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Abstract
Pretrained transformers have demonstrated the
ability to implement various algorithms at infer-
ence time without parameter updates. While the-
oretical works have established this capability
through constructions and approximation guaran-
tees, the optimization and statistical efficiency as-
pects remain understudied. In this work, we inves-
tigate how transformers learn features in-context –
a key mechanism underlying their inference-time
adaptivity. We focus on the in-context learning of
single-index models y = σ∗(⟨x,β⟩), which are
low-dimensional nonlinear functions parameter-
ized by feature vector β. We prove that transform-
ers pretrained by gradient-based optimization can
perform inference-time feature learning, i.e., ex-
tract information of the target features β solely
from test prompts (despite β varying across differ-
ent prompts), hence achieving an in-context sta-
tistical efficiency that surpasses any non-adaptive
(fixed-basis) algorithms such as kernel methods.
Moreover, we show that the inference-time sam-
ple complexity surpasses the Correlational Statis-
tical Query (CSQ) lower bound, owing to nonlin-
ear label transformations naturally induced by the
Softmax self-attention mechanism.

1 Introduction
Large language models (LLMs) are capable of In-Context
Learning (ICL) (Brown et al., 2020), where they construct
variable inference-time algorithms based on examples pro-
vided in the test prompt, without updating the model param-
eters. Recent theoretical studies have shown that pretrained
transformers (Vaswani et al., 2017) can implement regres-
sion algorithms in their forward passes when test prompts
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contain input-output pairs exhibiting certain functional rela-
tionships. For instance, a substantial body of research (Garg
et al., 2022; Von Oswald et al., 2023; Ahn et al., 2023;
Mahankali et al., 2023a; Zhang et al., 2023; Gatmiry et al.,
2024) has demonstrated that linear transformers can perform
linear regression in-context. As for nonlinear transform-
ers, which possess greater expressive power to implement
more complex algorithms (Bai et al., 2023; Cheng et al.,
2023; Guo et al., 2023; Kim et al., 2024), existing optimiza-
tion analyses generally do not provide end-to-end statistical
guarantees for in-context learning of nontrivial nonlinear
function classes (Kim & Suzuki, 2024a; Yang et al., 2024;
Bu et al., 2024). A notable exception is Oko et al. (2024b),
which characterizes the optimization and sample complexity
of in-context learning for Gaussian single-index models us-
ing a shallow transformer. Specifically, they showed that for
a degree-P single-index function class of dimension r, the
required in-context sample size of the pretrained transformer
scales as rΘ(P ), which is comparable to the performance of
kernel methods on an r-dimensional subspace.

Inference-Time Feature Learning. Our starting point
is the observation that for learning low-dimensional tar-
get functions (e.g., single-index models) on isotropic data,
kernel methods and, more generally, non-adaptive (fixed-
feature) estimators are statistically suboptimal. Numerous
prior studies have shown that neural networks can outper-
form kernel methods due to feature learning (Ghorbani et al.,
2019; Ba et al., 2022; Damian et al., 2022; Abbe et al., 2022),
where model parameters adapt to the low-dimensional struc-
ture of the learning problem during gradient-based training.
In the ICL analysis of Oko et al. (2024b), transformers im-
plement a kernel-like inference algorithm on a nonlinear
feature map {fj(·)}mj=1 fixed across tasks, constructing the
predictor

∑
j ajfj(·) by fitting the coefficients aj in-context.

In contrast, we expect that better sample complexity can be
achieved by an algorithm that adaptively selects the feature
map at inference time, i.e., varying {fj(·)}mj=1 based on the
in-context examples.

Motivated by the importance of adaptivity in the statistical
efficiency of neural networks (Bach, 2017; Suzuki, 2019),
in this work we theoretically study inference-time feature
learning – the ability to adaptively extract latent features of
the ground truth from test prompts without any parameter
updates. We ask the following question.
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Q1: Can pretrained transformers implement in-context
algorithms capable of feature learning,

and outperform non-adaptive methods such as kernel
models?

We study the Gaussian single-index model setting where the
class of target functions is given by f∗ : Rd → R, f∗(x) =
σ∗(⟨β,x⟩). Here, σ : R → R is a nonlinear link func-
tion, and f∗ depends only on the projection along β ∈ Rd,
referred to as the feature vector. The transformer model
is provided with test prompts (in-context examples) in the
following format:

x1, y1, . . . , xN , yN︸ ︷︷ ︸
examples

, x︸︷︷︸
query

,

where the labels satisfy yi ≃ σ∗(⟨β,xi⟩) with feature vector
β varying across different prompts. In this setup, inference-
time feature learning refers to the model extracting β by
examining in-context examples and using it to estimate the
label σ∗(⟨β,x⟩) – all without any parameter updates.

This single-index setting captures scenarios where the
ground truth exhibits low-dimensional structure, and has
been extensively studied in deep learning theory to demon-
strate the adaptivity of neural networks (Ba et al., 2022;
Bietti et al., 2022; Berthier et al., 2023; Mahankali et al.,
2023b). Furthermore, following Oko et al. (2024b) we as-
sume that the feature vectors are drawn from some r ≤ d
dimensional subspace, which implies that if pretraining iden-
tifies the support of the target function class, the in-context
sample complexity should only scale with the subspace
dimensionality r instead of the ambient dimensionality d.

Sample Complexity of Feature Learning. The sample
complexity of learning single-index models on isotropic
Gaussian data in Rd has been extensively studied in prior
works. For kernel methods, the dimension dependence can
be sharply characterized, whereas for adaptive procedures
such as gradient-based feature learning, the statistical com-
plexity can be characterized by (variants of) statistical query
(SQ) lower bounds (Kearns, 1998; Reyzin, 2020). We sum-
marize these prior results as follow.

• Kernel methods. If σ∗ is a polynomial of degree deg(σ∗),
then kernel methods using fixed feature maps require
n ≳ ddeg(σ∗) samples to learn f∗ with low estimation
error (Ghorbani et al., 2021; Donhauser et al., 2021).

• CSQ algorithms. For learners that make correlational
queries to the target (i.e., in the form of E[ϕ(x)y]),
such as one-pass SGD on the squared/correlation loss
(Ben Arous et al., 2021; Damian et al., 2023) or single-
step GD (Damian et al., 2022; Ba et al., 2023), prior
works have established a sufficient sample complexity of
n ≳ dΘ(ie(σ∗)), where ie(σ∗) ≤ deg(σ∗) is the informa-
tion exponent defined as the lowest degree in the Hermite

expansion of σ∗ (see Definition 2). This sample complex-
ity improves upon kernel methods, and the exponential
dependence on the IE aligns with the CSQ lower bound
(Damian et al., 2022; Abbe et al., 2023).

• SQ algorithms. For learners that access full statistical
queries (i.e., in the form of E[ϕ(x, y)]), the complexity
of single-index learning is governed by the generative
exponent ge(σ∗) ≤ ie(σ∗) defined as the lowest possible
information exponent after arbitrary L2 label transforma-
tion (Damian et al., 2024); in particular, ge(σ∗) ≤ 2 for
any polynomial link function. Recent works have shown
that gradient-based training on transformed labels can
achieve a sample complexity of n ≳ dΘ(ge(σ∗)), which
improves upon the CSQ rate (Dandi et al., 2024; Lee et al.,
2024; Arnaboldi et al., 2024; Joshi et al., 2024).

The ICL mechanism in Oko et al. (2024b) operates as a ker-
nel regression algorithm, which entails that the in-context
sample complexity depends on deg(σ∗). We expect this
dependency to improve with inference-time feature learning.
Indeed, drawing from prior works showing that linear trans-
formers can implement single-step GD in-context (Von Os-
wald et al., 2023; Ahn et al., 2023; Mahankali et al., 2023a;
Zhang et al., 2023) – which corresponds to a CSQ-like al-
gorithm – it is natural to conjecture that a sufficient sample
size in our single-index setting scales as rΘ(ie(σ∗)). That
being said, when considering the effect of nonlinear soft-
max attention, transformers can also introduce nonlinear
label transformations at inference time, hence potentially
achieving a statistical efficiency that depends only on ge(σ∗)
and surpasses the limitations of CSQ-based methods. This
motivates us to investigate the following question regarding
the ICL sample complexity.

Q2: Can transformers with nonlinear self-attention
implement inference-time algorithms

that surpass the statistical barrier imposed by CSQ lower
bounds?

1.1 Our Contributions

We establish end-to-end optimization and statistical guaran-
tees for the in-context learning of the Gaussian single-index
function class using a transformer with softmax attention.
Our main result is the following.
Theorem 1 (informal). Consider the learning of single-
index polynomials σ∗(⟨β,x⟩) where the feature vector β is
drawn from an r-dimensional subspace. If we optimize a
single-layer transformer with softmax attention via gradient-
based pretraining (Algorithm 1) using Tpt = Ω̃(dΘ(ie(σ∗)))
tasks, where for each task the prompt length satisfies
Npt = Ω̃(dΘ(ie(σ∗))), then the model achieves od(1) in-
context prediction risk if the number of in-context examples
satisfies Ntest = Ω̃(rΘ(ge(σ∗))), where ge(σ∗) ≤ 2 is the
generative exponent of σ∗.
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We make the following remarks on the main theorem.

• While the pretraining sample complexity scales with the
ambient dimension d, the required in-context sample size
depends only on the support dimension of the target func-
tions r ≤ d. This aligns with the findings of Oko et al.
(2024b), which show that transformers can adapt to low-
dimensional structure of the target function class through
pretraining, thereby enhancing inference efficiency. We
note that while Oko et al. (2024b) restricts the analysis to
the regime r ≲

√
d, our results applies to arbitrary r ≤ d.

• The inference-time sample complexity of rΘ(ge(σ∗)) is
independent of both the degree and the information expo-
nent of the link function σ∗; in other words, pretrained
transformers can implement SQ algorithms in-context
with statistical efficiency that surpasses both kernel meth-
ods and CSQ learners. Consequently, our ICL complexity
improves upon Oko et al. (2024b) in all regimes.

• Our analysis explicitly shows that softmax self-attention
can extract the inner product ⟨β,x⟩, where β varies across
tasks, by computing the correlation between nonlinear
transformations of both the input x and the label. This
mechanism is analogous to the tensor partial trace algo-
rithm studied in Damian et al. (2024); see Section 5 for
detailed explanation.

On the technical level, we demonstrate that: (i) the Softmax
attention can be pretrained to compute ⟨β,x⟩ for each
prompt, and (ii) the nonlinearity in the attention reduces
the information exponent of the link function σ∗, which is
shown through a careful analysis of the nonlinear correlation
computed by the attention scores. Mechanism (i) enables
inference-time feature learning, whereas mechanism (ii)
leads to an information exponent-free sample complexity.

1.2 Related Work

In-context Learning of Functions. ICL abilities of linear
transformers have been extensively studied in terms of both
expressivity and optimization. They are shown to imple-
ment linear regression algorithms, including one gradient
descent step (Von Oswald et al., 2023; Ahn et al., 2023;
Mahankali et al., 2023a; Zhang et al., 2023), multi-step gra-
dient descent (Ahn et al., 2023; Gatmiry et al., 2024), and
sparse regression (Bai et al., 2023). (Zhang et al., 2024)
showed that linear transformer can adapt to the prior mean
of the coefficient vector. We note several related works on
ICL of nonlinear transformers that were not discussed in
the introduction: Huang et al. (2023); Chen et al. (2024)
analyzed in-context linear regression of softmax transform-
ers, including optimization analysis, while Li et al. (2024)
investigated a classification problem (which is also essen-
tially linear). Nichani et al. (2024) examined the ability of
optimized softmax transformers to learn causal structures
in-context. Bietti et al. (2023b) demonstrated that induction

head mechanisms emerge via associative memory obtained
through gradient descent.

Learning Functions with Sparse Feature. Other than
single-index models, various function classes with sparse
features have been studied, and neural networks’ adaptivity
to such features via gradient descent have been explored in
standard (non-ICL) settings. These function classes include
multi-index models (Damian et al., 2022; Abbe et al., 2022;
2023; Bietti et al., 2023a; Mousavi-Hosseini et al., 2023a),
additive models (Oko et al., 2024a; Ren et al., 2025), parity
functions (Barak et al., 2022; Suzuki et al., 2023; Glasgow,
2024). Kim & Suzuki (2024b) showed that chain-of-thought
reasoning of transformers helps solve parity functions effi-
ciently, albeit not in an ICL setting.

2 Preliminaries
Notations. ∥v∥ denotes the ℓ2 norm of a vector v. For
matrix A, we denote its ℓ2 operator norm and Frobenius
norm as ∥A∥2 and ∥A∥F , respectively. Let Hei(z) =

(−1)ie z2

2
di

dzi e
−z2

2 be the degree-i (probabilist’s) Hermite
polynomial. Given the Hermite expansion of a function f ,
i.e., f(z) =

∑
i≥0

ci
i!Hei(z), we define H(f, i) := ci as its

degree-i coefficient. Sd−1 denotes the unit sphere in Rd.
I(A) is the indicator function. diag(a1, . . . , an) represents
the n× n diagonal matrix whose (i, i)-th element is ai.

2.1 Preliminaries on In-Context Learning (ICL)

We consider the setting of learning functional relationships
in-context as introduced in Akyürek et al. (2022); Garg
et al. (2022). The input consists of N labeled example pairs
(xi, yi) ∈ Rd × R for i = 1, . . . , N , referred to as context
or in-context examples, along with a query x ∈ Rd. The
entire input sequence (x1, y1, . . . ,xN , yN ,x) is referred to
a prompt, which we sometimes shorten to (X,y,x) where
X :=

[
x1 · · · xN

]
and y :=

[
y1 · · · yN

]⊤
. The

learner is tasked to predict the corresponding output y ∈ R
for the query x. The inputs x1, . . . ,xN ,x are i.i.d. sam-
ples drawn from a specific distribution Dx, and the outputs
y1, . . . , yN are generated as

yi = f∗(xi) + ζi (i = 1, . . . , N),

where f∗ : Rd → R is a function associated with each
prompt, and ζ1, . . . , ζN ∼ Dζ are i.i.d. noise. The target
function f∗ varies across prompts and is drawn fromDf∗ for
each prompt. Our goal is to obtain a model f(X,y,x;θ)
with parameters θ, which takes the prompt as input and
predicts the query output f∗(x) without updating any pa-
rameters during inference time.

We divide learning into two stages: pretraining and infer-
ence. In the pretraining stage, the model is optimized on a
training set {((xt

1, y
t
1, . . . ,x

t
Npt

, ytNpt
,xt), yt)}Tpt

t=1, which
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includes Tpt distinct tasks from Df∗ . In the inference
stage, we present a prompt (x1, y1, . . . ,xNtest , yNtest ,x)
with context length Ntest to the pretrained model, which
aims to predict the label f∗(x). To evaluate the model’s
average performance at inference, we use test ICL error
defined as

RICL
Ntest

(θ) = EDx,Df∗ ,Dζ
[|f(X1:Ntest ,y1:Ntest ,x;θ)− y|].

(2.1)

Based on this setup, we emphasize that there are two distinct
notions of “sample complexity” in ICL:

• The pretraining task (sample) complexity refers to the
task (sample) size Tpt(Npt) used by the pretraining algo-
rithm to optimize the parameters θ.

• The inference sample complexity refers to the context
length Ntest required at inference time to ensure small
RICL

Ntest
, characterizing the statistical complexity of the

constructed in-context learning algorithm.

We consider the regime where Npt, Tpt and Ntest are poly-
nomial in the dimensionality d, and track the dimension
dependence in the sample complexity for both the pretrain-
ing and inference phase.

2.2 Single-index Models

For the class of target functions f∗, we consider Gaussian
single-index models where the function value depends only
on a single direction β in the d-dimensional input space.
This setting reflects the scenario where learners have to cap-
ture the unknown feature vector β from high-dimensional
input in Rd, and hence has been extensively studied in fea-
ture learning theory literature (Bai & Lee, 2019; Ba et al.,
2022; Bietti et al., 2022; Mousavi-Hosseini et al., 2023a;
Mahankali et al., 2023b; Berthier et al., 2024).
Definition 2. Let x ∼ N (0, Id). (Gaussian) single-index
models refer to functions of the form

f∗ : Rd → R, f∗(x) = σ∗(⟨β,x⟩),

where σ∗ : R → R is the link function and β is the fea-
ture vector. We assume σ∗ is a polynomial and satisfies
Ez∼N (0,1)[σ∗(z)] = 0. We define three key properties:

1. deg(σ∗) denotes the (polynomial) degree of σ∗.

2. The information exponent (Dudeja & Hsu, 2018;
Ben Arous et al., 2021) is defined as

ie(σ∗) := min{i | H(σ∗, i) ̸= 0}.

3. The generative exponent (Damian et al., 2024) is

ge(σ∗) := min
h∈L2

min{i | H(h ◦ σ∗, i) ̸= 0},

where L2 denotes the set of all L2(PY )-measurable
transformations from R to R for PY = σ∗#N (0, 1)
where σ∗# is the push-forward by σ∗.

Note that, by definition, ge(σ∗) ≤ ie(σ∗) ≤ deg(σ∗). It
is known that for polynomial link functions, there exists a
monomial transformation σ∗ → σj

∗ that reduces the infor-
mation exponent to 1 or 2.

Lemma 3 (Lee et al. (2024), Proposition 6). It holds that

ge(σ∗) =

{
1 (if σ∗ is not even)
2 (if σ∗ is even)

.

Moreover, ge(σ∗) = minj≥1 ie(σ
j
∗) holds.

Sample complexity of learning f∗. The sample com-
plexity of various learning algorithms are dictated by
the quantities in Definition 2. Linear/kernel models on
fixed basis require ddeg(σ∗) samples to learn f∗ (Ghor-
bani et al., 2021; Donhauser et al., 2021). Online
SGD (Ben Arous et al., 2021; Damian et al., 2023) or
single-step gradient descent (Damian et al., 2022; Ba
et al., 2023; Dandi et al., 2023) on two-layer neural net-
work

∑m
j=1 ajσ(⟨wj ,x⟩+ bj), which can adaptively select

feature maps {σ(⟨wj , ·⟩+ bj)}mj=1, achieves a better sam-
ple complexity of Õ(dΘ(ie(σ∗))) — such dependence on the
information exponent also appears in correlational statistical
query (CSQ) lower bounds (Damian et al., 2022). Recent
works have shown that data reuse (Arnaboldi et al., 2024;
Lee et al., 2024) or loss modification (Joshi et al., 2024)
can introduce nonlinear label transformations such that
the “effective” information exponent is reduced to ge(σ∗).
Consequently, the sample complexity can be improved to
Õ(dge(σ∗)−1∨1) which matches the SQ lower bound Ω(d)
(for polynomial σ∗) up to polylogarithmic factors.

ICL sample complexity. For the ICL setting, (Oko et al.,
2024b) studied the single-index function class where β
is uniformly drawn from the unit sphere in an r(≲

√
d)-

dimensional linear subspace of Rd. The authors derived
a pretraining task and sample complexity of Õ(dΘ(ie(σ∗)))
and inference-time sample complexity of Õ(rΘ(deg(σ∗))).
Note that this inference complexity matches that of kernel
methods on the r-dimensional subspace. Our focus (see
Q1 and Q2 in the introduction) is to investigate whether
transformers can be pretrained to achieve an inference com-
plexity that surpasses kernel methods or CSQ algorithms.

3 Problem Setting
3.1 Task Setup

We define the task distribution as follows.

Assumption 4. Let τ = Od(1) be the noise level. A prompt
(x1, y1, . . . ,xN , yN ,x) is generated as:

x1, . . . ,xN ,x ∼ Dx = N (0, Id),

yi = f∗(xi) + ζi, ζi ∼ Unif({−τ, τ}),
f∗(xi) = σ∗(⟨β,xi⟩).
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For the true function f∗, we make the following assumptions:

• σ∗ is a polynomial that remains fixed across tasks. We as-
sume the normalization conditions Ez∼N (0,1)[σ∗(z)] =
0 and Ez∼N (0,1)[σ

2
∗(z)] = 1.

• Sr denotes an r-dimensional linear subspace of Rd for
r ≤ d. For each prompt, β is drawn uniformly from the
unit sphere Supp(β) := {β | β ∈ Sr, ∥β∥ = 1} in Sr.

Remark 5. In Assumption 4, a feature vector β is newly
drawn for each task. We allow for scenarios where β has
limited (r-dimensional) support in Rd, and we will show that
the inference-time sample complexity adapts to this support.
Note that unlike (Oko et al., 2024b) which established simi-
lar adaptivity, we do not assume low-dimensionality (r =
o(d)); instead our result holds for any 1 ≤ r ≤ d.

3.2 Student Model and Pretraining Algorithm

Student Model. We train a single-layer trans-
former (Vaswani et al., 2017) with SoftMax attention.
For a prompt (x1, y1, . . . ,xN , yN ,x), we construct the
embedding E ∈ R(d+1)×(N+1) as

E =

[
x1 · · · xN x
y1 · · · yN 1

]
∈ R(d+1)×(N+1).

We first convert E to Attn(E) through the Softmax atten-
tion layer defined as

Attn(E)

=W V E · Softmax(Mask(ρ−1 · (WKE)⊤WQE)),

where ρ > 0 is the temperature, and WK ,WQ,W V ∈
R(d+1)×(d+1) are attention parameters. The Softmax func-
tion is applied to each column vector, while the Mask
function replaces all entries in the final row of ρ−1 ·
(WKE)⊤WQE ∈ R(N+1)×(N+1) with −∞.

Remark 6. Observe that the first N rows of ρ−1 ·
(WKE)⊤WQE represent the correlations between x and
xi for i ∈ [N ], while the last row corresponds to the corre-
lation between x and itself. Consequently, the last row is
(typically) approximately

√
d times larger in magnitude than

the others. Thus, we apply masking to avoid the Softmax
attention from focusing on the uninformative final row.

Then, we apply a position-wise multi-layer perceptron
(MLP) with activation function σ(·) and parameters W F ∈
Rm×(d+1), b ∈ Rm, and a ∈ Rm, where m is the network
width. Throughout this paper, we set σ(z) = max{z, 0}
(ReLU activation). We use the (N + 1)-th element of the
MLP output as the prediction for the query output. Overall,
the model’s prediction fTF is given by

fTF(X,y,x;WK ,WQ,W V ,W F ,a, b)

=MLP ◦Attn(E):,N+1

=a⊤σ
(
W FAttn(E):,N+1 + b

)
, (3.1)

where σ is applied entry-wise.

We further introduce some simplifications: we merge pa-
rameters as WKQ := (WK)⊤WQ ∈ R(d+1)×(d+1) and
W FV := W FW V ∈ Rm×(d+1), and write

WKQ =

[
Γ 0d×1

01×d 1

]
, W FV =

[
Om×d v

]
,

where Γ ∈ Rd×d and v ∈ Rm×1. Similar simplifications
(zeroing out specific sub-matrices) have been adopted in re-
cent theoretical works on the expressivity and optimization
of transformers (Ahn et al., 2023; Mahankali et al., 2023a;
Wu et al., 2023; Kim & Suzuki, 2024a).

Consequently, fTF can be rewritten as

fTF(X,y,x;Γ,v, b,a)

=

m∑
j=1

ajσ

(
vj

∑N
i=1 yie

yi/ρex
⊤
i Γx/ρ∑N

i=1 e
yi/ρex

⊤
i Γx/ρ

+ bj

)
, (3.2)

with the new parameters (Γ,v, b,a): see Appendix A for
the derivation. Hereafter, we refer to Γ as the attention
matrix and consider (v, b,a) as the MLP parameters.

Pretraining Algorithm. In Algorithm 1, we specify our
gradient-based pretraining algorithm to optimize the pa-
rameters (Γ,v, b,a) . The algorithm uses Tpt pretraining
tasks {(Xt

1:Npt
,yt

1:Npt
,xt, yt)}Tpt

t=1 and optimizes the (ℓ2
regularized) squared loss

Li(Γ,v, b,a)

=
1

2Ti

Ti−1+Ti∑
t=Ti−1+1

(fTF(X
t
1:Npt

,yt
1:Npt

,xt;Γ,v, b,a)− yt)2

for i = 1, 2; here T0 = 0 and T1 + T2 = Tpt. The training
procedure is divided into two stages.

• In Stage I, we perform a single gradient descent step on the
attention matrix Γ using the ℓ2-regularized squared loss
L1(Γ,v, b,a) +

λ1

2 ∥Γ∥
2
2 computed over T1 independent

pretraining tasks. This optimization problem is nonconvex
with respect to Γ. This single gradient descent update
originates from theoretical studies on feature learning Ba
et al. (2022); Damian et al. (2022), where it is shown
that the first gradient update captures low-dimensional
features of the true function. More recent results have
highlighted that one gradient step in transformers can
encode information for implementing algorithms such as
kernel methods on low-dimensional subspaces (Oko et al.,
2024b) or induction heads (Bietti et al., 2023b).

• In Stage II, we optimize the MLP parameters. Specifically,
we randomize the weight v and bias b, and perform ridge
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Algorithm 1 Gradient-based training of transformer
Input : Learning rate η1, η2, regularization rate λ1, λ2,

initialization scale α, temperature ρ
1 Initialize Γ(0) ∼ Id/

√
d,v(0) ∼ Unif({±1}m), b(0) =

0m,a(0) = α1m

2 Stage I: Gradient descent on Attention Matrix
3 Γ∗ ← Γ(0) − η1∇Γ(L1(Γ(0),v(0), b(0),a(0)) +

λ1

2 ∥Γ∥
2
F )

4 Stage II: Optimization of MLP Layer
5 Initialize b∗j ∼ Unif([−1, 1]) ,v∗ = v(0).

a∗ ← argmina L2(Γ
∗,v∗, b∗,a) + λ2

2 ∥a∥
2.

Output :Prediction fTF(X,y,x;Γ∗,v∗, b∗,a∗).

regression on the output weights a. Note that the only role
of the MLP layer is to fit the polynomial link function σ∗.
Since our primary focus is the optimization of attention
matrix, we adopt this simpler algorithm for MLP which
admits a closed-form solution due to the convex objective.

4 Main Result: Transformer Performs
Inference-Time Feature Learning

4.1 Main Theorem

Now we present our main theorem, which establishes an
optimization guarantee for Algorithm 1 and a bound on the
inference-time sample complexity.

Theorem 1. Let fTF(X,y,x;Γ∗,v∗, b∗,a∗) be a
transformer pretrained via Algorithm 1 with MLP
width m = Ω̃(r2ge(σ∗)) and initialization scale
α = O(m−1r−1d−(ie(σ∗)+1)/2 log−Cα d) for constant Cα.
Then, there exist hyperparameters λ1, λ2, η1, and η2 such
that the following hold with probability at least 0.99 over
the training data and random initialization:

1. (Optimization) Suppose that the pretraining task size
and the pretraining context length satisfy T1, Npt =

Ω̃(r2die(σ∗)+2) and T2 = Ω̃(r3ge(σ∗)/2) (i.e., Tpt =

Ω̃(r2die(σ∗)+2 ∨ r3ge(σ∗)/2)). Then, Algorithm 1 yields
parameters (Γ∗,v∗, b∗,a∗) such that the empirical loss

1

T2

T1+T2∑
t=T1+1

∣∣yt−fTF(X
t,yt,xt,Γ∗,v∗, b∗,a∗)

∣∣ = od(1).

Moreover, we have ∥a∗∥ = Õ(r3ge(σ∗)/4m−1/2).

2. (Inference-time sample complexity) At inference time,
if the (in-context )test prompt length satisfies

Ntest = Ω̃(r3ge(σ∗)/2),

then the ICL error (2.1) RICL
Ntest

(Γ∗,v∗, b∗,a∗) =
od(1).

4.2 Implications of the Main Theorem

Our main theorem suggests the statistical capabilities and
optimization properties of transformers (see Table 4.1).

(i) Inference-Time Feature Learning. First, consider the
standard case where r = d: the inference-time sample com-
plexity is dΘ(ge(σ∗)). Since ge(σ∗) ≤ deg(σ∗) always holds,
our derived inference-time sample complexity surpasses the
lower bound dΘ(deg(σ∗)) for non-adaptive algorithms based
on fixed basis such as kernel methods. This implies that
pretrained transformers can implement an algorithm capable
of inference-time feature learning, that is, they can adapt to
the feature vector β of single-index functions, which varies
across test tasks. Beyond merely establishing the inference-
time sample complexity, we verify in Section 5 that the
attention mechanism indeed captures the feature vector β.

Moreover, when β is restricted to an r ≤ d-dimensional sub-
space in Rd (see Assumption 4), the inference-time sample
complexity depends only on r. In other words, transformers
can significantly reduce the inference-time sample complex-
ity when the support of β is low-dimensional, i.e., r ≪ d.

(ii) Beyond CSQ. Our result further shows that the
inference-time sample complexity can surpass the sample
complexity lower bound die(σ∗)/2∨1 for CSQ algorithms.
For instance, the sample complexity upper bounds for
one-step gradient descent (Ba et al., 2023) and one-pass
SGD (Ben Arous et al., 2021) on two-layer neural networks
all depends exponentially on the information exponent. In
contrast, in our analysis, the single-layer transformer im-
plements an in-context algorithm that is statistically more
efficient than CSQ learners, due to the nonlinear attention.

(iii) Optimization Guarantee. While recent works have
revealed that nonlinear transformers can implement rich al-
gorithms by constructing specific parameter configurations,
our result provides an optimization guarantee for pretrain-
ing along with the pretraining task/sample complexity of
dΘ(ie(σ∗)) for Tpt and Npt (see 1. in Theorem 1). We estab-
lish this by proving that a single gradient descent step can
construct an attention matrix that approximates E[ββ⊤],
which enables inference-time feature learning, and that the
MLP layer can successfully fit the link function σ∗.

Remark 7. For simplicity of analysis, we assume that the
link function σ∗ is fixed across tasks. Task-specific link
functions may be accommodated by adding an additional
attention layer to fit the link function adaptively from the
test prompt, as done in (Oko et al., 2024b). An alternative
could be to fit the MLP parameter a using each test sample:
such test-time training constitutes a relatively lightweight
optimization, where it only involves training the MLP layer,
since the inner attention layers have already extracted the
relevant feature information ⟨β,x⟩.
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Regression on test prompt
Kernel CSQ SQ

dΘ(deg(σ∗)) dΘ(ie(σ∗)) dΘ(ge(σ∗))

In-context learning
(Oko et al., 2024b) This work
Pretraining: dΘ(ie(σ∗))

Inference: rΘ(deg(σ∗)) [*1]

Pretraining: dΘ(ie(σ∗))

Inference: rΘ(ge(σ∗)) [*2]

Table 4.1. Comparison of (inference-time) sample complexity.
Here, r denotes the dimensionality of the support from which
the task vector β is drawn (See Assumption 4). [*1] is only appli-
cable when r ≲

√
d, whereas [*2] holds for any r ≤ d.

4.3 Comparison Against Prior Work

Most recent studies on single-index models have focused
on the standard supervised regression setting rather than in-
context learning, with the exception of (Oko et al., 2024b)
which investigates the ICL complexity of single-index learn-
ing under a low-dimensional assumption. Here we highlight
the distinction from the work; see Table 4.1 for the compari-
son of relevant sample complexities.

(i) Improved ICL sample complexity. In (Oko et al.,
2024b), the derived inference-time sample complexity is
O(rΘ(deg(σ∗))), which corresponds to the complexity of
non-adaptive methods (for instance, kernel methods) on
an r-dimensional subspace. In contrast, we establish an
improved sample complexity of O(rΘ(ge(σ∗))).

(ii) Removal of low-dimensional assumption. (Oko
et al., 2024b) assumed that the dimensionality r of pre-
training task distribution is much smaller than the ambient
dimensionality d, whereas our analysis do not rely on this
assumption.

(iii) Technical innovations. To derive the improved
inference-time sample complexity, we demonstrate that the
nonlinear transformation applied to the output label {yi} re-
duces the information exponent of the link function σ∗ to its
generative exponent. This requires a careful tracking of the
corresponding Hermite coefficients through a SoftMax at-
tention block, which constitutes one of the most technically
challenging parts of the analysis. This goes beyond (Oko
et al., 2024a) where the authors showed that a linear atten-
tion computes correlations on the raw label {yi} and a fixed
kernel basis {ϕ(xi)} (constructed by a fixed MLP block).
See the next section for the technical overview.

5 Proof Overview
We provide a proof sketch for our main Theorem 1, where
the main goal is to show that the self-attention mechanism
provably extracts the feature vector β for each prompt.

The key idea is that the exponential transformation in

the Softmax attention module leads to both (i) inference-
time feature learning capability, and (ii) statistical effi-
ciency that surpasses CSQ algorithms. Observe that the
term eyi/ρex

⊤
i Γx/ρ appears in the architecture (3.2), where

ex
⊤
i Γx/ρ generates a series of polynomials in x via a Her-

mite expansion, which enables detection of the feature di-
rection β from the nonlinearly transformed signal eyi/ρ,
yielding (i). On the other hand, the factor eyi/ρ reduces
the information exponent of σ∗ to its generative exponent
ge(σ∗) through the exponential transformation e·/ρ, yield-
ing (ii). Hereafter, we outline our analysis step by step.

5.1 Gradient Descent on Attention Matrix

Assuming that fTF is sufficiently small at initialization, we
can approximate the population (expected) gradient by the
population correlational gradient E[y∇ΓfTF]. We show
that the magnitude of this correlation is O(d−(ie(σ∗)−1)/2).
A standard matrix concentration argument then yields the re-
quired pretraining task and sample complexity of dΘ(ie(σ∗)),
ensuring that the correlational signal is not hidden within
the noise due to finite sample size.

Furthermore, we demonstrate that the single-step gradient
on Γ is approximately proportional to E[ββ⊤]. This implies
that the attention matrix acquires information about the r-
dimensional support of β via pretraining, leading to an
inference-time sample complexity independent of d.

5.2 Feature Extraction by Softmax Attention

Next we show that the pretrained attention module can
extract the feature information ⟨β,x⟩ directly from ob-
serving the test prompt. Recall that the model output is
given by fTF =

∑m
j=1 ajσ(vjg(X,y,x;Γ∗) + bj), where

g(X,y,x;Γ) :=
N−1 ∑N

i=1 yie
yi/ρex

⊤
i Γx/ρ

N−1
∑N

i=1 eyi/ρex
⊤
i

Γx/ρ
is the attention

output. We establish the following proposition, which
demonstrates that g contains the feature information:

Proposition 8 (Informal). Suppose Ntest = Ω̃(r3ge(σ∗)/2).
For Γ∗ optimized in Algorithm 1, we have

g(X,y,x;Γ∗) ≃ Ca + Cb

(
⟨x,β⟩√

r

)ge(σ∗)

with high probability over the prompt, where Ca and Cb are
Θ(1/poly log d) quantities independent of the data.

We see that the nonlinearity introduced by the Softmax
attention plays a key role in deriving the proposition above.

Warm-Up: Linear Attention Module. First consider
the counterpart of g with a linear attention module
glin(X,y,x;Γ) := N−1

∑N
i=1 yi(yi +x⊤

i Γx). If the con-
text length N is sufficiently large, the second term con-
centrates around E[yx⊤]Γx. Moreover, it is known that
if Ez∼N (0,1)[zσ∗(z)] ̸= 0, or equivalently, ie(σ∗) = 1,
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then E[yx⊤] = β⊤ is satisfied. Overall, the attention mod-
ule successfully computes β⊤Γx ≃ β⊤x in-context, if Γ
is (nearly) spanned by β. However, if ie(σ∗) > 1, then
E[yx⊤] = 0 and the direction β is not identified. Thus we
must exploit the nonlinearity to handle high-information-
exponent scenarios.

Exploiting Softmax. To consider the nonlinear attention,
we first show that the exponential transformation can reduce
the information exponent of σ∗ to its generative exponent.
Specifically, we show the following:

Lemma 9 (Informal). The information exponent of exp(σ̄∗)
and σ̄∗ exp(σ̄∗) is equal to ge(σ∗), where σ̄∗ is a clipped
version of σ∗/ρ (see Appendix B).

Based on this property, we show that Softmax attention
can compute ⟨x,β⟩ in-context for any polynomial link σ∗;
consider the denominator N−1

∑N
i=1 e

yi/ρex
⊤
i Γx/ρ of g.

For N sufficiently large, the quantity approximates

Ex1∼N (0,Id) [exp σ̄∗(⟨β,x1/ρ⟩)exp (⟨Γx,x1⟩ /ρ)] .

Now we consider Hermite expansions of exp σ̄∗(⟨β,x1/ρ⟩)
and exp (⟨Γx,x1⟩ /ρ), and apply the property
Ex1 [Hei(⟨w,x1⟩)Hej(⟨w′,x1⟩)] ∝ I(i = j) ⟨w,w′⟩.
Fortunately, exp (⟨Γx,x1⟩ /ρ) contains all degrees
of Hermite components, and from the lemma above,
exp σ̄∗(⟨β,x1/ρ⟩) has a nonzero coefficient for Hege(σ∗).
Thus, the attention module computes ⟨β,x⟩ge(σ∗) if Γ is
nearly spanned by β. Crucially, since the correlational
signal strength depends only on the generative exponent
ge(σ∗), the required context length N does not scale with
ie(σ∗).

We also show that the numerator of g retains this feature
information. The remaining technical challenge is to ensure
that the information is not lost due to the correlation between
the denominator and numerator: we tackle this through a
careful order analysis. See Appendix B for details.

5.3 Fitting the MLP Layer and Test Error Analysis

To complete the optimization analysis, we show that the
MLP layer can fit the unknown link function via ridge re-
gression (line 5 in Algorithm 1). First, we construct an MLP
parameter a′ such that

1

T2

T1+T2∑
t=T1+1

(
yt − fTF(X

t,yt,xt,Γ∗,v∗, b∗,a′)
)2

is sufficiently small. Let ℓ(a′) be the quantity above:
thanks to the equivalence between the ℓ2-regularized con-
vex optimization and its norm-constrained counterpart, we
can show that there exists a ridge parameter λ2 such that
ℓ(a∗) ≤ ℓ(a′) and ∥a∗∥ ≤ ∥a′∥ hold, where a∗ is the
parameter obtained by solving ridge regression.

Finally, we bound the discrepancy between the training and
test errors via the Rademacher complexity of the class of
transformers, leveraging a norm bound on ∥a∗∥ derived
from that of ∥a′∥. See Appendices D and E for details.

6 Synthetic Experiment
We conduct numerical experiments on synthetic data to
compare the in-context learning algorithm implemented by
nonlinear transformers against non-adaptive kernel methods.
We train a 6-layer GPT-2 model (Radford et al., 2019) to
learn the Gaussian single-index task. See Appendix G for
detailed settings of the experiments.
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Figure 6.1. Generalization error versus test prompt length for ker-
nel ridge regression (Top) and pretrained GPT-2 model (Bottom).

6.1 Comparison with Non-Adaptive Algorithm

For each test task t, we generate data as xt
1, . . . ,x

t
Ntest

,x ∼
N (0, Id),β

t ∼ Unif(Sd−1) (i.e., r = d),with yti =
σ∗(⟨βt,xt

i⟩) = He3(⟨βt,xt
i⟩) for i ∈ [N ]. We compare

the performance of two approaches:

• In-context learning using a 6-layers GPT-2 model, con-
figured as in (Garg et al., 2022; Oko et al., 2024b). We
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pretrain the GPT-2 model using on synthetic datasets
{Xt

1:Npt
,yt

1:Npt
,xt, yt}Tpt

t=1, and evaluate its estimation

error 1
Ttest

∑Ttest

t=1 (yt − fGPT2(X
t
1:Ntest

,yt
1:Ntest

,xt))2

across different values of Ntest and d.
• Kernel method based on the Gaussian RBF kernel
k(x,x′) = exp

{
−∥x− x′∥2/σ2

}
. For each task, the

kernel is trained from scratch using the test prompt
(Xt

1:Ntest
,yt

1:Ntest
) as training data.

We set d = 4, 8, 12, 16 and measure the test error at Ntest =
⌊2k − 1⌋ (k = 2, 2.5, . . . , 7). In Figure 6.1 we observe that
the performance of kernel models deteriorates rapidly due to
the sample complexity lower bound ddeg(σ∗) = d3, whereas
the pretrained transformer exhibits a much more favorable
dimension scaling in the in-context sample complexity.

6.2 Sample Complexity Scaling

To further validate our theoretical claim that pretrained trans-
formers can achieve test-time sample complexity beyond the
CSQ lower bound, we conduct a sample complexity probing
experiment under the same setting as in Section 6.1. In
Figure 6.2, we vary the input dimensionality d and measure
the minimal number of samples required to reach specified
test error thresholds. The estimated inference-time sample
complexity scales approximately as n ≃ d1.1, outperform-
ing both the kernel lower bound of d3 and the CSQ lower
bound of n ≳ d1.5 for the link function σ∗(·) = He3(·)
which has information exponent 3.
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Figure 6.2. Sample complexity of pretrained GPT-2 on the degree-
3 single-index task y = He3(⟨β,x⟩). We plot the minimal test-
time sample size Ntest required to achieve test error thresholds
(0.05, 0.075, 0.1, 0.125) against input dimensionality d on log-log
scale. The slope of each plot is estimated using least squares.

7 Conclusion and Future Direction
We studied in-context learning of single-index polynomi-
als and demonstrated that pretrained transformers achieve
inference-time sample complexity that surpasses both kernel
methods and CSQ lower bounds. Our analysis highlights

that the Softmax attention can extract feature information
by leveraging nonlinear transformations applied to labels.

We outline several future directions. First, the pretraining
procedure and its current sample complexity of dΘ(ie(σ∗))

may potentially be improved to dΘ(ge(σ∗)) by going beyond
one gradient step (Dandi et al., 2024; Arnaboldi et al., 2024;
Lee et al., 2024). Second, extending our analysis to broader
function classes – such as non-polynomial σ∗, multi-index
targets, or anisotropic covariates (Ghorbani et al., 2020; Re-
finetti et al., 2021; Mousavi-Hosseini et al., 2023b) – is an-
other interesting direction. Finally, while our study demon-
strates both “memorization” of the r-dimensional support of
the target function class and inference-time feature learning,
it remains an open question whether a tradeoff or certain
interaction exists between these two mechanisms.
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A Preliminaries
A.1 High Probability Events

We frequently use the term “with high probability” or “w.h.p.”:

Definition 10. We state that an event A occurs with high probability, when

P[A] ≥ 1− d−Cwhp

holds for a sufficiently large constant Cwhp. Here, Cwhp depends on neither d nor r.

An illustrative example is Gaussian tail bound: for z ∼ N (0, 1) and t ≥ 0, it holds that

P[z > t] ≤ exp
{
−t2/2

}
.

Plugging
√

2Cwhp log d into t above, we can see that z ≤
√
2Cwhp log d holds with probability at least 1 − d−Cwhp . In

this situation, we say that “z ≤ O(
√
log d) with high probability”—this means that we can redefine Cwhp to be sufficiently

large, by changing the hidden constant in O(
√
log d).

Throughout this paper, whenever we take the intersection of high-probability events A1, . . . , Am, m = O(polyd) is always
ensured. Thus, (by redefining Cwhp,) we can state that A1 ∩ · · · ∩Am also occurs with high probability.

Moreover, we consider the high-dimensional setting, i.e., our result holds for all d ≥ Chd where Chd is a constant
independent of both d and r.

Unless otherwise specified, the notations O,Θ,Ω, Õ, Θ̃, Ω̃ are considered with respect to d. Note that we allow r to scale
with d, while treating deg(σ∗) as an O(1) quantity.

A.2 Estimator Constructed by Single-Layer Transformer

We now show that the estimator constructed by the transformer (3.1) is explicitly written as in (3.2), given our parameter
configuration

WKQ =

[
Γ 0d×1

01×d 1

]
, W FV =

[
Om×d v

]
.

From (3.1) and the configuration above, the estimator fTF is written as, recalling that E =

[
x1 · · · xN x
y1 · · · yN 1

]
,

fTF = a⊤σ(W FV ESoftmax(Mask(ρ−1E⊤WKQE:,N+1)) + b)

= a⊤σ

W FV ESoftmax



x⊤
1 Γx/ρ+ y1/ρ

...
x⊤
NΓx/ρ+ yN/ρ

−∞


+ b



= a⊤σ

[vy1 · · · vyN v
]
Softmax



x⊤
1 Γx/ρ+ y1/ρ

...
x⊤
NΓx/ρ+ yN/ρ

−∞


+ b


=

m∑
j=1

ajσ

(
vj

∑N
i=1 yie

yi/ρex
⊤
i Γx/ρ∑N

i=1 e
yi/ρex

⊤
i Γx/ρ

+ bj

)
.

Hence we obtain (3.2).

B In-Context Feature Extraction via Softmax Self-Attention Module
We show that the softmax self-attention has the ability to extract the feature vector β of the single-index function σ∗(⟨x,β⟩)
(this section precedes the optimization analysis, as the techniques developed here are later utilized in the optimization
theory). Crucially, we show that the nonlinear transformation applied to y via softmax attention module reduces the effective
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information exponent. Consequently, the generative exponent (Damian et al., 2024) of the link function σ∗ governs the
inference-time complexity, which surpasses the CSQ limit (Damian et al., 2022). Let

g(X,y,x;Γ) :=

∑N
i=1 yie

yi/ρex
⊤
i Γx/ρ∑N

i=1 e
yi/ρex

⊤
i Γx/ρ

(B.1)

be the output of the attention layer. The goal of this section is to show the following Proposition 11, stating that g can extract
the inner product between x and β which varies across tasks.

Proposition 11. Let ρ = Θ(logCρ d) and κ = Θ(logCκ d) where Cρ and Cκ are any constants satisfying Cρ ≥ deg(σ∗)/2+
1 and Cκ ≥ max{2Cρege(σ∗)(σ∗) + 1, 4 deg(σ∗) − 4} (ei(σ∗) is defined in Definition 14). Suppose Γ = 1

κ
√
r
G for a

matrix G written as
G = U⊤DU +N , (B.2)

where D := diag(1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
d−r

), U is an orthogonal matrix, and N is a matrix satisfying ∥N∥F = O(1/
√
d).

Now, if N = Ω̃(r3ge(σ∗)/2), then with high probability over length-N prompts (X1:N ,y1:N ,x), it holds that

g(X,y,x;Γ)

=P1 + P2

(
⟨Gx,β⟩√

r

)ge(σ∗)

+ od(P2r
−3ge(σ∗)/4 log−2 deg(σ∗)+2 d). (B.3)

Here, P1 and P2 are independent of the data and satisfies P1 = od(1) and P2 = Θd

(
(log d)−CP2

)
, where CP2 is a constant

dependent on σ∗ but is uniformly upper bounded using deg(σ∗) and odd(σ∗) := Ez∼N (0,1)[σ∗,odd(z)
2], where σ∗,odd(·) is

a polynomial constructed by extracting only the odd parts of σ∗.

Remark 12. Later we will show that Γ after pretraining satisfies Γ ≃
√
rEβ[ββ

⊤] = U⊤DU/
√
r, which matches the

condition of Proposition 11. Since U is spanned by the basis of the support of β in this case, ⟨Gx,β⟩ in (B.3) satisfies
⟨Gx,β⟩ ≃ ⟨x,β⟩. This implies that, if the context length at inference time is Ω̃(rge(σ∗)), then the pretrained attention layer
can extract the feature vector β which varies across different prompts and compute ⟨x,β⟩. This highlights the inference-time
feature learning ability of the pretrained attention layer. Moreover, the inference-time sample complexity depends on
neither deg(σ∗) nor ie(σ∗), which surpasses kernel and CSQ methods. The factor log−2 deg(σ∗)+2 d in the residual term is
introduced just for compatibility with later stages.

Preparations. We use the following property, which states that there exists a polynomial transformation which reduces
the information exponent of σ∗ to its generative exponent. Recall that H(f, i) denotes the degree-i Hermite coefficient of f
(that is, f(z) =

∑
i≥0

H(f,i)
i! Hei(z)).

Lemma 13 ((Lee et al., 2024), Proposition 6). The following holds:

• If ge(σ∗) = 1, then there exists i ≤ C1(deg(σ∗), odd(σ∗)) such that |H(σi
∗, 1)| ≥ D1(deg(σ∗), odd(σ∗)).

• If ge(σ∗) = 2, then there exists i ≤ C2(deg(σ∗)) such that |H(σi
∗, 2)| ≥ D2(deg(σ∗)).

Here, C1(deg(σ∗), odd(σ∗)) and D1(deg(σ∗), odd(σ∗)) are constants which only depend on deg(σ∗) and odd(σ∗) :=
Ez∼N (0,1)[σ∗,odd(z)

2] where σ∗,odd(·) is a polynomial constructed by extracting only the odd parts of σ∗. Similarly,
C2(deg(σ∗)) and D2(deg(σ∗)) are constants depending only on deg(σ∗).

Definition 14. For i ≥ 1, let ei(σ∗) be the minimal j ≥ 1 such that H(σj
∗, i) ̸= 0 holds. If such j does not exist, then define

ei(σ∗) =∞. (Especially from Lemma 13, ege(σ∗)(σ∗) can be uniformly upper bounded using the degree and the odd part of
σ∗.)

Another key property is that y is bounded with high probability.

Lemma 15 ((Oko et al., 2024b), Corollary 17). If ∥β∥ = 1 and x ∼ N (0, Id), then |σ∗(⟨β,x⟩)| ≲ (log d)deg(σ∗)/2 holds
with high probability.
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This motivates us to introduce a new function σ̄∗(z) :=

{
σ∗(z)

ρ

(
if
∣∣∣σ∗(z)

ρ

∣∣∣ ≤ 1
log d

)
0 (otherwise)

. Note that σ̄∗(⟨β,x⟩) =

σ∗(⟨β,x⟩)/ρ holds with high probability from Lemma 15 and the condition of ρ.

Here we show the following lemma appeared in Section 5, stating that the nonlinear transformation exp(·) can reduce the
information exponent.

Lemma 9. For p ≥ 1, if ep(σ∗) < ∞, then H(exp(σ̄∗), p) = Θ
(

1
(log d)Cρep(σ∗)

)
and H(σ̄∗ exp(σ̄∗), p) =

Θ
(

1
(log d)Cρep(σ∗)

)
holds. Here, the hidden constants in Θ notations may depend on σ∗ and p. If ei(σ∗) = ∞, then

H(exp(σ̄∗), i) can be taken to be of O(d−C) where C is a sufficiently large constant.

This immediately implies that the information exponent of exp(σ̄∗) and σ̄∗ exp(σ̄∗) is equal to ge(σ∗).

Proof. We consider H(exp(σ̄∗), p) for ep(σ∗) <∞. The other cases can be derived similarly. From the Taylor expansion,
we obtain

H(exp(σ̄∗), p) =
1

ep(σ∗)!
H(σ̄∗

ep(σ∗), p)︸ ︷︷ ︸
(I)

+

Cρep(σ∗)∑
i=ep(σ∗)+1

1

i!
H(σ̄∗

i, p)

︸ ︷︷ ︸
(II)

+
∑

i≥Cρep(σ∗)+1

1

i!
H(σ̄∗

i, p)

︸ ︷︷ ︸
(III)

.

For (I),

H(σ̄∗
ep(σ∗), p) = Ez∼N (0,1)[Hep(z)σ̄∗

ep(σ∗)(z)]

=
1

ρep(σ∗)
E[Hep(z)σ∗

ep(σ∗)(z)]− 1

ρep(σ∗)
E[Hep(z)σ∗

ep(σ∗)(z)I(|σ∗(z)| ≥ ρ(log d)−1)]

holds. Here, from Hölder’s inequality, we know

E[Hep(z)σ∗
ep(σ∗)(z)I(|σ∗(z)| ≥ ρ(log d)−1)] ≤ E[Hep(z)

4]1/4E[σ∗
4ep(σ∗)(z)]1/4E[I(|σ∗(z)| ≥ ρ(log d)−1)]1/2 (B.4)

Moreover, E[I(|σ∗(z)| ≥ ρ(log d)−1)] = O(d−1) holds due to the high probability property. Consequently, (I) is of
Θ((log d)−Cρep(σ∗)).

For (II), note that 1
i!H(σ̄∗

i, p) is dominated by 1
i!ρiE[Hep(z)σ∗

i(z)] from the similar argument as above. Moreover, we can
see from Hölder’s inequality that ∣∣∣∣ 1

i!ρi
E[Hep(z)σ∗

i(z)]

∣∣∣∣ ≲ 1

i!ρi

√
E[σ∗2i(z)].

Here, as M(σ∗) = maxep(σ∗)+1≤i≤Cρep(σ∗)

√
E[σ∗2i(z)] is the constant depending only on σ∗ and p, we can state that (II)

is of O((log d)−Cρ(ep(σ∗)+1)).

Finally, let us bound (III). From the definition of σ̄∗, we get∣∣∣∣ 1i!H(σ̄∗
i, p)

∣∣∣∣ ≤ 1

i!

√
E[Hep(z)2]

√
E[σ̄∗2i(z)]

≲
1

i!
(log d)−i.

Moreover, from the bound of residual terms of the Taylor expansion,∑
i≥Cρep(σ∗)+1

1

i!
(log d)−i ≲ (log d)−Cρep(σ∗)−1

is satisfied.

Overall, we conclude that H(exp(σ̄∗), p) = Θ
(

1
(log d)Cρep(σ∗)

)
.
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Lemma 9 does not deal with the case where p = 0. Here we treat this case:

Lemma 16. H(σ̄∗ exp σ̄∗, 0) =
1
ρ2 (1 + od(1)) and H(exp σ̄∗, 0) = 1 + od(1) holds.

Proof. Note that H(σ∗/ρ, 0) = 0 and H((σ∗/ρ)
2, 0) = 1

ρ2 from Assumption 4. For σ∗ exp σ̄∗ =
∑

i≥0
1
i! σ̄

i+1
∗ and

exp σ̄∗ =
∑

i≥0
1
i! σ̄

i
∗, conducting the same argument as Lemma 9 yields the assertion.

Let us derive bounds for some important quantities.

Lemma 17. Suppose x,x′ ∼ N (0, Id) and β ∼ Supp(β) := {β | β ∈ Sr, ∥β∥ = 1}. Then, x⊤Gx′

ρκ
√
r

= o(1) and

β⊤Gx = O(
√
log d) holds with high probability.

Proof. First we can confirm that

x⊤Gx′

ρκ
√
r

= x⊤U⊤DUx′/ρκ
√
r + x⊤Nx′/ρκ

√
r = o(1)

holds with high probability: from the rotational invariance, y = Ux and y′ = Ux′ are standard Gaussian vectors. Then,
the first term is o(1) with high probability from Lemma 29 and ρκ = Ω(log d). To show that the second term is o(1), we
can again use Lemma 29 for the case r = d and the fact ∥N∥2 = O(d−1/2).

Next we show
β⊤Gx = β⊤U⊤DUx+ β⊤Nx = O(

√
log d).

For the first term, note that ∥β⊤U⊤DU∥ ≤ 1 holds. Then, (for any fixed β) β⊤U⊤DUx is the Gaussian with variance at
most one. Thus, Gaussian tail bound indicates that β⊤U⊤DUx ≲

√
log d with high probability. The second term can be

also derived using the fact that ∥Nx∥ = O(1) holds with high probability from Lemma 28.

Lemma 18. With high probability over the prompt (X,y,x),∣∣∣∣∣N−1
N∑
i=1

exp

(
yi
ρ

)
exp

(
x⊤
i Gx

ρκ
√
r

)
− Ex1,ζ1

[
exp

(
σ̄∗(⟨β,x1⟩) +

ζ1
ρ

)
exp

(
x⊤
1 Gx

ρκ
√
r

)]∣∣∣∣∣ = Õ
(
N− 1

2

)
and ∣∣∣∣∣N−1

N∑
i=1

(
yi
ρ

)
exp

(
yi
ρ

)
exp

(
x⊤
i Gx

ρκ
√
r

)
− Ex1,ζ1

[
σ̄∗(⟨β,x1⟩) exp

(
σ̄∗(⟨β,x1⟩) +

ζ1
ρ

)
exp

(
x⊤
1 Gx

ρκ
√
r

)]∣∣∣∣∣
=Õ

(
N− 1

2

)
holds.

Proof. Let us show the first assertion: the second one is derived in the same manner.

From Lemma 17, N−1
∑N

i=1 exp(yi/ρ)exp(x
⊤
i Gx/ρκ

√
r) = N−1

∑N
i=1 exp(σ̄∗(⟨β,xi⟩) +

ζi/ρ)exp(clip(x
⊤
i Gx/ρκ

√
r, 1)) with high probability where clip(x, c) =

{
x (if |x| ≤ c)

0 (if |x| > c)
. Conditioned on

this, with high probability,

N−1
N∑
i=1

exp(yi/ρ)exp(x
⊤
i Gx/ρκ

√
r)− Ex1,ζ1

[
exp(σ̄∗(⟨β,x1⟩) + ζ1/ρ)exp(x

⊤
1 Gx/ρκ

√
r)
]

=N−1
N∑
i=1

eσ̄∗(⟨β,xi⟩)+ζi/ρeclip(x
⊤
i Gx/ρκ

√
r,1) − Ex1,ζ1

[
eσ̄∗(⟨β,x1⟩)+ζ1/ρeclip(x

⊤
1 Gx/ρκ

√
r,1)
]

︸ ︷︷ ︸
(I)
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+ Ex1,ζ1

[
eσ̄∗(⟨β,x1⟩)+ζ1/ρeclip(x

⊤
1 Gx/ρκ

√
r,1)
]
− Ex1,ζ1

[
eσ̄∗(⟨β,x1⟩)+ζ1/ρex

⊤
1 Gx/ρκ

√
r
]

︸ ︷︷ ︸
(II)

holds. (I) is of Õ(N− 1
2 ) with high probability from Hoeffding’s inequality, noting that exp(σ̄∗(⟨β,xi⟩) +

ζi/ρ)exp(clip(x
⊤
i Gx/ρκ

√
r, 1)) is O(1)-bounded. (II) is upper-bounded as, using Hölder’s inequality,

Ex1

[∣∣exp(σ̄∗(⟨β,x1⟩) + ζ1/ρ)(1− exp(x⊤
1 Gx/ρκ

√
r))I((x⊤

1 Gx/ρκ
√
r) ≥ 1)

∣∣]
≤Ex1

[
exp(σ̄∗(⟨β,x1⟩) + ζ1/ρ)

4
]1/4 Ex1

[
(1− exp(x⊤

1 Gx/ρκ
√
r))4

]1/4 E[I((x⊤
1 Gx/ρκ

√
r) ≥ 1)2]1/2

≤Ex1

[
(1− exp(x⊤

1 Gx/ρκ
√
r))4

]1/4 ·O(d−C∗
)

where C∗ is a constant which can be taken to be sufficiently large from the definition of high probability events. We conclude
that (II) is negligible by showing that Ex1

[
(1− exp(x⊤

1 Gx/ρκ
√
r))4

]
= O(1) with high probability over x. It suffices to

show that Ex1

[
(exp(x⊤

1 Gx/ρκ
√
r))l
]
= Ex1

[
exp(lx⊤

1 Gx/ρκ
√
r)
]
= O(1) with high probability for l ∈ [4]. Here, it

holds that

Ex1

[
exp(lx⊤

1 Gx/ρκ
√
r)
]

=Ex1∼N (0,Id)

[
exp(lx⊤

1 U
⊤DUx/ρκ

√
r)exp(lx⊤

1 Nx/ρκ
√
r)
]

≤Ex1∼N (0,Id)

[
exp(2lx⊤

1 DUx/ρκ
√
r)
]1/2 Ex1∼N (0,Id)

[
exp(2lx⊤

1 Nx/ρκ
√
r)
]1/2

. (B.5)

Note that ∥2lDUx/ρκ
√
r∥ ≤ 1 and ∥2lNx/ρκ

√
r∥ ≤ 1 holds with high probability over x ∼ N (0, Id): for the former

one, we can use Lemma 28 as Ux ∼ N (0, Id). For the latter one, we again apply Lemma 28 (for the case where r = d),
together with ∥N∥F = O(1/

√
d). In this case, (B.5) can be upper-bounded by

Ez∼N (0,1)[exp(λ1z)]
1/2Ez∼N (0,1)[exp(λ2z)]

1/2

where λ1, λ2 ≤ 1, which is known to be O(1). This completes the proof.

Proof of Proposition 11. Now we prove Proposition 11. We first naively evaluate the denominator and numerator of (B.1)
separately, and deal with their correlation afterwards.

Proof. Plugging the parameter values into (B.1) yields

(B.1) = ρ
N−1

∑N
i=1(yi/ρ)exp(yi/ρ)exp(x

⊤
i Gx/ρκ

√
r)

N−1
∑N

i=1 exp(yi/ρ)exp(x
⊤
i Gx/ρκ

√
r)

.

First, let us evaluate the denominator N−1
∑N

i=1 exp(yi/ρ)exp(x
⊤
i Gx/ρκ

√
r). Note that, with high probability over the

distribution of (x1, . . . ,xN ), this is equal to the clipped version N−1
∑N

i=1 exp(σ̄∗(⟨β,xi⟩) + ζi/ρ)exp(x
⊤
i Gx/ρκ

√
r).

Its expectation (assume x is fixed now) is calculated as, using exp(λz) =
∑

i≥0

exp(λ2/2)
i! λiHei(z),

Ex1,ζ1

[
exp(ζ1/ρ)exp(σ̄∗(⟨β,x1⟩))exp(x⊤

1 Gx/ρκ
√
r)
]

=
1

2
(exp(τ/ρ) + exp(−τ/ρ))Ex1

∑
i≥0

1

i!
H(exp σ̄∗, i)Hei(⟨β,x1⟩)exp

(
∥Gx∥
ρκ
√
r
· x

⊤
1 Gx

∥Gx∥

)
︸ ︷︷ ︸

(∗)

and

(∗) =Ex1

∑
i≥0

1

i!
H(exp σ̄∗, i)Hei(⟨β,x1⟩)

∑
j≥0

1

j!

(
∥Gx∥
ρκ
√
r

)j

exp

(
∥Gx∥2

2ρ2κ2r

)
Hej(⟨x1,Gx/∥Gx∥⟩)


17
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=
∑
i≥0

1

i!
H(exp σ̄∗, i)

(
∥Gx∥
ρκ
√
r

)i

exp

(
∥Gx∥2

2ρ2κ2r

)
(⟨β,Gx/∥Gx∥⟩)i (Lemma 34)

=H(exp σ̄∗, 0)exp

(
∥Gx∥2

2ρ2κ2r

)
+

H(exp σ̄∗, ge(σ∗))

ge(σ∗)!

(
∥Gx∥
ρκ
√
r

)ge(σ∗)

exp

(
∥Gx∥2

2ρ2κ2r

)
(⟨β,Gx/∥Gx∥⟩)ge(σ∗)

+
∑

i≥ge(σ∗)+1

H(exp σ̄∗, i)

i!

(
∥Gx∥
ρκ
√
r

)i

exp

(
∥Gx∥2

2ρ2κ2r

)
(⟨β,Gx/∥Gx∥⟩)i

︸ ︷︷ ︸
=:Ξ

. (B.6)

We can upper bound the final term Ξ: indeed, as ∥Gx∥
ρκ

√
r
≤ 1 with high probability,

|Ξ| =

∣∣∣∣∣∣
∑

i≥ge(σ∗)+1

H(exp σ̄∗, i)

i!

(
∥Gx∥
ρκ
√
r

)i

exp

(
∥Gx∥2

2ρ2κ2r

)
(⟨β,Gx/∥Gx∥⟩)i

∣∣∣∣∣∣
≲

∑
i≥ge(σ∗)+1

∣∣∣∣H(exp σ̄∗, i)

i!
(
〈
β,Gx/ρκ

√
r
〉
)i
∣∣∣∣

holds. Moreover, from Lemma 33, we know that(
H(exp σ̄∗, i)

i!

)2

≤
∑
i≥0

(H(exp σ̄∗, i))

i!

2

= Ez∼N(0,1)[(exp σ̄∗(z))
2] ≤ e2.

Then, we get

|Ξ| ≲
∑

i≥ge(σ∗)+1

∣∣∣∣H(exp σ̄∗, i)

i!
(
〈
β,Gx/ρκ

√
r
〉
)i
∣∣∣∣ ≲ ∑

i≥ge(σ∗)+1

|
〈
β,Gx/ρκ

√
r
〉
|i ≲

〈
β,Gx/ρκ

√
r
〉ge(σ∗)+1

with high probability.

Overall, letting kρ := 1
2 (exp(τ/ρ) + exp(−τ/ρ)) = Θd(1) (recall that we assumed τ = O(1)), with high probability we

obtain from Lemma 18 that

N−1
N∑
i=1

exp(yi/ρ)exp(x
⊤
i Gx/ρκ

√
r)

=kρH(exp σ̄∗, 0)exp

(
∥Gx∥2

2ρ2κ2r

)
+ kρ

H(exp σ̄∗, ge(σ∗))

ge(σ∗)!
exp

(
∥Gx∥2

2ρ2κ2r

)
(
〈
β,Gx/ρκ

√
r
〉
)ge(σ∗) + Ξ+ Õ(N−1/2).

Next we turn to the numerator: the expectation of N−1
∑N

i=1(yi/ρ)exp(yi/ρ)exp(x
⊤
i Gx/ρκ

√
r) is

Ex1,ζ1

[
(σ̄∗(⟨β,x1⟩) + ζ1/ρ)exp(ζ1/ρ)exp(σ̄∗(⟨β,x1⟩))exp(x⊤

1 Gx/ρκ
√
r)
]

=kρEx1

∑
i≥0

1

i!
H(σ̄∗ exp σ̄∗, i)Hei(⟨β,x1⟩)exp

(
∥Gx∥
ρκ
√
r
· x

⊤
1 Gx

∥Gx∥

)
+ k′ρEx1

∑
i≥0

1

i!
H(exp σ̄∗, i)Hei(⟨β,x1⟩)exp

(
∥Gx∥
ρκ
√
r
· x

⊤
1 Gx

∥Gx∥

)
where k′ρ := 1

2
τ
ρ (exp(τ/ρ)− exp(−τ/ρ)) = Θd(τ

2/ρ2). Hence, by the same procedure as the analysis of the denominator,
we obtain

N−1
N∑
i=1

(yi/ρ)exp(yi/ρ)exp(x
⊤
i Gx/ρκ

√
r)

18



Nonlinear transformers can perform inference-time feature learning

=kρH(σ̄∗ exp σ̄∗, 0)exp

(
∥Gx∥2

2ρ2κ2r

)
+ kρ

H(σ̄∗ exp σ̄∗, ge(σ∗))

ge(σ∗)!
exp

(
∥Gx∥2

2ρ2κ2r

)
(
〈
β,Gx/ρκ

√
r
〉
)ge(σ∗)

+ k′ρH(exp σ̄∗, 0)exp

(
∥Gx∥2

2ρ2κ2r

)
+ k′ρ

H(exp σ̄∗, ge(σ∗))

ge(σ∗)!
exp

(
∥Gx∥2

2ρ2κ2r

)
(
〈
β,Gx/ρκ

√
r
〉
)ge(σ∗) + Ξ′ + Õ(N−1/2),

where |Ξ′| ≲ ⟨β,Gx/ρκ
√
r⟩ge(σ∗)+1 with high probability. Let us derive the claim of the proposition by an-

alyzing the correlation between the numerator and the denominator. Let A0 = H(σ̄∗ exp σ̄∗, 0), Age(σ∗) =
H(σ̄∗ exp σ̄∗, ge(σ∗))/(ge(σ∗)!), B0 = H(exp σ̄∗, 0), Bge(σ∗) = H(exp σ̄∗, ge(σ∗))/(ge(σ∗)!). Note that Age(σ∗) and

Bge(σ∗) are of Θ
(

1

(log d)
Cρege(σ∗)(σ∗)

)
and then

|Ξ|, |Ξ′| ≲
〈
β,Gx/ρκ

√
r
〉ge(σ∗)+1

∈ O(logge(σ∗)/2+1/2 d · (ρκ)−ge(σ∗) · (ρκ)−1r−ge(σ∗)/2−1/2) (∵ Lemma 17)

∈ O(ρ−1 logge(σ∗)/2+1/2 d · (ρκ)−ge(σ∗) · κ−1r−3ge(σ∗)/4) (∵ ge(σ∗) ≤ 2)

∈ o((ρκ)−ge(σ∗) · κ−1r−3ge(σ∗)/4) (∵ ρ = ω(logge(σ∗)/2+1/2 d))

holds from Lemma 17. Moreover, set N = Ω̃(r3ge(σ∗)/2) to ensure that N−1/2 term is also of o((ρκ)−ge(σ∗) ·
κ−1r−3ge(σ∗)/4). In this case, Ξ,Ξ′, N−1/2 are all of o((ρκ)−ge(σ∗)Age(σ∗)r

−3ge(σ∗)/4κ−1/2) from the condition
κ1/2 = ω(A−1

ge(σ∗)
). Then we get, letting z = ⟨β,Gx⟩ /(ρκ

√
r),

g(X,y,x;Γ)

=ρ
k′ρB0 + kρA0 + k′ρBge(σ∗)z

ge(σ∗) + kρAge(σ∗)z
ge(σ∗) + (h.o.t.)

kρB0 + kρBge(σ∗)z
ge(σ∗) + (h.o.t.)

=ρ
k′ρB0 + kρA0 + k′ρBge(σ∗)z

ge(σ∗) + kρAge(σ∗)z
ge(σ∗) + (h.o.t.)

kρB0(1 +
Bge(σ∗)

B0
zge(σ∗) + (h.o.t.))

=ρ
k′ρB0 + kρA0 + k′ρBge(σ∗)z

ge(σ∗) + kρAge(σ∗)z
ge(σ∗) + (h.o.t.)

kρB0

(
1−

Bge(σ∗)

B0
zge(σ∗) + (h.o.t.)

)
=ρ

(
k′ρB0 + kρA0

kρB0
+

kρB0Age(σ∗) + k′ρB0Bge(σ∗) − (k′ρB0Bge(σ∗) + kρA0Bge(σ∗))

kρB2
0

zge(σ∗) + (h.o.t.)
)

=ρ

(
k′ρB0 + kρA0

kρB0
+

kρB0Age(σ∗) − kρA0Bge(σ∗)

kρB2
0

zge(σ∗) + (h.o.t.)
)

Where (h.o.t.) means the terms of o((ρκ)−ge(σ∗)Age(σ∗)r
−3ge(σ∗)/4κ−1/2). Finally, let us care about the correlation

between the numerator and the denominator, that is, verify that kρB0Age(σ∗) − kρA0Bge(σ∗) does not vanish. Here
recall that A0 = 1

ρ2 (1 + od(1)) and B0 = 1 + od(1) from Lemma 16, and that Age(σ∗) and Bge(σ∗) are of the same
order. Hence, kρB0Age(σ∗) = Θ(Age(σ∗)) and kρA0Bge(σ∗) = Θ((1/ρ2)Age(σ∗)) holds. Then we can conclude that
kρB0Age(σ∗) = Θ(Age(σ∗)) dominates these terms. Then, taking

P1 = ρ
k′ρB0 + kρA0

kρB0

and

P2 = ρ(ρκ)−ge(σ∗)
kρB0Age(σ∗) − kρA0Bge(σ∗)

kρB2
0

(= Θ(ρ(ρκ)−ge(σ∗)Age(σ∗)))

yields the assertion. Finally, the order of ρ·(h.o.t) is o(P2r
−3ge(σ∗)/4κ−1/2). Using κ1/2 = Ω(log2 deg(σ∗)−2 d) completes

the proof.

We are ready to show the following Proposition 8 outlined in Section 5.
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Proposition 8 (Formal). Suppose N, ρ and κ are satisfying the condition in Proposition 11. Let

Γ =
rEβ[ββ

⊤] +N

κ
√
r

for some matrix N satisfying ∥N∥F = O(1/
√
d). Then,

g(X,y,x;Γ) = P1 + P2

(
⟨x,β⟩√

r

)ge(σ∗)

+ od(P2r
−3ge(σ∗)/4 log−2 deg(σ∗)+2 d)

holds with high probability over the distribution of the prompt (X,y,x), where P1 = od(1) and P2 = Θd

(
(log d)−CP2

)
.

Proof. From the assumption on the support of β (Assumption 4), there exists a d × d orthogonal matrix U such that
Uβ ∼ Unif{(α1, α2, . . . , αr, 0, . . . , 0)|α2

1 + · · ·+ α2
r = 1}. Here note that E[Uββ⊤U⊤] = r−1diag(1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0︸ ︷︷ ︸
d−r

)

holds: then, Γ satisfies the decomposition (B.2) with G = rEβ[ββ
⊤] +N .

Let us simplify
(

⟨Gx,β⟩√
r

)ge(σ∗)

in (B.3). Note that
〈
rEβ[ββ

⊤]x,β
〉

= β⊤U⊤diag(1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
d−r

)Ux =

β⊤U⊤Ux = ⟨x,β⟩. Moreover, ⟨Nx,β⟩√
r

= o(r−1/2 log−2 deg(σ∗)+1 d) holds with high probability from Lemma 30.
Overall,

g(X,y,x;Γ) = P1 + P2

(
⟨x,β⟩√

r
+ o(r−1/2 log−2 deg(σ∗)+1 d)

)ge(σ∗)

+ od(P2r
−ge(σ∗)/2 log−2 deg(σ∗)+2 d)

is satisfied. Then, the case where ge(σ∗) = 1 is derived immediately. For the case where ge(σ∗) = 2, noting that
⟨x,β⟩√

r
= o(r−1/2 log d) with high probability, we can use (p+ q)2 − p2 = q(2p+ q) for the second term.

C Optimizing the Attention Matrix
In this section we develop the optimization guarantee for the attention matrix Γ: see Section 5 for the proof sketch. We
show that one gradient descent step contains information about E[ββ⊤], to satisfy the conditions in Proposition 8.

If fTF is sufficiently small at the initialization, we can approximate the full gradient using the correlational
gradient 1

T1

∑T1

t=1 y
t∇ΓfTF(X

t,yt,xt;Γ,v(0), b(0),a(0))
∣∣∣
Γ=Γ(0)

. Hence, we first analyze the model gradient

∇ΓfTF(X
t,yt,xt;Γ,v(0), b(0),a(0)), utilizing the technique developed in Appendix B.

Lemma 19. Let

ξ1 :=
1

N

N∑
i=1

(yi/ρ)e
yi/ρex

⊤
i x/ρ

√
dxi, ξ2 :=

1

N

N∑
i=1

eyi/ρex
⊤
i x/ρ

√
dxi.

Also, let Ai = H(σ̄∗ exp σ̄∗, i), Bi = H(exp σ̄∗, i) for i ≥ 0 where σ̄∗(z) :=

{
σ∗(z)

ρ

(
if
∣∣∣σ∗(z)

ρ

∣∣∣ ≤ 1
log d

)
0 (otherwise)

.

Then, using kρ := 1
2 (exp(τ/ρ) + exp(−τ/ρ)) = Θd(1), k′ρ := 1

2
τ
ρ (exp(τ/ρ)− exp(−τ/ρ)) = Θd(τ

2/ρ2) and z :=
⟨β,x⟩
ρ
√
d

, it holds that

ξ1 =kρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Ai+1

i!
zi

β +
kρ

ρ
√
d
exp

(
∥x∥2

2ρ2d

)∑
i≥0

Ai

i!
zi

x

+ k′ρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi+1

i!
zi

β +
k′ρ

ρ
√
d
exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi

i!
zi

x
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+ Õ
(
d1/2N−1/2

)
,

and

ξ2 =kρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi+1

i!
zi

β

+
kρ

ρ
√
d
exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi

i!
zi

x+ Õ
(
d1/2N−1/2

)
with high probability over the data distribution 1.

Proof. Let us analyze ξ2 first. Note that ξ2 = 1
N

∑N
i=1 e

σ̄∗(⟨β,xi⟩)+ζi/ρex
⊤
i x/ρ

√
dxi holds with high probability. The

expectation of this quantity is calculated as

Ex1

[
eσ̄∗(⟨β,x1⟩)+ζi/ρex

⊤
1 x/ρ

√
dx1

]
=kρEx1

[
eσ̄∗(⟨β,x1⟩)ex

⊤
1 x/ρ

√
dx1

]
=kρEx1

∑
i≥0

Bi

i!
Hei(⟨β,x1⟩)ex

⊤
1 x/ρ

√
dx1


(a)
=kρβEx1

∑
i≥0

Bi+1

i!
Hei(⟨β,x1⟩)ex

⊤
1 x/ρ

√
d

+ kρ
x

ρ
√
d
Ex1

∑
i≥0

Bi

i!
Hei(⟨β,x1⟩)ex

⊤
1 x/ρ

√
d


(b)
=kρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi+1

i!
zi

β +
kρ

ρ
√
d
exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi

i!
zi

x+ Õ
(√

d/N
)
.

Here we used Stein’s lemma to derive (a), and the argument to derive (B.6) for (b). Finally, the deviation from the expectation
is upper-bounded using the exactly same technique as the proof of Lemma 18: the only difference is that we now treat
d-dimensional vectors, meaning that the bound coming from Hoeffding’s inequality is of Õ

(√
d/N

)
(Lemma 31).

Similarly, we can analyze ξ1 as

Ex1

[
(σ̄∗(⟨β,x1⟩) + ζi/ρ)e

σ̄∗(⟨β,x1⟩)+ζi/ρex
⊤
1 x/ρ

√
dx1

]
=kρEx1

[
σ̄∗(⟨β,x1⟩)eσ̄∗(⟨β,x1⟩)ex

⊤
1 x/ρ

√
dx1

]
+ k′ρEx1

[
eσ̄∗(⟨β,x1⟩)ex

⊤
1 x/ρ

√
dx1

]
=kρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Ai+1

i!
zi

β +
kρ

ρ
√
d
exp

(
∥x∥2

2ρ2d

)∑
i≥0

Ai

i!
zi

x

+ k′ρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi+1

i!
zi

β +
k′ρ

ρ
√
d
exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi

i!
zi

x+ Õ
(√

d/N
)
.

Lemma 20. Let Γ(0) = Id/
√
d and v(0), b(0) and a(0) are determined in Algorithm 1. Then, assuming Npt =

Ω̃(r2die(σ∗)+2), with high probability over the data (X1:Npt
,y1:Npt

,x) (simply written as (X,y,x)), it holds that

∇ΓfTF(X,y,x;Γ,v(0), b(0),a(0))|Γ=Γ(0)=Id/
√
d

1For a vector v, v = Õ(· · · ) means ∥v∥ = Õ(· · · ).
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=αLm(P0 + P1z + · · ·+ Pie(σ∗)−1z
ie(σ∗)−1 + · · · )βx⊤ + αLmnx⊤

where Lm := |{j ∈ [m] | vj(0) = 1}|, P0, . . . , Pie(σ∗)−2 = O(1), Pie(σ∗)−1 = Θ(ρ−1) and ∥n∥ ≤
O(r−1d−(ie(σ∗)+1)/2 log−Cn d) (where Cn can be taken to be sufficiently large).

Proof. For simplicity we define N := Npt. We can calculate the model gradient as

∇ΓfTF(X,y,x;Γ,v(0), b(0),a(0))|Γ=Id/
√
d

=α

m∑
j=1

σ′

(
vj

∑N
i=1 yie

yi/ρex
⊤
i x/ρ

√
d∑N

i=1 e
yi/ρex

⊤
i x/ρ

√
d

)
· vjs(X,y,x, y)x⊤,

where

s(X,y,x, y)

=
(
∑N

i=1(yi/ρ)e
yi/ρex

⊤
i x/ρ

√
dxi)(

∑N
i=1 e

yi/ρex
⊤
i x/ρ

√
d)− (

∑N
i=1(yi/ρ)e

yi/ρex
⊤
i x/ρ

√
d)(
∑N

i=1 e
yi/ρex

⊤
i x/ρ

√
dxi)

(
∑N

i=1 e
yi/ρex

⊤
i x/ρ

√
d)2

.

First, we can see from the same procedure as the Proposition 11 (with r = d) that the content of σ′(·) above
is dominated by P1(1 + od(1)) with high probability, where P1 in Proposition 11 is positive, which means that

σ′
(
vj

∑N
i=1 yie

yi/ρex
⊤
i x/ρ

√
d∑N

i=1 eyi/ρex
⊤
i

x/ρ
√

d

)
= 1 if and only if vj = 1. Then,

∇ΓfTF(X,y,x;Γ,v(0), b(0),a(0))|Γ=Id/
√
d = αLms(X,y,x, y)x⊤

holds with high probability. We proceed to calculate s(X,y,x, y) above. From the proof of Proposition 11 and Lemma 19,
we have

s(X,y,x, y) = (π1(X,y,x, y)ξ2(X,y,x, y)− π2(X,y,x, y)ξ1(X,y,x, y))(π2(X,y,x, y))−2, (C.1)

where

π1(X,y,x, y) = kρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Ai

i!
zi

+ k′ρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi

i!
zi

+ Õ(N−1/2),

π2(X,y,x, y) = kρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi

i!
zi

+ Õ(N−1/2),

ξ1 =kρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Ai+1

i!
zi

β +
kρ

ρ
√
d
exp

(
∥x∥2

2ρ2d

)∑
i≥0

Ai

i!
zi

x

+ k′ρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi+1

i!
zi

β +
k′ρ

ρ
√
d
exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi

i!
zi

x

+ Õ
(
d1/2N−1/2

)
,

and

ξ2 =kρ exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi+1

i!
zi

β
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+
kρ

ρ
√
d
exp

(
∥x∥2

2ρ2d

)∑
i≥0

Bi

i!
zi

x+ Õ
(
d1/2N−1/2

)
(recall z := ⟨β,x⟩

ρ
√
d

).

Before proceeding to the further analysis, we note the intuition for the goal of this calculation. We can see that terms
proportional to x will be canceled out in (C.1). Therefore, we can expect that (C.1) can be expanded using z as∑

k≥0 ckz
k · β. Thus, ∇ΓfTF(X,y,x;Γ,v(0), b(0),a(0)) ≃ αLm

∑
k≥0 ckz

k · βx⊤ holds. Then, to calculate the
expected correlational gradient E[y∇ΓfTF], it suffices to calculate E[y·zkβx⊤] = E[σ∗(⟨β,x⟩)(β⊤x/ρ

√
d)kβx⊤] =

E[σ′
∗(⟨β,x⟩)(β⊤x/ρ

√
d)kββ⊤] + E[σ∗(⟨β,x⟩)k(β⊤x/ρ

√
d)k−1ββ⊤/ρ

√
d].

Now, if k < ie(σ∗)− 1, the first term E[σ′
∗(⟨β,x⟩)(β⊤x/ρ

√
d)kββ⊤] is zero because a degree-k polynomial does

not have Hermite component of degree ≥ ie(σ′
∗) = ie(σ∗)− 1. If k = ie(σ∗)− 1, then the expectation is nonzero and

proportional to E[ββ⊤], as desired. We can also show that this is the leading term in the entire gradient. Therefore, we
focus on checking zie(σ∗)−1 term in (C.1).

Let us proceed with the strategy above. Set N = Ω̃(r2die(σ∗)+2) to ensure that all the noise terms in π1, π2, ξ1, ξ2
are of O(r−1d−(ie(σ∗)+1)/2 log−C d) for sufficiently large C. Then, we can simplify s(X,y,x, y) as s(X,y,x, y) =
r(X,y,x, y)β +O(r−1d−(ie(σ∗)+1)/2 log−C d), where

r(X,y,x, y)

=

[kρ

ie(σ∗)−1∑
i=0

Ai

i!
zi

+ k′ρ

ie(σ∗)−1∑
i=0

Bi

i!
zi


︸ ︷︷ ︸

(a1)

· kρ

ie(σ∗)−1∑
i=0

Bi+1

i!
zi


︸ ︷︷ ︸

(a2)

− kρ

ie(σ∗)−1∑
i=0

Bi

i!
zi


︸ ︷︷ ︸

(b1)

kρ

ie(σ∗)−1∑
i=0

Ai+1

i!
zi

+ k′ρ

ie(σ∗)−1∑
i=0

Bi+1

i!
zi


︸ ︷︷ ︸

(b2)

]

·

(kρB0)
−2(1− 2w + 3w2 + · · ·+ (−1)ie(σ∗)−1wie(σ∗)−1)︸ ︷︷ ︸

(c)

+O(zie(σ∗))

where w := B1

B0
z + B2

2B0
z2 + · · · + Bie(σ∗)−1

(ie(σ∗)−1)!B0
zie(σ∗)−1. Here we used the fact that π2/ exp

(
∥x∥2

2ρ2d

)
=

kρB0

(
1 + B1

B0
z + B2

2B0
z2 + · · ·+ Bie(σ∗)−1

(ie(σ∗)−1)!B0
zie(σ∗)−1

)
+O(zie(σ∗)).

There are a lot of terms of degree zie(σ∗)−1 above, but we can show that the terms

(kρA0+k′ρB0)·kρ
Bie(σ∗)

(ie(σ∗)− 1)!
zie(σ∗)−1 ·(kρB0)

−2−kρB0

(
kρ

Aie(σ∗)

(ie(σ∗)− 1)!
+ k′ρ

Bie(σ∗)

(ie(σ∗)− 1)!

)
zie(σ∗)−1 ·(kρB0)

−2,

(C.2)

made from the first term of (a1) (and (b1)), the last term of (a2) (and (b2)), and the first term of (c), dominates over other
terms, i.e., other terms having degree zie(σ∗)−1 are of od((C.2)) considering the coefficients.

First we calculate the order of (C.2). From Lemma 9, Ai, Bi = Θ
(

1
ρei(σ∗)

)
(i ≥ 1) holds where ei is defined in

Definition 14. Moreover, from Lemma 16 it holds that A0 = Θ(ρ−2) and B0 = Θ(1). Note that from the definition of ei
and the information exponent, we can see that eie(σ∗) = 1 and then Aie(σ∗), Bie(σ∗) = O(ρ−1) holds. Thus, noting that
kρ = Θ(1) and k′ρ = O(ρ−2), indeed the term kρB0kρ

Aie(σ∗)

(ie(σ∗)−1)! (kρB0)
−2 = Θ(ρ−1) dominates over other terms.

Next we show the superiority of this term over other zie(σ∗)−1 terms (in terms of the degree of ρ in coefficients): all the
terms are made by multiplying a term in (a1) (or (b1)), a term in (a2) (or (b2)), and a term in (c). Let us see the ρ factor in
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the coefficients: note that again from the definition of the information exponent, ei(σ∗) > 1 (and then Ai, Bi = O(ρ−2)) if
1 ≤ i < ie(σ∗). Hence, to be comparable to ρ−1 we should pick out the zeroth-order term from (a1) and (b1). Here the only
optimal way is to pick out the zie(σ∗)−1 term in (a2) and (b2), which is nothing but (C.2). Otherwise, we should pick out
also the zeroth-order term in (a2) and (b2). In this case, we should use zie(σ∗)−1 term in (c), but this is suboptimal because
Bi/B0 in w is already O(ρ−2).

Getting back to (C.1), we now showed that

s(X,y,x, y) = (P0 + P1z + · · ·+ Pie(σ∗)−1z
ie(σ∗)−1 + · · · )β +O(r−1d−(ie(σ∗)+1)/2 log−Cn d)

where Pie(σ∗)−1 = Θ(ρ−1), which completes the proof.

Lemma 21. Let Γ(0) = Id/
√
d and v(0), b(0) and a(0) are determined in Algorithm 1. Then, assuming Npt =

Ω̃(r2die(σ∗)+2), with high probability over the data (X,y,x), it holds that

∇Γ
1

2T1

T1∑
t=1

(
fTF(X

t,yt,xt;Γ,v(0), b(0),a(0))− yt
)2∣∣∣∣∣

Γ=Γ(0)

=Θ(αmd−(ie(σ∗)−1)/2ρ−(ie(σ∗)))Eβ[ββ
⊤] +O(αmr−1d−ie(σ∗)/2 log−Cn d) + Õ(α2m2

√
d)

with high probability over the pretraining data distribution and random initialization, where Cn is a sufficiently large
constant.

Proof. Now we have

∇Γ
1

2T1

T1∑
t=1

(
fTF(X

t,yt,xt;Γ,v(0), b(0),a(0))− yt
)2∣∣∣∣∣

Γ=Γ(0)

=
1

T1

T1∑
t=1

f tGt − 1

T1

T1∑
t=1

ytGt

where f t := fTF(X
t,yt,xt;Γ(0),v(0), b(0),a(0)) and Gt = ∇ΓfTF(X

t,yt,xt;Γ,v(0), b(0),a(0))|Γ=Γ(0). We first

upper-bound the first term 1
T1

∑T1

t=1 f
tGt. From Lemma 15, with high probability yti = Õ(1) holds for all i and t.

Therefore,

|fTF(X
t,yt,xt;Γ,v(0), b(0),a(0))| ≤ αm

∣∣∣∣∣
∑Npt

i=1 yie
cyi/ρex

⊤
i Γx/ρ∑Npt

i=1 e
cyi/ρex

⊤
i Γx/ρ

∣∣∣∣∣ = Õ(αm)

holds with high probability.

Also, from Lemma 20, we have

∇ΓfTF(X,y,x;Γ,v(0), b(0),a(0))|Γ=Γ(0)=Id/
√
d

=αLm(P0 + P1z + · · ·+ Pie(σ∗)−1z
ie(σ∗)−1 + · · · )βx⊤ + αLmnx⊤

where P0, . . . , Pie(σ∗)−2 = O(1), Pie(σ∗)−1 = Θ(ρ−1) and ∥n∥ ≤ O(r−1d−(ie(σ∗)+1)/2 log−Cn d). Moreover, ∥x∥ =

O(
√
d) holds with high probability from Lemma 28, meaning ∥Gt∥F = O(αm

√
d). Overall,

∥ 1

T1

T1∑
t=1

f tGt∥F = Õ(α2m2
√
d) (C.3)

is ensured with high probability.

Next let us calculate

1

T1

T1∑
t=1

ytGt =
αLm

T1

T1∑
t=1

(yt(P0 + P1(z
t) + · · ·+ Pie(σ∗)−1(z

t)ie(σ∗)−1 + · · · )βt
)

︸ ︷︷ ︸
=:mt

(xt)⊤ + ytnt(xt)⊤

 .
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Note that the norm of mt is Õ(1) with high probability. Then,
∣∣∣αLm

T1

∑T1

t=1 m
t(xt)⊤ − E[αLmm1(x1)⊤]

∣∣∣ =

Õ(αmd/
√
T1) holds with high probability from Corollary 32. Moreover, ∥nt(xt)⊤∥F ≤

O(r−1d−ie(σ∗)/2 log−Cn d logdeg(σ∗)/2 d) holds (additional logdeg(σ∗)/2 d comes from the order of y; see Lemma 15.
Hereafter we absorb this by retaking Cn). Thus, if T1 = Ω̃(r2die(σ∗)+2) then

1

T1

T1∑
t=1

ytGt = αLmE[mx⊤] +O(αmr−1d−ie(σ∗)/2 log−Cn d) (C.4)

is satisfied. It remains to calculate the expectation E[yzkβx⊤] = (ρ
√
d)−kE[σ∗(⟨β,x⟩) ⟨β,x⟩k βx⊤] to analyze E[mx⊤].

From Stein’s lemma, we have

(ρ
√
d)−kEβ,x[σ∗(⟨β,x⟩) ⟨β,x⟩k βx⊤]

=(ρ
√
d)−kEβ[Ex[σ

′
∗(⟨β,x⟩) ⟨β,x⟩

k
]ββ⊤] + (ρ

√
d)−kkEβ[Ex[σ∗(⟨β,x⟩) ⟨β,x⟩k−1

]ββ⊤],

and from Lemma 34 and the definition of the information exponent, Ex[σ
′
∗(⟨β,x⟩) ⟨β,x⟩

k
] is zero if k < ie(σ′

∗) =

ie(σ∗) − 1 and nonzero if k = ie(σ∗) − 1. If k = ie(σ∗) − 1, then (ρ
√
d)−kEβ[Ex[σ

′
∗(⟨β,x⟩) ⟨β,x⟩

k
]ββ⊤] ≍

(ρ
√
d)−(ie(σ∗)−1)Eβ[ββ

⊤] is satisfied from Lemma 34. We can observe that other terms are also proportional to E[ββ⊤]
but dominated by this term. From Lm ≍ m with high probability and Pie(σ∗)−1 = Θ(ρ−1), we have

αLmE[mx⊤] = Θ(αmd−(ie(σ∗)−1)/2ρ−(ie(σ∗)))Eβ[ββ
⊤]. (C.5)

Putting (C.3), (C.4) and (C.5) together completes the proof.

Setting the hyperparameters for Lemma 21 immediately yields the following conclusion of the optimization of Γ:

Proposition 22. By setting the hyperparameters as αm = O(r−1d−(ie(σ∗)+1)/2 log−Cα d), Npt, T1 = Ω̃(r2die(σ∗)+2),

η1 = Θ(α−1m−1d(ie(σ∗)−1)/2 log−Cη1 d)r1/2 and λ1 = η−1
1 for constants Cη1

and Cα, after one gredient descent step
(Line 3 in Algorithm 1) it holds that

Γ∗ =
1

r1/2 logCκ d

(
rEβ[ββ

⊤] +N
)

with high probability over the data distribution, where ∥N∥F = Od(1/
√
d) holds, where Cκ can be taken to be sufficiently

large.

This proposition can be immediately connected to Proposition 8.

D Optimizing the MLP Layer
In this section, we give an optimization guarantee for the MLP layer. We begin with constructing the output layer parameter
a ∈ Rm yielding a sufficient approximation guarantee.

Lemma 23 (Construction of Continuous Output Layer). Let l = 1 or 2 and assume ge(σ∗) = l. Suppose that there exists
g(x) such that

g(x) = P1 + P2
(⟨β,x⟩)l

rl/2
+ n(x),

where P1 = od(1), P2 = Θd

(
(log d)−CP2

)
, and |n(x)| = od(P2r

−3l/4 log−2 deg(σ∗)+2 d) holds (these conditions are
indeed identical to the conclusion of Proposition 8). Then, there exists π(v, b) such that∣∣Ev∼Unif{±1},b∼[−1,1][π(v, b)σ(v · g(x) + b)]− σ∗(⟨β,x⟩)

∣∣ = od(1)

with high probability over x ∼ N (0, Id). Moreover, supv,b |π(v, b)| = Õ(rl) holds.

Proof. Note that if l = 2, then σ∗ is even: this means that there exists a polynomial ς∗ such that σ∗(z) = ς∗(z
l) for

l = 1, 2. Here let ς∗(z) =
∑deg(ς∗)

k=0 skz
k. Now from Lemma 9 in Damian et al. (2022), there exists π′

k(v, b) such that
supv,b |π′

k(v, b)| = O(1) and
Ev∼Unif{±1},b∼[−1,1][π

′
k(v, b)σ(vz + b)] = zk
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for any |z| ≤ 1. If we define

π′(v, b) =

deg(ς∗)∑
k=0

sk
π′
k(v, bα

−1 log−2 d)

α log2 d
log2k d,

where α = P2r
−l/2, then

Ev∼Unif{±1},b∼[−α log2 d,α log2 d][π
′(v, b)σ(v(αz) + b)]

=

deg(ς∗)∑
k=0

skEv∼Unif{±1},b∼[−α log2 d,α log2 d]

[
π′
k(v, bα

−1 log−2 d)

α log2 d
log2k dσ(v(αz) + b)

]

=

deg(ς∗)∑
k=0

sk log
2k dEv∼Unif{±1},b∼[−1,1]

[
π′
k(v, b)σ(vz log

−2 d+ b)
]
=

deg(ς∗)∑
k=0

skz
k = ς∗(z),

if |z log−2 d| ≤ 1. Note that supv,b |π′(v, b)| = O(α−1 log2 deg(σ∗)−2 d) holds.

Furthermore, let us define events E−(v, b) and E+(v, b) as

E−(v, b) = (v = −1 ∧ b ∈ [P1 ± α log2 d]),

E+(v, b) = (v = 1 ∧ b ∈ [−P1 ± α log2 d]),

and then define

π(v, b) =
1

2α log2 d
(I(E−(v, b))π

′(−1, b− P1) + I(E+(v, b))π
′(1, b+ P1)). (D.1)

Now it holds that

Ev∼Unif{±1},b∼[−1,1][π(v, b)σ(v · g(x) + b)]

=
1

2
Eb∼[P1−α log2 d,P1+α log2 d]

[
π′(−1, b− P1)σ(−P1 − α(⟨β,x⟩)l − n(x) + b)

]
+

1

2
Eb∼[−P1−α log2 d,−P1+α log2 d]

[
π′(1, b+ P1)σ(P1 + α(⟨β,x⟩)l + n(x) + b)

]
(*)
=Ev∼Unif{±1},b∼[−α log2 d,α log2 d][π

′(v, b)σ(v · α ⟨β,x⟩l + b)] + od(1) = σ∗(⟨β,x⟩) + od(1)

holds (note that | ⟨β,x⟩l | ≤ log2 d with high probability from the tail bound for the standard Gaussian).

Here, we used the Lipschitz continuity of the ReLU function and the condition |n(x)| = od(α log−2 deg(σ∗)+2 d) to derive
(*).

Lemma 24 (Construction of Discrete Output Layer). Under the condition of Lemma 23, there exists a∗ ∈ Rm such that∣∣∣∣∣∣
m∑
j=1

a∗jσ(vj · g(x) + bj)− σ∗(⟨β,x⟩)

∣∣∣∣∣∣ = Õ(rlm−1/2) + od(1) (D.2)

with high probability over x ∼ N (0, Id). Moreover, ∥a∥2 = Õ(r2lm−3/2 + r3l/2m−1) holds with high probability.

Proof. Let aj = m−1π(vj , bj) where π is constructed in Lemma 23. As g(x) = O(1) and supv,b π(v, b) = Õ(rl), from
Hoeffding’s inequality we have∣∣∣∣∣∣m−1

m∑
j=1

π(vj , bj)σ(vj · g(x) + bj)− Ev,b[π(v, b)σ(v · g(x) + b)]

∣∣∣∣∣∣ = Õ(rlm−1/2)

with high probability and then we obtain (D.2).
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Let us upper bound ∥a∥2 = m−1 ·m−1
∑m

j=1 π(vj , bj)
2. Again from Hoeffding’s inequality, we obtain∣∣∣∣∣∣m−1

m∑
j=1

π(vj , bj)
2 − Ev,b[π(v, b)

2]

∣∣∣∣∣∣ = Õ(r2lm−1/2)

and then it ramains to upper-bound Ev,b[π(v, b)
2]. Naively supv,b π(v, b)

2 = Õ(r2l) holds, but from the definition (D.1),
π(v, b) is nonzero with probability Õ(r−l/2), meaning Ev,b[π(v, b)

2] = Õ(r3l/2). Overall, ∥a∥2 = Õ(r2lm−3/2 +
r3l/2m−1) is satisfied with high probability.

Proof of the Optimization Part of Theorem 1. Now we are ready to show the optimization part (part 1) in Theorem 1.

Proof of Part 1, Theorem 1. We note that the condition in Lemma 23 is satisfied from Proposition 8, and the condition in
Proposition 8 is ensured by Proposition 22. Let a′ be the output parameter constructed in Lemma 24: from the equivalence
between ℓ2-regularized and norm-constrained optimization algorithms, there exists λ2 such that(

1

T2

T1+T2∑
t=T1+1

∣∣yt − fTF(X
t,yt,xt,Γ∗,v∗, b∗,a∗)

∣∣)2

≤ 1

T2

T1+T2∑
t=T1+1

(
yt − fTF(X

t,yt,xt,Γ∗,v∗, b∗,a∗)
)2

≤ 1

T2

T1+T2∑
t=T1+1

(
yt − fTF(X

t,yt,xt,Γ∗,v∗, b∗,a′)
)2

≤ (τ + od(1))
2
(∵ Lemma 24,m = Ω̃(r2ge(σ∗)))

and it holds that ∥a∗∥ ≤ ∥a′∥ = Õ(rge(σ∗)m−3/4 + r3ge(σ∗)/4m−1/2). Note that as we assumed m = Ω̃(r2ge(σ∗)), the
second term r3ge(σ∗)/4m−1/2 is dominant.

E Inference-Time Estimation Error Analysis
We are ready to analyze the ICL loss at the inference time defined by

RICL
Ntest

(Γ∗,v∗, b∗,a∗) = EDx,Df∗ ,Dζ
[|fTF(X1:Ntest ,y1:Ntest ,x,Γ

∗,v∗, b∗,a∗)− y|].

In particular, our primary interest is in deriving the inference-time sample complexity, i.e., the number of in-context examples
Ntest in the test prompt needed to ensure that the ICL loss is od(1).

E.1 ICL Error at Ntest = Npt

We first treat the special case where Ntest = Npt holds: in this case, as we have an optimization guarantee at context length
Npt, it is sufficient to bound generalization gap via a standard Ramemacher complexity analysis.

Recall that g is defined as the attention output, i.e.,

g(X,y,x;Γ) =

∑N
i=1 yie

yi/ρex
⊤
i Γxi/ρ∑N

i=1 e
yi/ρex

⊤
i Γxi/ρ

.

In this section, we fix Γ,v and b. We define FA to describe the set of transformers where the norm of the output layer of the
MLP is constrained:

FA =

(X,y,x) 7→
m∑
j=1

ajσ(vj · g(X,y,x;Γ) + bj)

∣∣∣∣∣∣ ∥a∥ ≤ A

 .

Moreover, let

RadT (FA) = E{Xt},{yt},{xt},{ϵt}

[
sup
f∈FA

1

T

T∑
t=1

ϵtf(Xt,yt,xt)

]
be its Rademacher complexity, where ϵt ∼ Unif({±1}). Here, we fix the context length to be N = O(polyd), i.e, suppose
X ∈ Rd×N and y ∈ RN . Then, we obtain the upper bound of RadT (FA) as follows.
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Lemma 25. When ∥b∥ ≤ B and vj = ±1, then it holds that

RadT (FA) = Õ

(
A(B +

√
m)√

T

)
.

Proof. From the definition of FA, we have

RadT (FA) = E{Xt},{yt},{xt},{ϵt}

 sup
a:∥a∥≤A

1

T

T∑
t=1

ϵt
m∑
j=1

ajσ
(
vj · g(Xt,yt,xt;Γ) + bj

)
= E{Xt},{yt},{xt},{ϵt}

 sup
a:∥a∥≤A

m∑
j=1

aj ·

(
1

T

T∑
t=1

ϵtσ
(
vj · g(Xt,yt,xt;Γ) + bj

)).
From Cauchy–Schwarz inequality and Jensen’s inequality, we have

RadT (FA) ≤ E{Xt},{yt},{xt},{ϵt}

 sup
a:∥a∥≤A

∥a∥ ·

√√√√√ m∑
j=1

(
1

T

T∑
t=1

ϵtσ(vj · g(Xt,yt,xt;Γ) + bj)

)2


≤ A

√√√√√E{Xt},{yt},{xt},{ϵt}

m∑
j=1

(
1

T

T∑
t=1

ϵtσ(vj · g(Xt,yt,xt;Γ) + bj)

)2

.

Next, we obtain the upper bound of the component in the square root. Since ϵt and ϵt
′

are independent if t ̸= t′, we have

E{Xt},{yt},{xt},{ϵt}

 m∑
j=1

(
1

T

T∑
t=1

ϵtσ
(
vj · g(Xt,yt,xt;Γ) + bj

))2


= E{Xt},{yt},{xt},{ϵt}

 1

T 2

m∑
j=1

T∑
t=1

T∑
t′=1

ϵtϵt
′
σ
(
vj · g(Xt,yt,xt;Γ) + bj

)
σ
(
vj · g(Xt′ ,yt′ ,xt′ ;Γ) + bj

)
= E{Xt},{yt},{xt}

 1

T 2

m∑
j=1

T∑
t=1

σ
(
vj · g(Xt,yt,xt;Γ) + bj

)2.
Now, σ is a ReLU activation function, which means that σ(z)2 ≤ z2 for z ∈ R. Therefore, we have

E{Xt},{yt},{xt}

 1

T 2

m∑
j=1

T∑
t=1

σ
(
vj · g(Xt,yt,xt;Γ) + bj

)2
≤ 1

T 2
E{Xt},{yt},{xt}

 m∑
j=1

T∑
t=1

(
vj · g(Xt,yt,xt;Γ) + bj

)2
≤ 2

T 2
E{Xt},{yt},{xt}

 m∑
j=1

T∑
t=1

(
v2j · g(Xt,yt,xt;Γ)2 + b2j

)
≤ 2

T 2

(
B2T +m

T∑
t=1

E{Xt},{yt},{xt}
[
g(Xt,yt,xt;Γ)2

])
.

Finally, we bound the term E[g(Xt,yt,xt;Γ)2]. For i = 1, . . . , N , let

pi(X,y,x) =
eyi/ρex

⊤
i Γx/ρ∑N

i′=1 e
yi′/ρex

⊤
i′Γx/ρ

.

28



Nonlinear transformers can perform inference-time feature learning

Then, we have g(X,y,x;Γ) =
∑N

i=1 pi(X,y,x)yi and
∑N

i=1 pi(X,y,x) = 1. Hence, from Jensen’s inequality, we have

g(Xt,yt,xt;Γ)2 =

(
N∑
i=1

pi(X
t,yt,xt)yti

)2

≤
N∑
i=1

pi(X
t,yt,xt)(yti)

2.

Now, we define random variables Zt
i , Ẑ

t
i (i = 1, . . . N) as

Zt
i = pi(X

t,yt,xt)(yti)
2, Ẑt

i = pi(X
t,yt,xt)(yti)

2 · I((yti)2 ≤ (log d)deg(σ∗)+1).

Thus, using Hölder’s inequality, we have

E{Xt},{yt},{xt}[Z
t
i − Ẑt

i ]

≤ E{Xt},{yt},{xt}

[
pi(X

t,yt,xt)(yti)
2I((yti)2 ≥ (log d)deg(σ∗)+1)

]
≤ E{Xt},{yt},{xt}

[
pi(X

t,yt,xt)4
]1/4E{Xt},{yt},{xt}

[
(yti)

4
]1/2P[(yti)2 ≥ (log d)deg(σ∗)+1

]1/4
≤ E{Xt},{yt},{xt}

[
(yti)

4
]1/2P[(yti)2 ≥ (log d)deg(σ∗)+1

]1/4
.

Using Lemma 15 and the definition of high probability events, we can set the quantity above to be O(N−2) (note that we
assume N = poly(d)). Consequently, we have

E{Xt},{yt},{xt}
[
g(Xt,yt,xt;Γ)2

]
≤

N∑
i=1

E[Zt
i ]

≤ O(1) +

N∑
i=1

E[Ẑt
i ]

≤ O(1) + E
[

max
i=1,...,N

{
(yti)

2 · I((yti)2 ≤ (log d)deg(σ∗)+1)
}]

≤ O((log d)deg(σ∗)+1) . (E.1)

In conclusion, we obtain

RadT (FA) ≤ A ·
√

2

T 2

(
B2T +mT · Õ(1)

)
= Õ

(
A(B +

√
m)√

T

)
.

Then, we arrive at the following lemma:

Lemma 26. Suppose running Algorithm 1 under the conditions specified in Theorem 1. Then, with probability at least
0.995 over the training data and the random initialization of Algorithm 1, it holds thatRICL

Npt
(Γ∗,v∗, b∗,a∗) = od(1).

Proof. Now we know from Part 1 of Theorem 1 that 1
T2

∑T1+T2

t=T1+1 |yt − fTF(X
t,yt,xt,Γ∗,v∗, b∗,a∗)| = od(1) with

high probability. Moreover, we have parameter norm bounds ∥a∗∥ = Õ(r3ge(σ∗)/4m−1/2) and ∥b∥ ≤
√
m. Plugging these

values into A and B in Lemma 25 yields

RadT2
(FA) = Õ

(
r3ge(σ∗)/4

√
T2

)
.

Using standard symmetrization technique (cf: Appendix D.3 in (Oko et al., 2024b)) yieldsRICL
Npt

(θ) = od(1)+Õ
(

r3ge(σ∗)/4
√
T2

)
with probability at least 0.995. Noting that T2 = Ω̃(r3ge(σ∗)/2), we arrive at the assertion.
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E.2 ICL Error at General Ntest

Finally, we extend the generalization result to any inference-time context length Ntest, which concludes the proof of
Theorem 1.

Lemma 27. For N ≤ polyd,

EX,y,x[fTF(X1:N ,y1:N ,x;Γ∗,v∗, b∗,a∗)2] ≤ Õ(r3ge(σ∗)/2)

holds.

Proof. Note that

fTF(X1:N ,y1:N ,x;Γ∗,v∗, b∗,a∗) =

m∑
j=1

a∗jσ(v
∗
j g(X1:N ,y1:N ,x;Γ∗) + b∗j )

where E[g(X1:N ,y1:N ,x;Γ∗)2] = Õ(1) from (E.1). Then,

E[fTF(X1:N ,y1:N ,x;Γ∗,v∗, b∗,a∗)2]

≤E

∥a∗∥2 ·
m∑
j=1

σ(v∗j g(X1:N ,y1:N ,x;Γ∗) + b∗j )
2


≤E

∥a∗∥2 ·
m∑
j=1

(2g(X1:N ,y1:N ,x;Γ∗)2 + 2(b∗j )
2)

 ≤ Õ(r3ge(σ∗)/2)

holds.

Finally, we prove the Part 2 of Theorem 1.

Proof of Part 2, Theorem 1. Note that

|RICL
Npt

(Γ∗,v∗, b∗,a∗)−RICL
Ntest

(Γ∗,v∗, b∗,a∗)|
≤E[|fTF(X1:Npt ,y1:Npt ,x;Γ

∗,v∗, b∗,a∗)− fTF(X1:Ntest ,y1:Ntest ,x;Γ
∗,v∗, b∗,a∗)|]

holds. From Proposition 11, if Npt, Ntest = Ω̃(r3ge(σ∗)/2), then

|g(X1:Ntest
,y1:Ntest

,x;Γ∗)− g(X1:Npt
,y1:Npt

,x;Γ∗)| ≤ od(r
−3ge(σ∗)/4 log−C d)

holds with high probability (here, C can be made sufficiently large by taking the constant Cκ to be sufficiently large), where
the upper bound quantity at right hand side does not depend on the data. Note that

|fTF(X1:Npt
,y1:Npt

,x;Γ∗,v∗, b∗,a∗)− fTF(X1:Ntest
,y1:Ntest

,x;Γ∗,v∗, b∗,a∗)|

≤
m∑
j=1

|a∗j |
∣∣σ(v∗j g(X1:Npt

,y1:Npt
,x;Γ∗) + b∗j )− σ(v∗j g(X1:Ntest

,y1:Ntest
,x;Γ∗) + b∗j )

∣∣
≤∥a∗∥ ·

√
m · od(r−3ge(σ∗)/4 log−C d) (∵ Cauchy-Schwarz).

Using ∥a∗∥ = Õ(r3ge(σ∗)/4m−1/2) in Part 1 of Theorem 1, now we obtain

|fTF(X1:Npt
,y1:Npt

,x;Γ∗,v∗, b∗,a∗)− fTF(X1:Ntest
,y1:Ntest

,x;Γ∗,v∗, b∗,a∗)| ≤ od(1)

with high probability. It remains to convert this bound into the expectation. Note that the od(1) quantity at right-hand side
does not depend on the data: we write this quantity as qd. We can state that P[|fTF(X1:Npt

,y1:Npt
,x;Γ∗,v∗, b∗,a∗)−

fTF(X1:Ntest
,y1:Ntest

,x;Γ∗,v∗, b∗,a∗)| ≤ qd] ≤ 1− d−4 from the definition of the high probability event. We write this
event as E. Consequently,

E[|fTF(X1:Npt ,y1:Npt ,x;Γ
∗,v∗, b∗,a∗)− fTF(X1:Ntest ,y1:Ntest ,x;Γ

∗,v∗, b∗,a∗)|]
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≤qd + E[|fTF(X1:Npt
,y1:Npt

,x;Γ∗,v∗, b∗,a∗)− fTF(X1:Ntest
,y1:Ntest

,x;Γ∗,v∗, b∗,a∗)|(1− I(E))]

≤qd + E[|fTF(X1:Npt
,y1:Npt

,x;Γ∗,v∗, b∗,a∗)− fTF(X1:Ntest
,y1:Ntest

,x;Γ∗,v∗, b∗,a∗)|2]1/2 · (d−4)1/2

≤qd + E[2fTF(X1:Npt
,y1:Npt

,x;Γ∗,v∗, b∗,a∗)2 + 2fTF(X1:Ntest
,y1:Ntest

,x;Γ∗,v∗, b∗,a∗)2]1/2 · (d−4)1/2

≤qd + Õ(r3ge(σ∗)/4 · d−2)

From Lemma 27. Then, from ge(σ∗) ≤ 2 and r ≤ d, we obtain |RICL
Npt

(Γ∗,v∗, b∗,a∗)−RICL
Ntest

(Γ∗,v∗, b∗,a∗)| = od(1)
and arrive at the conclusion from Lemma 26.

F Auxiliary Lemmas
F.1 High Probability Events on Gaussian and Spherical Variables

Lemma 28 ((Wainwright, 2019), Example 2.11). Let z ∼
√
x2
1 + · · ·+ x2

r where x ∼ N (0, Ir). Then, for any 0 < t < 1,

P[|z2 − r| ≥ rt] ≤ 2 exp
(
−rt2/8

)
holds. Consequently, z2 ≤ O(r

√
log d) holds with high probability, and if r = d, d/2 ≤ z2 ≤ 3d/2 holds with high

probability.

Lemma 29. Let r ≤ d, x ∼ N (0, Ir), y ∼ N (0, Ir) independent of x, and a r × r matrix G dependent of neither x nor
y. Then, | ⟨x,Gy⟩ | = O(∥G∥2

√
r log d) holds with high probability.

Proof. x can be decomposed as x = zβ, where β ∼ Unif(Sr−1) and z = ∥x∥ independent of β. Thus, ⟨x,Gy⟩ =〈
zG⊤β,y

〉
holds. From Lemma 28 we have ∥zG⊤β∥2 = O(∥G∥22r

√
log d) with high probability, and if we fix x

satisfying this, then
〈
zG⊤β,y

〉2
= O(∥G∥22r

√
log d ·

√
log d) with high probability again from Lemma 28 (in the case

r = 1). This yields the assertion.

Corollary 30. Let r ≤ d, β ∼ Unif(Sr−1),y ∼ N (0, Ir) independent of β, and a r × r matrix G dependent of neither x
nor y. Then, | ⟨β,Gy⟩ | = O(∥G∥2

√
log d) holds with high probability.

Lemma 31. Let x1, . . . ,xN ∼ N (0, Id) and let z1, . . . , zN be i.i.d. random variables satisfying |zi| ≤ C (zi might depend
on xi) with high probability. Then, ∥∥∥∥∥N−1

N∑
i=1

zixi − E[z1x1]

∥∥∥∥∥ ≤ Õ(C
√
d/N)

holds with high probability.

Proof. Define z′i = I(|zi| ≤ C)zi. Note that z′ixi is a sub-Gaussian vector, i.e., ⟨z′ixi,u⟩ is C-sub Gaussian for any
u ∈ Unif(Sd−1). Then, a standard concentration bound for sub-Gaussian vectors yields∥∥∥∥∥N−1

N∑
i=1

z′ixi − E[z′1x1]

∥∥∥∥∥ ≤ Õ(C
√
d/N)

with high probability. As N−1
∑N

i=1 zixi = N−1
∑N

i=1 z
′
ixi with high probability, it remains to show that ∥E[z′1x1] −

E[z1x1]∥ is sufficiently small. This can be seen by

∥E[z′1x1]− E[z1x1]| = ∥E[I(|z1| ≥ C)x1]∥
= E[I(|z1| ≥ C)2]1/2[∥x1∥2]1/2

≤ O(d−C∗).

where C∗ can be taken to be sufficiently large from the definition of the high-probability event. This completes the proof.

Applying Lemma 31 to each row yields the following:
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Corollary 32. Let x1, . . . ,xN ∼ N (0, Id) and let v1, . . . ,vN be i.i.d. random vectors satisfying ∥vi∥ ≤ C (vi might
depend on xi) with high probability. Then,∥∥∥∥∥

N∑
i=1

vixi − E[v1x1]

∥∥∥∥∥
F

≤ Õ(Cd/
√
N)

holds with high probability.

F.2 Hermite Polynomials

Lemma 33. For g(z) =
∑

i≥0
ci
i!Hei(z), ∑

i≥0

c2i
i!

= Ez∼N (0,1)[g(z)
2]

holds.

Lemma 34 ((Damian et al., 2023), Property 1). For α,β ∈ Sd−1,

Ex∼N (0,Id)[Hei(⟨x,α⟩)Hej(⟨x,β⟩)] = i! · I(i = j) ⟨α,β⟩i

holds.

G Experimental Details
For the experiment in Section 6, we used a 6-layer GPT-2 model (Radford et al., 2019) following the configuration used
in (Garg et al., 2022; Oko et al., 2024b). Precisely, the model take the length-(N + 1) prompt (X1:N+1,y1:N+1,x) as
input. Then, we first make the embedding as

E = W in
[
x1,y

pad
1 , . . . ,xN+1,y

pad
N+1

]
∈ Rd×(2N+2) (G.1)

where ypad
i = [yi, 0, . . . , 0]

⊤ and W in ∈ RD×d is a trainable read-in parameter. A 6-layers GPT-2 backbone with 4
attention heads, whose configuration is same as that in Garg et al. (2022) then convert this embedding into E′ ∈ RD×(2N+2)

where D = 256, and we obtain
[z1, . . . , z2N+2] = (wout)⊤E′ (G.2)

where wout ∈ RD is also trainable. Here, we use z2i−1 as the prediction of yi based on x1, y1, . . . ,xi−1, yi−1 and xi.
Causal attention mask ensure that there is no information leakage. We pretrain the model using the Adam (Kingma & Ba,
2015) optimizer with learning rate 0.0001 on the mean-squared loss calculated over all the positions. We utilize curriculum
learning setting which is also adopted in (Garg et al., 2022) to reduce the pretraining cost. we start from d = 2 and increased
the input dimensionality of by two until the target dimensionality.

The test loss is averaged over 256 independent runs, where each run contains 8,192 independent batches.
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