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Abstract

This paper introduces SICSM, a novel structural inference framework that integrates
Selective State Space Models (selective SSMs) with Generative Flow Networks
(GFNs) to handle the challenges posed by dynamical systems with irregularly
sampled trajectories and partial observations. By utilizing the robust temporal
modeling capabilities of selective SSMs, our approach learns input-dependent
transition functions that adapt to non-uniform time intervals, thereby enhancing
the accuracy of structural inference. By aggregating dynamics across diverse
temporal dependencies and channeling them into the GFN, the SICSM adeptly
approximates the posterior distribution of the system’s structure. This process not
only enables precise inference of complex interactions within partially observed
systems but also ensures the seamless integration of prior knowledge, enhancing the
model’s accuracy and robustness. Extensive evaluations on sixteen diverse datasets
demonstrate that SICSM outperforms existing methods, particularly in scenarios
characterized by irregular sampling and incomplete observations, which highlight
its potential as a reliable tool for scientific discovery and system diagnostics in
disciplines that demand precise modeling of complex interactions.

1 Introduction

In the complex real-world phenomena, many dynamical systems manifest as networks of interacting
entities. These systems are effectively modeled as graphs where nodes represent the agents, edges
depict the interactions, and the adjacency matrix captures the structural essence of these interactions.
Such representations are crucial across various domains, from intricate physical systems [32, 23, 59]
and multi-agent systems [10, 34], to complex biological architectures [49, 44]. Unveiling the hidden
structures within these networks is not only academically enriching but also essential for enhancing
our understanding of the systems’ intrinsic mechanisms and improving our ability to predict and
manage their behaviors. However, this task becomes challenging when the observable data, often
limited to features of agents within specific time frames, conceals the underlying structural dynamics.
This limitation necessitates robust structural inference methodologies capable of discerning the latent
structures from the trajectories—the observable features of all agents over a given period.

As the field of scientific discovery advances, particularly with the integration of neural network
technologies, structural inference has emerged as a key method for decoding the complex interactions
within dynamical systems from trajectories [31, 2, 57, 12, 39, 51, 16, 54, 64]. This process is
essential for understanding and predicting system behaviors but encounters significant challenges,
particularly when addressing irregularly sampled data and partially observed some nodes of a
dynamical system, which are typified by unequal sampling time intervals and the presence of
unobserved nodes. Conventional methods, including those based on Variational Autoencoders
(VAEs) [30], have pioneered some paths but often struggle with datasets characterized by non-
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uniform sampling rates and incomplete observations. These methods typically require uniform
data and have difficulty managing indirect or obscured node interactions [31, 2, 57, 12, 39, 51, 54],
highlighting a critical need for more adaptable and resilient inference models.

To overcome these limitations, this paper introduces a novel framework, Structural Inference with
Conjoined State Space Models (SICSM), which conjoins Selective State Space Models (selective
SSMs) [20] with a Generative Flow Network (GFN) [7, 8]. This innovative approach leverages
the robust temporal modeling capabilities of selective SSMs alongside the flexible, data-driven
structural inference provided by the GFN. SICSM is specifically designed to address the challenges of
irregular sampling and partial observability, enhancing inference accuracy and robustness through the
sophisticated integration of prior knowledge and adaptive learning mechanisms. Central to SICSM is
its ability to learn input-dependent transition functions that dynamically adjust to the timing of data
points, crucial for managing datasets with irregular intervals. Moreover, by aggregating outputs from
multiple Residual Blocks containing an selective SSM in each, SICSM offers a rich representation
of system dynamics, enabling more precise reconstruction of node interactions within partially
observed systems. Our comprehensive evaluations across a variety of datasets—from mechanical
systems like spring simulations to biological networks depicting gene expressions—demonstrate
SICSM’s superior performance over existing methods. Its robustness shines particularly in its ability
to maintain high structural inference accuracy under diverse and challenging conditions, affirming its
potential as an essential tool for scientific discovery and system diagnostics in disciplines that demand
intricate, accurate modeling of complex systems. In essence, SICSM not only redefines approaches
to structural inference in complex systems but also paves new research avenues previously limited
by data sampling and observability constraints. With further refinement, this approach is poised to
transform our understanding of interactions with dynamical systems across multiple scientific fields.
Our contributions encompass the following aspects:

• We develop a novel framework, SICSM, that integrates Selective State Space Models with a
Generative Flow Network to enhance structural inference.

• We introduce adaptive mechanisms within SICSM that effectively handle irregular sampling and
partial observability, significantly enhancing the model’s applicability to real-world datasets.

• SICSM employs a novel approach by aggregating outputs from multiple Residual Blocks, which
enables it to capture a deeper and more detailed representation of dynamic system interactions.

• Extensive validation demonstrates its superiority over baselines in reconstructing complex struc-
tures, especially under challenging conditions of irregular sampling and incomplete observations.

2 Related Work

Structural Inference. Structural inference aims to uncover the hidden structure of complex sys-
tems using observed trajectories. A pivotal contribution in this area is Neural Relational Inference
(NRI) [31], which leverages a VAE within a fixed, fully connected graph framework. Building on
NRI, subsequent research has expanded the domain of structural inference. Recent advancements
include handling multi-interaction systems [57], integrating efficient message-passing [12], incorpo-
rating modular meta-learning [2], iteratively pruning indirect connections [51], developing structural
inference with reservoir computing [54], and applying deep active learning to complex systems [52].
Other techniques involve reconstructing trajectories by minimizing relation potentials [16], comput-
ing partial correlation coefficients based on node embeddings [53], and with diffusion process [64].
Existing methods frequently employ the Variational Information Bottleneck principle [1], which often
requires regularly sampled trajectories and complete observation of all nodes. Incorporating known
interactions into VAEs necessitates complex adjustments, combining unsupervised and supervised
learning in the latent space. This complexity complicates generalization to unlabeled edges.

State Space Models. State space models (SSMs) update sequences through recurrent hidden states.
The selective state space architecture known as Mamba [20], recently emerged as an efficient and
flexible design, using recurrent scans and a selection mechanism to control sequence flow into hidden
states. Mamba shows promise across time-series tasks [56, 38, 43], video analysis [35, 61, 37]
and healthcare applications [40, 45, 60]. In addition, several studies explore graph modeling with
Mamba [55, 36, 6], but none of them apply it for structural inference from observational trajectories.
In this work, we employ the fundamental operating mechanism, the selective SSM module, in the
form of stacking blocks, to model observational trajectories and to deal with the challenge of irregular
sampling as well as partial observation.
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Generative Flow Networks. Generative flow networks (GFNs) excel in generating and sampling
discrete states from high-dimensional distributions [7, 8]. Recent research has explored topics such as
amortized inference [33], Bayesian structure learning [17], combinatorial optimization [63], biological
sequence design [27], and broader scientific discovery [28]. Work in network inference [17, 18, 4]
focuses on Bayesian inference to maintain system structure within state spaces. Our approach
leverages Residual Blocks to learn one-dimensional embeddings from multi-dimensional features,
enabling GFN to effectively learn while preserving dynamic complexity within the embeddings.

3 Preliminaries

3.1 Notations and Problem Formulation

We model a dynamical system as a directed graph G = (V, E), representing agents as nodes and
interactions as directed edges. The graph consists of a node feature set V with n nodes and an edge set
E. Node features evolve over time, forming trajectories V = {V } = {V 0, V 1, . . . , V T−1} across T
time steps, where V t represents the feature set at time t. Each node feature vti ∈ Rd is d-dimensional.
For irregularly sampled trajectories, the T time steps may have different intervals. And for partial
observation of the dynamical system, we expect the count of observed nodes n is smaller than the
total count of nodes ntot in the system. We observe a set of M trajectories: {V[1], V[2], . . . , V[M ]},
assuming a static edge set E. An asymmetric adjacency matrix Adj is derived from E, where
Adjij ∈ {0, 1} indicates the presence or absence of a directed edge. In dynamical systems, the
dynamics of node i at time t+ 1 are influenced by Adj as follows:

vt+1
i = vti +∆ ·

∑
j∈Ui

f(||vi, vj ||α), (1)

where ∆ is the time interval, Ui denotes the set of nodes connected to node i which is derived from
Adj, f(·) represents the state-transition function, and ||·, ·||α is the α-distance.

For an illustrative example, we may consider a dynamical system comprising n = 10 balls connected
by springs, representing n = 10 nodes V and directed edges E, respectively. Initially, we set the
positions and velocities of each ball, so that each node feature vti ∈ Rd is d-dimensional where d = 4
in this example. We then let them move under the influence of spring forces, which arise from the
structural connections (edges) between the balls (nodes). Over the observation period, these balls
change their positions and velocities. And we record the trajectories as the collection of the evolving
features of all nodes: V = {V } = {V 0, V 1, . . . , V T−1} across T time steps, where V t represents
the feature set at time t. In total we observe a set of M trajectories: {V[1], V[2], . . . , V[M ]}, assuming
a static edge set E. Suppose we initially lack knowledge of which balls are connected, i.e., E is
unknown; the task of structural inference in this scenario would involve deducing the connectivity
between the balls based on their observed trajectories,represented by either the edge set E or the
adjacency matrix Adj.

In this work, we introduce SICSM, a novel structural inference method with conjoined state modeling,
designed to handle both irregularly sampled trajectories and systems with partial observations.

3.2 State Space Models

SSMs capture the behavior of dynamical systems by modeling the internal state and relationships
between latent states ht ∈ RN , input sequences xt ∈ RD and output sequences yt ∈ RN : ĥt =
Aht + Bxt, yt = Cht, where A ∈ RN×N and B,C ∈ RN×D are learnable matrices. Due to
the complexity of solving the above differential equation in deep learning settings, discrete state
space models [21] discretize this system using a time-scale parameter ∆: ht = Āht−1 + B̄xt, yt =
Cht, where Ā = exp∆A, and B̄ = (∆A)−1(exp (∆A− I)) ·∆B. Note that ∆ in discrete
SSMs operates similarly to that in Eqn. 1. Discrete-time SSMs are also shown to be equivalent
to the following convolution: y = x ∗ K̄, where K̄ = (C̄B̄, C̄ĀB̄, . . . , C̄ĀL−1B̄). Therefore,
the continuous form (∆,A,B,C) transitions to the discrete form (Ā, B̄,C), allowing efficient
computation using a linear recursive approach [22]. Furthermore, structured state space sequence
models (S4) structures the state matrix A based on HIPPO matrices, significantly improving efficiency
and performance.
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Recently, a selective structured state space architecture named Mamba [20] was introduced. It
leverages recurrent scans and a selection mechanism to control which part of the sequence flows
into the hidden states. Mamba’s selection mechanism can be interpreted as using data-dependent
state transition mechanisms, meaning ∆, B and C are functions of the input xt. In this work,
we utilize Mamba’s selection mechanism to handle irregularly sampled trajectories by learning ∆
from node feature set V t, enhancing the method’s ability to model system dynamics. By stacking
Residual Blocks containing selective SSM modules, we aggregate embedded dynamics from the
outputs of different blocks, allowing us to reconstruct structures with dynamics from various temporal
dependencies and address incomplete node observation.

3.3 Generative Flow Networks

GFNs [7, 8] are generative models operating over structured sample space X , characterized by a
directed acyclic graph G with state space S, where X ⊆ S. It is crucial to distinguish this from the
interaction graph G of the dynamical system, and the input sequence xt in SSMs. A sample x ∈ X is
constructed by traversing G from an initial state s0 to a terminal state sf , the latter being a special
state indicating the end of the sequence. Terminal states in X are those connected by a directed edge
x→ sf , representing valid samples of the distribution induced by GFN. A terminal state trajectory
in G is represented by a path s0 ⇝ sf , distinct from the observational trajectories used in structural
inference. Each terminal state is associated with a reward R(X) ≥ 0, representing its unnormalized
probability. The distribution over terminal states is proportional to the reward, which is governed by
a flow function FΩ(s→ s′) ≥ 0 and satisfies the flow-matching conditions:∑

s∈PaG(s′)

FΩ(s→ s′)−
∑

s′′∈ChG(s′)

FΩ(s
′ → s′′) = R(s′). (2)

PaG(s′) and ChG(s
′) represent the preceding state and the subsequent state of s′, respectively. The

forward transition probability is P (sk+1|sk) ∝ FΩ(sk → sk+1), leading to a marginal probability
for terminating in x ∈ X proportional to R(x). Consequently, there is also a backward transition
probability PB(·), but it is usually set to some fixed distribution (e.g. the uniform distribution over
the parent states) to reduce the search space, making the forward transition probability the only
quantity to learn [7, 8, 17]. Starting from the initial state s0, if we sample a terminal state trajectory
(s0, s1, . . . , sK−1, x, sf ) following the forward transition probability, defined as:

P (sk+1|sk) ∝ FΩ(sk → sk+1), (3)

where sK = x and sK+1 = sf , then the likelihood of a state trajectory ending in a state x ∈ X
is directly proportional to the reward R(x). The flow function FΩ(s → s′), often parameterized
by a neural network, is optimized to minimize discrepancies in the flow-matching conditions. This
optimization results in a transition model capable of approximately sampling from the distribution over
X in proportion to R. In the subsequent sections, we elucidate the construction of state spaces using
graphs and detail the approximation of dynamical systems’ structures through posterior estimation
with a GFN. We demonstrate how GFN enhances SICSM by utilizing the embedded dynamics from
Residual Blocks to reconstruct the structure of dynamical systems effectively. Moreover, SICSM
facilitates the seamless integration of prior knowledge about existing connections into its training
process, thereby improving the model’s accuracy and efficacy in structural inference.

4 Structural Inference with Conjoined State Space Models

SICSM utilizes selective SSM modules, embedding in Residual Blocks, to adaptively manage
input-dependent time intervals ∆, thus effectively handling irregularly sampled trajectories. This
model architecture further aggregates dynamic embedding from multiple Residual Blocks, to obtain
dynamics from various temporal dependencies, enhancing our ability to process partial observations.
These dynamics are subsequently input into a GFN to approximate and sample the graph structures
representing the system’s structure. Figure 1 provides a schematic overview of the SICSM pipeline.

4.1 Aggregation of Learned Dynamics

As illustrated in the upper row of Figure 1, the primary function of the upper branch of the SICSM
is time-series forecasting. These models dynamically adapt the state space parameters (∆,B,C)
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Figure 1: (Upper) System architecture. (Lower Left) Detail of a Residual Block. (Lower Right)
Structure of the Generative Flow Network for approximating the joint posterior distribution.

based on the node-specific feature embeddings. Inspired by recent advancements in dimensionality
reduction and noise reduction in mixed-node feature datasets [56], we introduce a feature-based
embedding network designed to compress the feature dimension from d to 1:

ht
i = fembed(v

t
i), for t ∈ {0, 1, 2, . . . , T − 2}, (4)

where fembed is a multi-layer perceptron. ht
i are sequentially organized per node to form Hi =

[h0
i ,h

1
i , ...,h

T−2
i ]. The node dynamics are modeled by a series of Residual Blocks configured

in an encoder-decoder structure. Each Residual Block incorporates a selective SSM module that
dynamically learns the SSM parameters (∆,B,C) based on the embeddings Hi for each node:

(∆i,Bi,Ci) = fSSMproj (Hi), (5)

where fSSMproj is a linear projection layer specific to each selective SSM, as described in [20]. This
allows each node’s input-dependent step-size ∆ to adjust dynamically, enhancing the model’s ability
to handle irregularly sampled trajectories and reflect flexible time intervals ∆ as specified in Eqn. 1.
Furthermore, the matrices B and C are tailored for each node, updating node features over time and
accommodating the unique dynamics of each node. More details on the selection SSM in this work
can be found in Appendix A.

To enhance the architectural sophistication of our model, we arrange L Residual Blocks in a sequential
configuration (to build a residual model), with the output of each block feeding directly into the
next. This design significantly improves the model’s ability to discern and interpret diverse features
and aspects of the trajectory, facilitating the capture of a broad spectrum of temporal dependencies.
The input to the first Residual Block is obtained by processing the concatenated node embeddings
Hall = [Hi, for all nodes]:

URB_1 = fRB_1 (Hall), (6)
where fRB_1 denotes the first Residual Block function. The l-th Residual Block has: URB_l =
fRB_l(URB_l−1 ). This setup is particularly vital in systems with partial observability, where direct
connections may not be visible. In such scenarios, observable nodes may appear isolated but are
frequently connected through hidden intermediaries, converting straightforward interactions into
intricate multi-hop relationships. SICSM accommodates this complexity by integrating dynamics
across a spectrum of temporal dependencies: shorter dependencies help reconstruct direct interactions,
while longer dependencies are crucial for mapping multi-hop relationships. Unlike traditional methods
that operate under fixed time intervals and predetermined direct interactions [31, 2, 57, 12, 39, 51, 54],
which struggle with variable conditions, our SICSM’s flexibility in adapting to different hop distances
is essential. This adaptability enables it to accurately delineate potential indirect interactions and
therefore to deal with incomplete observation.

Further enhancing our model, we implement an encoder-decoder structure composed of an additional
L′ Residual Blocks. This configuration not only maintains the model’s symmetry but also boosts its
accuracy. The outputs from these blocks undergo transformation via a projection network, which
restores the features to their original d-dimensional state, preparing estimated node features for the
subsequent time step, v̂t+1

i . Based on the system is fully observed or not, we have:
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UAll =

{
URB_L if we observe all nodes,∑L

l=1 URB_l if we observe partial nodes,
(7)

URB_l represents outputs from l-th block. The aggregation of outputs from multiple blocks is crucial,
especially in scenarios with partial observations typically caused by non-visible intermediate nodes.
This aggregation ensures that dynamics of various temporal dependencies are comprehensively
captured, enabling SICSM to deal with the partial observation.

4.2 Approximation of Posterior with a Generative Flow Network

Upon acquiring the aggregated dynamics UAll from either the output of the final Residual Block or the
summation of outputs from all Residual Blocks, we feed these dynamics to the following GFN. We
utilize a GFN to model the posterior distribution P (Adj | UAll), where Adj delineates the structure
of the dynamical system under study. While any GFN capable of modeling the structure of graphs
could be employed, we specifically choose the Joint Structure-Parameters GFN (JSP-GFN) [18] for
its ability to capture the diverse dynamics of each node influenced by their interactions. This model
effectively addresses the joint posterior distribution P (Adj, λ | UAll), where λ = {λ1, . . . , λn}
represents the parameters for conditional probability distributions associated with each node i,
enhancing the accuracy and depth of structural inference by accommodating the unique characteristics
and relationships of each node.

As depicted in the lower right of Fig. 1, the state construction process begins with an initial state
containing a graph with an empty adjacency matrix G0 = (UAll ,Adj0), which progressively evolves
by systematically adding edges to Adj based on the forward transition probability PΩ(G

′|G), where
G′ is the resultant graph state. This iterative addition continues until a ‘stop’ action is chosen,
signifying the completion of the graph construction phase. Once the graph G is established, we
proceed to generate the parameter set λ, conditioned on G, utilizing the forward transition probabilities
PΩ(λ|G). Each terminal state s = ⟨G,λ⟩ thus encapsulates a potential configuration of the system,
with the construction process forming a tree structure rooted at G0.

To approximate the joint posterior distribution P (Adj, λ|UAll) which is proportional to
P (Adj, λ, UAll) [18], we define a reward function for each terminal state:

R(⟨G,λ⟩) = P (UAll |λ,Adj)P (λ|Adj)P (Adj), (8)

where P (UAll |λ,Adj) represents the likelihood model implemented via a neural network that
operates on each node, P (λ|Adj) denotes the prior over the parameter set, and P (Adj) constitutes
the general prior over structures. This reward function integrates the likelihood of the observational
data with the parameter and graph priors, directing the learning towards accurate structural inference.
To derive the adjacency matrix for the system, we approximate the marginal posterior P (Adj|UAll)
by collecting samples {Adj1,Adj2, . . . ,AdjB} from the posterior distribution and estimate the
marginal probability of an edge from node i to node j as:

PΩ(i→ j|UAll) ≈
1

B

B∑
b=1

1(i→ j ∈ Adjb), (9)

where 1(·) is the indicator function. The collected value PΩ is the approximation of structure of
the dynamical system. This methodology ensures robust inference of the structure of the dynamical
system. For details on the specific GFN in SICSM, please refer to Appendix B.

This approach of modeling dynamical systems using a conjoined state space model framework
integrates observational trajectory modeling via selective SSMs with posterior distribution modeling
via a GFN, providing a comprehensive method for structural inference in complex systems.

4.3 Reward Function

The reward function in SICSM, as defined in Eqn. 8, comprises three key components: the likelihood
model P (UAll |λ,G), the prior over parameters P (λ|G), and the prior over graphs P (G). Consistent
with standard practices in GFNs [7, 8], we utilize a logarithmic transformation of the reward function:

logR(⟨G,λ⟩) = logP (UAll |λ,Adj) + logP (λ|Adj) + logP (Adj), (10)

6



with component being implemented distinctly:

Likelihood Model. The first term of the reward function is a log-likelihood model that estimates
prediction errors for future node features, considering the current graph structure Ãdj in each state.
This approach aligns naturally with the evolution of dynamical systems:

logP (UAll |λ,Adj) =

T−2∑
t=0

N∑
n=1

logP (vt+1
i |λ, Ãdj, U t

i ), (11)

where U t
i is the learned embeddings of node i at time t and is obtained from UAll .

logP (vt+1
i |λ, Ãdj, U t

i ) is modeled with a neural network to enable accurate predictions of future
node features. This setup integrates both node features and graph structure into the computation,
ensuring their collective influence on the reward function.

Parameter Prior. The second term of the reward function represents the prior over the parameters λ.
We utilize a unit Normal distribution for each parameter λij , correlating with the sender and receiver
nodes indexed by i and j: P (λij |Adj) = N (0, 1). This choice of prior contributes to a balanced
modeling of node interactions within the graph.

Graph Prior. The component of the graph prior comprises a uniform prior alongside regularization
terms designed to enhance the graph’s structural smoothness. In reference to the current graph
structure Ãdj, it is formulated as:

P (Adj) = PU (Adj) + exp
(
D(Ãdj, UAll) + Ld(Ãdj) + Ls(Ãdj)

)
, (12)

where PU (Adj) is the uniform prior. The regularization terms include Dirichlet energy D(Ãdj, UAll)

to measure smoothness between adjacent node features, a connectivity term Ld(Ãdj) to penalize
unconnected structures, and a sparsity term Ls(Ãdj) to regulate graph density:

D(Ãdj, UAll) = −
1

n2

∑
i,j

Ãdjij∥Ui − Uj∥2, (13)

Ld(Ãdj) =
1

n
1T log(Ãdj1), and Ls(Ãdj) = − 1

n2
∥Ãdj∥2F . (14)

These terms, adapted for the reward function in SICSM, emphasize the influence of the graph’s
properties on the state space, enriching the model’s structural inference capability.

4.4 Learning Objectives

The learning objectives of SICSM are bifurcated into two main components: (1) time-series forecast-
ing using Residual Blocks, and (2) modeling dynamics with the GFNs, focusing on the accuracy of
transition probabilities. For the Residual Blocks, the primary learning objective is the minimization of
the Mean Squared Error between predicted and actual node features across all time steps and nodes:

LRB =
1

T × n

T−2∑
t=0

n∑
i=1

∥vt+1
i − v̂t+1

i ∥2, (15)

where v̂t+1
i and vt+1

i represent the predicted and actual features of node i at time t+ 1, respectively.
This objective ensures that the Residual Blocks effectively capture and forecast the dynamics. Similar
to [17, 18], the objective for the GFN involves optimizing the squared error of the logarithmic ratio
between forward and backward transition probabilities to ensure accurate modeling of the graph
structure:

LGFN = Eπ

[(
log

R(⟨G′,∧λ′⟩)PB(G|G′)PΩ(∧λ|G)

R(⟨G,∧λ⟩)PΩ(G′|G)PΩ(∧λ′|G′)

)2
]
, (16)

where PB(·) indicates the backward transition probability, and λ′ denotes the parameters generated
conditional on graph G′. The sampling distribution π covers pairs ⟨G,λ⟩ and ⟨G′, λ′⟩, with the
‘stop-gradient’ operation (∧) critical for halting backpropagation through the parameters λ and
λ′, thus preventing potential feedback loops during training. Please refer to Appendix B for the
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Figure 2: AUROC values (expressed in percentage) for various methods as a function of the number
of irregularly sampled time steps. Results are averaged across ten trials, with time steps varying from
49 to 10. All subplots share a common x-axis and y-axis for uniform comparison.

parameterization of these terms. The final learning objective of SICSM combines these terms:

L = LRB + LGFN . (17)

This combined objective facilitates concurrent optimization of both time-series prediction accuracy
and the fidelity of the inferred graph structure.

4.5 Integration of Prior Knowledge

In SICSM, the integration of prior knowledge concerning existing network connections is executed
more seamlessly and effectively compared to traditional VAE-based methods [31, 39, 51, 54, 53]. To
incorporate this prior knowledge, we initialize the graph G0 in the GFN’s initial state with edges
that represent the known connections based on prior knowledge: G0,k = (V,Adj0 ∪ Ek), where Ek

contains the set of known edges based on prior knowledge. This setup ensures that the learning and
sampling processes are continually influenced by this integrated knowledge, enhancing the model’s
accuracy and effectiveness in predicting and understanding the underlying dynamics of the system.

5 Experimental Results

This study systematically evaluates the performance of SICSM across an extensive array of datasets,
which encompass both one-dimensional and multi-dimensional trajectories. The investigation specifi-
cally concentrates on challenging scenarios of irregularly sampled trajectories and partial observations.
More results and methodological specifics are further elaborated in Appendix E.

5.1 General Settings

Datasets. Our study first evaluates the SICSM model on two established structural inference datasets:
the Spring Simulations dataset [31], which simulates dynamic interactions of balls connected by
springs within a symmetric setting, and the NetSim dataset [47], which consists of simulated blood-
oxygen-level-dependent imaging data from various brain regions in an asymmetric network. Both
datasets include 10 nodes, with Spring Simulations offering four-dimensional features and NetSim
one-dimensional features at each timestep, initially sampled at 49 regular intervals.

Additionally, we examined six directed synthetic biological networks (Linear, Linear Long, Cycle,
Bifurcating, Trifurcating, and Bifurcating Converging) as outlined in [44], with abbreviations LI,
LL, CY, BF, TF and BF-CV, respectively. These networks simulate developmental trajectories in
differentiating cells using BoolODE [44], capturing one-dimensional mRNA expression levels over
49 timesteps with irregular intervals tailored to our experimental setups.

We also incorporated data from the StructInfer Benchmark [3], focusing on ‘Vascular Networks’
(VN) with node counts ranging from 15 to 100. These datasets, named under the categories Springs
(SP) and NetSims (NS), were selected for their complex and varying underlying graph structures,
providing a robust platform to validate the efficacy of the SICSM model.
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Baselines and metrics. To evaluate the performance of SICSM, we compared it against a suite of
state-of-the-art models: NRI [31], MPM [12], ACD [39], iSIDG [51], RCSI [54], JSP-GFN [18],
CUTS [13], and SIDEC [53]. The comparative effectiveness of these methods was quantitatively
assessed using the area under the receiver operating characteristic (AUROC) curve, focusing on the
accuracy of the inferred adjacency matrix relative to the ground truth.

Experimental settings. All experiments were conducted on a single NVIDIA Ampere 40GB HBM
graphics card, paired with 2 AMD Rome CPUs (32 cores@2.35 GHz). Detailed configurations and
additional results are elaborated in Appendix D and Appendix E.

5.2 Experimental Results with Irregularly Sampled Trajectories

This section examines the performance of the evaluated methods to irregular sampling of input
trajectories. Detailed in Section 5.1, our datasets undergo randomized reduction in time steps to
[40, 30, 20, 10] from an original count of 49. The baselines, alongside SICSM, are then trained and
evaluated on these irregularly sampled trajectories, with the average AUROC results of 10 runs
depicted in Figure 2. Besides, we report the AUPRC results, SHD values and F1-scores in Figues 7-9
in Appendix E.1. It should be noted that JSP-GFN, being limited to one-dimensional feature analysis,
is not applicable to multi-dimensional datasets such as Springs Simulations and VN_SP.

SICSM exhibits exceptional consistency in its performance despite the decrease in time steps, which
is a critical indicator of robustness within structural inference models. In datasets like Spring
Simulations and NetSim, while the baseline models show significant declines in performance from 49
to 10 time steps, SICSM maintains AUROC scores above 85%. This underscores its potent capability
to effectively leverage essential structural information, even when data availability is constrained.
Moreover, when faced with irregular sampling, traditional VAE-based methods such as NRI, ACD,
MPM, iSIDG, and RCSI struggle significantly, often performing no better than random guessing. This
decline is primarily attributed to their dependency on fixed time intervals between observations—an
assumption not held in our experimental conditions. In contrast, in challenging synthetic biological
networks like BF and TF, SICSM consistently surpasses baseline models by margins of 5-10% across
all sampling levels, affirming its sophisticated understanding of complex, directional interactions
which are crucial in genomics and systems biology.

SICSM’s robustness to irregular sampling intervals is particularly notable in datasets such as
VN_SP_30 and VN_SP_50. Unlike conventional models that falter under variable data availabil-
ity, SICSM’s architecture, equipped with adaptive time-interval handling, adeptly navigates these
challenges, preserving its predictive accuracy. These findings validate the effectiveness of SICSM in
managing complex, temporally variant structural inference challenges across a spectrum of demand-
ing datasets. The model not only demonstrates resilience to data scarcity and irregular sampling, but
also excels in capturing intricate systemic interactions.

5.3 Experimental Results with Incomplete Observation of Systems
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Figure 3: AUROC values (expressed in percentage) for var-
ious methods as a function of the proportion of observed
nodes, averaged over 20 trials. Node sampling proportions
are set at [100%, 90%, 80%, 70%, 60%].

This section explores the resilience of
evaluated methods to scenarios where
only a subset of the system’s nodes
is observable. As outlined in Sec-
tion 5.1, the datasets undergo a reduc-
tion in node count by sampling from
all nodes, scaled to proportions of
[100%, 90%, 80%, 70%, 60%], with
rounding up to ensure integer counts.
This experimental setup was applied
particularly to datasets with more than
10 nodes—specifically the LL and
all VN datasets—to facilitate a com-
prehensive investigation. The perfor-
mance of the baselines, alongside our

SICSM model, is quantified using the average AUROC from 20 runs, as depicted in Figure 3.
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SICSM demonstrates remarkable stability in AUROC scores across different levels of node sampling,
particularly excelling in environments with partial observations. In the VN_SP_30 dataset, it main-
tains an AUROC above 80%, even with only 60% of nodes observed, significantly outperforming
methods like NRI and ACD, whose performance dips below 75%. This highlights SICSM’s ability to
effectively utilize essential structural relationships under partial observations. In complex network
structures like the VN_NS series, SICSM’s strong performance underscores its proficiency in inferring
critical interactions, despite considerable reductions in observable nodes. This robustness showcases
the model’s ability for managing data sparsity and leveraging available information effectively.

SIDEC also shows competitive performance, underscoring the benefits of dynamics-encoding models
in handling incomplete observations. However, without an adaptive transition dynamic function,
SIDEC generally underperforms compared to SICSM, especially when fewer nodes are observed. In
comparisons, SICSM consistently outshines JSP-GFN at lower node sampling percentages, illustrating
its superior capability in managing partial observations and effectively using structural information
even with limited data visibility. These results confirm SICSM’s robustness in structural inference,
particularly in scenarios with incomplete observations. Its resilience to node sparsity and ability to
discern complex interactions make it a valuable tool for applications that require reliable, accurate
structural predictions in data-constrained environments.

5.4 Why Do We Need All Residual Outputs?
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Figure 4: (1st Column) Ground truth structure with all nodes. (2nd Column) One example of
12-node sampling. (3rd, 4th Columns) Structural inference results from SICSM-one and SICSM.

As discussed in Section 3.2, systems with partial observations can benefit from aggregating dynamics
from multiple Residual Blocks for GFN input. We explored this by analyzing the use of only the
dynamics from the final Residual Block of encoder in a case study using the VN_SP_15 dataset,
where 12 nodes (80% of the total) are sampled. We evaluated two configurations: the comprehensive
SICSM, integrating outputs from all Blocks in encoder, and SICSM-one, which relies solely on
the final Block’s output. Figure 4 shows that SICSM-one often inaccurately classified two-hop
interactions as three-hop connections, leading to increased false positives due to its dependence on
the output from the larger, final Residual Block, which tends to blur hop distinctions. In contrast,
SICSM’s approach of using outputs from multiple layers provided a rich dynamics representation
that effectively managed both shorter and longer connections, reducing wrong results. Despite
these strengths, some inaccuracies point to the potential need for an adaptive weighting mechanism
that adjusts the influence of dynamics based on the graph’s size and longest paths, potentially
improving accuracy across different scenarios. These results, along with an additional case in
Appendix E.4, highlight the effectiveness of SICSM’s multi-layer dynamic integration in handling
partial observations and its capability for precise structural inference in complex settings.

6 Conclusion

This paper presents SICSM, a novel structural inference approach that merges Selective State Space
Models with Generative Flow Networks. By embedding dynamics with Residual Blocks, our method
learns input-dependent transition parameters, effectively handling irregularly sampled trajectories.
Aggregating outputs from multiple blocks enriches the dynamics captured, addressing the significant
challenge of incomplete node observations. The downstream Generative Flow Network, leveraging
these dynamics, achieves precise structural inference and seamlessly incorporates prior knowledge.
Empirical evidence demonstrates SICSM’s effectiveness, particularly in settings with irregular
sampling and partial observations. Future research will explore specific adaptations of conjoined state
space models for dynamic systems with mutable structural elements, such as evolving connections
and emerging nodes. Additionally, we aim to explore the development of a comprehensive model
capable of pioneering new paths in general scientific discovery.
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[32] J. Kwapień and S. Drożdż. Physical approach to complex systems. Physics Reports, 515(3):
115–226, 2012.

[33] S. Lahlou, T. Deleu, P. Lemos, D. Zhang, A. Volokhova, A. Hernández-Garcıa, L. N. Ezzine,
Y. Bengio, and N. Malkin. A theory of continuous generative flow networks. In Proceedings of
the 40th International Conference on Machine Learning (ICML), pages 18269–18300. PMLR,
2023.

[34] J. Li, H. Ma, Z. Zhang, J. Li, and M. Tomizuka. Spatio-temporal graph dual-attention network
for multi-agent prediction and tracking. IEEE Transactions on Intelligent Transportation
Systems, 23(8):10556–10569, 2022.

[35] K. Li, X. Li, Y. Wang, Y. He, Y. Wang, L. Wang, and Y. Qiao. Videomamba: State space model
for efficient video understanding. arXiv preprint arXiv:2403.06977, 2024.

[36] L. Li, H. Wang, W. Zhang, and A. Coster. Stg-mamba: Spatial-temporal graph learning via
selective state space model. arXiv preprint arXiv:2403.12418, 2024.

[37] W. Li, X. Hong, and X. Fan. Spikemba: Multi-modal spiking saliency mamba for temporal
video grounding. arXiv preprint arXiv:2404.01174, 2024.

[38] A. Liang, X. Jiang, Y. Sun, and C. Lu. Bi-mamba4ts: Bidirectional mamba for time series
forecasting. arXiv preprint arXiv:2404.15772, 2024.

[39] S. Löwe, D. Madras, R. Z. Shilling, and M. Welling. Amortized causal discovery: Learning
to infer causal graphs from time-series data. In Proceedings of the 1st Conference on Causal
Learning and Reasoning (CLeaR), pages 509–525. PMLR, 2022.

[40] J. Ma, F. Li, and B. Wang. U-mamba: Enhancing long-range dependency for biomedical image
segmentation. arXiv preprint arXiv:2401.04722, 2024.

12

http://github.com/deepmind/dm-haiku


[41] K. Madan, J. Rector-Brooks, M. Korablyov, E. Bengio, M. Jain, A. C. Nica, T. Bosc, Y. Bengio,
and N. Malkin. Learning gflownets from partial episodes for improved convergence and
stability. In Proceedings of the 40th International Conference on Machine Learning (ICML),
pages 23467–23483. PMLR, 2023.

[42] N. Malkin, M. Jain, E. Bengio, C. Sun, and Y. Bengio. Trajectory balance: Improved credit
assignment in gflownets. In Advances in Neural Information Processing Systems 35 (NeurIPS),
pages 5955–5967, 2022.

[43] B. N. Patro and V. S. Agneeswaran. Simba: Simplified mamba-based architecture for vision
and multivariate time series. arXiv preprint arXiv:2403.15360, 2024.

[44] A. Pratapa, A. P. Jalihal, J. N. Law, A. Bharadwaj, and T. Murali. Benchmarking algorithms for
gene regulatory network inference from single-cell transcriptomic data. Nature Methods, 17(2):
147–154, 2020.

[45] J. Ruan and S. Xiang. Vm-unet: Vision mamba unet for medical image segmentation. arXiv
preprint arXiv:2402.02491, 2024.

[46] S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann, T. E. Nichols,
J. D. Ramsey, and M. W. Woolrich. Network modelling methods for FMRI. Neuroimage, 54(2):
875–891, 2011.

[47] S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann, T. E. Nichols,
J. D. Ramsey, and M. W. Woolrich. Network modelling methods for FMRI. Neuroimage, 54(2):
875–891, 2011.

[48] C. Song, Y. Lin, S. Guo, and H. Wan. Spatial-temporal synchronous graph convolutional
networks: A new framework for spatial-temporal network data forecasting. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), volume 34, pages 914–921, 2020.

[49] M. Tsubaki, K. Tomii, and J. Sese. Compound–protein interaction prediction with end-to-end
learning of neural networks for graphs and sequences. Bioinformatics, 35(2):309–318, 2019.

[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems
30 (NIPS), pages 5998–6008, 2017.

[51] A. Wang and J. Pang. Iterative structural inference of directed graphs. In Advances in Neural
Information Processing Systems 35 (NeurIPS), 2022.

[52] A. Wang and J. Pang. Active learning based structural inference. In Proceedings of the 40th
International Conference on Machine Learning (ICML), pages 36224–36245. PMLR, 2023.

[53] A. Wang and J. Pang. Structural inference with dynamics encoding and partial correlation
coefficients. In Proceedings of the 12th International Conference on Learning Representations
(ICLR), 2024.

[54] A. Wang, T. P. Tong, and J. Pang. Effective and efficient structural inference with reservoir
computing. In Proceedings of the 40th International Conference on Machine Learning (ICML),
pages 36391–36410. PMLR, 2023.

[55] C. Wang, O. Tsepa, J. Ma, and B. Wang. Graph-mamba: Towards long-range graph sequence
modeling with selective state spaces. arXiv preprint arXiv:2402.00789, 2024.

[56] Z. Wang, F. Kong, S. Feng, M. Wang, H. Zhao, D. Wang, and Y. Zhang. Is mamba effective for
time series forecasting? arXiv preprint arXiv:2403.11144, 2024.

[57] E. Webb, B. Day, H. Andres-Terre, and P. Lió. Factorised neural relational inference for
multi-interaction systems. arXiv preprints arXiv:1905.08721, 2019.

[58] E. Webb, B. Day, H. Andres-Terre, and P. Lió. Factorised neural relational inference for
multi-interaction systems. arXiv preprint arXiv:1905.08721, 2019.

[59] H. Wu, Y. Liang, W. Xiong, Z. Zhou, W. Huang, S. Wang, and K. Wang. Earthfarsser: Versatile
spatio-temporal dynamical systems modeling in one model. In Proceedings of the 38th AAAI
Conference on Artificial Intelligence (AAAI), pages 15906–15914, 2024.

[60] Z. Xing, T. Ye, Y. Yang, G. Liu, and L. Zhu. Segmamba: Long-range sequential modeling
mamba for 3d medical image segmentation. arXiv preprint arXiv:2401.13560, 2024.

[61] Y. Yang, Z. Xing, and L. Zhu. Vivim: a video vision mamba for medical video object segmenta-
tion. arXiv preprint arXiv:2401.14168, 2024.

13



[62] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. K. Prasanna. Graphsaint: Graph sampling
based inductive learning method. In Proceedings of the 8th International Conference on
Learning Representations (ICLR), 2020.

[63] D. W. Zhang, C. Rainone, M. Peschl, and R. Bondesan. Robust scheduling with gflownets. In
Proceedings of the 11th International Conference on Learning Representations, (ICLR), 2023.

[64] S. Zheng, Z. Li, K. Fujiwara, and G. Tanaka. Diffusion model for relational inference. arXiv
preprint arXiv:2401.16755, 2024.

14



Appendix of Structural Inference of Dynamical
Systems with Conjoined State Space Models

A More Details on Selective SSM in SICSM

Project

Discretize

Selection Mechanmism

Selective SSM

Figure 5: The overview of Selective SSM in Residual Blocks.

In this section, we delve deeper into the capabilities of the Selective SSM, which is central to our
SICSM framework, enabling it to learn input-dependent time intervals, denoted as ∆, with enhanced
adaptability. As illustrated in Figure 5, the selective SSM processes time-series data for each node,
represented by xi. For each node i and at each time step t, the projection layer of the selective SSM
dynamically learns the transition parameters Bt

i, C
t
i, and ∆t

i. This capability not only provides the
flexibility needed to adapt to varying time intervals but also significantly enriches the model’s ability
to capture the nuanced dynamics of each node over time.

Contrasting with previous models that often rely on static or less adaptable transition parameters [31,
58, 39, 51], our selective SSM design allows SICSM to adjust its learning mechanism based on
the input data’s temporal characteristics. This flexibility is crucial for effectively modeling the
transitions in dynamics, particularly when dealing with irregularly sampled trajectories. By enabling
the selective SSM to adapt its parameters dynamically, SICSM can more accurately reflect the
evolving dynamics inherent in complex systems, thus providing a robust framework for predicting
changes and interactions within these systems under varying observational conditions.

B More Details on GFN in SICSM

The discussion in this section is an addition to the description of GFN used in SICSM (in Section 4.2),
with an illustration of the GFN shown in Figure 6.

B.1 More Details on Flow-matching Conditions

We first provide more introduction on general GFNs. GFNs, originally conceptualized through the
flow-matching conditions as proposed by Bengio et al. [7], have seen the development of alternative

15



GFlowNet

Aggregating
posterior

approximation

Figure 6: Structure of GFN in SICSM. Each state s consists of a graph structure G of the underlying
interaction graph of the dynamical system, and a generated parameter λ. The initial state s0 is the
completely disconnected graph. Each state s is complete and connected to a terminal state sf and
associated to a reward R(⟨G,λ⟩). Transitioning from one state to another corresponds to adding a
directed edge to the graph.

conditions that ensure equivalent guarantees. These conditions ensure that a GFN satisfying them
would sample complete states in proportion to their associated rewards.

One such alternative is the detailed balance conditions (DB), derived from Markov chain theory, as
discussed by Bengio et al. [8]. These conditions are defined for any transition s→ s′ within the GFN
as:

F (s)PF (s
′|s) = F (s′)PB(s|s′), (18)

where F (s) represents a flow function, which can be parameterized by a neural network. Bengio et al.
[8] demonstrated that adherence to these detailed balance conditions across all transitions s→ s′ in
the GFN ensures that the resulting distribution is proportional to the reward R(s). In situations where
all states in the GFN are complete, Deleu et al. [17] adapted these conditions to eliminate the need
for a separate flow function.

An alternative set of conditions, known as trajectory balance conditions (TB), was introduced
by Malkin et al. [42]. These conditions apply at the level of complete trajectories rather than
individual transitions. For a complete trajectory τ = (s0, s1, ..., sT , sf ), the trajectory balance
condition is formulated as:

Z

T∏
t=1

PF (st+1|st) = R(sT )

T−1∏
t=1

PB(st|st+1), (19)

with the convention sT+1 = sf , and where Z is the partition function of the distribution (i.e.,
Z =

∑
x∈X R(x)); in practice, Z is a learnable parameter of the model that is being learned

alongside the forward and backward transition probabilities. Compliance with the trajectory balance
conditions across all complete trajectories ensures that the induced distribution by the GFN is
proportional to the reward R(s).

B.2 Learning Objective of GFN

The GFN of the SICSM learning framework adopts the Subtrajectory Balance conditions
(SubTB) [42], a critical concept for ensuring the balance of flow in GFNs, which is a more general
and relaxed condition than DB. Instead of enforcing balance at each state transition, SubTB focuses
on balancing the probability mass over entire subtrajectories of the generative process. A detailed
overview of SubTB is provided in Appendix B.3. The GFN in SICSM is characterized by a dual struc-
ture, comprising both the interaction graph G and the node-specific parameters λ. To accommodate
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this unique structure, we adopt a modified form of SubTB as proposed in [18]:

R(⟨G′, λ′⟩)PB(G|G′)PΩ(λ|G) = R(⟨G,λ⟩)PΩ(G
′|G)PΩ(λ

′|G′), (20)

where PB(·) represents the backward transition probability, and λ′ denotes the parameters generated
conditional on graph G′. This reformulation ensures that both the graph G (including the aggregated
node dynamics embeddings UAll as well as the structure Adj) and the parameters λ are integral to
the reward function, thereby reinforcing their importance in structural inference tasks. We show in
Appendix E.2 with experimental results that this set up greatly encourages the successful integration
of prior knowledge on existing edges. Additional details on this reformulation are available in
Appendix B.4.

For SICSM, we define the learning objective as the squared error of the log ratio between forward
and backward transitions, in line with the approach in [18]. Specifically, the learning objective is
given by:

LGFN = Eπ

[(
log

R(⟨G′,∧λ′⟩)PB(G|G′)PΩ(∧λ|G)

R(⟨G,∧λ⟩)PΩ(G′|G)PΩ(∧λ′|G′)

)2
]
, (21)

where π is a sampling distribution over pairs ⟨G,λ⟩ and ⟨G′, λ′⟩, and ∧ denotes the ‘stop-gradient’
operation. This operation is crucial to prevent backpropagation through λ and λ′, thereby avoiding
potential infinite loops.

B.3 More details about SubTB

The concept of subtrajectory balance conditions, introduced by Malkin et al. [42], serves as a
generalization of both detailed balance and trajectory balance conditions, extending their application
to partial trajectories of varying lengths. These conditions are defined for a partial state trajectory
τ = (sm, sm+1, ..., sn) as follows:

F (sm)

n−1∏
t=m

PF (st+1|st) = F (sn)

n−1∏
t=m

PB(st|st+1), (22)

where F (s) denotes a flow function. This framework effectively encapsulates both conditions outlined
in Appendix B.1, by accommodating for partial state trajectories of single-step transitions (as in
Eqn. 18), and for complete trajectories (as in Eqn.19), with F (s0) = Z as per Bengio et al. [8]).
Furthermore, Madan et al. [41] proposed a novel objective, SubTB(λ), which synergizes subtrajectory
balance conditions for partial trajectories of differing lengths, drawing inspiration from the TD(λ)
approach in reinforcement learning.

These subtrajectory balance conditions are also adaptable to undirected paths, allowing for “back and
forth” movements between states [42]. For an undirected path between sm and sn, this (generalized)
subtrajectory balance condition can be written as

F (sm)

m−1∏
t=k

PB(st|st+1)

n−1∏
t=k

PF (st+1|st) = F (sn)

n−1∏
t=k

PB(st|st+1)

m−1∏
t=k

PF (st+1|st), (23)

where sk is a common ancestor of both sm and sn. These conditions, whether generalized or specific,
offer greater flexibility in their application. However, to guarantee that a GFN induces a distribution
proportional to R(s), it is essential that these conditions are satisfied for all partial trajectories of any
length. In this paper, we specifically focus on scenarios where these conditions are met for partial
state trajectories of fixed length. Although this approach may deviate from the general guarantees,
we follow the implementation discussed by Deleu et al. [18] and expound in Appendix B.4 how our
GFN still induces a distribution ∝ R(s) in our context.

B.4 More details about Reformulation of SubTB

In this section, we strictly follow the implementation and proofs discussed in [18].

Subtrajectory balance conditions for undirected paths of length 3. Consider an undirected
path of length 3 denoted as ⟨G,λ⟩ ← ⟨G, ·⟩ → ⟨G′, ·⟩ → ⟨G′, λ′⟩, where G′ is derived from the
directed acyclic graph (DAG) G by the addition of a new edge.. Given that the state ⟨G, ·⟩ is a
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common ancestor to both complete states ⟨G,λ⟩ and ⟨G′, λ′⟩, we can apply the subtrajectory balance
conditions as expressed in Eqn. 23. The conditions are reformulated as follows:

F (G,λ)PB(G|λ)PF (G
′|G)PF (λ

′|G′) = F (G′, λ′)PB(G
′|λ′)PB(G|G′)PF (λ|G), (24)

where PB(G|λ) denotes PB(⟨G, ·⟩|⟨G,λ⟩), a notation simplification for clarity. As ⟨G,λ⟩ ∈ X has
a single parent state ⟨G, ·⟩, it follows that PB(G|λ) = 1, and a similar rationale applies to ⟨G′, λ′⟩.
Building upon the insights from Deleu et al. [17], the flow function F (G,λ) of a complete state
⟨G,λ⟩can be expressed as a function of its associated reward:

F (G,λ) =
R(⟨G,λ⟩)

PF (sf |⟨G,λ⟩)
. (25)

In our GFN implementation, sf is the sole child of the terminal state ⟨G,λ⟩ ∈ X , indicating an
(infinitely wide) tree structure rooted at ⟨G, ·⟩. Consequently, PF (sf |⟨G,λ⟩) = 1, leading to the
simplification F (G,λ) = R(⟨G,λ⟩). With these simplifications, Eqn. 24 becomes

R(⟨G,λ⟩)PF (G
′|G)PF (λ

′|G′) = R(⟨G′, λ′⟩)PB(G|G′)PF (λ|G), (26)

which is the subtrajectory balance condition in Eqn. 20. This formulation effectively captures the
essence of the balance conditions, providing a clear and concise representation of the underlying
principles in the GFN structure for structural inference.

Integrating undirected paths of length 2. Similar to the previous paragraph, we consider here
an undirected path of length 2 of the form ⟨G,λ⟩ ← ⟨G, ·⟩ → ⟨G, λ̃⟩. Since ⟨G, ·⟩ is a common
ancestor (a common parent in this case) of both terminal states ⟨G,λ⟩ and ⟨G, λ̃⟩, we can write the
subtrajectory balance conditions (Eqn. 23) as:

F (G,λ)PB(G|λ)PF (λ̃|G) = F (G, λ̃)PB(G|λ̃)PF (λ|G). (27)

Using the same simplifications as in the previous paragraph (PB(G|λ) = PB(G|λ̃) = 1), we get the
following subtrajectory balance conditions for the undirected paths of length 2:

R(⟨G,λ⟩)PF (λ̃|G) = R(⟨G, λ̃⟩)PF (λ|G). (28)

Note that these conditions are effectively redundant if the SubTB conditions over undirected paths of
length 3 are satisfied for all possible pairs of terminal states ⟨G,λ⟩ and ⟨G′, λ′⟩. Indeed, if we write
these conditions between ⟨G,λ⟩ and ⟨G′, λ′⟩ on the one hand, and between ⟨G, λ̃⟩ and ⟨G′, λ′⟩ on
the other hand (with a fixed G′ and λ′:

R(⟨G′, λ′⟩)PB(G|G′)PF (λ|G) = R(⟨G,λ⟩)PF (G
′|G)PF (λ

′|G), (29)

R(⟨G′, λ′⟩)PB(G|G′)PF (λ̃|G) = R(⟨G, λ̃⟩)PF (G
′|G)PF (λ

′|G), (30)

we get the same subtrajectory balance conditions over undirected paths of length 2 as in Eqn. 28:

R(⟨G,λ⟩)
PF (λ|G)

=
R(⟨G′, λ′⟩)PB(G|G′)

PF (G′|G)PF (λ′|G′)
=

R(⟨G,λ′⟩)
PF (λ̃|G)

. (31)

However, since the SubTB conditions are only satisfied approximately in practice, it might be
advantageous to also satisfy Eqn. 28. The equation above provides an alternative way to express
Eqn. 28. Indeed, Eqn. 31 shows that the function

fG(λ)
△
= logR(⟨G,λ⟩)− logPF (λ|G) (32)

is constant, albeit with a constant that depends on the graph G. Since this function is differentiable,
this is equivalent to ▽λfG(λ) = 0, and therefore we get the differential form of the subtrajectory
balance conditions:

▽λ logPF (λ|G) = ▽λ logR(⟨G,λ⟩). (33)
As shown by [18], one way to enforce the SubTB conditions over undirected paths of length 3 is
to create a learning objective that encourages these conditions to be satisfied, and optimizing it
using gradient methods. The learning objective has the form LGFN = Eπ[△̃2(Ω)], where △̃(Ω) is a
non-linear residual term

△̃(Ω) = log
R(⟨G′, λ′⟩)PB(G|G′)PΩ(λ|G)

R(⟨G,λ⟩)PΩ(G′|G)PΩ(λ′|G′)
. (34)
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Suppose that the parameters Ω of the GFN are such that the subtrajectory balance conditions in
Eqn. 33 are satisfied for any ⟨G,λ⟩. Although this assumption is unlikely to be satisfied in practice,
they will eventually be approximately satisfied over the course of optimization, given the discussion
above about the relation between Eqn. 28 and Eqn. 26. Since λ and λ′ depend on Ω (via the
reparametrization trick since they are sampled on-policy [18]), taking the derivative of △̃2(Ω), we
get:

d

dΩ
△̃2(Ω) = △̃(Ω) · d

dΩ
[logR(⟨G′, λ′⟩) + logPΩ(λ|G)− logR(⟨G,λ⟩)− logPΩ(G

′|G)

− logPΩ(λ
′|G′)]. (35)

Using the law of total derivatives, we have

d

dΩ
[logPΩ(λ|G)− logR(⟨G,λ⟩) =

[
∂

∂λ
logPΩ(λ|G)− ∂

∂λ
logR(⟨G,λ⟩)

]
=0

dλ

dΩ
(36)

+
∂

∂Ω
logPΩ(λ|G) (37)

=
∂

∂Ω
logPΩ(λ|G) (38)

and similarly for the terms in ⟨G′, λ′⟩. The derivative of the objective then becomes

d

dΩ
△̃2(Ω) = △̃(Ω) ·

[
∂

∂Ω
logPΩ(λ|G)− ∂

∂Ω
logPΩ(λ

′|G′)− d

dΩ
logPΩ(G

′|G)

]
. (39)

An alternative way to obtain the same derivative in Eqn. 39 as the objective in Eqn. 33 is to take
dλ/dΩ = 0 instead, meaning that we would not differentiate through λ (and λ′). Using the stop-
gradient operation ∧, this shows the following objective

LGFN = Eπ

[(
log

R(⟨G′,∧λ′⟩)PB(G|G′)PΩ(∧λ|G)

R(⟨G,∧λ⟩)PΩ(G′|G)PΩ(∧λ′|G′)

)2
]
, (40)

takes the same value and has the same gradient (Eqn. 39) as the objective in Eqn. 34 when the
subtrajectory balance conditions (in differential form) over undirected paths of length 2 are satisfied.

While optimizing Eqn. 40 alone leads to eventually satisfying the subtrajectory balance conditions
over undirected paths of length 2, it may be advantageous to explicitly encourage this behavior,
especially in cases for non-linear models. We can incorporate some penalty to the loss function, such
as

L̃GFN = LGFN +
β

2
Eπ[∥ ▽λ logPΩ(λ|G)−▽λ logR(⟨G,λ⟩)∥2 + ∥ ▽λ′ logPΩ(λ

′|G′)

−▽λ′ logR(⟨G′, λ′⟩)∥2]. (41)

B.5 Forward Transition Probabilities

As delineated in Section 4.2, SICSM generates the pair ⟨G,λ⟩ through a two-phase process: (a)
constructing the graph G = (UAll ,Adj) by sequentially adding edges in Adj until a ‘stop’ action is
triggered, followed by (b) sampling the parameters λ conditional on G. These actions are governed
by the forward transition probabilities PΩ(G

′|G) in the first phase and PΩ(λ|G) in the second phase.

To parameterize these terms, we adopt a hierarchical model strategy [18]. This model first deter-
mines whether to halt the first phase using the probability PΩ(stop|G). Based on this decision, the
process either continues by adding an edge to Adj, forming G′ = (UAll ,Adj′) with probability
PΩ(G

′|G,¬stop), or transitions to the second phase by sampling λ with probability PΩ(λ|G, stop):

PΩ(G
′|G) = (1− PΩ(stop|G))PΩ(G

′|G,¬stop), (42)
PΩ(λ|G) = PΩ(stop|G)PΩ(λ|G, stop). (43)

To accurately parameterize PΩ(stop|G), PΩ(G
′|G,¬stop), and PΩ(λ|G, stop), we utilize a combina-

tion of graph neural networks (GNNs) [5] and self-attention mechanisms [50]. This fusion of GNNs

19



and self-attention blocks ensures a robust and flexible modeling of the transitions between states in
SICSM. Further details regarding this parameterization approach are elaborated in Section B.6.

B.6 Parameterization with Neural Networks

In the GFN of SICSM, various components are parameterized using neural networks. Specifically,
we focus on parameterizing the following: (a) PΩ(stop|G), (b) PΩ(G

′|G,¬stop), (c) PΩ(λ|G, stop),
and (d) the log-likelihood term logP (vt+1

i |λ, Ãdj, U t
i ). We combine GNN with self-attention

mechanisms for parameterizing (a) PΩ(stop|G) and (b) PΩ(G
′|G,¬stop). This process generates a

graph-level attribute g and node-level attributes {ui,vi,wi} for each node i in G:

g, {ui,vi,wi}ni=1 = SelfAttentionΩ (GNNΩ(G)) . (44)

The ‘stop’ action probability is computed as PΩ(stop|G) = fΩ(g), where fΩ is a neural network
with a sigmoid output layer. The probability of transitioning from G to G′ in the absence of a ‘stop’
action is defined as:

PΩ(G
′|G,¬stop) ∝mij exp(u

T
i vj), (45)

where mij is a binary mask that excludes already explored graph structures. (c) For sampling
parameters λi for each node i, we define:

PΩ(λi|G, stop) = N
(
λi|µΩ(wi), σ

2
Ω(wi)

)
, (46)

with µΩ and σ2
Ω being neural networks. This formulation effectively approximates the posterior

distribution P (λi|G,UAll) upon full training. To get the adjacency matrix for the dynamical system,
we need to approximate the marginal posterior P (Adj|UAll). We follow the phases to generate G
until a ‘stop’ action. By aggregating {Adj1,Adj2, ...,AdjB} from the posterior approximation, we
estimate the marginal probability of a directed edge from node i to node j as:

PΩ(i→ j|UAll) ≈
1

B

B∑
b=1

1(i→ j ∈ Adjb), (47)

where 1(·) is the indicator function. This process enables the inference of the underlying interaction
graph’s structure, which is critical for evaluating the accuracy of SICSM in structural inference tasks.
(d) For the log-likelihood term, we employ a message-passing neural network to compute future node
features:

{µt+1
i , σt+1

i } = MLP(UAlli , Ãdj), (48)

where MLP(·) is a neural network that outputs the parameters of the probability distribution for the
future state vt+1

i :

MLP(UAlli , Ãdj) =

U t
i + fe

 ∑
j→i∈Ãdj

fa(U
t
i , U

t
j )

 , (49)

where fe and fa are multilayer perceptions, and the operation is performed for all nodes. Then we
have log-likelihood for each node i at time t can be computed as:

logP (vt+1
i |λ, Ãdj, U t

i ) = logN (vt+1
i |µt+1

i , σt+1
i ). (50)

If the node features are multi-dimensional, we set up multiple readout heads in Eqn. 48. This approach
effectively handles multi-dimensional node features and incorporates both node features and graph
structure, thereby reinforcing the model’s predictive accuracy.

C More Details about Datasets

In this section, we provide more details about the datasets used in this work apart the description in
Section 5.
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C.1 Springs Simulations

To generate these Springs Simulations datasets, we follow the description of the data in [31] but with
fixed connections and with 10 nodes, in order to simulate spring-connected particles’ motion in a 2D
box using the Springs simulation. In this setup, nodes represent particles, and edges correspond to
springs governed by Hooke’s law. The Springs simulation’s dynamics are described by a second-order
ordinary differential equation: mi · x′′

i (t) =
∑

j∈Ni
−k ·

(
xi(t) − xj(t)

)
. Here, mi represents

particle mass (assumed as 1), k is the fixed spring constant (set to 1), andNi is the set of neighboring
nodes with directed connections to node i, which is sub-sampled from the graphs generated in the
StructInfer in previous steps. We integrate this equation to compute x′

i(t) and subsequently xi(t) for
each time step t. The resulting values of x′

i(t) and xi(t) create 4D node features at each time step.
To be specific, at the beginning of the data generation for each springs dataset, we randomly generate
a ground truth graph and then simulate 12000 trajectories on the same ground truth graph, but with
different initial conditions. The rest settings are the same as that mentioned in [31]. We collect the
trajectories and randomly group them into three sets for training, validation and testing with the ratio
of 8: 2: 2, respectively.

C.2 NetSims

It is firstly mentioned in [46], which offers simulations of blood-oxygen-level-dependent (BOLD)
imaging data in various human brain regions. Nodes in the dataset represent spatial regions of
interest from brain atlases or functional tasks. Interaction graphs from the previous section determine
connections between these regions. Dynamics are governed by a first-order ODE model: x′

i(t) =
σ ·

∑
j∈Ni

xj(t) − σ · xi(t) + C · ui, where σ controls temporal smoothing and neural lag (set to
0.1 based on [46], and C regulates external input interactions (set to zero to minimize external input
noise) [46]. 1D node features at each time step are obtained from the sampled xi(t).

C.3 Synthetic Biological Networks

The six directed Boolean networks (LI, LL, CY, BF, TF, BF-CV) are the most often observed
fragments in many gene regulatory networks, each has 7, 18, 6, 7, 8 and 10 nodes, respectively. Thus
by carrying out experiments on these networks, we can acknowledge the performance of the chosen
methods on the structural inference of real-world biological networks. We collect the six ground-
truth directed Boolean networks from [44] and simulate the single-cell evolving trajectories with
BoolODE [44] (https://github.com/Murali-group/BoolODE) with default settings mentioned
in that paper for every network. We first sample a total number of 12000 raw trajectories. We then
sample different numbers of trajectories from raw trajectories and randomly group them into three
datasets: for training, for validation, and for testing, with a ratio of 8 : 2 : 2. After that, we sample
different numbers of snapshots according to the requirements of experiments in Section 5.1 with
equal time intervals in every trajectory and save them as ‘.npy’ files for data loading.

C.4 StructInfer Benchmark

The StructInfer benchmark [3] evaluated 12 structural inference methods in a comprehensive way
on a synthetic dataset. The dataset covers 11 types of different underlying interaction graphs and
two types of dynamical simulations. (https://structinfer.github.io/) As there are so many
trajectories, we chose the ones under the name ‘Vascular Networks’, or in short ‘VN’, whose
underlying interaction graphs approximate the real-world vascular networks in biology systems. As
the data is already split into three sets: for training, for validation, and for testing, we keep this setting.
In the following paragraphs, we describe more details about the Springs and NetSims simulations
utilized by the StructInfer benchmark.

For Springs simulation, it follows the approach by Kipf et al. [31], to simulate spring-connected
particles’ motion in a 2D box using the Springs simulation. In this setup, nodes represent particles,
and edges correspond to springs governed by Hooke’s law. But different from Springs Simulations
mentioned above, StructInfer generates ground-truth interaction graphs with the graph properties
of the real-world graphs or network. The ground-truth interaction graphs are used to determine the
connectivity between the nodes. The Springs simulation’s dynamics are described by a second-order
ordinary differential equation: mi · x′′

i (t) =
∑

j∈Ni
−k ·

(
xi(t) − xj(t)

)
. Here, mi represents
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particle mass (assumed as 1), k is the fixed spring constant (set to 1), andNi is the set of neighboring
nodes with directed connections to node i, which is sub-sampled from the graphs generated in the
StructInfer in previous steps. We integrate this equation to compute x′

i(t) and subsequently xi(t) for
each time step t. The resulting values of x′

i(t) and xi(t) create 4D node features at each time step.

For NetSims simulation, it is firstly mentioned in NetSim dataset [46], which offers simulations
of blood-oxygen-level-dependent (BOLD) imaging data in various human brain regions. Nodes in
the dataset represent spatial regions of interest from brain atlases or functional tasks. But different
from NeiSim mentioned above, StructInfer generates ground-truth interaction graphs with the graph
properties of the real-world graphs or network. The ground-truth interaction graphs are used to
determine the connectivity between the nodes. Dynamics are governed by a first-order ODE model:
x′
i(t) = σ ·

∑
j∈Ni

xj(t)− σ · xi(t) + C · ui, where σ controls temporal smoothing and neural lag
(set to 0.1 based on [46], and C regulates external input interactions (set to zero to minimize external
input noise) [46]. 1D node features at each time step are obtained from the sampled xi(t).

C.5 PEMS Datasets

These datasets, derived from the California Caltrans Performance Measurement System (PeMS) [11],
comprise data aggregated into 5-minute intervals. The adjacency matrix of the nodes is constructed
by road network distance with a thresholded Gaussian kernel [48]. Table 1 summarizes these datasets.

Table 1: Statistics of PEMS datasets.

Dataset # Nodes # Edges # Time Steps Missing Ratio

PEMS03 358 547 26, 208 0.672%
PEMS04 307 340 16, 992 3.182%
PEMS07 883 866 28, 224 0.452%

We resampled the data such that constructing 49 time steps of points for each trajectory, and obtained
12000 trajectories for each with overlapping snapshots. It’s important to note that these datasets’
adjacency matrices only connect sensors on the same road, omitting alternative connecting paths,
which could impact results.

D Implementation of Baselines

For the experiments without prior knowledge, we follow the official implementation of the baselines.
As for the integrating of the prior knowledge, we leverage different strategies. For the methods
based on VAEs, (e.g. NRI, MPM, ACD, iSIDG, RCSI), we directly perform supervised learning on
the latent space with known edges, while keep the rest following the original implementation. For
JSP-GFN, we set the graph structure in the initial state and reset states the same as prior knowledge.

D.1 NRI

NRI [31] is a VAE-based model for unsupervised relational inference. We use the official imple-
mentation code by the author from https://github.com/ethanfetaya/NRI with a customized
data loader for our chosen datasets. We add our metric evaluation in the ‘test’ function, after the
calculation of accuracy in the original code.

D.2 MPM

MPM [12] employs a VAE framework with a relational interaction mechanism and spatio-temporal
message passing. We use the official implementation code by the author from https://github.
com/hilbert9221/NRI-MPM with a customized data loader for our chosen datasets. We add our
metric evaluation for AUROC in the ‘evaluate()’ function of class ‘XNRIDECIns’ in the original
code.
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D.3 ACD

ACD [39] utilizes shared dynamics to infer causal relations within datasets. We follow the official
implementation code by the author as the framework for ACD (https://github.com/loeweX/
AmortizedCausalDiscovery). We run the code with a customized data loader for the datasets in
this work. We implement the metric-calculation pipeline in the ‘forward_pass_and_eval()’ function.

D.4 ISIDG

iSIDG [51] iteratively refines adjacency matrices to enhance directional
inference. We follow the official implementation code by the au-
thor as the framework for iSIDG (https://github.com/wang422003/
Benchmarking-Structural-Inference-Methods-for-Interacting-Dynamical-Systems/
tree/main/src/models/iSIDG). We disable the metric evaluations for the AUPRC and Jaccard
index in the original implementation of iSIDG for faster computation.

D.5 RCSI

RCSI [54] integrates reservoir computing for efficient structural inference. We would like to thank
the authors of RCSI for the code. Same as iSIDG, we disable the metric evaluations for AUPRC and
Jaccard index in the original implementation of iSIDG for faster computation.

D.6 JSP-GFN

JSP-GFN [18] applies Generative Flow Networks for Bayesian inference of graphical structures.
We follow the official implementation code by the author as the framework for JSP-GFN (https:
//github.com/tristandeleu/jax-jsp-gfn). We run the code with a customized data loader
for the datasets in this work.

D.7 SIDEC

SIDEC [53] encodes node dynamics to exploit partial correlations for structural inference. We follow
the official implementation code by the author as the framework for SIDEC (https://github.com/
wang422003/SIDEC_torch). We run the code with a customized data loader for the datasets in this
work. By incorporating the prior knowledge, we did not figure out a feasible way to do so. Thus we
omit the implementation for integrating prior knowledge.

D.8 Implementation details of SICSM

The general training pipeline of SICSM is presented in Algorithm 1.

SICSM is implemented with JAX [9], including following packages: dm-haiku [24] and jraph [19].
The implementation of SICSM model consists of two parts: (1) the implementation of Residual Blocks
with Mamba, and (2) the implementation of GFN. The implementation of Residual Blocks follows
the script of ‘mamba-minimal-jax’ (https://github.com/radarFudan/mamba-minimal-jax/
tree/main). We would like to thank the contributors of this repository for all the efforts they
have done. And the implementation of GFN of SICSM follows the implementation of JSP-
GFN [18], and the authors’ implementation can be found at https://github.com/tristandeleu/
jax-jsp-gfn. We would like to thank the authors for code and hints. The modifications were made
to integrate various regularization terms in the graph prior, the log-likelihood, and the data-loading
pipelines. Please refer to the link provided in the supplementary document for the exact implementa-
tion of SICSM. SICSM is trained with Adam [29] optimizer, with the learning rate as 0.00001 and for
1000 epochs. Implementation can be found at: https://github.com/wang422003/SICSM-JAX/.

Among all, the most important hyperparameter of SICSM would be the number of Residual Blocks
in encoder and decoder, L and L′, respectively. As we expect a symmetric structure of both, so L′ is
set as equal to L. The exact number of layers actually depends on the number of nodes in the graph,
and we report the values of L in Table 2.
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Algorithm 1 The training procedure of SICSM
1: Input: trajectory V of n nodes
2: Parameters: number of steps of prefilling ξ, learning rate α
3: Parameters: number of Residual Blocks in encoder L, number of Residual Blocks in decoder L′

4: Output: Structure of the dynamical system Adj
5: Decompose the input trajectory to form present feature set V 0:T−2 and forecasting feature set

V 1:T−1

6: Initialize the State trajectory at G0 as an unconnected graph with n nodes
7: repeat
8: Get feature-based embedding ht

i for every node and for every time step: ht
i = fembed(v

t
i)

9: Compose Hi = [h0
i ,h

1
i , ...,h

T−2
i ] for every node

10: Compose Hall = [Hi, for all nodes]
11: for l ≤ (L+ L′) do
12: if F thenirst Residual Block
13: Get the output of the block: U0 = fRB1

(Hall)
14: else
15: Get the output of the block: URBl

= fRB1
(URBl−1 )

16: end if
17: end for
18: if C thenomplete observation of all nodes
19: Get the embeddings from the last block in encoder: UAll = URBL

20: else
21: Aggregate all embeddings from the blocks in encoder: UAll =

∑L
l=1 URBl

22: end if
23: Project back to input dimension V̂ t+1 = fproj (URB(L+L′))
24: for ξ steps do
25: Sample the stop action probability: a ∼ PΩ(stop|Gk)
26: if a is the ‘stop’ action then
27: Reset the State trajectory: Gk+1 = G0

28: else
29: Sample Gk+1 ∼ PΩ(Gk+1|Gk,¬stop)
30: Store the transition Gk → Gk+1

31: end if
32: end for
33: Sample λ ∼ PΩ(λ|G, stop)
34: Sample λ′ ∼ PΩ(λ

′|G′, stop)
35: Evaluate the rewards R(⟨G,λ⟩) and R(⟨G′, λ′⟩)
36: Evaluate the loss L = LRB + LGFN

37: Update the parameters of the branch of Residual Blocks and GFN
38: until Convergence criterion
39: Sample the approximation of posteriors: PΩ(i→ j|UAll) ≈ 1

B

∑B
b=1 1(i→ j ∈ Adjb)

40: Output the sampled PΩ as the structure of the investigated dynamical system

Table 2: Number of Residual Blocks in the encoder of SICSM.

n ≤ 10 10 < n ≤ 30 30 < n ≤ 50 50 < n ≤ 100 n > 100

L 5 7 10 14 20

E More Experimental Results

E.1 Supplementary Experimental Results on Other Metrics

E.2 Experimental Results with Prior Knowledge

The experimental analysis focuses on the impact of integrating varying percentages of prior knowledge
(0%, 10%, 20%, and 30%) into the training process of different structural inference models, including
NRI, MPM, ACD, iSIDG, RCSI, JSP-GFN, and our proposed SICSM. The results, as depicted in the
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Figure 7: AUPRC values (expressed in percentage) for various methods as a function of the number
of irregularly sampled time steps. Results are averaged across ten trials, with time steps varying from
49 to 10. The shadings show the standard deviation of each data point.
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Figure 8: SHD values (expressed in percentage) for various methods as a function of the number of
irregularly sampled time steps. Results are averaged across ten trials, with time steps varying from 49
to 10. The shadings show the standard deviation of each data point.
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Figure 9: F1 scores (expressed in percentage) for various methods as a function of the number of
irregularly sampled time steps. Results are averaged across ten trials, with time steps varying from 49
to 10. The shadings show the standard deviation of each data point.
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Figure 10: Average AUROC results (in %) of SICSM and baselines with different percentages of
prior knowledge on VN datasets.

provided line plots, are evaluated across four datasets: VN_SP_50, VN_SP_100, VN_NS_50, and
VN_NS_100. As for SIDEC, we did not figure out a feasible way of integrating prior knowledge
into it. The results are shown in Figure 10, and we can see that SICSM consistently outperforms
other baseline models across all datasets and percentages of prior knowledge integrated. Notably,
SICSM shows a significant improvement in AUROC as the percentage of prior knowledge increases,
underscoring its capability to effectively utilize additional information to enhance structural inference
accuracy. Models like NRI, MPM, and ACD show moderate improvements with increased prior
knowledge but remain less effective compared to SICSM. This suggests that while these models
benefit from prior knowledge, their overall adaptability and learning mechanisms might not fully
capitalize on the information provided. JSP-GFN and RCSI display variable trends; for instance,
JSP-GFN shows notable improvements in the VN_SP_50 and VN_SP_100 datasets but less so in
VN_NS datasets, indicating potential dataset-specific sensitivities.

The enhancement in performance with increased prior knowledge is most pronounced in the
VN_SP_100 and VN_SP_50 datasets for SICSM. This pattern illustrates the model’s robustness in
leveraging prior knowledge, particularly in scenarios with larger and possibly more complex network
structures. In contrast, the increments in AUROC scores for baselines like iSIDG and RCSI are less
steep, suggesting these models, while benefiting from prior knowledge, do not adapt as effectively as
SICSM.

To conclude, the integration of prior knowledge markedly benefits the performance of structural infer-
ence models, with our SICSM model demonstrating superior capability to utilize such information to
enhance prediction accuracy. These results validate the effectiveness of SICSM’s design in adapting
to additional contextual information, setting a benchmark for future developments in the field. Further
investigations could explore optimizing the integration process of prior knowledge to maximize the
performance benefits across diverse structural inference scenarios.

E.3 Experimental Results on PEMS

Table 3: Average AUROC results (%) on PEMS datasets.

PEMS03 PEMS04 PEMS07

JSP-GFN 60.0± 1.01 60.5± 0.63 61.2± 0.70

SIDEC 70.7± 0.13 73.5± 0.18 70.0± 0.21

SICSM 71.2± 0.44 74.7± 0.37 71.2± 0.47

This section presents the performance evaluation of two baseline methods, JSP-GFN and SIDEC,
alongside our proposed SICSM on three real-world datasets: PEMS03, PEMS04, and PEMS07.
These datasets are instrumental in assessing the robustness and effectiveness of structural inference
methods in real-world scenarios. The results are summarized in Table 3. Other baselines fail to work
on large graphs and encountered OOM errors on these datasets.

As we can see from the table, SICSM consistently exhibits the highest AUROC across all three
datasets, with scores of 71.2% on PEMS03, 74.7% on PEMS04, and 71.2% on PEMS07. These
results underscore SICSM’s superior performance in capturing and predicting complex network
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Figure 11: (1st Column) Ground truth structure with all nodes. (2nd Column) Two examples of
12-node sampling. (3rd, 4th Columns) Structural inference results from SICSM-one and SICSM.

dynamics in traffic systems, which is a real-world scenario. SIDEC also performs robustly, especially
on the PEMS04 dataset where it achieves an AUROC of 73.5%. However, it slightly trails behind
SICSM, particularly on the PEMS03 and PEMS07 datasets. JSP-GFN shows the lowest performance
among the evaluated methods, with its highest AUROC at 61.2% on PEMS07, indicating a lesser
adaptability to the dynamics of these specific traffic datasets.

The standard deviations reported alongside the AUROC scores indicate the stability of each method’s
performance across different runs. SICSM demonstrates moderate stability with a standard deviation
of approximately 0.44% to 0.47%, suggesting consistent performance despite the inherent variability
in real-world data. SIDEC shows the highest stability, particularly on PEMS04, with a minimal
standard deviation of 0.18%. This suggests that SIDEC is reliably effective in scenarios represented
by this dataset. JSP-GFN, while the least effective in terms of AUROC, maintains a relatively
consistent performance as indicated by its standard deviations, which range from 0.63% to 1.01%.

The evaluation on the PEMS datasets validates the effectiveness of SICSM, particularly in comparison
to established baseline methods like JSP-GFN and SIDEC. SICSM’s ability to consistently outperform
other methods underlines its advanced structural inference capabilities, making it a promising solution
for complex real-world applications in system dynamics and network analysis.

E.4 Why Do We Need All Residual Outputs?

As discussed in Section 3.2, in systems with partial observation, it is advantageous to combine
learned dynamics from multiple Residual Blocks to enrich the dynamics available for the GFN.
However, an intriguing question arises: What is the impact when only the dynamics from the final
Residual Block in the encoder are used, similar to approaches used in fully observed systems? This
section delves into this query through a detailed case study on a specific dataset. We selected the
VN_SP_15 dataset for this examination, focusing on a scenario where 12 nodes (80% of the total)
are sampled. We contrasted two configurations of our proposed structural inference method: the
comprehensive SICSM, which integrates outputs from all Residual Blocks in the encoder, and a
simplified version, SICSM-one, which relies solely on the output from the last Residual Block in
the encoder. This comparison aimed to assess the impact of multi-layer output integration on the
accuracy and robustness of the inferred network structures, with results illustrated in Figure 11.

Both configurations were evaluated on the same dataset, comprising a full graph and a 12-node
sampled version, to appraise their performance across varying degrees of system completeness. Ob-
servations from the results indicated that SICSM-one frequently misinterpreted two-hop interactions
as three-hop connections, leading to an increased incidence of false positives. This issue arises be-
cause SICSM-one relies solely on the output from the final, potentially larger, Residual Block, which
can blur the distinctions between one-hop, two-hop, and three-hop dynamics. In contrast, SICSM
leverages outputs from multiple layers, enabling a comprehensive representation of dynamics across
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Table 4: Average counts of multi-hop negative edges and true positive edges reconstructed upon
VN_SP_15 dataset with 12 nodes are sampled with different residual blocks. The average is performed
based on 10 runs. For reference, L = 7. Each residual block is numbered as their closeness to the
input side. For example, Residual Block [1] is the first one, [1− 3] refers to the integrating outputs
from 1 to 3 Residual Blocks.

Residual Blocks Count of multi-hop negatives Count of true positives

[7] 7.5 10.2
[6] 7.3 9.8
[5] 6.9 9.2
[4] 6.8 8.5
[3] 6.6 8.0
[2] 6.5 7.1
[1] 6.5 7.0

[1− 2] 6.5 7.2
[1− 3] 6.1 8.6
[1− 4] 5.3 9.4
[1− 5] 4.2 10.0
[1− 6] 3.1 11.1

[1− 7] (Full SICSM) 2.1 12.5

different temporal dependencies. This multi-layer aggregation is particularly effective at emphasizing
shorter connections while still accounting for longer pathways. The integration of shallow blocks
plays a crucial role in this configuration, offering detailed insights into shorter dependencies and
significantly reducing the likelihood of misidentifying longer connection paths as false positives.
Despite these improvements, some inaccuracies remain, suggesting areas for further refinement.
Future developments might include implementing an adaptive weighting mechanism that adjusts
the influence of dynamics from different Residual Blocks. Such a mechanism would be tailored
according to the size of the graph and the longest potential paths within the network, optimizing the
model’s accuracy in diverse operating conditions.

Moreover, as shown in Table 4, the occurrence of negative multi-hop edges is notably higher when
only a single Residual Block is used. This number decreases to 6.5 when only the first block is used,
but at the cost of reducing true positive predictions. The best configuration, as highlighted in the
table, is the concatenation of outputs from all blocks. This approach not only reduces the occurrence
of negative multi-hop edges but also increases the count of true positives, providing a more balanced
and accurate representation of the underlying structure.

These findings underscore the effectiveness of multi-layer dynamic integration in SICSM, particularly
in settings with partial node observability. They highlight the model’s capacity to maintain structural
integrity and provide accurate predictions, affirming its potential for broad application in complex,
dynamically varying systems.

E.5 Ablation Study on the Choice of Neural Networks in the Blocks

We conducted additional experiments comparing Transformer [50], LSTM [25], and GRU [15]
models on irregularly sampled trajectories with 30 time steps and partial observations with 12 nodes
in the VN_SP_15 dataset. The average results from 10 runs are presented in Table 5. For all models,
we adjusted the parameters to accommodate the trajectory lengths and performed hyperparameter
tuning using Bayesian optimization. As shown in the table, the Transformer model outperforms
LSTM and GRU by a small margin, but all are notably inferior to SSSM, as they struggle to effectively
handle multi-hop interactions. Additionally, these models perform poorly on irregularly sampled
trajectories, as they lack the ability to learn adaptively.

E.6 Training Time Comparison

The training time analysis for SICSM and baseline methods on the VN_NS datasets, as summarized
in Table 6, provides valuable insights into the computational efficiency of these models. The reported
times are averaged over ten runs and are presented in hours.
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Table 5: Average AUROC results of SICSM with different neural networks in each block. The
networks under consideration are Transformer, LSTM and GRU. The experiments are irregularly
sampled time steps and partially observed nodes on VN_SP_15 dataset.

Neural Network Results on Irre. Sampled Results on Par. Obser.

Transformer 7.5 10.2
LSTM 7.3 9.8
GRU 6.9 9.2
SSSM 6.8 8.5

Table 6: Training time (hours) of SICSM and baseline methods on VN_NS datasets.

Methods VN_NS_15 VN_NS_30 VN_NS_50 VN_NS_100

NRI 24.6 33.5 40.5 47.1
MPM 45.3 60.4 79.2 83.6
ACD 40.2 53.1 67.6 81.7
iSIDG 43.9 56.2 88.5 98.0
RCSI 44.6 58.0 91.6 103.4
JSP-GFN 45.0 55.1 72.0 97.3
SIDEC 26.8 32.9 39.5 45.0

SICSM 59.2 70.1 96.3 120.5

From the table, it’s evident that SICSM, while providing advanced capabilities in structural inference
as demonstrated in previous sections, exhibits longer training times compared to both traditional and
other state-of-the-art baseline methods. SICSM consistently shows higher training times across all
dataset sizes compared to other methods. For instance, at VN_NS_15, SICSM takes approximately
59.2 hours, which is about 35 hours longer than NRI and nearly 33 hours more than SIDEC, the
method with the shortest training time for this dataset size. As the size of the dataset increases,
the training time for SICSM also increases substantially, from 59.2 hours for VN_NS_15 to 120.5
hours for VN_NS_100. This scaling trend is consistent with other methods but more pronounced in
SICSM, suggesting that its complexity scales significantly with larger networks. The reason is that we
implement selective SSM with JAX, which lacks the cuda package to boost the selective process that
is designed in [20], and the search over all possible state spaces in GFN is time-consuming. The data
highlights a crucial area for future development in optimizing the computational efficiency of SICSM.
Enhancements might focus on the implementation of JAX-suited cuda package for boosting selective
SSM or integrating more efficient learning algorithms to reduce training times without compromising
the model’s performance.

E.7 How Good is the Approximation?

In this work, we approximating P (Adj, λ|Uall) instead of the Adj. Thus, it is necessary to evaluate
how well P (Adj, λ|Uall) is approximated with a distributional metric.

Similar to the experiments in JSP-GFN [18], we consider here models over d = 5 variables, with linear
Gaussian CPDs. We generate 20 different datasets of N = 100 observations from randomly generated
Bayesian Networks. The quality of the joint posterior approximations is evaluated separately for
Adj and λ. For Adj, we compare the approximation and the exact posterior on different marginals
of interest, also called features in JSP-GFN [18], e.g., the edge feature corresponds to the marginal
probability of a specific edge being in the graph. Fig. 12 shows a comparison between the edge features
computed with the exact posterior and with SICSM, proving that it can accurately approximate the
edge features of the exact posterior. To evaluate the performance of the different methods as an
approximation of the posterior over λ, we also estimate the cross-entropy between the sampling
distribution of λ given G and the exact posterior P (λ|Adj, Uall). The results are shown in Table 7.
We observe that again SICSM samples parameters λ that are significantly more probable under the
exact posterior compared to other methods.
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Figure 12: Comparison of the edge features computed with the exact posterior (x-axis) and the
approximation given by GFN in SICSM.

Table 7: Comparison with the exact posterior distribution, on small graphs with n = 5 nodes.
Quantitative evaluation of different methods for joint posterior approximation, both in terms of edge
features and cross-entropy of sampling distribution and true posterior P (λ|Adj, Uall). All values
correspond to the mean and 95% confidence interval across the 10 experiments.

Edge features EAdj,λ[− logP (λ|Adj, Uall)]
n ≤ 10 10 < n ≤ 30

JSP-GFN 0.0019± 0.005 0.998± 0.001 −4.95± 0.51× 100

SICSM 0.0018± 0.007 0.998± 0.001 −4.97± 0.52× 100

F Limitations

While SICSM marks a significant step forward in structural inference, it is imperative to acknowledge
its potential limitations for a comprehensive understanding and to guide future research:

• Reliance on Prior Knowledge Accuracy: SICSM’s enhanced performance through prior knowl-
edge integration is contingent on the accuracy of this information. Misleading or incorrect prior
knowledge could adversely impact the model’s inference accuracy, leading to potentially flawed
conclusions.

• Prior Knowledge of Edge Existence: Currently, SICSM leverages prior knowledge about the
existence of edges in the graph. However, it is not equipped to incorporate prior knowledge about
the non-existence of specific edges, limiting its ability to exclude certain connections during the
inference process.

• Scalability to Very Large Graphs: The scalability of SIGFN to graphs with an extremely large
number of nodes remains untested (e.g., with more than 1,000 nodes). Training and inference in
such large-scale graphs may demand significant computational resources and time, which could be
a practical constraint. We acknowledged this limitation of SICSM, and currently working on the
variant with sub-graph ensemble methods inspired by Cluster-GCN [14] and GraphSAINT [62].
Some methods from federated graph learning may also solve the challenge of scalability of structural
inference [26].

• Evaluation on Synthetic Data: Due to the challenges in obtaining reliable real-world datasets
for structural inference, SICSM has primarily been evaluated on synthetic data in this study. We
recognize the potential discrepancies between synthetic and real-world data and plan to address
this limitation in future research by exploring real-world applications.
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• Dynamic Graphs Handling: Currently, SIGFN is formulated for static graphs. However, many
real-world graphs are dynamic, with structures that evolve over time. Adapting SICSM to accom-
modate such dynamic graphs is an essential area for future development.

• Long Run Time: As detailed in Appendix E.6, SICSM exhibits the longest running time among
all evaluated methods. This extended duration primarily results from the selective SSM in JAX
lacking optimized CUDA integration, which is critical for enhancing computational efficiency.
Additionally, the time-intensive process of constructing all possible state spaces within the GFN
significantly contributes to the overall duration.

Future enhancements to SICSM could involve strategies for validating and correcting prior knowledge,
improving scalability and efficiency for handling larger graphs, extending the model’s capabilities to
dynamic graphs, and implementing efficient selection SSM with JAX as well as boosting the speed
of GFN. These advancements will be vital in ensuring SICSM’s applicability and reliability across
various practical scenarios.

G Broader Impact

Much like NRI, MPM, ACD, iSIDG, RCSI, SIDEC, and other structural inference methodologies,
SICSM extends its utility to a diverse range of researchers across the realms of physics, chemistry,
sociology, and biology, where the uncovering of underlying interaction graph structure is becoming
more and more popular. In our investigations, we have demonstrated SISICSM’s proficiency in
reconstructing graph structures and display robustness to variations in the irregular samplings and
incomplete observations, underscoring its versatility and broad applicability. There may be potential
societal consequences of our work, none which we feel must be specifically highlighted here.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the link to our implementation in the supplementary document.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: While this paper does not include new datasets, we provide links to our
implementation and the references to the data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix D.8.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The plots in the main content come with shading showing the standard
deviations at each data point.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: As we discussed in Appendix G, we did not recognize any direct path to
negative applications or negative social impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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