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Abstract

The term lot in e-commerce is defined to mean001
an offering that contains a collection of mul-002
tiple identical items for sale. In a large on-003
line marketplace, lot offerings play an impor-004
tant role, allowing buyers and sellers to set005
price levels to optimally balance supply and006
demand needs. In spite of their central role,007
e-commerce platforms often struggle to iden-008
tify lot offerings, since explicit lot status iden-009
tification is frequently not provided by sellers.010
The ability to identify lot offerings plays a key011
role in many fundamental e-commerce tasks,012
from matching offerings to catalog products,013
through ranking e-commerce search results, to014
providing effective pricing guidance. In this015
work, we seek to determine the lot status (and016
lot size) of each offering, in order to facilitate017
an improved buyer experience, while reducing018
the friction for sellers posting new offerings.019
We demonstrate experimentally the ability to020
accurately classify offerings as lots and pre-021
dict their lot size using only the offer title, by022
adapting state-of-the-art natural language tech-023
niques to the lot identification problem.024

1 Introduction025

The term lot has its origins in the world of live026

auctions, where it describes the atomic unit for sale.027

Each such lot usually has an associated multiplicity028

(or lot size). In global e-commerce marketplaces,029

the variety of products for sale is several orders of030

magnitude larger than that of live auctions. In this031

latter setting, the atomic unit for sale is referred to032

as an offering or listing , and does not usually have033

an associated multiplicity (i.e., only one object is034

for sale). Thus, in the e-commerce setting, the term035

lot (or lot offering) is redefined to describe those036

offerings that contain a collection of multiple iden-037

tical items. That is, not every offering is a lot. We038

further define the term lot size as the multiplicity039

of identical items in the collection for sale.040

We adopt the definition for a lot offering given 041

by eBay in its guidelines1 to sellers: 042

A "lot" is a group of similar or identical 043

items that are sold together to one buyer 044

Amazon uses a similar definition for the related 045

term multi-packs.2 046

Lots, or multi-packs, are distinguished from 047

bundle offerings, which contain multiple distinct 048

(rather than identical) items (Tzaban et al., 2020). 049

The ability to list lot offerings provides great 050

flexibility to sellers. One reason for this is that 051

many products come from the manufacturer as lots 052

(e.g., a box of pencils). Another reason is that lot 053

offerings provide the seller an additional degree 054

of freedom (the lot size), in addition to price, to 055

maximize marketplace value by adapting to the 056

demand of the market for their particular product. 057

Online marketplaces strive to distinguish be- 058

tween lot and non-lot offerings for several reasons. 059

The first reason is to enable discovery of lot offer- 060

ings as first class citizens in the electronic market- 061

place. That is, a local retail entrepreneur may be 062

looking for lots of products independent of what 063

the actual product happens to be, seeking to gain 064

profit by buying lots and reselling the component 065

items individually. 066

Another important scenario is allowing price-per- 067

unit comparison in aggregate. E-Commerce buyers, 068

seeking the best value, may be willing to consider 069

purchasing a larger quantity of a product in return 070

for a per-unit discount. Consider the offerings for 071

protective masks depicted in Figure 1. Without 072

detecting and considering the lot size of these com- 073

parable offerings, it is difficult for a customer to 074

recognize that some offers cost much more on a 075

per unit basis. 076

1https://www.ebay.com/pages/cn/help/
sell/contextual/lots.html

2https://tinyurl.com/y6kej274
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Figure 1: A comparison of lot offerings for protec-
tive masks across 3 e-commerce sites: ebay.com,
amazon.com, and walmart.com The price per unit
varies across these offerings from $0.40 to $5.00.

This work is motivated to automatically detect077

lot offerings, but a critical reader may ask, why078

not ask the sellers to explicitly designate their lot079

offerings (and provide an explicit lot size)? In fact,080

such an option does exist on many e-commerce081

platforms. eBay3 , for example, has a standalone082

interface for sellers to input lot entries. Unfortu-083

nately, the adoption of this feature among the seller084

population is quite low. While sellers often have085

an incentive to clearly designate their offering as a086

lot, in practice interfaces to specify structured lot087

metadata are difficult to navigate. These interfaces088

are often unfamiliar to sellers and not standardized089

across marketplaces. This issue becomes more090

acute when sellers upload their offerings in (of-091

ten large) batches, using a non-visual interface, to092

multiple marketplaces.093

Rather than mark the offering as a lot explicitly,094

a common practice of many e-commerce sellers is095

to declare the lot status (and lot size) in the offering096

title using natural language. Since the title field ex-097

ists across all e-commerce platforms and is promi-098

nently displayed to potential buyers, sellers can099

apply this technique to convey important offering100

information (such as lot status and size), without101

needing to understand the nuance of any particular102

marketplace interface, as well as its own terminol-103

ogy and attribute definitions. Table 1 illustrates104

example titles of lot offerings, which were not ex-105

plicitly designated as lot offerings by the sellers.106

The examples in the table demonstrate the diversity107

of offerings that contain lots and the unique and108

colorful language of jargon and abbreviations to109

specify the lot status (and lot size) of the offering.110

In this work, we seek to determine the lot status111

(and lot size) of each offering, in order to facil-112

3https://pages.ebay.com/sell/lots/

itate the scenarios enumerated above for buyers, 113

while reducing the friction for sellers. Although 114

e-commerce offerings contain multiple sources of 115

information (e.g. images, descriptions, etc.) our 116

methods focus exclusively on the offering title. 117

The first reason for this is the presence of pow- 118

erful natural language cues for lot status and size. 119

This is anecdotally demonstrated in Table 1. An- 120

other reason is broad applicability: while many 121

offerings are incomplete to some degree, with lack- 122

ing or altogether-missing attributes (Ghani et al., 123

2006), descriptions (Novgorodov et al., 2019) and 124

images (Goswami et al., 2012), the vast majority 125

of offerings contain a valid title. We show exper- 126

imentally that methods based on recent advances 127

in natural language processing, but adapted to the 128

problem of lot identification, are able to achieve 129

high-performance on our tasks of interest. 130

Our main contributions can be summarized as 131

follows: 132

• We introduce the first comprehensive study of 133

lot identification in e-commerce. 134

• We release a dataset with nearly 20,000 offering 135

titles across multiple categories, each labeled 136

with lot status and lot size. 137

• We propose an adaptation of the naive regres- 138

sion approach to lot-size prediction, based on 139

binary sequence models, which achieves high 140

accuracy on this task. 141

• We empirically evaluate the performance of our 142

proposed approach across several e-commerce 143

domains and compare performance of several 144

state-of-the-art methods. 145

2 Related Work 146

In this work, we apply a variety of natural language 147

processing methods to offering titles to address the 148

lot identification task. Accordingly, we review re- 149

lated work in two areas: research related to lots or 150

multipacks in electronic commerce, and text repre- 151

sentation and classification approaches relevant to 152

our task. 153

2.1 Lots in E-Commerce 154

Despite their central role in online marketplaces, 155

the current literature on lots or multipacks is very 156

sparse. In a study from 1996, Lindskog and Lund- 157

gren (Lindskog and Lundgren, 1996) examined the 158

use of multipacks in 41 physical stores in the UK 159
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Table 1: Examples of lot offering titles. The lot size (highlighted for emphasis) is often included somewhere in the
title in sometimes colorful shorthand.

Lot Size Title Category

3 Lot of 3 Vtg. 1974 ENESCO IMPORT Rustic Metal Sculptures Wagon Telephone MailBox Collectibles
5 5 PACKETS EPIL-STOP PERFECT FINISH NEUTRALIZING AFTER WASH FREE SHIPPING USA NEW Health & Beauty
20,000 Antique German Doubled Baked Ceramic Bricks 20000 pcs Antiques
1000 (1000) CD Disc Jewel Case Bin Divider Cards - 5-5/8"x6" - White HEAVY DUTY 30mil Music
2 Genuine OEM 2 Pack Canon PG-220 Black PGI-220BK Ink Tank NEW Computers/Tablets & Networking
22 ALL BRAND NEW...LOT OF 22 KIDS GIFT ITEMS Toys & Hobbies
50 Varian 1210-2046 Analytichem Bond Elut box of 50 SEALED BOX Business & Industrial
28 LOT 28x 459512-002 375863-010 HP 146GB 3G SAS 10K SFF 2.5" HDD HARD DRIVE NR Computers/Tablets & Networking
2 Pier 1 Curtain Panels (set of 2) gold, burgundy, green with geo design 84" long Home & Garden

and Sweden. They discussed the different bene-160

fits, mostly related to production costs, packaging,161

storage, distribution, and increased sales due to162

the discounted prices. In their work on matching163

offerings to catalog products, Shah et al. (Shah164

et al., 2018) note that lots make data ambiguous,165

since, for example, “a number in a product de-166

scription could refer to a lot quantity or variation167

of product edition”. They state that such product168

offerings exhibit another level of complexity and169

require special treatment or a separate model to170

identify, but do not further explore this task. Zentes171

et al. (Zentes et al., 2017) mention multipacks as172

one of the main strategies for price reductions, but173

do not further characterize it compared to other174

promotion approaches, such as coupons or price175

packs.176

A key research challenge in the e-commerce do-177

main is the extraction of structured key-value at-178

tributes, such as brand, model, size, or color, from179

the titles of products or offerings.Techniques to180

approach this general problem vary from using181

attribute-specific gazetteers to applying sequence182

labeling for named entity recognition, as well as183

applying ideas from search and question answer-184

ing (Ghani et al., 2006; More, 2016; Putthividhya185

and Hu, 2011; Xu et al., 2019; Wang et al., 2020).186

The lot identification task could be modeled as the187

extraction of a binary attribute. One of the main188

studies in the area mentions “package quantity” as189

an example attribute (More, 2016), but does not190

further explore its extraction.191

Related areas of study in the commerce litera-192

ture are “bundling” (Adams and Yellen, 1976; Han-193

son and Martin, 1990; Yadav, 1994; Tzaban et al.,194

2020), tying together multiple distinct products,195

and “price packs” (Kwok and Uncles, 2005; Tellis,196

1998), which are monetary promotions that offer197

savings by combining multiple items.198

2.2 Text Representation and Classification 199

The literature on representation and classification 200

of text data spans many disciplines and several 201

decades. For a recent general survey on text clas- 202

sification the reader is referred to (Kowsari et al., 203

2019). Specific applications of these methods in- 204

clude document retrieval (Schütze et al., 2008), doc- 205

ument categorization (Sebastiani, 2002) , question 206

answering (Rajpurkar et al., 2018), and sentiment 207

analysis (et al., 2002). The research area of text 208

representation is devoted to methods for encoding 209

a passage of text data in a machine-interpretable 210

way. Most methods involve tokenization (Manning 211

et al., 2014), breaking up a document into a col- 212

lection of substrings, often corresponding to the 213

words or word combinations in the document. 214

Word embedding has been an area of study 215

that produces models, such as word2vec (Le and 216

Mikolov, 2014; Mikolov et al., 2013), which in- 217

clude a distributed representation of words as part 218

of their learned output. Other popular embed- 219

ding models include dependency-based embed- 220

ding (Levy and Goldberg, 2014) and GloVe (Pen- 221

nington et al., 2014). 222

Language Modeling considers the problem of 223

predicting unseen texts from context. Early lan- 224

guage models were based on word and n-gram 225

frequency (Jelinek and Mercer, 1980; Katz, 1987). 226

Neural language modeling (Bengio et al., 2000) 227

uses fully connected neural nets to predict the next 228

word in a sentence. Other works propose models 229

that use word-embedding resemblance in a similar 230

setup (Le and Mikolov, 2014; Mikolov et al., 2013). 231

Language models applying recurrent neural archi- 232

tectures are proposed in (Graves, 2013) (RNN) and 233

(Merity et al., 2018a) (LSTM). These approaches 234

also learn word embeddings as a component of 235

their network architecture. A more recent architec- 236

ture for language modeling that has gained much 237

popularity is the transformer (Vaswani et al., 2017), 238
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which uses neural attention mechanism instead of239

recurrence to encode the relevant context. BERT240

(Bidirectional Encoder Representations from Trans-241

formers) (Devlin et al., 2019) is a variant of a242

transformer, which allows bi-directional training243

by masking random words in the training set, rather244

than trying to predict the next word in a sequence.245

The upper layer output of language models, such246

as transformers and recurrent networks, can be used247

as a sentence embedding. This leads to the idea248

of fine-tuning (Howard and Ruder, 2018). The249

idea is to train large models in domains where a250

large volume of text data exists (e.g. Wikipedia).251

The parameters in the lower layers of the resulting252

models are then frozen and the upper layers are253

trained in a specialized domain where only a small254

amount of data is available (e.g., travel tips). The255

resulting model yields a useful representation of256

text in the specialized domain, without having to257

collect vast amounts of data.258

3 Datasets259

Recall from our discussion in the introduction,260

many lot offerings are not explicitly designated261

as lots by the seller, and thus this explicit signal262

cannot be relied upon. As such, we employed hu-263

man agents to manually label offerings sampled at264

random.265

We collected a number of examples of lot and266

non-lot offering titles from across several cate-267

gories on eBay, one of the world’s largest online268

marketplaces. The label was acquired by allowing269

a human evaluator to look at the entire offering270

page, which includes the title, but also additional271

structured information on the offering attributes272

and possibly an image and description. The evalua-273

tor then provided the lot-size label for each offering274

under consideration.275

3.1 Lot Dataset276

Table 2 describes the datasets used in our experi-277

ments. Each dataset is named for the category of278

e-commerce from which the offering title examples279

are taken. The Heterogeneous dataset is the largest280

dataset and contains examples from a number of281

different e-commerce categories. For the categories282

we considered, the lot class was severely underrep-283

resented in the labeled data. Thus, we create a284

balanced evaluation set, containing roughly equal285

Table 2: Datasets

Category Training Size

Health & Beauty 4,370 ( 40.7% Lots)
Business & Industrial 1,754 ( 38.8% Lots)
Heterogeneous 18,742 ( 14.5% Lots)

Figure 2: Distribution of lot size across categories.
The distribution displays a classic power-law behavior
across all categories (note the log scale in the axes.)

numbers of lot and non-lot offerings.4 286

3.2 Lot Characteristics 287

We present additional empirical analysis of lot of- 288

ferings in e-commerce with the hope of providing 289

additional insight into their properties. To this end, 290

we used the offerings explicitly designated as lots 291

by the seller. While this is a noisier signal, it allows 292

us to analyze many millions of offerings. 293

Figure 2 displays the the lot-size distribution of 294

these same offerings, across several categories. The 295

figure shows that the majority of lot offerings have 296

a small lot size. In fact, the distribution displays a 297

classic power-law behavior (note the log scale in 298

the axes.) 299

To provide a sense of how titles of lot offerings 300

differ from title of non-lot offerings, we set out 301

to explore the most characterizing terms of lot ti- 302

tles versus non-lot titles. To this end, we used 303

Kullback-Leibler (KL) divergence, which is a non- 304

symmetric distance measure between two given 305

distributions (Berger and Lafferty, 1999). Specifi- 306

cally, we calculated the unigrams and bigrams that 307

contribute the most to the KL divergence between 308

the language model of the lot titles versus the lan- 309

guage model of the non-lot titles in our dataset. 310

Table 3 presents the results. It can be seen that the 311

4The heterogeneous dataset will be publicly shared if the
paper is accepted; a sample of the data is available at https:
//git.io/JJQCb
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Table 3: Most distinctive unigrams and bigrams accord-
ing to KL divergence over a sample of 4 million lot ver-
sus 4 Million non-lot titles. xxnum is a special token
added by the tokenizer ahead of any numeric quantity.
In addition, the portion of lot titles containing the un-
igram/bigram and the non-lot titles containing the uni-
gram/bigram are presented.

Unigram %lot %non-lot Bigram %lot %non-lot

lot 35.30% 2.73% of xxnum 25.39% 2.18%
of 31.62% 7.32% lot of 21.23% 1.27%
xxnum 90.04% 66.30% lot xxnum 4.21% 0.38%
pcs 8.51% 1.21% " lot 3.09% 0.16%
x 15.00% 5.48% pack of 2.64% 0.16%
pack 5.80% 0.98% - pcs 1.38% 0.01%
) 14.86% 8.93% ( pack 1.97% 0.05%
& 11.25% 6.14% ( xxnum 7.67% 3.20%
( 14.79% 9.37% - xxnum 15.54% 10.48%
set 7.19% 3.44% set of 3.13% 0.71%

top unigrams and bigrams represent diverse lan-312

guage, with very substantial differences between313

their occurrence in lot versus non-lot titles. As we314

will later show, due to this diverse language, a rule-315

based approach using regular expressions is not316

effective enough, and more advanced supervised317

approaches are required.318

4 Methods319

In this section, we formalize our research problem,320

and propose an approach for identifying lot offer-321

ings and lot size. In order to conserve space and322

focus the discussion, we defer the details of our323

novel tokenization (Section A.1) , training proce-324

dure (Section A.2), and model architectures (Sec-325

tion A.3) to the appendix.326

4.1 Problem Definition327

We formalize two variants of the lot classification328

task. Both accept only the offering title as input329

and are distinguished by their output.330

1. Binary Classification – the decision function331

determines whether the title represents a lot332

offering or not. That is, are multiple identical333

items for sale in this offering?334

2. Lot Size Prediction - in this, more challenging,335

formulation, the decision function outputs the336

lot size, the number of identical products for337

sale in the offering described by the title. This338

is a generalization of the first formulation, as339

non-lot offerings will have a lot-size of one.340

Table 4: Binary Accuracy across datasets. * indicates
statistical significance at 0.05 level.

Health&Beauty Business&Industrial Heterogeneous

RegExp_FC 0.600 0.696 0.544
NGram_FC 0.843 0.845 0.815
FastText_FC 0.845 0.861 0.785
LSTM_Basic_SZ 0.889 0.881 0.872
ENC_LSTM_BIN 0.889 0.928 0.917
ENC_LSTM_SZ 0.915 0.897 0.898
TRANS_ENC_SZ 0.944* 0.933 0.945*

4.2 Identifying Lot Offerings 341

The problem definition above suggests using natu- 342

ral language processing techniques that given offer- 343

ing titles would output either the classification or 344

the lot size prediction. However, in this work we 345

propose several innovations specifically tailored to 346

the problem of identifying lot offerings. 347

4.2.1 Lot size prediction as sequence labeling 348

While the lot size prediction problem is ostensibly 349

a regression problem in that its output is a quan- 350

tity, lot sizes are positive (more accurately ≥ 2), 351

integer-valued, and distributed across a wide range 352

of possible values (see Figure 2). Further, our de- 353

fined business objective is exact lot-size accuracy. 354

That is, an error in predicted lot-size of magnitude 355

1 should have equal cost to an error of magnitude 356

100 (which is very different from common regres- 357

sion objectives like squared error). We also note 358

that, the lot-size information is very often present 359

in the offer title exactly, and can (often) be made 360

to be contained in a single token with sufficiently 361

clever tokenization (see above). 362

For these reasons, rather than formalize the lot- 363

size prediction problem as a naïve regression, with 364

continuous output, we propose formalizing the ap- 365

proach as a sequence labeling problem. That is, the 366

model output is a sequence of binary predictions. 367

Each decision in the output sequence corresponds 368

to a token in the input sequence, and encodes the 369

probability that the corresponding token describes 370

the lot size of the offering. Note that this objective 371

is different from the eventual goal we measure in 372

our experiments of predicting the lot size. We de- 373

scribe how to convert a per-token binary prediction 374

to a lot-size prediction in Section A.3.2. 375

5 Experiments and Results 376

In our empirical evaluation, we examine the perfor- 377

mance of the various model architectures described 378

in Section A.3 on the lot classification problem vari- 379
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Table 5: Lot Size Accuracy across datasets. * indicates
statistical significance at 0.05 level.

Health
& Beauty

Business
& Industrial

Heterogeneous

LSTM_Basic_SZ 0.870 0.820 0.845
ENC_LSTM_SZ 0.905 0.840 0.874
TRANS_ENC_SZ 0.932* 0.892* 0.922*

ants defined in Section 4.1: Binary Classification380

and Lot Size Prediction.381

To this end, we consider the following metrics:382

1. Binary Accuracy (BAcc) - The number of times383

a title was classified Lot/ Not Lot correctly as a384

fraction of the evaluation set.385

2. Lot Size Accuracy (LAcc) - The number of386

times the lot size was predicted (exactly) cor-387

rectly as a fraction of the evaluation set.388

When considering Binary Accuracy, we evalu-389

ate the Binary Classification Model architectures390

as well as the Binary Sequence Model architec-391

tures, which, as previously described, can be post-392

processed in a straightforward manner to yield a393

binary classification decision. We further evaluate394

the accuracy of the binary sequence model archi-395

tectures in the Lot Size Prediction Problem. Recall396

that we approach this problem as a token classifi-397

cation problem. The token with the highest score398

is parsed for a numeric quantity, and this quantity399

is considered the predicted lot size. In this formu-400

lation, small errors in the lot size prediction are401

weighted equally to large errors. We computed402

statistical significance using a two-proportion z-403

test (Sprinthall and Fisk, 1990), with a significance404

level of 0.05.405

Table 4 examines binary accuracy of the various406

models across the datasets, while Table 5 examines407

the lot size accuracy of the relevant models.408

Examining Tables 4 and 5, we observe that the409

TRANS_ENC_SZ model achieves the best perfor-410

mance across all datasets. This may be because411

for this family of tasks, the transformer encoder412

architecture, which only considers word ordering413

indirectly, is more appropriate than the recurrent414

encoder architecture (ENC_LSTM_SZ), which ex-415

plicitly models the word ordering. In other words,416

local word structure is more important than global417

word structure for this class of problem.418

Furthermore, the results indicate that the419

pre-trained class of models (TRANS_ENC_SZ,420

ENC_LSTM_BIN, ENC_LSTM_SZ) leverage 421

their indirect access to much larger general- 422

purpose datasets to achieve better performance 423

than models that were trained “from scratch” with 424

random weight initialization. We can also observe 425

that modeling the binary task directly does not 426

improve binary performance and in fact, 3 of the 427

top 4 performers on the Lot Classification task are 428

sequence models, whose output is post-processed 429

to reach a binary decision. This indicates that the 430

value of the additional information (the lot size) 431

and structure used during training the sequence 432

model outweighs the cost of additional complexity 433

incurred by expanding the decision space. 434

Another, somewhat surprising, result is that lot 435

size prediction accuracy for all sequence models is 436

quite close in magnitude to the binary classification 437

accuracy (e.g., 0.932 compared to 0.944 for the 438

Health and Beauty dataset and TRANS_ENC_SZ 439

model). Thus, the models are able to predict the 440

precise lot size correctly almost exactly as well as 441

they are able to classify the offer as Lot or Not. 442

Generalizing from the results a bit, we ob- 443

serve that a large improvement is gained by 444

modeling all n-grams (NGram_FC) and/or sub- 445

words (FastText_FC) over a simple collection 446

of heuristic features (RegExp_FC). A smaller 447

additional gain is made by using a recurrent ar- 448

chitecture to explicitly model the temporal dy- 449

namics of the offer title (LSTM_Basic_SZ). Fi- 450

nally, an additional gain is achieved by introduc- 451

ing pre-trained high-capacity encoder architectures 452

(ENC_LSTM_SZ, TRANS_ENC_SZ). 453

5.1 Complexity vs Accuracy 454

An additional analysis we carried out considers 455

the complexity–accuracy tradeoff that exists in the 456

models we considered. The reader of Section A.3 457

will no doubt observe that some of the architec- 458

tures are significantly more complex than others. 459

The more complex models generally achieve better 460

quantitative performance in our empirical evalua- 461

tion. However, how much of this complexity is 462

needed is an important practical question, as of- 463

ten very complicated models are difficult to deploy 464

and maintain in a production environment. In such 465

cases, if a simpler model only slightly underper- 466

forms the more complicated model, in many cases 467

it is preferred. To quantify this question of “bang 468

for the buck” we plot the BAcc metric of experi- 469

ments with different architectures against the “com- 470
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Figure 3: Comparing model complexity and binary ac-
curacy on the Health and Beauty dataset.

plexity” of the method as measured by the number471

of learnable parameters in the architecture.5 Fig-472

ure 3 shows a plot of this tradeoff across several473

different training runs of different architectures on474

the Health & Beauty dataset (similar relative per-475

formance is observed on other datasets.)476

The plot accentuates the benefit of the relatively477

simple LSTM architecture, LSTM_Basic_SZ.478

This architecture, while among those with the least479

learnable parameters, achieves performance (on480

both the binary and size prediction tasks) within481

10% of the leading approach, while performing482

better than several other approaches with more pa-483

rameters. Further, this architecture is much more484

flexible to augmentation as it does not rely on485

any pre-training. Thus, for a practical produc-486

tion scenario, which emphasizes “bang for buck”,487

LSTM_Basic_SZ may be preferable to the other488

more complex alternatives.489

5.2 Error Analysis490

To gain additional insights into the performance,491

we present examples where the model disagrees492

with the ground truth labels in Figure 4. We fo-493

cus on three types of such disagreements. “false494

positive” disagreements occur when an offering495

title is labeled as a lot incorrectly by the model.496

Examining the top rows of the figure, we observe497

that these types of mistakes often occur on titles498

that include phrases and language often associated499

with lot offerings. In many cases, using only the500

title information, a human evaluator may tend to501

5This method is not without faults, e.g., fastText uses a
hashmap of 1M vectors to represent all possible sub-words,
so technically has 300 (embedding size) times 1M learnable
parameters, even though much fewer are updated in practice
during training.

True Class Title
False Positives

Not Lot
ODORLESS GARLIC 500MG BLOOD CIRCULATION CARDIO

HEART CARE 120 TABLETS 4︸︷︷︸
0.99

BOTTLES

Not Lot
APRIL CORNELL Set of 4︸︷︷︸

0.76

Quilted Placemats Cottage Floral 15 in Square NWOT

False Negatives

Lot Vintage Crystal Candleholders 2︸︷︷︸
0.45

Pc Set Votive Tapers Holiday Gift Housewarming

Lot 40︸︷︷︸
0.31

Count: 20︸︷︷︸
0.24

Dram Green Medicine, Craft, RX, Pill Bottles: Reversible Lids

Size Prediction Errors

Lot Lot of Binaca Breath Strips 5︸︷︷︸
0.88

Packs of 24︸︷︷︸
0.90

Strips Cool Peppermint

Lot 12︸︷︷︸
0.55

Tek Soft Toothbrushes with 12︸︷︷︸
0.24

Toothbrush Covers ( 4︸︷︷︸
0.91

Pack x 3︸︷︷︸
0.93

) NEW

Figure 4: Error Analysis. indicates the lot-size token
for each Lot title. indicates the most likely lot-size
tokens according to the model. The model score as-
sociated with each token is indicated below the token
(when non-negligible).

agree with the model. Thus, we conjecture that 502

these kinds of mistakes are largely due to the gap 503

between the information available to the model and 504

information available to the human labelers (which 505

includes multiple modalities such as offering im- 506

age, description, and more). 507

“False negative” mistakes occur when the model 508

incorrectly labels an offering title as “not a lot”. 509

As Figure 4 demonstrates, the model often detects 510

the “lot-size token” with non-negligible probability. 511

However, this probability does not rise above the 512

threshold needed to classify the offer as a lot. We 513

used a threshold of 0.5 for this purpose, but this 514

hyper-parameter can be tuned lower in order to 515

correctly classify the examples in the figure. This 516

type of tuning represents an opportunity to trade 517

off false positive errors for false negative errors, as 518

appropriate for the particular business scenario. 519

The third type of mistake we consider is “size 520

prediction error”. This type of error occurs when 521

the model correctly identified an offering as a lot, 522

but gets the lot size wrong. Examining the figure 523

we can observe that this type of error occurs when 524

the offer title is very complex, and specifically con- 525

tains many numbers. It may be possible to detect 526

this situation by considering the relative scores of 527

different tokens. 528

We present the different types of errors for anal- 529

ysis, however, one should note that the different 530

types do not occur with the same frequency. In our 531

evaluation, false negative errors were more com- 532

mon then the other error types. Specifically, in the 533

7



Table 6: Lot size prediction accuracy over the heteroge-
neous dataset across different architecture depths and
tokenization methods. Boldfaced results are statisti-
cally tied best models at significance level of 0.05.

Number of layers Simple Tokenization BPE tokenization

6 0.937 0.901
12 0.930 0.918
24 0.928 0.909

Heterogeneous test set, the top performing model534

had 36 false positive, 71 false negatives, and 7 size535

prediction errors (out of 2,082 test examples).536

5.3 Impact of Tokenization537

Tables 4 and 5 show that TRANS_ENC_SZ outper-538

forms all baseline architectures over all datasets.539

In additional experiments (not described), we ob-540

served that this architecture also outperforms the541

original BERT model (Devlin et al., 2019) pre-542

trained on orders of magnitude more documents.543

One reason for this performance gap is the dif-544

ference in tokenization. TRANS_ENC_SZ uses545

the custom tokenization described in Section A.1,546

while the original BERT tokenization is based on a547

trainable WordPiece tokenizer (Al., 2016), which548

uses sub-word level tokens. However, a confound-549

ing factor could be that the corpus used to train550

our model, a collection of 10 Million English lan-551

guage e-commerce titles (about 150M words), is552

more appropriate for our task than BERT’s corpus553

of general natural language (∼ 3B words).554

To isolate the impact of the choice of tokenizer,555

we pre-trained language models with different tok-556

enization variants: 1) the "Simple" tokenization is557

a plain rule-based tokenization that splits on punc-558

tuation and white spaces (see Section A.1); 2) the559

"BPE" tokenization is a "BERT-style" byte-pair-560

encoding scheme that tokenizes text into sub-word561

tokens based on the frequency statistics of bytes562

in a corpus. We also hypothesized that the depth563

(number of layers) of the language model is related564

to the performance of a tokenization approach. To565

evaluate this hypothesis we varied the number of566

layers along with the tokenizer.567

Table 6 shows the result of this comparison for568

lot size prediction accuracy on the Heterogeneous569

dataset. Simple tokenization outperforms BPE tok-570

enization by statistically significant margins. No-571

tably, the depth of the transformer language model572

does not play a role, with all network depths achiev-573

ing similar performance.574

We conjecture that the reason for this perfor- 575

mance increase is that sub-word tokenization is 576

inappropriate for the lot classification task (at least 577

for English text), as the important tokens are usu- 578

ally discovered by simple rules, and complex tok- 579

enization schemes, such as BPE, without this fore- 580

knowledge of the application, can potentially break 581

an important “lot-size token” into multiple tokens, 582

making a successful lot-size prediction impossible. 583

The table also shows that a “shallow” 6-layer 584

transformer with Simple tokenization can perform 585

just as well as much deeper models for this task. 586

This combination is also more efficient computa- 587

tionally, due to the fewer tokens and layers. 588

6 Conclusions and Future Work 589

In this work, we consider the task of identifying 590

lots, e-commerce offerings that contain multiple 591

identical items. This application has the potential 592

to improve the online e-commerce experience for 593

millions of users. In our experiments, we apply 594

a number of state-of-the-art natural language pro- 595

cessing approaches to analyze the offering titles. 596

We show that binary sequence models, which are 597

aimed at identifying the lot-size token within the 598

title, are especially effective for achieving high ac- 599

curacy on both Lot Classification and Prediction 600

tasks across multiple e-commerce domains. 601

Our models reach high performance based on 602

title only, which is an advantage since almost all 603

offers contain a valid title (as opposed to image, 604

description, or key-value attributes). That said, the 605

ability to detect lot offerings can potentially be fur- 606

ther improved by using additional signals available 607

for each offering beyond its title. The offer’s price 608

may also help achieve a further performance gain. 609

The methods developed herein rely on the avail- 610

ability of data to perform effectively. A large 611

amount of unlabeled domain title data is necessary 612

to build the language model, and a smaller amount 613

of labeled data is required to fine-tune the model 614

to the lot identification task. In other areas, where 615

such data is available, specifically e-commerce data 616

in languages other than English, we conjecture that 617

this approach can generalize well. 618

Finally, the methods developed for analyzing ti- 619

tles in the pursuit of lot identification are useful in 620

other problems that arise in the curation of a large 621

and heterogeneous e-commerce catalog, including 622

matching offerings to products and enabling prod- 623

uct search. 624
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A Appendix 801

A.1 Tokenization 802

An important preprocessing step in many natural 803

language processing approaches is tokenization, 804

transforming the raw text input into an ordered 805

sequence of discrete tokens (often mapped to a 806

finite-size dictionary). The choice of tokenization 807

method can have significant impact on results in 808

the downstream task (Jimenez et al., 2018). Specif- 809

ically, applying tokenization that is catered to the 810

downstream task may improve the overall perfor- 811

mance. We therefore devise a unique tokenization 812

scheme tailored to our scenario, processing offer- 813

ing titles in a general e-commerce marketplace. 814

These titles (see Table 1) contain their own set of 815

rules and idiosyncrasies, and can be quite different 816

than English natural language text. As such, us- 817

ing general-purpose English language tokenization 818

may be less desirable. 819

To understand our tokenization approach con- 820

sider the following example title corresponding to 821

a lot offering: 822

BOBBIN WINDER TIRE (2pk) Brother PC8895 ... 823

Clearly the numerical tokens are important to 824

separate, but as the example illustrates, many num- 825

bers appear in lot offering titles that have nothing 826

to do with the lot size, usually model numbers or 827

various specification quantities. Further, the lot 828
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quantity often appears in important context, such829

as adjacent to specific punctuation (e.g., within830

parentheses) or close to one or more context tokens831

(e.g. Lot of or pcs). These may or may not be832

separated by a whitespace token.833

To deal with these phenomena, we developed834

several unique approaches to tokenization. First,835

we separate all punctuation into its own token.836

Then, we separate tokens with a numeric prefix837

into two separate tokens. Finally, we add a spe-838

cial token to indicate a numeric quantity. Note that839

this special token is added only when another to-840

ken contains just digit characters. Thus, the token841

pc8895, for example, would not trigger a special842

token. This token does not replace the original nu-843

meric quantity, but rather is added next to it. This844

strategy is designed to allow generalizing from pat-845

terns often seen in offering titles.846

With the application of such principles, the title847

above may be tokenized as follows:848

bobbin | winder | tire | ( |
xxnum | 2 | pk | ) | brother | pc8895

849

where xxnum is the special token adding numer-850

ical context. Note that, in the example, the token851

pc8895 is not split, as it does not begin with a852

digit character.853

A.2 Techniques for Training Lot Models854

Before describing specific neural architectures, we855

discuss key techniques that we applied in training856

our models that helped achieve the performance857

reported in the experiments section. While not all858

techniques are applicable to all model architectures,859

they play a key role in allowing our models to be860

trained to high performance.861

A.2.1 Dynamic Learning Rates862

We use a stochastic gradient descent variant (specif-863

ically, Adam (Kingma and Ba, 2015)) to optimize864

the parameters of the model architectures consid-865

ered in this paper. Following (Bengio, 2012) , we866

employ several techniques to determine good val-867

ues for the learning-rate parameter. The first of868

these is using differential learning rates, i.e. each869

parameter layer has a different learning rate. An-870

other innovation that yields improved results is871

working with cyclical learning rates (Smith, 2017)872

combined with "cycle restarts" (Loshchilov and873

Hutter, 2017). That is, at the beginning of each874

epoch the learning rate is relatively large and be-875

gins to decay with each update. Another technique876

we employ is an interactive approach to finding 877

the base learning rate called The Learning Rate 878

Finder (Smith, 2017), a technique in which several 879

batches of training are run with increasing learning 880

rate, until the training error begins to increase. The 881

process described above for training our models is 882

interactive, and based on the performance of the 883

network on such metrics as training and validation 884

error. 885

A.2.2 Pre-Training and Fine Tuning 886

A well-accepted practice for improving the perfor- 887

mance of neural models for natural language is the 888

use of pre-trained language models (Howard and 889

Ruder, 2018). These models are often quite large 890

in terms of the number of parameters they contain, 891

as well as the amount of training data they were 892

trained on. Given a supervised text classification 893

task, especially one where the amount of labeled 894

training data is limited, we can use the language 895

model to generate a useful representation of the text. 896

This is often achieved by “chopping off” the top 897

layer of the language model and using the continu- 898

ous values of the activations in the second-to-last 899

layer as the representation of the text. Using this 900

representation, which is assumed to encode univer- 901

sal properties of word tokens, allows the primary 902

task to utilize significantly less data. 903

The technique known as Fine Tuning introduces 904

another step in this process. Essentially, the pre- 905

trained language model is used as a language model 906

on an additional corpus of text data, usually more 907

relevant to the task of interest than the original 908

corpus the model was pre-trained on (which is gen- 909

eral in nature). Once this step is complete, the 910

fine-tuned language model is used as before for the 911

primary supervised task. Fine-tuning is especially 912

useful when a large corpus of task-specific unla- 913

beled data is available alongside the (often small) 914

task-specific labeled data. 915

A.3 Model Architectures 916

We evaluated a number of different model architec- 917

tures for the two problems described in Section 4.1. 918

Each of the architectures, applied some subset of 919

the techniques described above. Table 7 specifies 920

the precise correspondence between models and 921

techniques applied. 922

The approaches can be divided into two logical 923

groups (1) binary classification models, and (2) bi- 924

nary sequence models. These groups are named 925

according to their output type. The former group 926
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Table 7: Techniques used by our different models.

Model
Dynamic Pre- Fine

Tokenization
Learning Rate Training Tuning

RegExp_FC 3 7 7 7

NGram_FC 3 7 7 3

FastText_FC 3 7 7 3

ENC_LSTM_BIN 3 3 3 3

LSTM_Basic_SZ 3 7 7 3

ENC_LSTM_SZ 3 3 3 3

TRANS_ENC_SZ 3 3 7 3

outputs a single quantity corresponding to the prob-927

ability that a title corresponds to a lot offering. The928

latter group outputs multiple quantities, each cor-929

responding to a token in the input sentence. An930

important note is that binary classification models931

can only be used for the binary Lot Classification932

task and cannot address the Lot Size Prediction933

task. On the other hand, binary sequence models934

can be used for both the Lot Size Prediction task935

and the binary Lot Classification task.936

A.3.1 Binary Classification Models937

1. RegExp_FC – this model corresponds to a938

naïve baseline for the Lot Classification task.939

We represented the text as a set of binary940

features. Each such feature corresponded to941

whether we were able to match with a regular942

expression designed to fit important patterns943

pertaining to lots in the offering titles. For944

example, one such regular expression was the945

following : pack of \d+ (where \d+ repre-946

sents one or more digit characters). We made947

use of 15 such regular expressions. We fed this948

representation into a fully-connected neural net-949

work with a single hidden layer (size 300).950

2. NGram_FC – here we represented the text as951

a bag of n-grams (using n=2 or n=3). Each952

n-gram corresponds to a binary feature (does953

the n-gram appear in the title). Although the954

space of possible n-grams is very large, in prac-955

tice only a small sub-set appears. However,956

in order to enable unseen n-grams and keep957

the model size consistent, we used a hashmap958

of size 1M to map between each n-gram and959

its corresponding feature. That is, potentially960

multiple n-grams will map to the same binary961

feature, although such collisions rarely occur in962

practice. For each title, only a few n-grams of963

the many possible will be active. Thus, a sparse964

vector of size 1M represents each title. This rep-965

resentation was fed into a fully-connected neu- 966

ral network with one hidden layer (of size 300). 967

We applied the lot-specific tokenization and dy- 968

namic learning rate techniques when learning 969

the parameters of this architecture. 970

3. FastText_FC – in this model, we repre- 971

sented each word token as a vector of size 300, 972

which is computed as a sum of its sub-word 973

embeddings, which are learned separately. A 974

sub-word is essentially a sub-string that can 975

be constructed by only considering a subset of 976

the characters composing the token. Sub-word 977

information can be useful for generalizing to- 978

kens with similar roots that appear in different 979

forms (e.g. the tokens lot and lots). Since 980

there are many possible sub-words, as above 981

in the n-grams model, we used a hashtable of 982

size 2M to keep the model size fixed and al- 983

low generalization to sub-words that are unseen 984

during the training phase. Each title is repre- 985

sented as a simple average of its word tokens. 986

This representation was then processed by a 987

fully connected linear layer. The architecture 988

is equivalent to the fastText approach described 989

in (Bojanowski et al., 2017) , although we used 990

our own tokenization and training procedure. 991

4. ENC_LSTM_BIN – in this approach, we em- 992

ployed an LSTM-based encoder (specifically 993

we employed the bi-directional multi-layered 994

architecture described in (Merity et al., 2018b)), 995

which yields a representation of the text using 996

the sequence information explicitly. This ap- 997

proach uses pre-training a language model on a 998

large corpus of text (specifically, the WikiText 999

103 (Merity et al., 2016) dataset of English text) 1000

and then fine-tuning the learned representation 1001

on available e-commerce offering title data (not 1002

necessarily those offerings with known lot la- 1003

bels). We then attached a linear layer to the final 1004

layer of this architecture (which is a concate- 1005

nation of the representation at each token), and 1006

trained the model on the available supervised 1007

data, to obtain the final binary classification 1008

model. We applied our own tokenization of the 1009

text before pre-training. During training, we 1010

made use of dynamic learning rate techniques 1011

described in Section A.2.1. 1012

A.3.2 Binary Sequence Models 1013

As discussed in Section 4.2.1, we address the lot 1014

size prediction problem with models that output a 1015
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sequence of binary decisions (one for each token1016

in the input). To obtain the final prediction from1017

such output, we apply the heuristic of choosing the1018

maximum output value (assuming it passes some1019

threshold) in the sequence and parsing the corre-1020

sponding input token for a quantity. If no such1021

token exists then the title does not represent a lot1022

offering (and the predicted lot size is 1).1023

1. LSTM_Basic_SZ – in this approach, we used1024

a basic LSTM model (Hochreiter and Schmid-1025

huber, 1997), which takes into account the to-1026

ken ordering. The LSTM learns its own embed-1027

ding for each word token. The final state vector1028

is processed by a linear layer that outputs a bi-1029

nary decision per token. This method makes1030

use of our custom tokenization (Section A.1)1031

and dynamic learning rate (Section A.2.1).1032

2. ENC_LSTM_SZ – in this approach, we used1033

the same encoder architecture as described for1034

ENC_LSTM_BIN above. That is, we applied1035

custom tokenization, pre-trained the encoder1036

component of the model on a large corpus of1037

general English text, and then fine-tuned us-1038

ing in-domain text data. However, instead of1039

a binary classification head, this architecture1040

attaches a binary sequence head on top of the1041

encoder, which provides a binary decision for1042

each of the tokens in the sequence.1043

3. TRANS_ENC_SZ – in this approach, we used1044

the well-known BERT (Devlin et al., 2019)1045

transformer architecture, and specifically its1046

RoBERTa variant(Liu et al., 2019). The innova-1047

tion of BERT over classical transformers is the1048

combination of multiple self-supervision tasks,1049

Masked Language Model and Next Sentence1050

Prediction when training the encoder. The ver-1051

sion we made use of is consistent with the com-1052

mon "base" architecture of BERT (et al., 2019),1053

which is composed of a 12-layer encoder with1054

768 hidden nodes and 12 attention heads per1055

layer, for a total of approx 132 million parame-1056

ters. The model uses our custom tokenization1057

scheme, which we believe is more appropri-1058

ate for our research problem. Our model is1059

pre-trained on 10 million English language e-1060

commerce offering titles. As the pre-training1061

is done on in-domain data, no additional fine-1062

tuning step was performed.1063
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