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ABSTRACT

Consistency models (CMs) offer faster sampling than traditional diffusion models,
but their training is resource-intensive. For example, as of 2024, training a state-of-
the-art CM on CIFAR-10 takes one week on 8 GPUs. In this work, we identify the
"curse of consistency" for training such models and propose an effective training
scheme that largely mitigates this issue and improves the efficiency of building such
models. Specifically, by expressing CM trajectories via the differential equation,
we argue that diffusion models can be viewed as a special case of CMs. We can
thus fine-tune a consistency model starting from a pretrained diffusion model and
progressively approximate the full consistency condition to stronger degrees over
the training process. Our resulting method, which we term Easy Consistency
Tuning (ECT), achieves vastly reduced training times while improving upon the
quality of previous methods: for example, ECT achieves a 2-step FID of 2.73 on
CIFAR10 within 1 hour on a single A100 GPU, matching Consistency Distillation
trained for hundreds of GPU hours. Owing to this computational efficiency, we
investigate the scaling laws of CMs under ECT, showing that they obey the classic
power law scaling, hinting at their ability to improve efficiency and performance
at larger scales. Our code will be made publicly available, making CMs more
accessible to the broader community.

1 INTRODUCTION

Diffusion Models (DMs) (Ho et al., 2020; Song et al., 2021a), or Score-based Generative Models
(SGMs) (Song et al., 2020; 2021b), have vastly changed the landscape of visual content generation
with applications in images (Rombach et al., 2021; Saharia et al., 2022; Ho et al., 2022a; Dhariwal and
Nichol, 2021; Hatamizadeh et al., 2023; Ramesh et al., 2021), videos (Brooks et al., 2024; Blattmann
et al., 2023; Bar-Tal et al., 2024; Ho et al., 2022b; Gupta et al., 2023), and 3D objects (Poole et al.,
2022; Wang et al., 2024a; Lee et al., 2024; Chen et al., 2024; Babu et al., 2023). DMs progressively
transform a data distribution to a known prior distribution (e.g. Gaussian noise) according to a
stochastic differential equation (SDE) (Song et al., 2021b) and train a model to denoise noisy
observations. Samples can be generated via a reverse-time SDE that starts from noise and uses the
trained model to progressively denoise it. However, sampling from a DM naively requires hundreds to
thousands of model evaluations due to the curvature of the diffusion sampling trajectory (Karras et al.,
2022), making the entire generative process slow. Many approaches have been proposed to address
this issue, including training-based techniques such as distillation (Luhman and Luhman, 2021;
Salimans and Ho, 2022; Luo et al., 2024; Gu et al., 2023; Sauer et al., 2023; Geng et al., 2024; Yin
et al., 2023; Nguyen and Tran, 2023), adaptive compute architectures for the backbone model (Moon
et al., 2023; Tang et al., 2023), as well as training-free methods such as fast samplers (Kong and Ping,
2021; Lu et al., 2022a; Zhang and Chen, 2022; Zhou et al., 2023; Xue et al., 2024) or interleaving
small and large backbone models during sampling (Pan et al., 2024). However, sample quality and
mode coverage achieved by these speedup techniques still struggles when the number of model
evaluations is reduced to below 5.

Consistency Models (CMs) (Song et al., 2023) are a new family of generative models, closely related
to diffusion models, that have demonstrated promising results as faster generative models. These
models learn a mapping between noise and data, and all the points of the sampling trajectory map to
the same initial data point. Owing to this condition, consistency models are capable of generating
high-quality samples in 1-2 model evaluations. The best such models so far, built using improved
Consistency Training (iCT) (Song and Dhariwal, 2023), have pushed the quality of images generated
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by 1-step CMs trained from scratch to a level comparable with SoTA DMs using thousands of steps for
sampling. Unfortunately, CMs remain time-consuming and practically challenging to train: the best
practice takes many times longer than similar-quality DMs while involving complex hyperparameter
choices in the training process. In total, this has substantially limited the uptake of CMs within the
community.

In this work, we introduce a differential perspective on consistency models, leading to the formulation
of the differential consistency condition in continuous time. This insight reveals the link between
diffusion models and consistency models, viewing DMs as a special case of CMs with loose dis-
cretization. This observation motivates us to smoothly interpolate from DM to CM by progressively
tightening the consistency condition, bootstrapping pretrained DMs to 1-step CMs w/o using extra
frozen teachers. We term this strategy as Easy Consistency Tuning (ECT), which includes diffusion
pretraining as a special stage of the continuous time training schedule.

ECT significantly improves both training efficiency and performance. On ImageNet 64×64 (Deng
et al., 2009), ECT achieves superior 1-step and 2-step sample quality compared to the prior art.
Similarly, on CIFAR-10 (Krizhevsky, 2009) 2-step sample quality of ECT surpasses previous methods.
The total cost of the pretraining and tuning scheme requires only 1/4 ∼ 1/3 of the computational
resources (FLOPs) used by the current state-of-the-art method, iCT (Song and Dhariwal, 2023), while
the tuning stage can be remarkably lightweight, typically accounting for 10% or less of the overall
cost and further benefiting from scaling.

Leveraging ECT’s computational efficiency, we conduct the first study into the scaling behaviors
of CMs, revealing the classic power law scaling for model size, FLOPs, and training compute. The
scaling also suggests a sweet spot of using smaller few-step CMs over larger 1-step CMs in certain
scenarios. This computational efficiency enables us to explore the design space of CMs by using
the tuning stage as a proxy. Notably, tuning findings, such as weighting functions, can improve the
pretraining stage and, in turn, enhance the overall pretraining + tuning pipeline for CMs.

In short, we summarize our contributions as follows:

• We develop Easy Consistency Tuning (ECT), a pretraining + tuning scheme for training CMs
in continuous time, demonstrating significant efficiency and performance gains compared to
the current best practices for training CMs.

• We investigate CMs’ scaling behaviors for the first time and reveal the classic power law.
• We explore the design space of CMs through ECT, introducing the continuous-time schedule

and better weighting functions for CMs.

2 PRELIMINARIES

Diffusion Models. Let pdata(x0) denote the data distribution. Diffusion models (DMs) perturb this
distribution by adding monotonically increasing i.i.d. Gaussian noise with standard deviation σ(t)
from t = 0 to T such that pt(xt|x0) = N (x0, σ

2(t)I), and σ(t) is chosen such that σ(0) = σmin
and σ(T ) = σmax. This process is described by the following SDE (Song et al., 2021b)

dx = g(t)dw, (1)

where w is the standard Wiener process, and g(·) : R→ R is the diffusion coefficient. Samples can be
generated by solving the reverse-time SDE starting from t = T to 0 and sampling xT ∼ N (0, σ2

maxI).
(Song et al., 2021b) show that this SDE has a corresponding ODE, called the probability flow ODE
(PF-ODE), whose trajectories share the same marginal probability densities as the SDE. We follow
the notation in (Karras et al., 2022) to describe the ODE as

dxt = −σ̇(t)σ(t)∇xt
log pt(xt)dt, (2)

where ∇xt
log pt(xt) denotes the score function. Prior works (Karras et al., 2022; Song et al., 2023)

set σ(t) = t which yields
dxt

dt
= −t∇xt

log pt(xt) (3)

We will follow this parameterization in the rest of this paper. Note that time is the same as noise level
with this parametrization, and we will use these two terms interchangeably.
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Consistency Models. CMs are built upon the PF-ODE in Eq. (3), which establishes a bijective
mapping between data distribution and noise distribution. CMs learn a consistency function f(xt, t)
that maps the noisy image xt back to the clean image x0

f(xt, t) = x0. (4)

By taking the time derivative of both sides, given by continuous-time consistency models (Song et al.,
2023).

df

dt
= 0. (5)

However, this differential form df
dt = 0 alone is not sufficient to guarantee that the model output

will match the clean image, as there exist trivial solutions where the model maps all the inputs to a
constant value, such as f(xt, t) ≡ 0. To eliminate these collapsed solutions, (Song et al., 2023; Song
and Dhariwal, 2023) impose the boundary condition for f(xt, t) = x0 via model parameterization:

f(xt, t) = x0 ⇔
df

dt
= 0, f(x0, 0) = x0. (6)

This boundary condition f(x0, 0) = x0 ensures that the model output matches the clean image when
the noise level is zero. Together, the differential form in Eq. (5) and the boundary condition define
the consistency condition.

Prior works (Karras et al., 2022; Song et al., 2023; Song and Dhariwal, 2023) impose this boundary
condition by parametrizing the CM as

fθ(xt, t) = cskip(t)xt + cout(t)Fθ(xt, t), (7)

where θ is the model parameter, Fθ is the network to train, and cskip(t) and cout(t) are time-dependent
scaling factors such that cskip(0) = 1, cout(0) = 0. This parameterization guarantees the boundary
condition by design. We discuss specific choices of cskip(t) and cout(t) in Appendix C.

Training Techniques for Consistency Models. During training, CMs first discretize the PF-ODE
into N − 1 subintervals with boundaries given by tmin = t1 < t2 < . . . < tN = T . The model is
trained on the following CM loss, which minimizes a metric between adjacent points on the sampling
trajectory

argmin
θ

E
[
w(ti)d(fθ(xti+1

, ti+1), fθ−(x̃ti , ti))
]
. (8)

Here, d(·, ·) is a metric function, the fθ indicates the consistency function, fθ− indicates
an exponential moving average (EMA) of the past values of fθ, and x̃ti = xti+1

− (ti −
ti+1)ti+1∇xti+1

log pti+1
(xti+1

). Further, the discretization curriculum N should be adaptive during
training to achieve strong performance.

In the seminal work, Song et al. (2023) use Learned Perceptual Similarity Score (LPIPS) (Zhang
et al., 2018) as a metric function, set w(ti) = 1 for all ti, and sample ti according to the sampling

scheduler by Karras et al. (2022): ti =
(
t
1/ρ
max +

i
N−1 (t

1/ρ
min − t

1/ρ
max)

)ρ
for i ∈ U [1, N − 1] and ρ = 7.

Further, the score function ∇xt
log p(xt) can either be estimated from a pretrained diffusion model,

which results in Consistency Distillation (CD), or can be estimated with an unbiased score estimator
in Eq. (9), corresponding to consistency training (CT).

∇xt
log p(xt) = E

[
∇xt

log p(xt|x0)

∣∣∣∣xt

]
= E

[
−xt − x0

t2

∣∣∣∣xt

]
, (9)

The follow-up work, iCT (Song and Dhariwal, 2023), introduces techniques that significantly improve
the performance of CMs. First, the LPIPS metric, which introduces undesirable bias in generative
modeling, is replaced with a Pseudo-Huber metric. Second, the network fθ− does not maintain an
EMA of the past values of fθ. Third, iCT replaces the uniform weighting scheme w(ti) = 1 with
w(ti) =

1
ti+1−ti

. Further, the scaling factors of noise embeddings and dropout are carefully selected.
Fourth, iCT introduces a discretization curriculum during training:

N(m) = min(s02
⌊ m

M′ ⌋, s1) + 1, M ′ =

 M

log2

⌊
s1
s0

⌋
+ 1

 , (10)
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where m is the current number of iterations, M is the total number of iterations, σmax and σmin is
the largest and smallest noise level for training, s0 = 10 and s1 = 1280 are hyperparameters. Finally,
during training, iCT samples i ∼ p(i) ∝ erf

(
log(ti+1)−Pmean√

2Pstd

)
− erf

(
log(ti)−Pmean√

2Pstd

)
from a discrete

Lognormal distribution, where Pmean = −1.1 and Pstd = 2.0.

3 PROBING CONSISTENCY MODELS

We first discuss the finite difference approximation on continuous-time consistency models. Next,
we will analyze this loss objective and highlight the challenges of training CMs with it. Based on
this analysis, we present our method, Easy Consistency Tuning (ECT). ECT is a simple, principled
approach to efficiently train CMs to meet the consistency condition. The resulting CMs can generate
high-quality samples in 1 or 2 sampling steps.

3.1 THE "CURSE OF CONSISTENCY" AND ITS IMPLICATIONS

To learn the consistency condition, continuous-time consistency models (Song et al., 2023) could be
discretized using finite-difference approximation:

0 =
df

dt
≈ fθ(xt)− fθ(xr)

t− r
(11)

where dt ≈ ∆t = t− r, t > r >= 0, and fθ(xt) denotes fθ(xt, t). For a given clean image x0, we
produce two perturbed images xt and xr using shared noise direction ϵ ∼ p(ϵ) at two noise levels t
and r, i.e., xt = x0 + t · ϵ and xr = x0 + r · ϵ.

Given the discretization, the objective function for CMs in Eq. (8) can be written as

argmin
θ

Ex0,ϵ,t

[
w(t, r)d(fθ(xt), fsg(θ)(xr))

]
, (12)

while removing the discrete training schedules. The consistency condition in Eq. (6) holds by
eliminating discretization errors, i.e., ∆t = (t− r)→ 0.

Figure 1: The "Curse of Consistency":
The consistency condition holds at ∆t =
dt. However, the training dynamics con-
verges more slowly and is less stable as
∆t→ 0 (i.e., N →∞).

However, the consistency loss can be challenging to opti-
mize when ∆t→ 0. This is because the prediction errors
from each discretization interval accumulate, leading to
slow training convergence or, in the worst case, divergence.
To further elaborate, consider a large noise level T . We
first split the noise horizon [0, T ] into N smaller consec-
utive subintervals. Then we can error bound the error of
1-step prediction as

∥fθ(xT )− x0∥ ≤
N∑
i

∥fθ(xti)− fθ(xri)∥ ≤ Nemax,

(13)
where r1 = 0 < t1 = r2 < · · · < tN−2 = rN < tN = T ,
and emax = maxi ∥fθ(xti)−fθ(xri)∥, for i = 1, · · · , N .
Ideally, we want both N and emax to be small so that this
upper bound is small. But in practice, there is a trade-off
between these two terms. As ∆ti = (ti − ri)→ 0, emax

decreases because xti and xri will be close, and it is easier
to predict both fθ(xri) and fθ(xti). However, N will increase as ∆ti → 0. In contrast, for a large
∆ti, vice-versa holds true. It is difficult to theoretically estimate the rate at which emax decreases
when ∆ti = ti − ri → 0, as it depends on the optimization process—specifically, how effectively we
train the model to minimize the consistency error in each interval. If emax decreases more slowly than
N , the product of the two can increase instead, resulting in a worse prediction error ∥fθ(xT )− x0∥.
The insight from the above observation is that when training from scratch by strictly following the
differential form df/dt = 0 with a tiny ∆ti ≈ 0, the resulting model might converge slowly due to
accumulated consistency errors from each interval ∆ti. To investigate this hypothesis, we conducted
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experiments training a series of CMs using different fixed numbers of intervals N , and corresponding
∆t values for the consistency condition, as illustrated in Fig. 1. Our observations align with Song and
Dhariwal (2023), with the key distinction that we use a fixed N for this analysis, as this approach
provides better insight into how much the precise approximation of the consistency condition matters
and isolates the effect of discretization errors.

3.2 EASY CONSISTENCY TUNING (ECT)

The discussion in Sec. 3.1 highlighted the training instability issue that can arise when we naively
optimize for the differential consistency condition with the loss objective in Eq. (12) while directly
following ∆t ≈ 0. In this section, we propose several strategies that largely alleviate the aforemen-
tioned issues and improve the efficiency of CMs. We term this approach Easy Consistency Tuning
(ECT), as it effectively balances training stability and model performance while simplifying the CM
training process. ECT follows a two-stage approach: diffusion pretraining, followed by consistency
tuning, which we will detail in the following subsections with a summary in Alg. 1.

Diffusion Pretraining + Consistency Tuning. Drawing inspiration from iCT’s adaptive discrete-
time schedule (Song and Dhariwal, 2023), we start ECT with a large ∆t, and gradually shrink
∆t → 0. In our problem setup, Since t > r ≥ 0, we have the largest possible ∆t = t with r = 0,
which yields

argmin
θ

∥fθ(xt)− fsg(θ)(xr)∥ = ∥fθ(xt)− fsg(θ)(x0)∥ = ∥fθ(xt)− x0∥. (14)

Training a model with this loss is identical to diffusion model/Score SDE (Ho et al., 2020; Song
et al., 2021b). This observation suggests a learning scheme that smoothly interpolates from DMs
∆t = t to CMs ∆t = dt by gradually shrinking ∆t→ 0 during training by gradually tightening the
consistency condition. With this reasoning, diffusion pretraining can be considered as a special case
of consistency training with a loose discretization of the consistency condition. Therefore, in practice,
we start ECT with a pretrained diffusion model, resulting in a training scheme of pretraining+tuning.
Another benefit of this initialization is that during training, especially in the initial stages, it ensures
good targets fsg(θ)(xr) in the loss objective, avoiding trivial solutions.

We highlight two advantages of this learning scheme: 1. The pretraining+tuning scheme of ECT
outperforms iCT’s training-from-scratch approach with lower overall computational cost (see Sec. 4.1).
2. Tuning could serve as an efficient proxy for exploring the CM design space. Given a pretrained
diffusion model, insights gained during tuning can be applied to improve the pretraining stage,
resulting in a more refined overall CM training pipeline. Please refer to Appendix B for details.

Continuous-time Training Schedule. We investigate the design principles of a continuous-time
schedule whose "boundary" condition yields standard diffusion pretraining, i.e., constructing training
pairs of r = 0 for all t at the beginning. Note that this is unlike the discrete-time schedule used in iCT
(See Sec. 2 and Appendix A). We consider overlapped intervals for consistency models, which allows
for factoring p(t, r) = p(t) p(r|t) and continuous sampling of infinite t from noise distribution p(t),
for instance, LogNormal(Pmean, Pstd), and r ∼ p(r|t).
Since we need to shrink ∆t → 0 as the training progresses, we augment the p(r|t) to depend on
training iterations, p(r|t, iters), to control ∆t = (t− r)→ 0. We parametrize p(r|t, iters) as

r

t
= 1− 1

qa
n(t) = 1− 1

q⌊iters/d⌋
n(t), (15)

where we take n(t) = 1 + k σ(−bt) = 1 + k
1+ebt

with σ(·) as the sigmoid function, iters refers to
training iterations. In general, we set q > 1, k = 8 and b = 1. Since r ≥ 0, we also clamp r to satisfy
this constraint. At the beginning of training, this mapping function produces r/t = 0, which recovers
the diffusion pretraining. We discuss design choices of this function in Appendix A.

Weighting function. Weighting functions usually lead to a substantial difference in performance
in DMs, and the same holds true for CMs. When considering iCT’s weighting function, w(t, r) =
1/t−r, derived from the finite difference approximation, it couples the timestep weighting with
p(r|t). Instead, we consider more flexible timestep weighting independent from the finite difference
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Algorithm 1 Easy Consistency Tuning (ECT)
Input: Dataset D, a pretrained diffusion model ϕ, mapping function p(r | t, Iters), weighting
function w(t).
Init: θ ← ϕ, Iters = 0.
repeat

Sample x0 ∼ D, ϵ ∼ p(ϵ), t ∼ p(t), r ∼ p(r | t, Iters)
Compute xt = x0 + t · ϵ, xr = x0 + r · ϵ, ∆t = t− r
L(θ) = w(t) · d(fθ(xt), fsg(θ)(xr)) ▷ sg is stop-gradient operator
θ ← θ − η∇θL(θ)
Iters = Iters + 1

until ∆t→ 0 return θ ▷ ECM

approximation. Motivated by the adaptive scaling factor that appears in Pseudo-Huber loss (See
Appendix A for more details), we rewrite the weighting function as

w(t) = w̄(t) · w(∆) = w̄(t) · 1

(∥∆∥22 + c2)p
, (16)

where ∆ = f(xt)− f(xr). We define w(∆) as adaptive weighting, in which p = 1/2 corresponds
to the Pseudo-Huber loss. The adaptive weighting improves training efficiency with the L2 metric
because, as ∆→ 0 (usually happens when t→ 0), this weighting w(∆) upscales gradients to avoid
vanishing gradient during learning of fine-grained features, while c mitigates potential numerical
issues when ∆ ≈ 0. In general, we notice that CMs’ generative capability greatly benefits from
weighting functions that control the variance of the gradients across different noise levels. We direct
the reader to Appendix B for a detailed overview of various choices of w̄(t) and w(∆) considered in
this work.

Dropout. In line with (Song and Dhariwal, 2023), we find that CMs benefit significantly from
dropout (Hinton et al., 2012). On ImageNet 64×64, we note that ECT benefits from a surprisingly
high dropout rate. When increasing the dropout rate from 0.10 to 0.40, the 2-step FID decreases from
4.53 to 3.24. Finally, we note that the dropout rate tuned at a given weighting function w(t) transfers
well to the other weighting functions, thereby reducing the overall cost of hyperparameter tuning.

4 EXPERIMENTS

This section compares different learning schemes and investigates scaling laws of ECT, while more
experiments on design choices and scaling are shown in Appendix B. We evaluate the efficiency and
scalability of ECT on two datasets: CIFAR-10 (Krizhevsky, 2009) and ImageNet 64 × 64 (Deng
et al., 2009). We measure the sample quality using Fréchet Inception Distance (FID) (Heusel et al.,
2017) and Fréchet Distance under the DINOv2 model (Oquab et al., 2023) (FDDINOv2) (Stein et al.,
2024) and sampling efficiency using the number of function evaluations (NFEs). We also indicate the
relative training costs of each of these methods. Implementation details can be found in Appendix C.

4.1 COMPARISON OF TRAINING SCHEMES

We compare CMs trained with ECT (denoted as ECM) against state-of-the-art diffusion models, ad-
vanced samplers for diffusion models, distillation methods such as consistency distillation (CD) (Song
et al., 2023), and improved Consistency Training (iCT) (Song and Dhariwal, 2023). We show the
training FLOPs, inference cost, and generative performance of the four training schemes.

Score SDE/Diffusion Models. We compare ECMs against Score SDE (Song et al., 2021b),
EDM (Karras et al., 2022), and EDM with DPM-Solver-v3 (Zheng et al., 2024). 2-step ECM,
which has been fine-tuned for only 100k iterations, matches Score SDE-deep, with 2× model depth
and 2000 NFEs, in terms of FID. As noted in Fig. 2, ECM only requires a fraction of its inference
cost and latency to achieve the same sample quality. 2-step ECM fine-tuned for 100k iterations
outperforms EDM (Karras et al., 2022) with advanced DPM-Solver-v3 (NFE=10).

Diffusion Distillation. We compare ECT against Consistency Distillation (CD) (Song et al., 2023),
a SoTA approach that distills a pretrained DM into a CM. As shown in Tab. 1, ECM significantly
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Figure 2: Comparison of training schemes for the diffusion-consistency family on CIFAR-10. Without
relying on distillation from frozen diffusion teachers or extra adversarial supervision, ECT surpasses
Consistency Distillation (CD) (Song et al., 2023) and Consistency Models trained from scratch
(iCT) (Song and Dhariwal, 2023) using 1/4 of the total training cost. ECT significantly reduces the
inference cost compared to Score SDE/DMs (Diffusion Pretraining) while maintaining comparable
sample quality.

Figure 3: Scaling up training compute and model sizes results in improved sample quality on
ImageNet 64×64. Each triplet (left-to-right) has 2-step samples from ECM-S trained with 12.8M
images, ECM-S trained with 102.4M images, and ECM-XL trained with 102.4M images.

outperforms CD on both CIFAR-10 and ImageNet 64×64. We note that ECT is free from the errors of
teacher DM and does not incur any additional cost of running teacher DM. 2-step ECM outperforms
2-step CD (with LPIPS (Zhang et al., 2018)) in terms of FID (2.20 vs 2.93) on CIFAR-10 while using
around 1/3 of training compute of CD.

Consistency training from scratch. Improved Consistency Training (iCT) (Song and Dhariwal,
2023) is the SoTA recipe for training a consistency model from scratch without inferring the diffusion
teacher. Compared to training from scratch, ECT rivals iCT-deep using 1/4 of the overall training
compute (1/8 in the tuning stage) and 1/2 of the model size as shown in Fig. 2 and Tab. 1.

4.2 SCALING LAWS OF ECT

We leverage the efficiency of ECT to examine the scaling behavior of CMs, including training
compute, model size, and model FLOPs. We find that when computational resources are not a
bottleneck, ECT scales well and follows the classic power law.

Training Compute. Initializing from the weights of EDM (Karras et al., 2022), we fine-tune ECMs
across six compute scales on CIFAR-10 (Krizhevsky, 2009) and plot the trend of FDDINOv2 against
training compute in Fig. 4 (Left). The largest compute reaches 2× the diffusion pretraining budget.
As we scale up the training budget, we observe a classic power-law decay in FDDINOv2, indicating
that increased computational investment in ECT leads to substantial improvements in generative
performance. Intriguingly, the gap between 1-step and 2-step generation becomes narrower when

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Generative performance on unconditional CIFAR-10 and class-conditional ImageNet 64×64.
We use a budget of 12.8M training images (batch size 128 and 100k iterations) for ECMs. ⋆ stands
for a budget of 102.4M training images (batch size 1024 and 100k iterations) on ImageNet 64×64.
Results for prior methods are reported from Song and Dhariwal (2023); Karras et al. (2024).

CIFAR-10

Method FID↓ NFE↓
Diffusion Models

Score SDE (Song et al., 2020) 2.38 2000
Score SDE-deep (Song et al., 2020) 2.20 2000
EDM (Karras et al., 2022) 2.01 35
EDM (DPM-Solver-v3) (Zheng et al., 2024) 2.51 10

Diffusion Distillation

PD (Salimans and Ho, 2022) 8.34 1
GET (Geng et al., 2024) 5.49 1
Diff-Instruct (Luo et al., 2024) 4.53 1
TRACT (Berthelot et al., 2023) 3.32 2
CD (LPIPS) (Song et al., 2023) 3.55 1
CD (LPIPS) (Song et al., 2023) 2.93 2

Consistency Models

iCT (Song and Dhariwal, 2023) 2.83 1
2.46 2

iCT-deep (Song and Dhariwal, 2023) 2.51 1
2.24 2

ECT

ECM (100k iters) 4.54 1
ECM (200k iters) 3.86 1
ECM (400k iters) 3.60 1
ECM (100k iters) 2.20 2
ECM (200k iters) 2.15 2
ECM (400k iters) 2.11 2

ImageNet 64×64

Method FID↓ NFE↓
Diffusion Models

ADM (Dhariwal and Nichol, 2021) 2.07 250
EDM (Karras et al., 2022) 2.22 79
EDM2-XL (Karras et al., 2023) 1.33 63

Diffusion Distillation

BOOT (Gu et al., 2023) 16.3 1
DFNO (LPIPS) (Zheng et al., 2023) 7.83 1
Diff-Instruct (Luo et al., 2024) 5.57 1
TRACT (Berthelot et al., 2023) 4.97 2
PD (LPIPS) (Salimans and Ho, 2022) 5.74 2
CD (LPIPS) (Song et al., 2023) 4.70 2

Consistency Models

iCT (Song and Dhariwal, 2023) 3.20 2
iCT-deep (Song and Dhariwal, 2023) 2.77 2

ECT

ECM-S (100k iters) 3.18 2
ECM-M (100k iters) 2.35 2
ECM-L (100k iters) 2.14 2
ECM-XL (100k iters) 1.96 2

ECM-S⋆ 4.05 1
ECM-S⋆ 2.79 2
ECM-XL⋆ 2.49 1
ECM-XL⋆ 1.67 2

scaling up training compute, even while using the same ∆t → 0 schedule. We further fit the
power-law FDDINOv2 = K · Cα, where C is the normalized training FLOPs. The Pearson correlation
coefficient between log(Training Compute) and log(FDDINOv2) for 1-step and 2-step generation is
−0.9940 and −0.9996, respectively, both with statistical significance (p-values < 10−4).

Model Size & FLOPs. Initialized from EDM2 (Karras et al., 2024) pretraining, we train ECM-
S/M/L/XL models with parameters from 280M to 1.1B and model FLOPs from 102G to 406G.
As demonstrated in Fig. 4, both 1-step and 2-step generation capabilities exhibit log-linear scaling
for model FLOPs and parameters. This scaling behavior confirms that ECT effectively leverages
increased model sizes and computational power to improve 1-step and 2-step generative capabilities.

Notably, ECT achieves better 2-step generation performance than state-of-the-art CMs, while uti-
lizing only 33% of the overall computational budget compared to iCT (Song and Dhariwal, 2023)
(batch size 4096× 800k). This significant efficiency is achieved through a two-stage process: pre-
training and tuning. While the pretraining stage utilizes the EDM2 pipeline, the tuning stage of ECT
requires a remarkably modest budget of 12.8M training images (batch size 128 × 100k), ranging
from 0.60% to 1.91% of the pretraining budget, depending on the model sizes.

Inference. Our scaling study also indicates a sweet spot for the inference of CMs. On both
CIFAR-10 and ImageNet 64×64, there are 2-step inferences of smaller models surpassing 1-step
inferences of larger models, e.g., 498M ECM-M against 1.1B ECM-XL. This calls for further studies
of inference-optimal scaling and test-time compute scaling for visual generation.

4.3 SCALING TO HIGH-RESOLUTION DATASETS

We further extend our method to latent space and conducted experiments on ImageNet 512× 512.
Our ECM-M (498M parameters) achieves FID of 6.88 for 2-step generation using a modest budget of
12.8M training images, surpassing ADM-G (Dhariwal and Nichol, 2021)(559M parameters, FID of
7.72 at NFE=250x2) on the ImageNet 512× 512 dataset.
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Figure 4: (Left): Scaling up training compute yields the classic power-law between FDDINOv2 ↓ and
training compute, with K = 263, α = −0.060 for 1-step inference, and K = 164, α = −0.028
for 2-step inference, (Right): Given the same batch size and iterations, scaling up model sizes and
model FLOPs strongly correlates with FID ↓ improvements on ImageNet 64× 64. The diameter is
proportional to the model size.

Table 2: Ablation study of tuning design choices on ImageNet 64×64

Methods 1-step FID 2-step FID

iCT + EDM2 Pretraining 21.09 4.39
+ Continuous time schedule 14.34 4.33
+ Dropout = 0.40 9.28 3.22
+ w̄(t) = 1/t2 + 1/σ2

data 5.51 3.18

4.4 ABLATION STUDY

We perform ablation studies to analyze the impact of various tuning design choices. Using iCT’s
design choices as the baseline, we tune EDM2-S and present the results in Tab. 2. These results
highlight the benefits of the continuous-time training schedule, increased dropout, and weighting
functions in enhancing ECMs’ efficient generative performance.

5 RELATED WORK

Consistency Models. Consistency models (Song et al., 2023; Song and Dhariwal, 2023) are a new
family of generative models designed for efficient generation with few model steps without the need
for adversarial training. CMs do not rely on a pretrained diffusion model (DM) to generate training
targets but instead leverage an unbiased score estimator. CMs have been extended to multi-step
sampling (Kim et al., 2024; Wang et al., 2024b; Heek et al., 2024), latent space models (Luo et al.,
2023), ControlNet (Xiao et al., 2023), video (Wang et al., 2024c), and combined with additional
adversarial losses (Kim et al., 2024; Kong et al., 2023). Despite their sampling efficiency, CMs are
typically more challenging to train and require significantly more compute resources compared to
their diffusion counterparts. Our work substantially improves the training efficiency of CMs, reducing
the cost of future research and deployment on CMs.

While initializing CMs with pretrained diffusion models has also been considered in Song et al. (2023);
Song and Dhariwal (2023), their training schedules for discrete-time models neither correspond to the
standard diffusion pretraining phase initially nor demonstrate the experimental advantages of this two-
stage approach. While Continuous-time CT considers initializing from pretrained diffusion models,
it is schedule-free, jumping from the initialization to the continuous-time training. ECT, starting
from the pretraining stage, progressively reduces the discretization error using the continuous-time
schedule.

ECT is considered a training method rather than a distillation approach since distillation needs running
inference of a frozen teacher model to generate training signals online or offline. ECT requires neither
of these. It utilizes a single network (and maintains its Exponential Moving Average (EMA) copy)
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throughout the pretraining and tuning stage. The division between pretraining and tuning under the
continuous-time schedule is more conceptual than technical since they are approximations at different
degrees of consistency models.

Diffusion Distillation. Drawing inspiration from knowledge distillation (Hinton et al., 2015),
distillation is the most widespread training-based approach to accelerate the diffusion sampling
procedure. In diffusion distillation, a pretrained diffusion model (DM), which requires hundreds to
thousands of model evaluations to generate samples, acts as a teacher. A student model is trained to
match the teacher model’s sample quality, enabling it to generate high-quality samples in a few steps.

There are two main lines of work in this area. The first category involves trajectory matching, where
the student learns to match points on the teacher’s sampling trajectory. Methods in this category
include offline distillation (Luhman and Luhman, 2021; Geng et al., 2024; Zheng et al., 2023), which
require an offline synthetic dataset generated by sampling from a pretrained DM to distill a teacher
model into a few-step student model; progressive distillation (Salimans and Ho, 2022; Meng et al.,
2023), and TRACT (Berthelot et al., 2023), which require multiple training passes or offline datasets
to achieve the same goal; and BOOT (Gu et al., 2023), Consistency Distillation (CD)(Song et al.,
2023), and Imagine-Flash (Kohler et al., 2024), which minimize the difference between the student
predictions at carefully selected points on the sampling trajectory.

CD is closely related to our method, as it leverages a teacher model to generate pairs of adjacent
points and enforces the student predictions at these points to map to the initial data point. However, it
employs a fixed schedule derived from a specific sampler, which may introduce non-negligible dis-
cretization errors in approximating the consistency condition. It also limits the quality of consistency
models to that of the pretrained diffusion model.

The second category minimizes the probabilistic divergence between data and model distributions,
i.e., distribution matching (Poole et al., 2022; Wang et al., 2024a; Luo et al., 2024; Yin et al., 2023;
Zhou et al., 2024a). These methods (Luo et al., 2024; Sauer et al., 2023; Yin et al., 2023; Nguyen
and Tran, 2023; Kohler et al., 2024; Xu et al., 2023a; Lin et al., 2024; Zhou et al., 2024b) use score
distillation or adversarial loss, to distill an expensive teacher model into an efficient student model.
However, they can be challenging to train in a stable manner due to the alternating updating schemes
from either adversarial or score distillation. Some of these methods such as DreamFusion (Poole
et al., 2022) and ProlificDreamer (Wang et al., 2024a) are used for 3D object generation.

A drawback of training-based approaches is that they need additional training procedures after
pretraining to distill an efficient student, which can be computationally intensive. For a detailed
discussion on the recent progress of diffusion distillation, we direct the readers to Dieleman (2024).

Fast Samplers for Diffusion Models. Fast samplers are usually training-free and use advanced
solvers to simulate the diffusion stochastic differential equation (SDE) or ordinary differential
equation (ODE) to reduce the number of sampling steps. These methods reduce the discretization
error during sampling by analytically solving a part of SDE or ODE (Lu et al., 2022a; Xue et al.,
2024; Lu et al., 2022b), by using exponential integrators and higher order polynomials for better
approximation of the solution (Zhang and Chen, 2022), using higher order numerical methods (Karras
et al., 2022), using better approximation of noise levels during sampling (Kong and Ping, 2021),
correcting predictions at each step of sampling (Zhao et al., 2024) and ensuring that the solution of
the ODE lies on a desired manifold (Liu et al., 2022a). Another orthogonal strategy is the parallel
sampling process (Pokle et al., 2022; Shih et al., 2024), solving fixed points of the entire trajectory. A
drawback of these fast samplers is that the quality of samples drastically reduces as the number of
sampling steps goes below a threshold such as 10 steps.

6 CONCLUSION

We propose Easy Consistency Tuning (ECT), a simple yet efficient scheme for training consistency
models. The resulting models, ECMs, unlock state-of-the-art few-step generative capabilities at a
minimal tuning cost and are able to benefit from scaling. Our code will be released to ease future
prototyping, studying, and deploying consistency models within the community.
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BROADER IMPACTS AND ETHICS STATEMENT

We propose Easy Consistency Tuning (ECT) that can efficiently train consistency models as state-of-
the-art few-step generators, using only a small fraction of the computational requirements compared
to current CMs training and diffusion distillation methods. We hope that ECT will democratize the
creation of high-quality generative models, enabling artists and creators to produce content more
efficiently. While this advancement can aid creative industries by reducing computational costs and
speeding up workflows, it also raises concerns about the potential misuse of generative models to
produce misleading, fake, or biased content. We conduct experiments on academic benchmarks,
whose resulting models are less likely to be misused. Further experiments are needed to better
understand these consistency model limitations and propose solutions to address them.

REPRODUCIBILITY STATEMENT

We provide extensive details of experimental settings and hyperparameters to reproduce our experi-
mental results in Appendix C. We have provided a zip file of our source code in this submission. We
plan to release our code to ensure transparency and reproducibility of the results.
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A MOTIVATIONS BEHIND DESIGN CHOICES IN ECT

In this section, we expand upon our motivation behind the design decisions for the mapping function,
metric, and weighting function used for ECT.

Mapping Function. We first assume that ∆t is approximately proportional to t. Let 0 < c ≤ 1 be
this constant of proportionality, then we can write:

c ≈ ∆t

t
=

t− r

t
= 1− r

t
⇒ r

t
≈ 1− c.

As training progresses, the mapping function should gradually shrink ∆t → 0. However, the
above parameterization does not achieve this. An alternative parameterization is to decrease ∆t
exponentially. We assume the ratio between r and t can be written as:

r

t
= 1− 1

qa
, (17)

where q > 1, a = ⌊iters/d⌋, and d is a hyperparameter controlling how quickly ∆t → dt. At the
beginning of training, r

t = 1− 1
q0 = 0⇒ r = 0, which falls back to DMs. Since we can initialize

from the diffusion pretraining, this stage can be skipped by setting a = ⌈iters/d⌉. As training
progresses (iters ↑), r

t → 1 leads to ∆t→ dt.

Finally, we adjust the mapping function to balance the prediction difficulties across different noise
levels:

r

t
= 1− 1

qa
n(t) = 1− 1

q⌈iters/d⌉n(t). (18)

For n(t), we choose n(t) = 1+ k, σ(−b, t) = 1+ k
1+ebt

, using the sigmoid function σ. Since r ≥ 0,
we also clamp r to satisfy this constraint after the adjustment.

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

r/t

Plot for a=1
a=1

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

r/t

Plot for a=2

a=2

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

r/t

Plot for a=3
a=3

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

r/t

Plot for a=4
a=4

Figure 5: Visualization of r/t during training. ∆t→ dt when r/t→ 1.

The intuition behind this mapping function is that the relative difficulty of predicting f(xr) from xt

can vary significantly across different noise levels t when using a linear mapping between t and r.

Consider r/t = 0.9. At small values of t, xt and xr are close, making the alignment of f(xt) with
f(xr) relatively easy. In contrast, at larger t, where xt and xr are relatively far apart, the distance
between the predictions f(xt) and f(xr) can be substantial. This leads to imbalanced gradient flows
across different noise levels, impeding the training dynamics.
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Therefore, we downscale r/t when t is near 0 through the mapping function, balancing the gradient
flow across varying noise levels. This prevents the gradient at any noise level from being too small or
too large relative to other noise levels, thereby controlling the variance of the gradients.

We direct the reader to Appendix B for details of how to set q⌈iters/d⌉.

Choice of Metric. iCT uses pseudo-Huber metric (Charbonnier et al., 1997) to mitigate the
perceptual bias caused by the LPIPS metric (Zhang et al., 2018),

L(x,y) =
√
∥x− y∥22 + ϵ− ϵ, ϵ > 0. (19)

This metric indeed improves the performance of CMs over the classic squared L2 loss. When taking
a careful look as this metric, we reveal that one of the reasons for this improvement is that this metric
is more robust to the outliers compared to the L2 metric due to its adaptive per-sample scaling of the
gradients. Let ∆ = x− y, then the differential of the pseudo-Huber metric can be written as

dL =
1√

∥∆∥22 + c2︸ ︷︷ ︸
weighting term

d

(
1

2
∥∆∥22

)
︸ ︷︷ ︸

differential of squared L2 loss

, (20)

where we have decomposed the differential of pseudo-Huber loss into an adaptive weighting term
and the differential of the squared L2 loss. Therefore, we retain the squared L2 metric used in DMs,
and explore varying adaptive weighting terms which we explore in detail in Appendix B.

Distinction between the training schedules of ECT and iCT. As noted in Sec. 2, iCT (Song
and Dhariwal, 2023) employs a discrete-time curriculum given by Eq. (10). This curriculum divides
the noise horizon [0, T ] into N smaller consecutive subintervals to apply the consistency loss,
characterized by non-overlapping segments [ti, ti+1], and gradually increases the number of intervals
N = 10→ 1280. However, the "boundary" condition of this schedule is to start with the number of
intervals to N = 1, learning a model solely mapping samples at noise levels Tmax to the clean data x0,
largely distinct from the classic diffusion models training. We instead investigate a continuous-time
schedule whose "boundary" condition yields diffusion pretraining, i.e., constructing training pairs of
r = 0 for all t at the beginning.

B EXPLORING DESIGN SPACE & SCALING OF CONSISTENCY MODELS

Due to ECT’s efficiency, we can explore the design space of CMs at a minimal cost. We specifically
examine the weighting function, training schedule, and regularization for CMs.

Our most significant finding is that controlling gradient variances and balancing the gradients across
different noise levels are fundamental to CMs’ training dynamics. Leveraging the deep connection
between CMs and DMs, we also improve the diffusion pretraining and the full pretraining+tuning
pipeline using our findings.

Weighting Function. Forward processes with different noise schedules and model parameteriza-
tions can be translated into each other at the cost of varying weighting functions (Kingma and Gao,
2024). From our experiments on a wide range of weighting schemes, we learn three key lessons.

(1) There is no free lunch for weighting function, i.e., there is likely no universal timestep weighting
w̄(t) that can outperform all other candidates on different datasets, models, and target metrics for
both 1-step and 2-step generation.

We refer these results to Tab. 3, including SNR(t) = 1/t2, SNR(t) + 1 = 1/t2 + 1 (Salimans and
Ho, 2022), EDM weighting SNR(t) + 1/σ2

data = 1/t2 + 1/σ2
data (Karras et al., 2022), and Soft-Min-

SNR weighting 1/(t2+σ2
data) (Hang et al., 2023; Crowson et al., 2024), where SNR(t) = 1/t2 is the

signal-to-noise ratio in our setup.

On CIFAR-10, the weighting w̄(t) = 1/(t−r) from the discretization of consistency condition in
Eq. (12) achieves the best 1-step FID, while the square root of SNR(t), w̄(t) =

√
SNR(t) = 1/t,

produces the best FDDINOv2. On ImageNet 64×64, considering that we have already had the adaptive
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Table 3: Performance of ECMs trained with various weighting functions on ImageNet 64×64. We
enable the adaptive weighting w(∆) = 1/(∥∆∥2

2+c2)
1
2 .

w̄(t) 1-step FID↓ 2-step FID↓
1 5.39 3.48
1/t 17.79 3.24
1/(t−r) 9.28 3.22
1/t + 1/σdata 5.68 3.44
1/t2 190.80 20.65
1/t2 + 1 6.78 3.12
1/t2 + 1/σ2

data 5.51 3.18
1/(t2+σ2

data) 163.01 13.33

Table 4: Performance of ECMs trained with varying adaptive weightings on ImageNet 64×64.

w̄(t) w(∆) 1-step FID↓ 2-step FID↓
1/t2 + 1/σ2

data 1 6.51 3.28
1/t2 + 1/σ2

data
1/(∥∆∥1+c) 6.29 3.25

1/t2 + 1/σ2
data

1/(∥∆∥2
2+c2)

1
2 5.51 3.18

1 1/(∥∆∥2
2+c2)

1
2 5.39 3.48

weighting w(∆), the uniform weighting w̄(t) ≡ 1 can demonstrate the best 1-step FID when tuning
from EDM2 (Karras et al., 2024). In contrast to 1-step FIDs, a wider range of timestep weighting
w̄(t) produces close 2-step FIDs for ECMs.

When starting on a new dataset with no prior information, w̄(t) = SNR(t) + n is a generally strong
choice as the default timestep weighting of data prediction models (x-pred). In this situation, this
weighting function corresponds to using v-pred (Salimans and Ho, 2022) or flow matching (Lipman
et al., 2022; Liu et al., 2022b) as model parameterization when n = 1.

(2) The adaptive weighting w(∆) achieves better results by controlling gradient variance. The
adaptive weighting w(∆) on a per-sample basis shows uniform improvements on both CIFAR-10
and ImageNet 64×64. See Tab. 4 for the ablation study.

Beyond ECT, we further investigate the role of adaptive weighting w(∆) in pretraining on a toy
Swiss roll dataset using the parameterization and forward process of flow matching (Lipman et al.,
2022) and an MLP network.

Consider the objective function w(∆)∥vθ(xt) − (x1 − x0)∥22, where xt = (1 − t) · x0 + t · x1,
t ∼ Uniform(0, 1), x1 ∼ N (0, I), and the adaptive weighting

w(∆) =
1

(∥∆∥22 + c2)p
,

where p = 0 corresponds to no adaptive weighting. We set c2 = 10−6 and control the strength of
gradient normalization by varying p from 0 to 1.

As we increase the strength of adaptive weighting, flow models become easier to sample from in a
few steps. Surprisingly, even p = 1 demonstrates strong few-step sampling results when pretraining
the flow model. See Fig. 6 for visualization.

Mapping Function. We compare the constant mapping function with n(t) ≡ 1 in Eq. (17) and
mapping function equipped with the sigmoid n(t) in Eq. (18). We use k = 8 and b = 1 for all the
experiments, which transfers well from CIFAR-10 to ImageNet 64×64 and serves as a baseline in
our experiments. Though b = 2 can further improve the 1-step FIDs on ImageNet 64×64, noticed
post hoc, we don’t rerun our experiments.
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Figure 6: Influence of adaptive weighting w(∆) = 1/(∥∆∥2
2+ϵ)p on pretraining using varying p.

On CIFAR-10, the constant mapping function with n(t) ≡ 1 achieves 1-step FID of 4.06 at 200k
iterations, worse than the 1-step FID of 3.86 by n(t) = 1 + k

1+ebt
. Under our forward process

(xt = x0 + t · ϵ) and model parameterization (EDM (Karras et al., 2022)), the constant mapping
function incurs training instability on ImageNet 64×64, likely due to the imbalanced gradient flow.

The role of the mapping function, regarding training, is to balance the difficulty of learning consistency
condition across different noise levels, avoiding trivial consistency loss near t → 0. For model
parameterizations and forward processes different from ours, for example, flow matching (Lipman
et al., 2022; Liu et al., 2022b; Sauer et al., 2024), we advise readers to start from the constant mapping
function due to its simplicity.

Dropout. In line with (Song and Dhariwal, 2023), we find that CMs benefit significantly from
dropout (Hinton et al., 2012). On CIFAR-10, we apply a dropout of 0.20 for models evaluated on
FID and a dropout of 0.30 for models evaluated on FDDINOv2.

On ImageNet 64×64, we note that ECT benefits from a surprisingly high dropout rate. When
increasing the dropout rate from 0.10 to 0.40, the 2-step FID decreases from 4.53 to 3.24. Increasing
the dropout rate further can be helpful for 1-step FID under certain timestep weighting w̄(t), but
the 2-step FID starts to deteriorate. In general, we optimize our model configurations for 2-step
generation and choose the dropout rate of 0.40 for ECM-S.

Finally, we note that the dropout rate tuned at a given weighting function w(t) transfers well to the
other weighting functions, thereby reducing the overall cost of hyperparameter tuning. On ImageNet
64×64, the dropout rate can even transfer to different model sizes. We apply a dropout rate of 0.50
for all the model sizes of ECM-M/L/XL.
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Table 5: Generative performance on class-conditional CIFAR-10.

Method FDDINOv2↓ NFE↓
GANs

BigGAN (Brock et al., 2018) 326.66 1
StyleGAN2-ADA (Karras et al., 2020) 305.92 1
StyleGAN-XL (Sauer et al., 2022) 204.60 1

Diffusion Models

EDM (Karras et al., 2022) 145.20 35
PFGM++ (Xu et al., 2023b) 141.65 35

ECT

ECM (ECT Pretrained) 121.05 35
ECM (Tuned) 198.51 1
ECM (Tuned) 128.63 2

Shrinking ∆t → 0. In the mapping function discussed in Sec. 3.2 and Appendix A, we use the
hyperparameter d to control the magnitude of q, thereby determining the overall rate of shrinking
∆t → 0, given by

(
1− 1/q⌈iters/d⌉). In practice, we set q = 2 and d = total_iters//8 for CIFAR-

10 experiments, and q = 4 and d = total_iters//4 for ImageNet 64×64 experiments, achieving
r/t ≈ 0.99 at the end of training.

Compared with no shrinkage of ∆t, where ∆t ≈ dt throughout, we find that shrinking ∆t → 0
results in improved performance for ECMs. For example, on CIFAR-10, starting ECT directly with
∆t ≈ dt by setting q = 256 (corresponding to r/t ≈ 0.99) leads to quick improvements in sample
quality initially but slower convergence later on. The 1-step FID drops from 3.60 to 3.86 using
the same 400k training iterations compared to gradually shrinking ∆t→ 0. On ImageNet 64×64,
∆t ≈ dt with q = 256 from the beginning results in training divergence, as the gradient flow is highly
imbalanced across noise levels, even when initializing from pretrained diffusion models.

This observation suggests that ECT’s schedule should be adjusted according to the compute budget.
At small compute budgets, as long as training stability permits, directly approximating the differential
consistency condition through a small ∆t ≈ dt leads to fast sample quality improvements. For
normal to rich compute budgets, shrinking ∆t → 0 generally improves the final sample quality,
which is the recommended practice.

Using this feature of ECT, we demonstrate its efficiency by training ECMs to surpass previous
Consistency Distillation, which took hundreds of GPU hours, using one hour on a single A100 GPU.

Training Generative Models in 1 GPU Hour. Deep generative models are typically computation-
ally expensive to train. Unlike training a classifier on CIFAR-10, which usually completes within one
GPU hour, leading generative models on CIFAR-10 as of 2024 require days to a week to train on 8
GPUs. Even distillation from pretrained diffusion models can take over a day on 8 GPUs or even
more, equivalently hundreds of GPU hours.

To demonstrate the efficiency of ECT and facilitate future studies, we implemented a fast prototyping
setting designed to yield results within one hour on a single GPU. This configuration uses a fixed
∆t ≈ dt by setting q = 256 in our mapping function (corresponding to r

t ≈ 0.99), which allows for
quick approximation of the differential consistency condition. Through 8000 gradient descent steps
at batch size of 128, within 1 hour on a single A100 40GB GPU, ECT achieves a 2-step FID of 2.73,
outperforming Consistency Distillation (2-step FID of 2.93) trained with 800k iters at batch size 512
and LPIPS (Zhang et al., 2018) metric.

Importance of Pretraining We conducted a controlled experiment, training CMs from scratch
following iCT best practices and tuning EDM using both iCT and ECT schedules. The combined
pretraining and fine-tuning cost for ECT is 50% + 6.25% of iCT trained from scratch. Results are
presented in Tab. 6.
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This performance gap is particularly noticeable when evaluating models using modern metrics like
FDDINOv2 (Stein et al., 2024). FDDINOv2 uses the representation space of the DINOv2-L model to
compute distributional distance, which has been shown to better align with human evaluations.

Table 6: Impact of pretraining on model performance

Model FDDINOv2

iCT from scratch 242.30
Pretraining + iCT tuning 200.31
Pretraining + ECT tuning 190.13
EDM 168.16

When scaling up the pretraining+tuning cost to match the overall cost of iCT in class-conditional
settings, ECM achieves a FDDINOv2 of 152.21, significantly outperforming the iCT model trained
from scratch (205.11). For context, StyleGAN-XL achieves an FDDINOv2 of 204.60.

Improving Pretraining using Findings in Tuning. The exploration of the design space through
the tuning stage as a proxy led to a question: Can the insights gained during tuning be applied to
improve the pretraining stage and, consequently, the entire pretraining+tuning pipeline for CMs? The
results of our experiments confirmed this hypothesis.

For the largest ∆t = t, ECT falls back to diffusion pretraining with r = 0 and thus fθ(xr) = x0. We
pretrain EDM (Karras et al., 2022) on the CIFAR-10 dataset using the findings in ECT. Instead of
using EDM weighting, SNR(t) + 1/σ2

data, we enable the adaptive weighting w(∆) with p = 1/2 and
smoothing factor c = 0 and a timestep weighting w̄(t) = 1/t.

Compared with the EDM baseline, the recipe from ECT brings a convergence acceleration over 2×
regarding FDDINOv2, matching EDM’s final performance using less than half of the pretraining budget
and largely outperforming it at the full pretraining budget.

EDM pretrained by ECT achieves FDDINOv2 of 150.39 for unconditional generation and 121.05
for class-conditional generation, considerably better than the EDM baseline’s FDDINOv2 of 168.17
for unconditional generation and 145.20 for class-conditional generation, when using the same
pretraining budget and inference steps (NFE=35).

Influence of Pretraining Quality. Using ECT pretrained models (FDDINOv2 of 121.05) and original
EDM (Karras et al., 2022) (FDDINOv2 of 145.20), we investigate the influence of pretraining quality
on consistency tuning and resulting ECMs. Our experiments confirm that better pretraining leads to
easier consistency tuning and faster convergence. At the same budget of 204.8M images, tuning from
ECT pretrained models achieves FDDINOv2 of 128.63, better than FDDINOv2 of 152.21 from EDM.

ECM from the ECT pretraining surpasses SoTA GANs in 1 sampling step and advanced DMs in 2
sampling steps, only slightly falling behind our pretrained models and setting up a new SoTA for the
modern metric FDDINOv2. See Tab. 5 for details.

On ImageNet 64×64, ECM-M, initialized from EDM2-M (Karras et al., 2024), deviates from the
power law scaling and achieves better generative performance than the log-linear trend. (See Fig. 4,
Right). We speculate that it is due to a higher pretraining budget, in which EDM2-M was pretrained
by 2× training images compared with other model sizes (S/L/XL).

Differences between 1-step and 2-step Generation. Our empirical results suggest that the training
recipe for the best 1-step generative models can differ from the best few-step generative models in
many aspects, including weighting function, dropout rate, and EMA rate/length. Fig. 7 (Left) shows
an example of how FIDs from different numbers of function evaluations (NFEs) at inference vary
with dropout rates.

In our setups, starting from a proper model size, the improvements from 2-step sampling seem
larger than doubling the model size but keeping 1-step sampling. In the prior works, iCT (Song and
Dhariwal, 2023) employs 2× deeper model, but the 1-step generative performance can be inferior to
the 2-step results from ECT. This finding is consistent with recent theoretical analysis (Lyu et al.,
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Figure 7: (Left): Relationship between the dropout and FIDs for models trained on CIFAR-10 with
varying numbers of function evaluations (NFE) at inference. (Right): Evolution of model performance
w.r.t. training iterations.

2023), which indicates a tighter bound on the sample quality for the 2-step generation compared to
the 1-step generation.

Pareto Frontier & Scaling Law. The Pareto Frontier reveals a seemingly power law scaling
behavior. Training configurations not optimized for the current compute budget, i.e., not on the Pareto
Frontier, deviate from this scaling. Simply scaling up the training compute without adjusting other
parameters may result in suboptimal performance. In our compute scaling experiments, we increased
the batch size and enabled the smoothing factor c in the adaptive weighting to maintain this trend.

Performance Evolution along Training. We visualize the performance evaluation along the
training process in Fig. 7 (Right). When the approximation errors of the consistency condition are
reduced, the sample quality improves correspondingly.

C EXPERIMENTAL DETAILS

Model Setup. For both unconditional and class-conditional CIFAR-10 experiments, we initial
ECMs from the pretrained EDM (Karras et al., 2022) of DDPM++ architecture (Song et al., 2021b).
For class-conditional ImageNet 64×64 experiments, we initial ECM-S/M/L/XL, ranging from 280M
to 1.1B, from the pretrained EDM2 (Karras et al., 2024). Detailed model configurations are presented
in Tab. 7.

We follow (Karras et al., 2022; Song et al., 2023) and set cskip(t) = σ2
data/(t2+σ2

data) and cout(t) =
tσdata/
√

t2+σ2
data, where σ2

data is the variance of (normalized) data, and set to 0.5 for both CIFAR-10 and
ImageNet 64×64.

Computational Cost. ECT is computationally efficient. On ImageNet 64×64, the tuning stage
of ECT requiring only 0.39% of the iCT (Song and Dhariwal, 2023) training budget, and 0.60% to
1.91% of the EDM2 (Karras et al., 2024) pretraining budget depending on the model sizes. The exact
computational resources required to train each individual model are shown in Tab. 7.

Training Details. We use RAdam (Liu et al., 2019) optimizer for experiments on CIFAR-10 and
Adam (Kingma and Ba, 2014) optimizer for experiments on ImageNet 64×64. We set the β to (0.9,
0.999) for CIFAR-10 and (0.9, 0.99) for ImageNet 64×64. All the hyperparameters are indicated in
Tab. 7. We do not use any learning rate decay, weight decay, or warmup on CIFAR-10. We follow
EDM2 (Karras et al., 2024) to apply an inverse square root learning rate decay schedule on ImageNet
64×64.

On CIFAR-10, we employ the traditional Exponential Moving Average (EMA). To better understand
the influence of the EMA rate, we track three Power function EMA (Karras et al., 2024) models on
ImageNet 64×64, using EMA lengths of 0.01, 0.05, and 0.10. The multiple EMA models introduce
no visible cost to the training speed. Considering our training budget is much smaller than the
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Table 7: Model Configurations and Training Details for unconditional and class-conditional ECMs
on CIFAR-10, and ECM-S/M/L/XL on ImageNet 64×64.

Model Setups Uncond CIFAR-10 Cls-Cond CIFAR-10 ImageNet 64×64

ECM-S ECM-M ECM-L ECM-XL

Model Channels 128 128 192 256 320 384
Model capacity (Mparams) 55.7 55.7 280.2 497.8 777.5 1119.3
Model complexity (GFLOPs) 21.3 21.3 101.9 180.8 282.2 405.9

Training Details
Training Duration (Mimg) 12.8 12.8 12.8 12.8 12.8 12.8
Minibatch size 128 128 128 128 128 128
Iterations 100k 100k 100k 100k 100k 100k
Dropout probability 20% 20% 40% 50% 50% 50%
Dropout feature resolution - - ≤ 16× 16 ≤ 16× 16 ≤ 16× 16 ≤ 16× 16
Optimizer RAdam RAdam Adam Adam Adam Adam
Learning rate max (αref) 0.0001 0.0001 0.0010 0.0009 0.0008 0.0007
Learning rate decay (tref) - - 2000 2000 2000 2000
EMA beta 0.9999 0.9999 - - - -

Training Cost
Number of GPUs 1 1 4 8 8 8
GPU types A6000 A6000 H100 H100 H100 H100
Training time (hours) 24 24 8.5 8.5 12 15

Generative Performance
1-step FID 4.54 3.81 5.51 3.67 3.55 3.35
2-step FID 2.20 2.02 3.18 2.35 2.14 1.96

ECT Details
Regular Weighting (w̄(t)) 1/(t−r) 1/(t−r) 1/t2 + 1/σ2

data
1/t2 + 1/σ2

data
1/t2 + 1/σ2

data
1/t2 + 1/σ2

data

Adaptive Weighting (w(∆)) ✓ ✓ ✓ ✓ ✓ ✓
Adaptive Weighting Smoothing (c) 0.0 0.0 0.06 0.06 0.06 0.06
Noise distribution mean (Pmean) −1.1 −1.1 −0.8 −0.8 −0.8 −0.8
Noise distribution std (Pstd) 2.0 2.0 1.6 1.6 1.6 1.6

diffusion pretraining stage, we didn’t perform Post-Hoc EMA search as in EDM2 (Karras et al.,
2024).

Experiments for ECT are organized in a non-adversarial setup to better focus and understand CMs
and avoid inflated FID (Stein et al., 2024). We conducted ECT using full parameter tuning in this
work, even for models over 1B parameters. Investigating the potential of Parameter Efficient Fine
Tuning (PEFT) (Hu et al., 2021) can further reduce the cost of ECT to democratize efficient generative
models, which is left for future research.

We train multiple ECMs with different choices of batch sizes and training iterations. By default, ECT
utilizes a batch size of 128 and 100k iterations, leading to a training budget of 12.8M on ImageNet
64×64. We have individually indicated other training budgets alongside the relevant experiments,
wherever applicable.

Sampling Details. We apply stochastic sampling for 2-step generation. For 2-step sampling, we
follow (Song and Dhariwal, 2023) and set the intermediate t = 0.821 for CIFAR-10, and t = 1.526
for ImageNet 64×64.

Intriguingly, these sampling schedules, originally developed for iCT, also perform well with our
ECMs. This effectiveness across different CMs and training methods likely links to the inherent
characteristics of the datasets and the forward process. Developing a scientific approach to determine
optimal intermediate sampling schedules for CMs remains an open research problem.

Evaluation Metrics. For both CIFAR-10 and ImageNet 64×64, FID and FDDINOv2 are computed
using 50k images sampled from ECMs. As suggested by recent works (Stein et al., 2024; Karras
et al., 2024), FDDINOv2 aligns better with human evaluation. We use dgm-eval1 to calculate
FDDINOv2 (Stein et al., 2024) to ensure align with previous practice. Performance results for prior
methods in Tab. 1 are reported from previous works (Song et al., 2023; Song and Dhariwal, 2023;
Karras et al., 2024).

1https://github.com/layer6ai-labs/dgm-eval
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Visualization Setups. Image samples in Fig. 3 are from class bubble (971), class flamingo
(130), class golden retriever (207), class space shuttle (812), classs Siberian
husky (250), classs ice cream (928), class oscilloscope (688), class llama (355), class
tiger shark (3).

Each triplet (left-to-right) includes from 2-step samples from ECM-S trained with 12.8M images,
ECM-S trained with 102.4M images, and ECM-XL trained with 102.4M images.

1 GPU Hour Prototyping Settings. This configuration uses a fixed ∆t ≈ dt by setting q = 256
in our mapping function (corresponding to r

t ≈ 0.99) and an EMA rate of 0.9993 for the model
parameters. Using these settings, we run 8000 gradient descent steps with a batch size of 128 on a
single A100 40GB GPU.

Scaling of Training Compute. For the results on scaling laws for training compute on CIFAR-10
shown in Fig. 4 (Left), we train 6 class-conditional ECMs, each with varying batch size and number of
training iterations. All ECMs in this experiment are initialized from the pretrained class-conditional
EDM.

The minimal training compute at 20 scale corresponds to a total budget of 12.8M training images.
The largest training compute at 25 scale utilizes a total budget of 409.6M training images, at 2×
EDM pretraining budget.

The first two points of 20 and 21 on Fig. 4 (Left) use a batch size of 128 for 100k and 200k iterations,
respectively. The third point of 22 corresponds to ECM trained with batch sizes of 256 for 200k
iterations. The final three points of 23, 24, and 25 correspond to ECM trained with a batch size of
512 for 200k, 400k, and 800k iterations, respectively, with the smoothing factor c = 0.03 enabled in
the adaptive weighting w(∆). We use w̄(t) = 1/t as the timestep weighting function to train all these
models as this w̄(t) achieves good performance on FDDINOv2.

Scaling of Model Size and Model FLOPs. We include details of model capacity as well as FLOPs
in Tab. 7 to replicate this plot on ImageNet 64×64.

On ImageNet 64×64, we scale up the training budgets of ECM-S and ECM-XL from 12.8M (batch
size of 128 and 100k iterations) to 102.4M (batch size of 1024 and 100k iterations). We empirically
find that scaling the base learning rate by

√
n works well when scaling the batch size by a factor of n

when using Adam (Kingma and Ba, 2014) optimizer.

D LIMITATIONS

One of the major limitations of ECT is that it requires a dataset to tune DMs to CMs. Recent works
developed data-free approaches (Luo et al., 2024; Gu et al., 2023; Yin et al., 2023; Zhou et al., 2024a)
for diffusion distillation. The distinction between ECT and data-free methods is that ECT learns the
consistency condition on a given dataset through the self teacher, while data-free methods transfer
knowledge from a frozen diffusion teacher. This feature of ECT can be a potential limitation since
the training data of bespoke models are unavailable to the public. However, we hold an optimistic
view on tuning CMs using datasets different from pretraining. Synthetic data, data composition, and
data scaling for consistency models will be valuable research directions.

E QUALITATIVE RESULTS

We provide some randomly generated 2-step samples from ECMs trained on CIFAR-10 and ImageNet-
64× 64 in Fig. 8 and Fig. 9, respectively.
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Figure 8: 2-step samples from class-conditional ECM trained on CIFAR-10. Each row corresponds
to a different class.
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Figure 9: 2-step samples from class-conditional ECM-XL trained on ImageNet 64×64. Each row
corresponds to a different class.
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