly from raw data demon-
strations, we use an NPS model with 5 rules. We expect
that in this case NPS should utilize only 4 rules since
the data describes only 4 unique operations and indeed
we observe that NPS ends up mostly utilizing 4 of the
available 5 rules as shown in Table 2.

4.2 Parallel vs Sequential Rule Application

We compare the parallel and sequential rule application procedures, to understand the settings that
favour one or the other, over two tasks: (1) Bouncing Balls, (2) Shapes Stack. We use the term PNPS
to refer to parallel rule application and SNPS to refer to sequential rule application.

Model Name Test Transfer

RPIN (Qi et al. (2021)) 1.254±0.008 6.377±0.325

PNPS 1.250±0.007 5.411±0.45

SNPS 1.68±0.02 5.80±0.15

Table 3: Prediction error of the com-
pared models on the shapes stack
dataset (lower is better) for the test as
well as transfer setting. In the test set-
ting the number of rollout steps t is set
to 15 and in the transfer setting it is set
to 30. We can see that PNPS outper-
forms the RPIN baseline in both the test
and transfer setting while SNPS fails to
do so. Results across 15 seeds.

Shapes Stack. We use the shapes stack dataset intro-
duced by Groth et al. (2018). This dataset consists of
objects stacked on top of each other as shown in Figure
5. These objects fall under the influence of gravity. For
our experiments, We follow the same setup as Qi et al.
(2021). In this task, given the first frame, the model is
tasked with predicting the object bounding boxes for the
next t timesteps. The first frame is encoded using a convo-
lutional network followed by RoIPooling (Girshick (2015))
to extract object-centric visual features. The object-centric
features are then passed to the dynamics model to predict
object bounding boxes of the next t steps. Qi et al. (2021)
propose a Region Proposal Interaction Network (RPIN) to
solve this task. The dynamics model in RPIN consists of
an Interaction Network proposed in Battaglia et al. (2016).
To better utilize spatial information, Qi et al. (2021) propose an extension of the interaction operators
in interaction net to operate on 3D tensors. This is achieved by replacing the MLP operations in the
original interaction networks with convolutions. They call this new network Convolutional Interaction
Network (CIN). For the proposed model, we replace this CIN in RPIN by NPS. To ensure a fair
comparison to CIN, we use CNNs to represent rules in NPS instead of MLPs. CIN captures all
pairwise interactions between objects using a convolutional network. In NPS, we capture sparse
interactions (contextual sparsity) as compared to dense pairwise interactions captured by CIN. Also,
in NPS we update only a few subset of slots per step instead of all slots (application sparsity).

We consider two evaluation settings. (1) Test setting: The number of rollout timesteps is same as that
seen during training (i.e. t = 15); (2) Transfer Setting: The number of rollout timesteps is higher
than that seen during training (i.e. t = 30).

We present our results on the shapes stack dataset in Table 3. We can see that both PNPS and SNPS
outperform the baseline RPIN in the transfer setting, while only PNPS outperforms the baseline in the
test setting and SNPS fails to do so. We can see that PNPS outperforms SNPS. We attribute this to
the reduced application sparsity with PNPS, i.e., it is more likely that the state of a slot gets updated
in PNPS as compared to SNPS. For instance, consider an NPS model with N uniformly chosen rules
and M slots. The probability that the state of a slot gets updated in PNPS is PPNPS = N − 1/N
(since 1 rule is the null rule), while the same probability for SNPS is PSNPS = 1/M (since only 1
slot gets updated per rule application step).

7

For this task, we run both PNPS and SNPS for N = {1, 2, 4, 6} rules and M = 3. For any given
N , we observe that PPNPS > PSNPS . Even when we have multiple rule application steps in SNPS,
it might end up selecting the same slot to be updated in more than one of these steps. We report the
best performance obtained for PNPS and SNPS across all N , which is N = {2 + 1 Null Rule}
for PNPS and N = 4 for SNPS, in Table 3. Shapes stack is a dataset that would prefer a model
with less application sparsity since all the objects are tightly bound to each other (objects are placed
on top of each other), therefore all objects spend the majority of their time interacting with the
objects directly above or below them. We attribute the higher performance of PNPS compared to
RPIN to the higher contextual sparsity of PNPS. Each example in the shapes stack task consists
of 3 objects. Even though the blocks are tightly bound to each other, each block is only affected
by the objects it is in direct contact with. For example, the top-most object is only affected by
the object directly below it. The contextual sparsity offered by PNPS is a strong inductive bias to
model such sparse interactions while RPIN models all pairwise interactions between the objects.
Figure 5 shows an intuitive illustration of the PNPS model for the shapes stack dataset. In the
figure, Rule 2 actually refers to the Null Rule, while Rule 1 refers to all the other non-null rules. The
bottom-most block picks the Null Rule most times, as the bottom-most block generally does not move.

Rule 1 Rule 2

0.84 0.16

0.62 0.38

0.29 0.71

Figure 5: Here we show the rule selection statis-
tics from the proposed model for all entities in the
shapes stack dataset across all examples. Each ex-
ample contains 3 entities as shown above. Each
cell in the table shows the probability with which
the given rule is triggered for the corresponding
entity. We can see that the bottom-most entity
triggers rule 2 most of the time while the other 2
entities trigger rule 1 most often. This is quite intu-
itive as, for most examples, the bottom-most entity
remains static and does not move at all while the
upper entities fall. Therefore, rule 2 captures in-
formation which is relevant to static entities, while
rule 1 captures physical rules relevant to the inter-
actions and motion of the upper entities.

Bouncing Balls. We consider a bouncing-
balls environment in which multiple balls move
with billiard-ball dynamics. We validate our
model on a colored version of this dataset. This
is a next-step prediction task in which the model
is tasked with predicting the final binary mask of
each ball. We compare the following methods:
(a) SCOFF (Goyal et al., 2020): factorization
of knowledge in terms of slots (object proper-
ties) and schemata, the latter capturing object
dynamics; (b) SCOFF++: we extend SCOFF by
using the idea of iterative competition as pro-
posed in slot attention (SA) (Locatello et al.,
2020a); SCOFF + PNPS/SNPS: We replace pair-
wise slot-to-slot interaction in SCOFF++ with
parallel or sequential rule application. For com-
paring different methods, we use the Adjusted
Rand Index or ARI (Rand, 1971). To investigate
how the factorization in the form of rules allows
for extrapolating knowledge from fewer to more
objects, we increase the number of objects from
4 during training to 6-8 during testing.

We present the results of our experiments in
Table 4. Contrary to the shapes stack task, we
see that SNPS outperforms PNPS for the bouncing balls task. The balls are not tightly bound
together into a single tower as in the shapes stack. Most of the time, a single ball follows its own
dynamics, only occasionally interacting with another ball. Rules in NPS capture interaction dynamics
between entities, hence they would only be required to change the state of an entity when it interacts
with another entity. In the case of bouncing balls, this interaction takes place through a collision
between multiple balls. Since for a single ball, such collisions are rare, SNPS, which has higher
application sparsity (less probability of modifying the state of an entity), performs better as compared
to PNPS (lower application sparsity). Also note that, SNPS has the ability to compose multiple rules
together by virtue of having multiple rule application stages. A visualization of the rule and entity
selections by the proposed algorithm can be found in Appendix Figure 9.

Given the analysis in this section, we can conclude that PNPS is expected to work better when
interactions among entities are more frequent while SNPS is expected to work better when interactions
are rare and most of the time, each entity follows its own dynamics. Note that, for both SNPS and
PNPS, the rule application considers only 1 other entity as context. Therefore, both approaches have
equal contextual sparsity while the baselines that we consider (SCOFF and RPIN) capture dense
pairwise interactions. We discuss the benefits of contextual sparsity in more detail in the next section.
More details regarding our setup for the above experiments can be found in Appendix.

8

4.3 Benefits of Sparse Interactions Offered by NPS

In NPS, one can view the computational graph as a dynamically constructed GNN resulting from
applying dynamically selected rules, where the states of the slots are represented on the different
nodes of the graph, and different rules dynamically instantiate an hyper-edge between a set of slots
(the primary slot and the contextual slot). It is important to emphasize that the topology of the graph
induced in NPS is dynamic and sparse (only a few nodes affected), while in most GNNs the topology
is fixed and dense (all nodes affected). In this section, through a thorough set of experiments, we
show that learning sparse and dynamic interactions using NPS indeed works better for the problems
we consider than learning dense interactions using GNNs. We consider two types of tasks: (1)
Learning Action Conditioned World Models (2) Physical Reasoning. We use SNPS for all these
experiments since in the environments that we consider here, interactions among entities are rare.

Model Name Test Transfer

SCOFF 0.28 0.15
SCOFF++ 0.8437 0.2632

PNPS (10 Rules+1 Null Rule) 0.7813 0.1997

SNPS (10 Rules) 0.8518 0.3553

Table 4: Here we show the ARI
achieved by the models on the bouncing
balls dataset (higher is better). We can
see that SNPS outperforms SCOFF and
SCOFF++ while PNPS has a poor per-
formance in this task. Results average
across 2 seeds.

Learning Action-Conditioned World Models. For
learning action-conditioned world models, we follow the
same experimental setup as Kipf et al. (2019). There-
fore, all the tasks in this section are next-K step (K =
{1, 5, 10}) prediction tasks, given the intermediate actions,
and with the predictions being performed in the latent space.
We use the Hits at Rank 1 (H@1) metrics described by Kipf
et al. (2019) for evaluation. H@1 is 1 for a particular ex-
ample if the predicted state representation is nearest to the
encoded true observation and 0 otherwise. We report the
average of this score over the test set (higher is better).

Physics Environment. The physics environment (Ke et al., 2021) simulates a simple physical
world. It consists of blocks of unique but unknown weights. The dynamics for the interaction between
blocks is that the movement of heavier blocks pushes lighter blocks on their path. This rule creates an
acyclic causal graph between the blocks. For an accurate world model, the learner needs to infer the
correct weights through demonstrations. Interactions in this environment are sparse and only involve
two blocks at a time, therefore we expect NPS to outperform dense architectures like GNNs. This
environment is demonstrated in Appendix Fig 11.

We follow the same setup as Kipf et al. (2019). We use their C-SWM model as baseline. For the
proposed model, we only replace the GNN from C-SWM by NPS. GNNs generally share parameters
across edges, but in NPS each rule has separate parameters. For a fair comparison to GNN, we use
an NPS model with 1 rule. Note that this setting is still different from GNNs as in GNNs at each
step every slot is updated by instantiating edges between all pairs of slots, while in NPS an edge is
dynamically instantiated between a single pair of slots and only the state of the selected slot (i.e.,
primary slot) gets updated.

(a) Physics Env

1 5 10
Steps

0

5

10

15

20

25

30

35

40

H@
1

Model
NPS
GNN

(b) Atari Games

Figure 6: Action-Conditioned World Models, with number of future steps to be predicted for the
world-model on the horizontal axes. (a) Here we show a comparison between GNNs and the proposed
NPS on the physics environment using the H@1 metric (higher is better). (b) Comparison of average
H@1 scores across 5 Atari games for the proposed model NPS and GNN.

The results of our experiments are presented in Figure 6(a). We can see that NPS outperforms
GNNs for all rollouts. Multi-step settings are more difficult to model as errors may get compounded
over time steps. The sparsity of NPS (only a single slot affected per step) reduces compounding of
errors and enhances symmetry-breaking in the assignment of transformations to rules, while in the

9

case of GNNs, since all entities are affected per step, there is a higher possibility of errors getting
compounded. We can see that even with a single rule, we significantly outperform GNNs thus proving
the effectiveness of dynamically instantiating edges between entities.

Atari Games. We also test the proposed model in the more complicated setting of Atari. Atari
games also have sparse interactions between entities. For instance, in Pong, any interaction involves
only 2 entities: (1) paddle and ball or (2) ball and the wall. Therefore, we expect sparse interactions
captured by NPS to outperform GNNs here as well.

We follow the same setup as for the physics environment described in the previous section. We
present the results for the Atari experiments in Figure 6(b), showing the average H@1 score across
5 games: Pong, Space Invaders, Freeway, Breakout, and QBert. As expected, we can see that the
proposed model achieves a higher score than the GNN-based C-SWM. The results for the Atari
experiments reinforce the claim that NPS is especially good at learning sparse interactions.

Learning Rules for Physical Reasoning. To show the effectiveness of the proposed approach for
physical reasoning tasks, we evaluate NPS on another dataset: Sprites-MOT (He et al., 2018). The
Sprites-MOT dataset was introduced by He et al. (2018). The dataset contains a set of moving objects
of various shapes. This dataset aims to test whether a model can handle occlusions correctly. Each
frame has consistent bounding boxes which may cause the objects to appear or disappear from the
scene. A model which performs well should be able to track the motion of all objects irrespective
of whether they are occluded or not. We follow the same setup as Weis et al. (2020). We use the
OP3 model (Veerapaneni et al., 2019) as our baseline. To test the proposed model, we replace the
GNN-based transition model in OP3 with the proposed NPS.

Model MOTA ↑ MOTP ↑

OP3 89.1±5.1 78.4±2.4

NPS 90.72±5.15 79.91±0.3

Table 5: Sprites-MOT. Comparison be-
tween the proposed NPS and the base-
line OP3 using the MOTA and MOTP
metrics on the sprites-MOT dataset (↑:
higher is better). Average over 3 random
seeds.

We use the same evaluation protocol as followed by Weis
et al. (2020) which is based on the MOT (Multi-object
tracking) challenge (Milan et al., 2016). The results on the
MOTA and MOTP metrics for this task are presented in
Table 5. The results on the other metrics are presented in
appendix Table 10. We ask the reader to refer to appendix
F.1 for more details about these metrics. We can see that
for almost all metrics, NPS outperforms the OP3 baseline.
Although this dataset does not contain physical interactions
between the objects, sparse rule application should still be
useful in dealing with occlusions. At any time step, only
a single object is affected by occlusions i.e., it may get
occluded due to another object or due to a prespecified bounding box, while the other objects follow
their default dynamics. Therefore, a rule should be applied to only the object (or entity) affected (i.e.,
not visible) due to occlusion and may take into account any other object or entity that is responsible
for the occlusion.

5 Discussion and Conclusion

For AI agents such as robots trying to make sense of their environment, the only observables are
low-level variables like pixels in images. To generalize well, an agent must induce high-level entities
as well as discover and disentangle the rules that govern how these entities actually interact with
each other. Here we have focused on perceptual inference problems and proposed NPS, a neural
instantiation of production systems by introducing an important inductive bias in the architecture
following the proposals of Bengio (2017); Goyal & Bengio (2020); Ke et al. (2021).

Limitations & Looking Forward. Our experiments highlight the advantages brought by the factor-
ization of knowledge into a small set of entities and sparse sequentially applied rules. Immediate
future work would investigate how to take advantage of these inductive biases for more complex
physical environments (Ahmed et al., 2020) and novel planning methods, which might be more
sample efficient than standard ones (Schrittwieser et al., 2020).

We also find that Sequential and Parallel NPS have different properties suited towards different
domains. Future work should explore how to effectively combine these two approaches. We discuss
this in more detail in Appendix section E.3.

10

6 Acknowledgements

The authors would like to thank Matthew Botvinick for useful discussions. The authors would also
like to thank Alex Lamb, Stefan Bauer, Nicolas Chapados, Danilo Rezende and Kelsey Allen for
brainstorming sessions. We are also thankful to Dianbo Liu, Damjan Kalajdzievski and Osama
Ahmed for proofreading. We would like to thank Samsung Electronics Co. Ltd. and CIFAR for
funding this research. We would also like to thank Google for providing Google cloud credits used in
this work.

References
Ahmed, O., Träuble, F., Goyal, A., Neitz, A., Wüthrich, M., Bengio, Y., Schölkopf, B., and Bauer, S.

Causalworld: A robotic manipulation benchmark for causal structure and transfer learning. arXiv
preprint arXiv:2010.04296, 2020.

Anderson, J. R. Skill acquisition: Compilation of weak-method problem situations. Psychological
review, 94(2):192, 1987.

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural module networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 39–48, 2016.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014.

Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D. J., and Kavukcuoglu, K. Interaction networks
for learning about objects, relations and physics. CoRR, abs/1612.00222, 2016. URL http:
//arxiv.org/abs/1612.00222.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M.,
Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Bengio, Y. The consciousness prior. arXiv preprint arXiv:1709.08568, 2017.

Bottou, L. and Gallinari, P. A framework for the cooperation of learning algorithms. In Advances in
neural information processing systems, pp. 781–788, 1991.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and Kohli, P. Leveraging grammar and reinforcement
learning for neural program synthesis. arXiv preprint arXiv:1805.04276, 2018.

Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins, I., Botvinick, M., and Lerchner, A.
Monet: Unsupervised scene decomposition and representation. arXiv preprint arXiv:1901.11390,
2019.

Cai, J., Shin, R., and Song, D. Making neural programming architectures generalize via recursion.
arXiv preprint arXiv:1704.06611, 2017.

Chen, R. T., Li, X., Grosse, R., and Duvenaud, D. Isolating sources of disentanglement in variational
autoencoders. arXiv preprint arXiv:1802.04942, 2018.

Ding, D., Hill, F., Santoro, A., and Botvinick, M. Object-based attention for spatio-temporal
reasoning: Outperforming neuro-symbolic models with flexible distributed architectures. arXiv
preprint arXiv:2012.08508, 2020.

Du, Y., Smith, K., Ulman, T., Tenenbaum, J., and Wu, J. Unsupervised discovery of 3d physical
objects from video. arXiv preprint arXiv:2007.12348, 2020.

Engelcke, M., Kosiorek, A. R., Jones, O. P., and Posner, I. Genesis: Generative scene inference and
sampling with object-centric latent representations. arXiv preprint arXiv:1907.13052, 2019.

11

http://arxiv.org/abs/1612.00222
http://arxiv.org/abs/1612.00222

Eslami, S., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Kavukcuoglu, K., and Hinton, G. E. Attend,
infer, repeat: Fast scene understanding with generative models. arXiv preprint arXiv:1603.08575,
2016.

Evans, R., Hernández-Orallo, J., Welbl, J., Kohli, P., and Sergot, M. Making sense of sensory input.
Artificial Intelligence, pp. 103438, 2019.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity. CoRR, abs/2101.03961, 2021. URL https://arxiv.org/abs/
2101.03961.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., Pritzel, A., and Wierstra,
D. Pathnet: Evolution channels gradient descent in super neural networks. arXiv preprint
arXiv:1701.08734, 2017.

Girshick, R. B. Fast R-CNN. CoRR, abs/1504.08083, 2015. URL http://arxiv.org/abs/1504.
08083.

Goyal, A. and Bengio, Y. Inductive biases for deep learning of higher-level cognition. arXiv preprint
arXiv:2011.15091, 2020.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., and Schölkopf, B. Recurrent
independent mechanisms, 2019.

Goyal, A., Lamb, A., Gampa, P., Beaudoin, P., Levine, S., Blundell, C., Bengio, Y., and Mozer, M.
Object files and schemata: Factorizing declarative and procedural knowledge in dynamical systems.
arXiv preprint arXiv:2006.16225, 2020.

Graves, A., Wayne, G., and Danihelka, I. Neural turing machines. arXiv preprint arXiv:1410.5401,
2014.

Greff, K., Rasmus, A., Berglund, M., Hao, T. H., Schmidhuber, J., and Valpola, H. Tagger: Deep
unsupervised perceptual grouping. arXiv preprint arXiv:1606.06724, 2016.

Greff, K., Kaufman, R. L., Kabra, R., Watters, N., Burgess, C., Zoran, D., Matthey, L., Botvinick, M.,
and Lerchner, A. Multi-object representation learning with iterative variational inference. arXiv
preprint arXiv:1903.00450, 2019.

Groth, O., Fuchs, F., Posner, I., and Vedaldi, A. Shapestacks: Learning vision-based physical intuition
for generalised object stacking. CoRR, abs/1804.08018, 2018. URL http://arxiv.org/abs/
1804.08018.

He, Z., Li, J., Liu, D., He, H., and Barber, D. Tracking by animation: Unsupervised learning of
multi-object attentive trackers. CoRR, abs/1809.03137, 2018. URL http://arxiv.org/abs/
1809.03137.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner,
A. beta-vae: Learning basic visual concepts with a constrained variational framework. 2016.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., Hinton, G. E., et al. Adaptive mixtures of local experts.
Neural computation, 3(1):79–87, 1991.

Jang, E., Gu, S., and Poole, B. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Ke, N. R., Didolkar, A. R., Mittal, S., Goyal, A., Lajoie, G., Bauer, S., Rezende, D. J., Mozer,
M. C., Bengio, Y., and Pal, C. Systematic evaluation of causal discovery in visual model based
reinforcement learning. 2021.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. Neural relational inference for
interacting systems. arXiv preprint arXiv:1802.04687, 2018.

Kipf, T., van der Pol, E., and Welling, M. Contrastive learning of structured world models. arXiv
preprint arXiv:1911.12247, 2019.

12

https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1804.08018
http://arxiv.org/abs/1804.08018
http://arxiv.org/abs/1809.03137
http://arxiv.org/abs/1809.03137

Kirsch, L., Kunze, J., and Barber, D. Modular networks: Learning to decompose neural computation.
In Advances in Neural Information Processing Systems, pp. 2408–2418, 2018.

Kosiorek, A., Kim, H., Teh, Y. W., and Posner, I. Sequential attend, infer, repeat: Generative
modelling of moving objects. Advances in Neural Information Processing Systems, 31:8606–8616,
2018.

Laird, J. E., Rosenbloom, P. S., and Newell, A. Chunking in soar: The anatomy of a general learning
mechanism. Machine learning, 1(1):11–46, 1986.

Lamb, A., Goyal, A., Słowik, A., Mozer, M., Beaudoin, P., and Bengio, Y. Neural function modules
with sparse arguments: A dynamic approach to integrating information across layers. arXiv
preprint arXiv:2010.08012, 2020.

Le Roux, N., Heess, N., Shotton, J., and Winn, J. Learning a generative model of images by factoring
appearance and shape. Neural Computation, 23(3):593–650, 2011.

Li, Y., Gimeno, F., Kohli, P., and Vinyals, O. Strong generalization and efficiency in neural programs.
arXiv preprint arXiv:2007.03629, 2020.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J., Dosovitskiy,
A., and Kipf, T. Object-centric learning with slot attention. arXiv preprint arXiv:2006.15055,
2020a.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J., Dosovitskiy,
A., and Kipf, T. Object-centric learning with slot attention, 2020b.

Lovett, M. C. and Anderson, J. R. Thinking as a production system. The Cambridge handbook of
thinking and reasoning, pp. 401–429, 2005.

McMillan, C., Mozer, M. C., and Smolensky, P. The connectionist scientist game: rule extraction and
refinement in a neural network. In Proceedings of the 13th Annual Conference of the Cognitive
Science Society, pp. 424–430, 1991.

Milan, A., Leal-Taixé, L., Reid, I. D., Roth, S., and Schindler, K. MOT16: A benchmark for multi-
object tracking. CoRR, abs/1603.00831, 2016. URL http://arxiv.org/abs/1603.00831.

Neelakantan, A., Le, Q. V., and Sutskever, I. Neural programmer: Inducing latent programs with
gradient descent. arXiv preprint arXiv:1511.04834, 2015.

Qi, H., Wang, X., Pathak, D., Ma, Y., and Malik, J. Learning long-term visual dynamics with region
proposal interaction networks. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=_X_4Akcd8Re.

Rahaman, N., Goyal, A., Gondal, M. W., Wuthrich, M., Bauer, S., Sharma, Y., Bengio, Y., and
Schölkopf, B. S2rms: Spatially structured recurrent modules. arXiv preprint arXiv:2007.06533,
2020.

Rand, W. M. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical association, 66(336):846–850, 1971.

Raposo, D., Santoro, A., Barrett, D., Pascanu, R., Lillicrap, T., and Battaglia, P. Discovering objects
and their relations from entangled scene representations. arXiv preprint arXiv:1702.05068, 2017.

Reed, S. and De Freitas, N. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279, 2015.

Ronco, E., Gollee, H., and Gawthrop, P. J. Modular neural networks and self-decomposition.
Technical Report CSC-96012, 1997.

Rosenbaum, C., Klinger, T., and Riemer, M. Routing networks: Adaptive selection of non-linear
functions for multi-task learning. arXiv preprint arXiv:1711.01239, 2017.

Rosenbaum, C., Cases, I., Riemer, M., and Klinger, T. Routing networks and the challenges of
modular and compositional computation. arXiv preprint arXiv:1904.12774, 2019.

13

http://arxiv.org/abs/1603.00831
https://openreview.net/forum?id=_X_4Akcd8Re

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. The graph neural network
model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart,
E., Hassabis, D., Graepel, T., et al. Mastering atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., and Dean, J. Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

Tacchetti, A., Song, H. F., Mediano, P. A., Zambaldi, V., Rabinowitz, N. C., Graepel, T., Botvinick,
M., and Battaglia, P. W. Relational forward models for multi-agent learning. arXiv preprint
arXiv:1809.11044, 2018.

Touretzky, D. S. and Hinton, G. E. A distributed connectionist production system. Cognitive science,
12(3):423–466, 1988.

Trask, A., Hill, F., Reed, S. E., Rae, J., Dyer, C., and Blunsom, P. Neural arithmetic logic units. In
Advances in Neural Information Processing Systems, pp. 8035–8044, 2018.

Van Steenkiste, S., Chang, M., Greff, K., and Schmidhuber, J. Relational neural expectation maximiza-
tion: Unsupervised discovery of objects and their interactions. arXiv preprint arXiv:1802.10353,
2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. Attention is all you need, 2017.

Veerapaneni, R., Co-Reyes, J. D., Chang, M., Janner, M., Finn, C., Wu, J., Tenenbaum, J. B., and
Levine, S. Entity abstraction in visual model-based reinforcement learning. CoRR, abs/1910.12827,
2019. URL http://arxiv.org/abs/1910.12827.

Veerapaneni, R., Co-Reyes, J. D., Chang, M., Janner, M., Finn, C., Wu, J., Tenenbaum, J., and
Levine, S. Entity abstraction in visual model-based reinforcement learning. In Conference on
Robot Learning, pp. 1439–1456. PMLR, 2020.

Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu, R., and Tacchetti, A. Visual interaction
networks: Learning a physics simulator from video. In Advances in neural information processing
systems, pp. 4539–4547, 2017.

Weis, M. A., Chitta, K., Sharma, Y., Brendel, W., Bethge, M., Geiger, A., and Ecker, A. S. Unmasking
the inductive biases of unsupervised object representations for video sequences, 2020.

Xu, D., Nair, S., Zhu, Y., Gao, J., Garg, A., Fei-Fei, L., and Savarese, S. Neural task programming:
Learning to generalize across hierarchical tasks. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1–8. IEEE, 2018.

Zablotskaia, P., Dominici, E. A., Sigal, L., and Lehrmann, A. M. Unsupervised video decomposition
using spatio-temporal iterative inference. arXiv preprint arXiv:2006.14727, 2020.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

14

http://arxiv.org/abs/1910.12827

(b) Did you include complete proofs of all theoretical results? [N/A]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See section 4.3

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] All datasets we used are open-sourced
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include the code for reproducing our experiments
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] All datasets we use are synthetic and created using simulation
hence do not include any personal or user data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We do not use any dataset that includes any
kind of identifying information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

	Introduction
	Variables and entities

	Production System
	Neural Production System: Slots and Sparse Rules
	Computational Steps in NPS
	Rule Application: Sequential vs Parallel Rule Application

	Experiments
	Learning intuitive rules with NPS: Toy Simulations
	Parallel vs Sequential Rule Application
	Benefits of Sparse Interactions Offered by NPS

	Discussion and Conclusion
	Acknowledgements

