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ABSTRACT

Federated learning emerges as a promising approach to build a large-scale co-
operative learning system among multiple clients without sharing their raw data.
However, given a specific global objective, finding the optimal sampling weights
for each client remains largely unexplored. This is particularly challenging when
clients’ data distributions are non-i.i.d. and clients partially participant.
In this paper, we model the above task as a bi-level optimization problem which
takes the correlations among different clients into account. We present a double-
loop primal-dual-based algorithm to solve the bi-level optimization problem. We
further provide rigorous convergence analysis for our algorithm under mild assump-
tions. Finally, we perform extensive empirical studies under both toy examples
and learning models from real datasets to verify the effectiveness of the proposed
method.

1 INTRODUCTION

Federated learning has achieved high success in the large-scale cooperative learning system without
sharing raw data. However, due to the large number of devices involved in the learning system, it is
hard to check data quality (e.g., noise level) for individual devices. Further, it will degrade the model’s
ability when it is trained with bad-quality data. To eliminate the influence of the ’bad’ devices, it is
natural to reduce the weight of those devices. In most popular federated training algorithms (e.g.,
FedAvg (Li et al., 2019)), all devices are weighted the same or with respect to the number of data
points it holds. Borrowing the formulation of federated algorithms, we introduce a new variable x
to control the weight of each device which is the coefficient of each local objective. We introduce
a validation set in the server to validate whether coefficients improve the model. We formulate the
whole problem as a bi-level optimization state in the following:

min
x

f0(w
∗(x))

s.t. w∗(x) ∈ argmin
w

N∑
i=1

x(i)fi(w)

x ∈ X = {x|x ≥ 0, ∥x∥1 = 1},

(1)

To solve problem (1), Kolstad & Lasdon (1990) propose an algorithm that calculates the gradient of
x directly, i.e.,

∂f0(w
∗(x))

∂x(i)
= −∇wf0(w

∗(x))⊤

(
N∑
i=1

∇2
wfi(w

∗(x))

)−1

∇wfi(w
∗(x)).

But, due to the large parameter dimension of w, it is impossible to take the inverse of the Hessian
or solve the linear system related to the Hessian. Meanwhile, due to a large amount of data in
the local device, it is hard to directly estimate the gradient or the Hessian of the local function fi.
Only stochastic gradient and stochastic hessian can be accessed. Thus, Ghadimi & Wang (2018)
propose the BSA algorithm where the inverse of Hessian is approximated by a series of the power
of Hessian (using

∑K
k=0(I − ηH)k to approximate 1

ηH
−1 with certain η). Khanduri et al. (2021)

propose SUSTAIN algorithm for solving stochastic bi-level optimization problems with smaller
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sample complexity. Similar to Ghadimi & Wang (2018), they need an extra loop of the Hessian-vector
product to approximate the product of the Hessian inverse with some vector.

However, it is known that for constraint optimization, with the descent direction, the algorithm will
not converge to the optimal point or even to the first-order stationary point, where the inner product
between the descent direction and gradient is larger than 0 (Bertsekas, 2009). Therefore, getting an
accurate approximation of the hessian inverse is essential. With the series of the power, it has to start
with k = 0 and apply several iterations to get an accurate approximation, increasing the computation
and communication in federated learning. Fortunately, by noticing the KKT condition, information
of the hessian inverse can be embedded into dual variables. Based on the smoothness of the objective,
we can give a good initialization of dual variables rather than start with the same initialization in each
iteration (like I in the series approximation). Thus, we propose a primal-dual-based algorithm to
solve problem (1).

Further, to solve a constrained optimization with non-linear equality constraints, adding the norm
square of the equality constraint as an augmented term may not give the convexity to the augmented
Lagrange function. As a result, it is hard for the min-max optimization algorithm to find the stationary
point. Instead, with the assumption in Ghadimi & Wang (2018), the function fi’s are assumed to be
strongly convex, adding function fi’s as the augmented term can help introduce convexity and it will
not change the stationary point of the min-max problem. Based on this new augmented Lagrange
function, we prove that with stochastic gradient descent and ascent, w and λ can converge to the KKT
point. Meanwhile, by the implicit function theorem, when w and λ are closed to the stationary point
of min-max, the bias of estimating the gradient of x can be reduced to 0. Thus, with the primal-dual
algorithm on w and λ and stochastic projected gradient descent on x, we show the convergence of
our algorithm.

Finally, we compare our algorithm with other algorithms on a toy example and real datasets (MNIST
and F-MNIST with Network LeNet-5). The experimental results show that the proposed algorithm
can perform well in strongly convex cases and even in some non-convex cases (Neural Networks).

We summarize our contributions as follows:

• In Federated Learning, we formulate the local coefficient learning problem as a bi-level
optimization problem, which gives a way to identify the dataset quality in each local client
for some specific task (where a small validation set is given).

• In bi-level optimization, we introduce a primal-dual framework and show the convergence
of the whole algorithm in the constrained and stochastic setting.

• For some specific optimization problems with non-linear constraints, we give a new aug-
mented term. With the new augmented term, the primal variable and dual variable can
converge to the KKT point of the original problems.

2 RELATED WORK

2.1 PERSONALIZED FEDERATED LEARNING

The most related work in federated learning tasks will be personalized federated learning. A well-
trained local personalized personalized model is needed for each local device in personalized federated
learning. Jiang et al. (2019); Deng et al. (2020) propose a method that they train a global model
and then fine-tune the trained global model to get the local model. T Dinh et al. (2020); Fallah et al.
(2020) change the local objective function to make each local has the ability to be different and
handle individual local tasks. Li et al. (2021) introduces a two-level optimization problem for seeking
the best local model from great global models. All of these works do not involve a validation set
as a reference, but they use a few gradient steps or simple modifications and hope the local model
can both fit the local training data and use information from the global model (other local devices).
Different from these works, we explicitly formulate a bi-level optimization problem. By adding a
validation set, it can be more clearly identified the correlation of information from the other devices
and from its own.

2.2 STOCHASTIC BI-LEVEL OPTIMIZATION

Bi-level optimization problem has been studied for a long time. One of the simplest cases in bi-level
optimization is the singleton case, where the lower-level optimization has a unique global optimal
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point. Without calculating the inversion of the Hessian matrix of the lower level optimization problem,
there are two major algorithms. Franceschi et al. (2017) approximates ∂w∗(x)

∂x by ∂wT

∂x where wT is
the iterate after T steps gradient descent for the lower optimization problem. Using this method, in
each iteration, we need to communicate N (number of local devices) vectors among the server and
local devices which is not communication efficient. The other method Ghadimi & Wang (2018) is to
approximate (∇2

wg(w))
−1 by

∑K
i=0(I − η∇2g(w))i, where g(w) is the objective function of lower-

level optimization problem. Although Khanduri et al. (2021) point out that to approximate gradient
for upper optimization function, we can get rid of taking the optimal point for lower optimization
in each upper-level update optimization, which seems to get rid of double-loop approximation, it
still needs a loop for approximating Hessian inverse with series. Guo & Yang (2021) uses SVRG
to reduce the noise level of estimating stochastic gradient and Hessian to get better performance.
Besides, all of the above works assume smoothness of the local Hessian, but none of them will apply
the property directly into the algorithm. Different from the above works, we introduce a primal-dual
framework into bi-level optimization, where the dual variable can record the information of Hessian.
Also, Shi et al. (2005); Hansen et al. (1992) introduce the primal-dual framework, but they stay in
quadratic regime or mix integer programming, which is non-trivial to extend the results to federated
learning settings.

3 ALGORITHM DESIGN

Assume that each function of fi is a strongly convex function. Then, the optimal solution to the lower
optimization problem becomes only a single point. Thus, with the implicit function theorem, we can
calculate the gradient of f0(w∗(x)) with respect to x as follows.

Proposition 1. Suppose fi’s are strongly convex functions. Then for each x ∈ X , it holds that
∂f0(w

∗(x))
∂x(i) = −∇wf0(w

∗(x))⊤
(∑N

j=1 x
(j)∇2

wfj(w
∗(x))

)−1

∇wfi(w
∗(x)).

With the proposition 1, one can calculate the gradient of x, when w∗(x) and the inverse of
Hessian are given. However, for large scale problems, none of these can be easily obtained.
Fortunately, by noticing the convexity of each function fi, we can replace the first constraint
w∗(x) ∈ argminw

∑N
i=1 x

(i)fi(w) with ∇
∑N

i=1 x
(i)fi(w) = 0. For given x, we can formulate the

following constrained optimization problem:

min
w

f0(w)

s.t.

N∑
i=1

x(i)∇wfi(w) = 0,
(2)

By introducing the dual variable λ, we can easily get the Lagrange function. To solve the Lagrange
function efficiently, we propose the following augmented Lagrange function.

Lx(w, λ) = f0(w) + λ⊤
N∑
i=1

x(i)∇wfi(w) + Γ

N∑
i=1

x(i)fi(w). (3)

Different from the standard augmented terms, where the norm square of equality constraints is added
to achieve strong convexity of the primal problem, we add the summation of fi’s with coefficient
x(i)’s. If we use the norm square of the gradient constraint for general strongly convex functions, it
will not be strongly convex. Thus, we can not directly adopt the gradient descent ascent algorithm.
With the definition, we can obtain the following two propositions directly.

Proposition 2. Suppose fi’s are strongly convex functions for i = 1, 2, · · · , N , x(i) ≥ 0 for all i and
∥x∥1 = 1. Then, Problem (2) satisfies Linear Independence Constraint Qualification and its KKT
conditions can be written as follows:

∇wf0(w) +

N∑
i=1

x(i)∇2fi(w)λ = 0

N∑
i=1

x(i)∇fi(w) = 0.
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Proposition 3. Suppose fi’s are strongly convex functions for i = 1, 2, · · · , N , x(i) ≥ 0 for all i
and ∥x∥1 = 1. Then, the stationary point of minw maxλ Lx(w, λ) is unique and satisfies the KKT
conditions of problem (2).

Let (ŵ∗(x), λ∗(x)) be the stationary point of minw maxλ Lx(w, λ). From proposition 2, it holds
that ŵ∗(x) = w∗(x) and

∂f0(w
∗(x))

∂x(i)
= λ∗(x)

⊤∇wfi(w
∗(x)). (4)

Thus, with the KKT poiont w∗(x) and λ∗(x), we can estimate the gradient of x without estimating
the inverse of Hessian. However, as λ⊤∑N

i=1 x
(i)∇wfi(w) can be highly non-convex function,

which can be harmful to the optimization process. We add an additional constraint on the norm of λ
and define the constraint set Λ. Thus, the problem (2) becomes

min
w

max
λ∈Λ

Lx(w, λ) = f0(w) + λ⊤
N∑
i=1

x(i)∇wfi(w) + Γ

N∑
i=1

x(i)fi(w). (5)

We propose a double loop algorithm for solving problem (1). We show the algorithm in the Algorithm
1 and 2. In inner loop, we solve the augmented Lagrange for K steps. In each step, local client
will receive the iterates wt,k and λt,k. After that, each local client will calculate ∇̃fi(wt,k) and
∇̂fi(wt,k) based on the back propagation through two independent batches. The term ∇̃2fi(wt,k)λt,k

is calculated with auto-differentiable framework (i.e. Pytorch, TensorFlow) or with the closed-form
multiplication. Then the local device sends gradient estimation ∇̃wfi(wt,k) and the estimated product
of Hessian and λ (∇̃2fi(wt,k)λt,k) to the server.

For the server, in each step, the server will first send the primal variable (wt,k) and dual variable (λt, k)
to all local clients. Then, the server will receive the estimated gradients and estimated product from
some local clients. Because not all devices will stay online in each step, we define a set Activet,k
which records the clients that participant the optimization in (t, k) step. With the vectors collected
from local clients, the server will calculate the gradient estimator of wt,k and λt,k with respect to
function Lxt

(wt,k, λt,k). And then, wt,k will be updated by a gradient descent step and λt,k will be
updated by a gradient ascent step. Different from local devices, after K inner loop update steps, based
on the λt,K and gradient estimated in each local client, the server will calculate the gradient of x
based on equation 4 and perform a projected gradient descent step on x. In addition, if the ith agent is
not in Activet,K , we set the gradient of x(i) to be zero.

Algorithm 1 The bi-level primal dual algorithm on local device i

1: for t = 1, 2, · · · , T do
2: for k = 1, 2, · · · ,K do
3: Receive wt,k, λt,k from the server;
4: Sample a mini-batch and calculate ∇̃fi(wt,k);
5: Sample a mini-batch and calculate ∇̂fi(wt,k);
6: Calculate ∇̃2

wfi(wt,k)λt,k with back propagation on scalar ∇̂wf(wt,k)λt,k;
7: Send ∇̃2fi(wt,k)λt and ∇̃fi(wt,k) to the server;
8: end for
9: end for

Remark 1. gx(i) can be calculated in the i-th device and sent to the server, which can reduce the
computation in the server and will increase one-round communication with one real number between
the server and devices. The rest of the analysis will remain to be the same.

4 THEORETICAL ANALYSIS

In this section, we analyze the convergence property of the proposed algorithm. First, we state some
assumptions used in the analysis.

(A1) f0, f1, · · · , fN are lower bounded by f, and f0, f1, · · · , fN have L1 Lipschitz gradient.
(A2) f1, · · · , fN are µ-strongly convex functions.
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Algorithm 2 The Bi-level primal dual algorithm on the Server
1: Input: Initial x1, w1,1, λ1,1, total iterations: K, T and step size: ηw, ηλ, ηx.
2: for t = 1, 2, · · · , T do
3: for k = 1, 2, · · · ,K do
4: Send wt,k, λt,k to each local device;
5: Receive ∇̃fi(wt,k) and ∇̃2

wfi(wt,k)λt from Activet,k;
6: gw = ∇̃f0(wt,k) +

N
|Activet,k|

∑
i∈Activet,k

x
(i)
t ∇̃2

wfi(wt,k)λt,k + Γ∇̃fi(wt,k);
7: wt,k+1 = wt,k − ηwgw;

8: gλ = N
|Activet,k|

(∑
i∈Activet,k

x
(i)
t ∇̃wfi(wt,k)

)
;

9: λt,k+1 = ΠΛ (λt,k + ηλgλ);
10: end for
11: gx(i) = N

|Activet,K |λ
⊤
t,K∇̃wfi(wt,K) for i ∈ Activet,K ;

12: gx(i) = 0 for i /∈ Activet,K ;
13: xt+1 = PX (xt − ηxgx);
14: λt+1,1 = λt,K+1;
15: wt+1,1 = wt,K+1

16: end for
17: Output: xT , WT,K+1.

(A3) f1, · · · , fN has L2 Lipschitz Hessian.

(A4) maxi∈{0,1,··· ,N} maxx∈X ∥∇fi(w
∗(x))∥ ≤ Dw.

(A5) Each local estimation is unbiased with bounded variance σ2.

(A6) Activet,k is independent and sampled from the set of nonempty subset of {1, 2, · · · , N},
where P (i ∈ Activet,k) = p for all i ∈ {1, 2, · · · , N}.

Remark 2. (A1),(A2),(A3) are commonly used in the convergence analysis for bi-level optimization
problems (Ji et al., 2021; Chen et al., 2021; Khanduri et al., 2021). Unlike Ji et al. (2021); Chen
et al. (2021), where they need to assume f0, f1, · · · , fN to be L0 Lipschitz, we assume the gradient
norm are bounded at optimal solution. Because for machine learning models, regularization will be
add into objective function, makes the norm of the optimal solution not be large. When w∗(x) can be
bounded by some constant. (A4) is reasonable in practice. Moreover, the Lipschitz assumption on
function can directly infer (A4) with Dw = L0. (A5) is a common assumption used for stochastic
gradient methods (Ghadimi et al., 2016) and (A6) extend the assumption in Karimireddy et al. (2020)
by giving the probability that a local devices will be chosen instead of uniformly sampling.

Remark 3. With (A4), Dλ = maxx∈X ∥λ∗(x)∥ is upper bounded by Dw/µ.

Proposition 4. When Λ = {λ | ∥λ∥ ≤ Dλ}, then the stationary point of problem (5) is the KKT
point of problem 2.

With proposition 3 and 4, the stationary point of problem (5) is unique and we denote the stationary
point as (w∗(x), λ∗(x)). To give the convergence of the whole algorithm, firstly, we give the
convergence guarantee for the inner loop.

Theorem 1. For given x ∈ X , when (A1) to (A6) holds, Γ > DλL2+L1

µ and ηw, ηλ = Θ(1/
√
K),

when randomly choose k̂ ∈ {1, 2, · · · ,K} with equal probability it holds that

E

[∥∥∥∥λ⊤
k̂
∇wfi(wk̂)−

∂f0(w
∗(x))

∂x(i)

∥∥∥∥2
]
= O(1/

√
K).

Thus, with theorem 1, the gradient of x can be “well” estimated through the inner gradient descent
ascent method when the number of inner loop steps is large enough. Then, we can obtain the
following convergence result of the outer loop.

Theorem 2. Suppose (A1) to (A6) holds, Γ > DλL2+L1

µ , ηw, ηλ = Θ(1/
√
K), ηx = Θ(1/

√
T ) and

randomly choosing k̂ ∈ {1, 2, · · · ,K} with equal probability to approximate gradient of x. Define
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x̂ = argminy∈X (f0(w
∗(y)) + ρ

2∥y − x∥2) and ∇̄ρf0(w
∗(x)) = ρ(x− x̂) for large ρ,it holds that

1

T

T∑
t=1

E∥∇̄ρf0(w
∗(xt))∥2 = O(1/

√
T + 1/

√
K).

Remark 4. To achieve ϵ-stationary point (E∥∇̄ρf0(w
∗(xt))∥2 ≤ ϵ), O(1/ϵ4) samples are needed

in each local client and in the server. Different from the previous works on bilevel optimization(e.g.
Ghadimi & Wang (2018), Khanduri et al. (2021) and Franceschi et al. (2017)), we prove the
convergence when optimization variable x has a convex constraint.

4.1 PROOF SKETCH OF THEOREM 1

To show the convergence of inner loop, we first construct a potential function for inner loop objective.
Define Φx(w, λ) = Lx(w, λ)− 2d(λ), where d(λ) = minwLx(w, λ) for given x. The intuition of
defining this potential function is that Lx(w, λ) is not necessarily decreasing in each iteration, as λ is
performing a gradient ascent step. Meanwhile, gradient λ taken is an approximation of gradient of
d(λ). Thus, by subtracting d(λ), we can obtain that Φ will decrease during iterations. Therefore, the
first thing is to show the lower bound of function Φ.
Lemma 1 (Lower bound of Φ). Suppose (A1)-(A4) hold. It holds that Φx(w, λ) is bounded below
by f .

The proof of this lemma is basically due to the definition of Φx(w, λ) and d(λ). Then, similar to the
proof of gradient descent, we give a lemma that shows the descent of potential function under certain
choices of hyperparameters.
Lemma 2 (Potential function descent, proof can be found in Lemma 11 in Appendix). Suppose
(A1)-(A6) hold. In addition, we assume Γ > DλL2+L1

µ , it holds that

E[Φx(wt,k, λt,k)−Φx(wt,k+1, λt,k+1)] ≤ −C1E∥∇wLx(wt,k, λt,k)∥2−C2E[∥λt−λ∗
t ∥2]+C3σ

2,

where λ+
t = ΠΛ(λt+ηλ∇d(λt)), C1 = Θ(ηw−η2w−η2λ−ηλ), C2 = Θ(ηλ) and C3 = O(η2w+η2λ)

Thus, when choosing sufficient small ηw and ηλ, we can achieve positive C1 and C2. Together with
the lower bound of the function Φ, the convergence of the inner algorithm can be shown. Because of
the uniqueness of the KKT point, by choosing ηw and ηλ in order of 1/

√
K, it can be shown that

1

K

K∑
k=1

E∥wt,k − w∗(xt)∥2 = O(1/
√
K),

1

K

K∑
k=1

E∥λt,k − w∗(xt)∥2 = O(1/
√
K).

Therefore, with the convergence rate of wt,k and λt,k and equation 4, we can easily prove theorem 1.

4.2 PROOF SKETCH OF THEOREM 2

To apply stochastic gradient descent analysis on x, although we have smoothness for function
f0, f1, · · · , fN on w, we need to verify the smoothness of f0(w∗(x)) with respect to x.
Lemma 3 (Convergence of stochastic gradient descent with biased gradient estimation, proof can be
found in Lemma 14 in Appendix). Suppose function f(x) is lower bounded by f with L-Lipshitz
gradient. g(x) is an unbiased gradient estimator of ∇f(x) satisfying that expected norm of g(x) are
bounded by G in domain X for function f . Then with update rule xt+1 = ΠX (xt − ηx(g(xt) + ξt)),
where ηx = Θ(1/

√
T ), X is a convex set and E∥ξt∥2 ≤ ϵ2. By defining x̂ = argminy∈X (f(y) +

ρ
2∥y − x∥2) and ∇̄ρf(x) = ρ(x− x̂), where ρ = 2L, then it holds that

1

T
E

T∑
t=1

∥∇̄ρf(xt)∥2 = O(1/
√
T + ϵ2).

As Lemma 3 suggests, when f0(w
∗(x)) satisfying L-Lipschitz gradient, bounded estimation error

and bounded gradient norm, the convergence rate can achieve O(1/
√
T ) with a error term related to

estimation error. Theorem 1 shows the estimation error can be bounded by O(1/
√
K). Combining

this two results we can prove Theorem 2.
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5 EXPERIMENTAL RESULTS

In this section, we compare our algorithm with other bi-level optimization algorithms (BSA (Ghadimi
& Wang, 2018), SUSTAIN (Khanduri et al., 2021) and RFHO (Franceschi et al., 2017)) in two cases:
the toy example and two vision tasks.Further, in vision tasks, agnostic federated learning (AFL) is
tested (Mohri et al., 2019). When k local steps are used in each algorithm, BSA, RFHO, and our
algorithm will perform 2kd real number transmission, where d is the dimension of optimization.
SUSTAIN will perform (k + 1)d real number transmission. In the vision tasks, they perform the
same real number of transmissions as k = 1.

Figure 1: The figure shows the result of the toy example where all clients participate in the opti-
mization process in each iteration, and all gradient and hessian are estimated without noise. The
above line shows the stationary of x in each iteration, and the second row shows the function value
of x (f(w∗(x))). The left column shows the results when the number of local steps is 1; the middle
column shows the results of 5 local steps, and the right column gives the results of 10 local steps.
The shadow part of the function value corresponds to the 0.1 standard error area, and the shadow part
in stationary corresponds to the 0.5 standard error area.

5.1 TOY EXAMPLE

In this section, we apply algorithms to solve problem (1) with fi as follows:

fi(w) =
1

2
∥Aiw −Bi∥2 + cos(a⊤i w − bi),

where Ai ∈ R30×20, Bi ∈ R30, ai ∈ R20 and bi ∈ R are all generated from Gaussian distribution.
The variance of each component in Ai and ai is 1/

√
20 and the variance of each component in

Bi is 1/
√
30 and variance of bi is 1. When generated function fi is not 0.1-strongly convex, we

randomly generate a new one until we get strongly convex fi whose modular is not less than 0.1.
Three local steps (K=1,5,10) are tested. Here, the local steps are used for w update for algorithm
BSA, RFHO, and our algorithm, and the local steps are used for Hessian estimation for algorithm
BSA and SUSTAIN. Because for this toy example, we can easily compute the Hessian matrix and
its inverse, we test the algorithm using the inverse of estimated Hessian to compute the gradient of
x named GD. We test two settings of the toy example. One is the deterministic setting, where no
estimation noise or client disconnection will occur. In the other setting, we add white Gaussian noise
with a noise level of 0.5 in each estimation (including gradient estimation and Hessian estimation).
Also, each client has a 0.5 probability of connecting with the server.

To evaluate the performance of different algorithms, we calculate the function value of f0(w∗(x))
and the stationary of x, i.e. x−ΠX(x− 0.001∇xf0(w

∗(x))), where w∗(x) is approximate by 200
gradient steps. We take N = 15 and run 20 times and get the results of different algorithms. The
results of deterministic setting are shown in Figure 1, and results of noise setting are shown in Figure
2.

As it is shown in Figure 1, with local steps getting larger and larger, the performance of BSA, RFHO,
and SUSTAIN is getting close to GD, while the performance of the primal-dual method is similar to
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Figure 2: The figure shows the result of the toy example where the active rate is 0.5 in each iteration,
and all gradient and hessian are estimated with white-Gaussian noise with a noise level of 0.5. The
above line shows the stationary of x in each iteration, and the second row shows the function value
of x (f(w∗(x))). The left column shows the results when the number of local steps is 1; the middle
column shows the results of 5 local steps, and the right column gives the results of 10 local steps.
The shadow part of the function value corresponds to the 0.1 standard error area, and the shadow part
in stationary corresponds to the 0.5 standard error area.

GD whatever local step used in the algorithm even with only one single step. When noise is added in
the Hessian, directly inverse may cause the biased estimation. Thus, the performance of GD gets
much worse than it in the deterministic setting shown in Figure 2. Also, in Figure 2, our algorithm
can perform better than other algorithms when the local step is small. When local steps increase to
10, BSA and our algorithm have competitive results.

5.2 VISION TASKS

Table 1: Test Accuracy and x output of Training LeNet 5 on MNIST. "AP" represents Active
Probability, and Accuracy stands for Test Accuracy.

AP RFHO BSA SUSTAIN Ours

1

Accuracy 98.34%± 0.18% 98.15%± 0.23% 99.02%± 0.15% 98.43%± 0.17%
x(1) 0.488± 0.104 0.425± 0.081 0.411± 0.069 0.455± 0.016
x(2) 0.311± 0.104 0.245± 0.133 0.305± 0.045 0.334± 0.020
x(3) 0.197± 0.031 0.294± 0.176 0.282± 0.029 0.212± 0.026

x(4),··· ,(10) ∼ 6e− 4 ∼ 6e− 3 ∼ 3e− 4 ∼ 2e− 4

0.9

Accuracy 98.07%± 0.4% 98.09%± 0.21% 98.85%± 0.29% 98.43%± 0.19%
x(1) 0.407± 0.040 0.395± 0.136 0.386± 0.058 0.449± 0.046
x(2) 0.281± 0.065 0.314± 0.045 0.345± 0.028 0.333± 0.050
x(3) 0.291± 0.018 0.239± 0.085 0.265± 0.038 0.217± 0.024

x(4),··· ,(10) ∼ 4e− 3 ∼ 8e− 3 ∼ 7e− 4 ∼ 2e− 4

0.5

Accuracy 97.86%± 0.36% 95.37%± 4.10% 97.60%± 0.49% 98.24%± 0.23%
x(1) 0.449± 0.090 0.539± 0.076 0.365± 0.015 0.468± 0.052
x(2) 0.276± 0.075 0.217± 0.059 0.329± 0.013 0.372± 0.053
x(3) 0.271± 0.129 0.210± 0.039 0.292± 0.015 0.16± 0.035

x(4),··· ,(10) ∼ 6e− 4 ∼ 6e− 3 ∼ 2e− 3 ∼ 2e− 4

In this section, we apply algorithms to train LeNet5(LeCun et al., 1998) on dataset MNIST(LeCun
et al., 1998) and Fashion-MNIST(Xiao et al., 2017). To construct non-iid datasets on different local
clients and the global server’s validation set, we randomly pick 20 samples per label out of the whole
training dataset and form the validation set. Then, the rest of the training data are divided into 3 sets,
and each set will be assigned to a local client. The first client contains samples labeled as 0,1,2,3,4,
the second client contains samples labeled as 5,6,7, and the third client contains samples labeled
as 8,9 for all two datasets. To test the algorithm’s ability to choose the proper coefficient of local
clients, we add 7 noise nodes containing 5000 samples with random labels. We set the learning rate
of w to be a constant learning rate without any decay selected from {0.1, 0.01, 0.001} for all training

8
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methods, and the learning rate of x is selected from {0.1, 0.01, 0.001, 0.0001}. The batch size for all
three training cases is set to 64. Γ used in the proposed algorithm is set to be 1. For simplicity, we
set the local step as 1. We run 2000 iterations for MNIST and 6000 iterations for Fashion-MNIST.
Active probability is set in {0.5, 0.9, 1}. We compare the test accuracy among different methods. As
a baseline, we report the test accuracy for training with the validation set only named val, training
with the average loss of each client named avg, and training with x = (0.5, 0.3, 0.2, 0, · · · , 0) named
opt. All experiments run on V100 with Pytorch (Paszke et al., 2019). Results are shown in Figure 3,
Figure 4 and Table 1.

Figure 3: Test accuracy of training LeNet 5 on MNIST dataset. The left curve shows the result when
the active probability is 1; the middle curve shows the result when the active probability is 0.9, and
the right curve shows the result with the active probability of 0.5.

Figure 3 shows the test accuracy of the MNIST dataset with different active probabilities. Although
SUSTAIN works better than the primal-dual algorithm when all local devices participate in the
optimization process, when clients’ participant rate decreases to 0.5, SUSTAIN works worse than
ours method. Primal-dual become slower than SUSTAIN may be because of the initialization of
the dual variable. When the dual variable is far from its real value it needs more time to get a good
enough point. Other than SUSTAIN, our algorithm can converge faster and more stable to a high
accuracy point. Further, we list the output of x and standard error of test accuracy for 5 different
experiments for different algorithms in Table 1. According to Table 1, our algorithm can achieve a
more stable output with respect to x, and the output x is more close to 0.5, 0.3, 0.2, which is related
to the number of labels the first three clients holds.

Figure 4 gives the test accuracy of training LeNet 5 on the Fashion-MNIST Dataset. Similar to the
results of the MNIST dataset, when the clients’ participant is high (0.9,1), SUSTAIN works slightly
better than the primal-dual algorithm. But when more local devices disconnect to the server, the
performance of SUSTAIN drops, while the primal dual algorithm remains fast convergence speed
and high test accuracy.

Figure 4: Test accuracy of training LeNet 5 on the Fashion-MNIST dataset. The left curve shows the
result when the active probability is 1; the middle curve shows the result when the active probability
is 0.9, and the right curve shows the result with 0.5 active probability.

6 CONCLUSION

In this paper, we proposed a primal-dual-based method for solving a bi-level optimization problem
based on a federated learning tasking (local coefficient learning). We give a theoretical analysis
that shows the convergence of the proposed algorithm. Though the analysis shows it needs more
iterations for the algorithm to converge to an ϵ-stationary point, it works well with a pretty small
number of local steps in both toy case and neural network training. Other than that convergence rate
can be improved (perhaps it should be in the order of O(1/

√
T ) instead of O(1/

√
T + 1/

√
K)), the

initialization of dual variable affects the speed for convergence, which we leave as the future work.
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A CONVERGENCE OF INNER LOOP

For simplicity, in this section we simplified the inner loop problem as the following:

min
w

g(w)

s.t.∇h(w) = 0.

Besides, the algorithm for solving the inner loop problem can be simplified as

wt+1 = wt − ηw

(
∇̃g(wt) + ∇̃2h(wt)λt + Γ∇̃h(wt)

)
= wt − ηw∇̃L(wt, λt)

λt+1 = ΠΛ

(
λt + ηλ∇̃h(wt)

)
Furthermore, the assumptions are as the following:

(A1) g and h are differentiable strongly convex function with modular µ, L1-Lipschitz gradient
and lower bounded by f .

(A2) h has L2-Lipschitz Hessian.

(A3) Λ = {λ|∥λ∥ ≤ Dλ}, where D ≥ ∥∇2h(w∗)−1∇g(w∗)∥ and w∗ = argminh(w).

(A4) Given wt, ∇̃g(wt), ∇̃2h(wt), ∇̃h(wt) and ∇̂h(wt) are independent to each other. Besides,
all of them are unbiased estimators with bounded variance with respect to mean value and a
bounded constant σ, i.e.

E
[
∇̃g(wt) | wt

]
= ∇g(wt), E

[∥∥∥∇̃g(wt)−∇g(wt)
∥∥∥2 | wt

]
≤ p∥∇g(wt)∥2 + σ2;

E
[
∇̃2h(wt) | wt

]
= ∇2h(wt), E

[∥∥∥∇̃2h(wt)−∇2h(wt)
∥∥∥2
F
| wt

]
≤ p∥∇2h(wt)∥2 + σ2;

E
[
∇̃h(wt) | wt

]
= ∇h(wt), E

[∥∥∥∇̃h(wt)−∇h(wt)
∥∥∥2 | wt

]
≤ p∥∇h(wt)∥2 + σ2.

Thus, it is easy to show E
[
∇̃wL(wt, λt) | wt, λt

]
= ∇wL(wt, λt), and

E
[∥∥∥∇̃wL(wt, λt)−∇wL(wt, λt)

∥∥∥2 | wt, λt

]
≤ (1+Γ2+D2

λ)(p∥∇wL(wt, λt)∥2+σ2).

First, we give some notations that will be used in this section.

Definition 1. Let L(w, λ) = g(w) + λ⊤∇h(w) + Γh(w), d(λ) = minwL(w, λ), w∗(λ) =
argminw L(w, λ), λ+

t = ΠΛ(λt + ηλ∇h(wt))) and LL = (1 + Γ)L1 +DλL2.

Define potential function Φ(wt, λt) = L(wt, λt)− 2d(λt).
Lemma 4 (Descent of Lagrange function). For the function L, it holds that

E [L(wt+1, λt+1)− L(wt, λt)]

≤ E
[
C0(ηw)∥∇wL(wt, λt)∥2 +

LLη
2
w(1 + Γ2 +D2

λ)σ
2

2
+ (λt+1 − λt)

⊤∇h(wt+1))

]
,

where C0(ηw) =
LLη2

w
2

+
LLη2

wp(1+Γ2+D2
λ)

2
− ηw.
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Proof. Because L(w, λ) has LL Lipschitz gradient, it holds that

L(wt+1, λt) ≤ L(wt, λt) + ⟨∇wL(wt, λt), wt+1 − wt⟩+
LL

2
∥wt+1 − wt∥2.

By taking expectations with respect to wt and λt on both side of the above inequality, we obtain that

E [L(wt+1, λt)− L(wt, λt) | wt, λt]

≤ E
[
⟨∇wL(wt, λt), wt+1 − wt⟩+

LL

2
∥wt+1 − wt∥2 | wt, λt

]
= E

[〈
∇wL(wt, λt),−ηw∇̃wL(wt, λt)

〉
+

LLη
2
w

2
∥∇wL(wt, λt)∥2

+
LLη

2
w

2
∥∇̃wL(wt, λt)−∇wL(wt, λt)∥2 | wt, λt

]
= E

[(
LLη

2
w

2
+

LLη
2
wp(1 + Γ2 +D2

λ)

2
− ηw

)
∥∇wL(wt, λt)∥2 +

LLη
2
w(1 + Γ2 +D2

λ)σ
2

2
| wt, λt

]
.

(6)

Meanwhile, it holds that

E [L(wt+1, λt+1)− L(wt+1, λt) | wt, λt] = E
[
(λt+1 − λt)

⊤∇h(wt+1)|wt, λt

]
(7)

Combining (6), (7) and taking expectation on the conditional expectation, we can obtain desired
result.

Lemma 5. Suppose Γµ > DλL2 + L1, it holds that

∥w∗(λ1)− w∗(λ2)∥ ≤ β1∥λ1 − λ2∥

for all λ1, λ2 ∈ Λ, where β1 = L1
Γµ−DλL2−L1

.

Proof. Note that L(w, λ) is a strongly convex function with respect to the w in the domain λ ∈ Λ
with the modular (1 + Γ)µ−DλL2. Thus, it holds that

L(w∗(λ1), λ2)− L(w∗(λ2), λ2) ≥
Γµ−DλL2 − L1

2
∥w∗(λ1)− w∗(λ2)∥2.

On the other hand, we have

L(w∗(λ1), λ2)− L(w∗(λ2).λ2)

= L(w∗(λ1), λ2)− L(w∗(λ1), λ1) + L(w∗(λ1), λ1)− L(w∗(λ2), λ1) + L(w∗(λ2), λ1)− L(w∗(λ2), λ2)

≤ (λ1 − λ2)
⊤(∇h(w∗(λ2))−∇h(w∗(λ1)))−

Γµ−DλL2 − L1

2
∥w∗(λ1)− w∗(λ2)∥2.

Thus, by combining the above two inequalities, with Cauchy-Schwarz inequality, we can obtain

(Γµ−DλL2 − L1)∥w∗(λ1)− w∗(λ2)∥2 ≤ ∥λ1 − λ2∥∥∇h(w∗(λ1))−∇h(w∗(λ2))∥
≤ L1∥λ1 − λ2∥∥w∗(λ1)− w∗(λ2)∥.

Hence, we get the desired result.

Lemma 6 (Ascent of dual function). It holds that

E [d(λt+1)− d(λt)] ≥ E
[
⟨λt+1 − λt,∇h(w∗(λt))⟩ −

Ld

2
∥λt+1 − λt∥2

]
.

Proof. It can be calculated by the implicit function theorem that

∇λd(λ) = ∇h(w∗(λ)).

Thus, we can obtain that for all λ1, λ2 ∈ Λ

∥∇d(λ1)−∇d(λ2)∥ = ∥∇h(w∗(λ1))−∇h(w∗(λ2))∥ ≤ L1β1∥λ1 − λ2∥.
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Therefore, d(λ) is a differentiable function with Ld = L1β1-Lipschitz gradient.

With the definition of d(λ), we have

E [d(λt+1)− d(λt)] ≥ E
[
⟨λt+1 − λt,∇h(w∗(λt))⟩ −

Ld

2
∥λt+1 − λt∥2

]

Lemma 7. With the strongly convexity of L and h, it holds that

∥w∗(λt)− w∗∥ ≤ 1

µ
∥∇h(w∗(λ))∥,

and
∥wt − w∗(λt)∥ ≤ 1

Γµ−DλL2 − L1
∥∇wL(wt, λt)∥

Proof. Because of the µ-strongly convexity of h the inequality µ∥w1−w2∥ ≤ ∥∇h(w1)−∇h(w2)∥
holds for all w1, w2.

With the ∇h(w∗) = 0, we get the result.

Similar to h, because of Γµ − DλL2 − L1-strongly convexity of L, we can prove the second
inequality.

Lemma 8 (Descent of one step local SGD). It holds that

E∥wt − wt+1∥2 ≤ E
[
η2w(1 + p)∥∇wL(wt, λt)∥2 + η2wσ

2
]

Proof.

E∥wt − wt+1∥2 = E
[
η2w∥∇̃wL(wt, λt)∥2

]
≤ E

[
η2w(1 + p)∥∇wL(wt, λt)∥2 + η2wσ

2
]

Lemma 9. d(λ) is a µ2

LL
-strongly concave funtion. We define µd = µ2

LL
.

Proof. Let γ0 be the largest eigenvalue of ∇2d(λ), γ1 be the largest eigenvalue of ∂w∗(λ)
∂λ . Then, it

holds that γ ≤ γ1µ.

Meanwhile, ∂w∗(λ)
∂λ = −∇2

wL(w
∗(λ), λ)−1∇2

wh(w
∗(λ)). Thus, γ1 ≤ − µ

LL
.

Therefore, d(λ) is a µ2

LL
-strongly concave funtion.

Lemma 10. It holds that

E∥λt+1−λt∥2 ≥ µ2
dη

2
λ

16
E∥λt−λ∗∥2−µdηλ

4

(
η2λσ

2 +

(
2η2λ(1 + p)L2

1 +
L2
1ηλ
µd

)
E∥wt − w∗(λt)∥2

)
Proof. With the update rule of λt+1, it holds that

E∥λt+1 − λ∗∥2

= E∥ΠΛ(λt + ηλ∇h(wt))− λ∗∥2

≤ E∥λt + ηλ ˜∇h(wt)− λ∗∥2

= E
[
∥λt − λ∗∥2 + 2ηλ⟨λt − λ∗, ∇̃h(wt)⟩+ η2λ∥∇̃h(wt)∥2

]
= E

[
∥λt − λ∗∥2 + 2ηλ⟨λt − λ∗,∇h(w∗(λt))⟩

+2ηλ⟨λt − λ∗,∇h(wt)−∇h(w∗(λt))⟩+ η2λ∥∇̃h(wt)∥2
]
,

(8)

where the last equality is because ∇̃h(wt) is an unbiased estimator.
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Meanwhile, because d(λ) is a strongly concave function, it holds that

ηλ⟨λt − λ∗,∇h(w∗(λt))⟩ ≤ −ηλµd∥λt − λ∗∥2 (9)

Further, it holds that

E|∇̃h(wt)∥2 = E∥∇̃h(wt) +∇h(wt)−∇h(wt)∥2

≤ σ2 + E(1 + p)∥∇h(wt)∥2

≤ σ2 + E2(1 + p)∥∇h(w∗(λt)))∥2 + 2(1 + p)∥∇h(w∗(λt)−∇h(wt)∥2

≤ σ2 + E2(1 + p)∥∇h(w∗(λt)))∥2 + 2(1 + p)L2
1∥w∗(λt − wt∥2

≤ σ2 + E2(1 + p)L2
d∥λt − λ∗∥2 + 2(1 + p)L2

1∥w∗(λt)− wt∥2

(10)

For ⟨λt − λ∗,∇h(wt)−∇h(w∗(λt))⟩, it holds that

⟨λt − λ∗,∇h(wt)−∇h(w∗(λt))⟩ ≤
µd

2
∥λt − λ∗∥2 + 1

2µd
∥∇h(wt)−∇h(w∗(λt)∥2

≤ µd

2
∥λt − λ∗∥2 + L2

1

2µd
∥wt − w∗(λt)∥2

(11)

Combining (8), (9), (10) and (11), it holds that

E∥λt+1 − λ∗∥2

≤ (1− µdηλ + 2(1 + p)L2
dη

2
λ)E∥λt − λ∗∥2 + η2σ2 +

(
2η2λ(1 + p)L2

1 +
L2
1ηλ
µd

)
E∥wt − w∗(λt)∥2

When ηλ ≤ µd

4(1+p)L2
d

, it holds that

E∥λt+1−λ∗∥2 ≤ (1− µdηλ
2

)E∥λ∗−λt∥2+η2λσ
2+

(
2η2λ(1 + p)L2

1 +
L2
1ηλ
µd

)
E∥wt−w∗(λt)∥2.

(12)

It holds that
E∥λt+1 − λt∥2

= E∥λt+1 − λ∗ + λ∗ − λt∥2

= E
[
∥λt+1 − λ∗∥2 + ∥λ∗ − λt∥2 + 2⟨λt+1 − λ∗, λ∗ − λt⟩

]
≥ E

[
(1− ξ)∥λt+1 − λ∗∥2 +

(
1− 1

ξ

)
∥λ∗ − λt∥2

]
,∀ξ > 1

(13)

Let ξ = 1+ µdηλ/4, (1− ξ)
(
1− µdηλ

2

)
+
(
1− 1

ξ

)
≥ µ2

dη
2
λ/16. combining (12) and (13), it holds

that

E∥λt+1 − λt∥2

≥
(
(1− ξ)

(
1− µdηλ

2

)
+

(
1− 1

ξ

))
∥λ∗ − λt∥2 + (1− ξ)

(
η2λσ

2 +

(
2η2λ(1 + p)L2

1 +
L2
1ηλ
µd

)
E∥wt − w∗(λt)∥2

)
≥ µ2

dη
2
λ

16
E∥λt − λ∗∥2 − µdηλ

4

(
η2λσ

2 +

(
2η2λ(1 + p)L2

1

Γµ−DλL2 − L1
+

L2
1ηλ

µdΓµ−DλL2 − L1

)
E∥wt − w∗(λt)∥2

)
Thus, we get the desired result.

Define a potential function Φ(wt, λt) = L(wt, λt) − 2d(λt). According to the definition we have
L(wt, λt) > d(λt). Then, Φ(wt, λt) ≥ −d(λt) ≥ −minw g(w) + Γh(w) ≥ −(1 + Γ)f for all wt

and λt ∈ Λ.
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Lemma 11 (Descent of potential function). It holds that
E [Φ(wt+1, λt+1)− Φ(wt, λt)]

≤ E
[
C1∥∇wL(wt, λt)∥2 + C2∥λt − λ∗

t ∥2
]
+ C3

where

C1 = −ηw +
LLη

2
w

2
+

LLη
2
wp(1 + Γ2 +D2

λ)

2
+ 4L2

1ηλη
2
w(1 + p)

+
4L2

1ηλ
(Γµ−DλL2 − L1)2

+
µd

16

(
2η2λ(1 + p)L2

1 +
L2
1ηλ
µd

)
C2 = −ηλµ

2
d

64

C3 =
LLη

2
w(1 + Γ2 +D2

λ)σ
2

2
+ 2L2

1ηλη
2
wσ

2 + 2η2λσ
2 +

µdη
2
λσ

2

16
.

Proof. With Lemma 4 and Lemma 6, it holds that
E [Φ(wt+1, λt+1)− Φ(wt, λt)]

≤ E
[
C0(ηw)∥∇wL(wt, λt)∥2 + (λt+1 − λt)

⊤∇h(wt+1)− 2⟨λt+1 − λt,∇h(w∗(λt))⟩+ Ld∥λt+1 − λt∥2
]

+
LLη

2
w(1 + Γ2 +D2

λ)σ
2

2
.

We deal with each term as follows. For the second term and the third term, it holds that
(λt+1 − λt)

⊤∇h(wt+1)− 2⟨λt+1 − λt,∇h(w∗(λt))⟩
= 2⟨λt+1 − λt,∇h(wt+1)−∇h(w∗(λt))⟩ − (λt+1 − λt)

⊤∇h(wt+1)

≤ 2L1∥λt+1 − λt∥∥wt+1 − w∗(λt)∥ −
1

ηλ
∥λt+1 − λt∥2

≤ 2L1∥λt+1 − λt∥ (∥wt − w∗(λt))∥+ ∥wt+1 − wt∥)−
1

ηλ
∥λt+1 − λt∥2

≤
(

1

2ηλ
− 1

ηλ

)
∥λt+1 − λt∥2 + 4L2

1ηλ∥wt − w∗(λt))∥2 + 4L2
1ηλ∥wt+1 − wt∥2

By taking the expectation on the both side of inequality, it holds that

E
[
(λt+1 − λt)

⊤∇h(wt+1)− 2⟨λt+1 − λt,∇h(w∗(λt))⟩
]

≤ E
[
− 1

2ηλ
∥λt+1 − λt∥2 + 4L2

1ηλ∥wt − w∗(λt))∥2 + 4L2
1ηλ∥wt+1 − wt∥2

]
≤ E

[
− 1

2ηλ
∥λt+1 − λt∥2 + 4L2

1ηλη
2
w(1 + p)∥∇wL(wt, λt)∥2 +

4L2
1ηλ

(Γµ−DλL2 − L1)2
∥∇wL(wt, λt)

2∥2
]
+ 2L2

1ηλη
2
wσ

2.

Meanwhile, with Lemma 10 and Lemma 7 it holds that
E∥λt+1 − λt∥2

≥ µ2
dη

2
λ

16
E∥λt − λ∗∥2 − µdηλ

4

(
η2λσ

2 +

(
2η2λ(1 + p)L2

1 +
L2
1ηλ
µd

)
E∥wt − w∗(λt)∥2

)
≥ µ2

dη
2
λ

16
E∥λt − λ∗∥2 − µdηλ

4

(
η2λσ

2 +

(
2η2λ(1 + p)L2

1 +
L2
1ηλ
µd

)
E∥∇wL(wt, λt)∥2

)
Further, when ηλ ≤ 1/(4Ld), it holds that − 1

2ηλ
∥λt+1 − λt∥2 + Ld∥λt+1 − λt∥2 ≤ 1

4ηλ
.

Thus, it holds that
E [Φ(wt+1, λt+1)− Φ(wt, λt)]

≤ E
[
C0(ηw)∥∇wL(wt, λt)∥2 + (λt+1 − λt)

⊤∇h(wt+1)− 2⟨λt+1 − λt,∇h(w∗(λt))⟩+ Ld∥λt+1 − λt∥2
]

+
LLη

2
w(1 + Γ2 +D2

λ)σ
2

2

≤ E
[
C1∥∇wL(wt, λt)∥2 + C2∥λt − λ∗

t ∥2 + C3

]
,
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where

C1 = −ηw +
LLη

2
w

2
+

LLη
2
wp(1 + Γ2 +D2

λ)

2
+ 4L2

1ηλη
2
w(1 + p)

+
4L2

1ηλ
(Γµ−DλL2 − L1)2

+
µd

16

(
2η2λ(1 + p)L2

1 +
L2
1ηλ
µd

)
C2 = −ηλµ

2
d

64

C3 =
LLη

2
w(1 + Γ2 +D2

λ)σ
2

2
+ 2L2

1ηλη
2
wσ

2 + 2η2λσ
2 +

µdη
2
λσ

2

16
.

Proof. Proof of the Inner Convergence

By the definition of Φ, it holds that Φ(w, λ) ≥ −d(λ) ≥ f .

Thus, with Lemma 11, by summing up T terms, it holds that

1

K

K∑
t=1

E
ηw
2
∥∇wL(wt, λt)∥2 +

ηλL
2
L

8µ4
∥λt − λ∗∥2 ≤

Φ(w1, λ1)− f

K
+ C3

Then, let ηw = Θ(1/
√
K) and ηλ = Θ(1/

√
K), it holds that

1

K
E

K∑
t=1

∥λt − λ∗∥2 = O(1/
√
K)

1

K
E

K∑
t=1

∥wt − w∗∥2 = O(1/
√
K)

On the other hand, it holds that

∥λ⊤
t ∇wfi(wt)− λ∗⊤∇wfi(w

∗)∥2 ≤ 2∥∇wfi(w
∗)∥2∥λt − λ∗∥2 + 2∥λt∥2∥∇fi(wt)−∇fi(w

∗)∥2

≤ 2D2
w∥λt − λ∗∥2 + 2D2

λL
2
1∥wt − w∗∥2

Therefore, it holds that

1

K
E

K∑
t=1

∥λ⊤
t ∇wfi(wt)−λ∗⊤∇wfi(w

∗)∥2 ≤ 2

K
E

K∑
t=1

D2
w∥λt−λ∗∥2+D2

λL
2
1∥wt−w∗∥2 = O(1/

√
K)

B PROOF OF OUTER LOOP CONVERGENCE

In this section, we give the proof of the outer loop convergence.

Lemma 12. Suppose (A1)-(A4) holds. Then, for all x1, x2 ∈ X , it holds that

∥w∗(x1)− w∗(x2)∥ ≤
√
NDwµ+

√
NDwL1

µ2
∥x1 − x2∥

Proof. Because
∑N

i=1 x
(i)
2 fi(w) is µ is a strongly convex function, it holds that

N∑
i=1

x
(i)
2 (fi(w

∗(x1))− fi(w
∗(x2))) ≥

µ

2
∥w∗(x1)− w∗(x2)∥2.
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On the other hand, we have

N∑
i=1

x
(i)
2 (fi(w

∗(x1))− fi(w
∗(x2)))

=

N∑
i=1

x
(i)
2 fi(w

∗(x1))−
N∑
i=1

x
(i)
1 fi(w

∗(x1)) +

N∑
i=1

x
(i)
1 fi(w

∗(x1))

−
N∑
i=1

x
(i)
1 fi(w

∗(x2)) +

N∑
i=1

x
(i)
1 fi(w

∗(x2))−
N∑
i=1

x
(2)
2 fi(w

∗(x2))

≤
N∑
i=1

(x
(i)
1 − x

(i)
2 )(fi(w

∗(x2))− fi(w
∗(x1)))−

µ

2
∥w∗(x2)− w∗(x1)∥2.

Meanwhile, we have

|fi(w∗(x1))−fi(w
∗(x2))| ≤ max(∥∇wf(w

∗(x1))∥, ∥∇wf(w
∗(x2))∥)∥w∗(x1)−w∗(x2)∥+

L1

2
∥w∗(x2)−w∗(x1)∥2

With strongly convexity, it holds that

∥w∗(x2)− w∗(x1)∥ ≤ 1

µ
∥∇f(w∗(x1))−∇f(w∗(x2))∥ ≤ 2Dw

µ
.

Thus, it holds that

fi(w
∗(x2))− fi(w

∗(x1)) ≤ Dw(1 + L1/µ)∥w∗(x2)− w∗(x1)∥.

Combining the above inequalities, it holds that

µ∥w∗(x1)−w∗(x2)∥2 ≤ ∥x1−x2∥1(max|fi(w∗(x1))−fi(w
∗(x2))|) ≤

√
NDw(1+L1/µ)∥w∗(x1)−w∗(x2)∥

Lemma 13. Suppose (A1)-(A4) holds, then f0(w
∗(x)) has Lipschitz gradient with Lipschitz constant(

D2
w

µ2 + 2DwL1

µ

) √
NDwµ+

√
NDwL1

µ2 .

Proof.

∂f0(w
∗(x))

∂x(i)
= −∇wf0(w

∗(x))⊤

 N∑
j=1

x(j)∇2
w∇fj(w

∗(x))

−1

∇wfi(w
∗(x))

By the smoothness and strongly convexity it holds that∥∥∥∥∥∥∥
 N∑

j=1

x
(j)
1 ∇2

w∇fj(w
∗(x1))

−1

−

 N∑
j=1

x
(j)
2 ∇2

w∇fj(w
∗(x2))

−1
∥∥∥∥∥∥∥

≤ 1

µ2

∥∥∥∥∥∥
N∑
j=1

x
(j)
1 ∇2

w∇fj(w
∗(x1))−

N∑
j=1

x
(j)
2 ∇2

w∇fj(w
∗(x2))

∥∥∥∥∥∥
≤ 1

µ2
max

j
∥∇2

w∇fj(w
∗(x1))−∇2

w∇fj(w
∗(x2))∥

≤ L2

µ2
∥w∗(x1)− w∗(x2)∥,
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where the first inequality is due to ∥A(A−1 −B−1)B∥ = ∥A−B∥ for all invertible matrices A,B.
Then, it holds that∥∥∥∥∥∥∥
 N∑

j=1

x
(j)
1 ∇2

w∇fj(w
∗(x1))

−1

∇wfi(w
∗(x1))−

 N∑
j=1

x
(j)
2 ∇2

w∇fj(w
∗(x2))

−1

∇wfi(w
∗(x2))

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥

 N∑

j=1

x
(j)
1 ∇2

w∇fj(w
∗(x1))

−1

−

 N∑
j=1

x
(j)
2 ∇2

w∇fj(w
∗(x2))

−1
∇wfi(w

∗(x1))

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
 N∑

j=1

x
(j)
2 ∇2

w∇fj(w
∗(x2))

−1

(∇fi(w
∗(x1))−∇fi(w

∗(x2)))

∥∥∥∥∥∥∥
≤ Dw

µ2
∥w∗(x1)− w∗(x2)∥+

L1

µ
∥w∗(x1)− w∗(x2)∥.

Thus, combining with the definition of gradient, it holds that∣∣∣∣∂f0(w∗(x1))

∂x(i)
− ∂f0(w

∗(x2))

∂x(i)

∣∣∣∣
≤ ∥∇wf0(w

∗(x1))∥

∥∥∥∥∥∥
(

N∑
j=1

x
(j)
1 ∇2

w∇fj(w
∗(x1))

)−1

∇wfi(w
∗(x1))−

(
N∑

j=1

x
(j)
2 ∇2

w∇fj(w
∗(x2))

)−1

∇wfi(w
∗(x2))

∥∥∥∥∥∥
+ ∥∇wf0(w

∗(x1))−∇wf0(w
∗(x2))∥

∥∥∥∥∥∥
(

N∑
j=1

x
(j)
2 ∇2

w∇fj(w
∗(x2))

)−1

∇wfi(w
∗(x2))

∥∥∥∥∥∥
≤ Dw(

Dw

µ2
∥w∗(x1)− w∗(x2)∥+

L1

µ
∥w∗(x1)− w∗(x2)∥) +

DwL1

µ
∥w∗(x1)− w∗(x2)∥

Therefore, combine with Lemma 12, we can obtain the result.

Lemma 14. Suppose function f(x) is lower bounded by f with L-Lipshitz gradient. g(x) is
an unbiased gradient estimator of ∇f(x) satisfying that expected norm of g(x) are bounded by
G in domain X for function f . Then with update rule xt+1 = ΠX (xt − ηx(g(xt) + ξt)), where
ηx = Θ(1/

√
T ), X is a convex set and E∥ξt∥2 ≤ ϵ2. By defining x̂ = argminy∈X (f(y)+ ρ

2∥y−x∥2)
and ∇̄ρf(x) = ρ(x− x̂), where ρ = 2L, then it holds that

1

T
E

T∑
t=1

∥∇̄ρf(xt)∥2 = O(1/
√
T + ϵ2).

Proof. It holds that

E
(
f(x̂t+1 +

ρ

2
∥xt+1 − x̂t+1∥2

)
≤ E

(
f(x̂t) +

ρ

2
∥xt+1 − x̂t∥2

)
= E

(
f(x̂t) +

ρ

2
∥ΠX (xt − ηx(g(xt) + ξt))− x̂t∥2

)
≤ E

(
f(x̂t) +

ρ

2
∥xt − ηx(g(xt) + ξt)− x̂t∥2

)
= E

(
f(x̂t) +

ρ

2
∥xt − x̂t∥2 + ρη2x∥g(xt) + ξt∥2 − ηxρ⟨xt − x̂t, g(xt)⟩ − ηxρ⟨xt − x̂t, ξt⟩

)
≤ E

(
f(x̂t) +

ρ

2
∥xt − x̂t∥2

)
+ ρη2x(G

2 + ϵ2)− ρηxE
(
f(xt)− f(x̂t)−

L

2
∥xt − x̂t∥2

)
+ ρηxE

(
L

2
∥xt − x̂t∥2 +

1

2L
ϵ2
)
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Then summing up the above inequality, it holds that

ρηx

T∑
t=1

E
(
f(xt)− f(x̂t)− L∥xt − x̂t∥2

)
≤ E

[
f(x̂1) +

ρ

2
∥x1 − x̂1∥2 − (f(x̂T+1 +

ρ

2
∥xT+1 − x̂T+1∥2)

]
+ Tρη2x(G

2 + ϵ2) +
Tρηx
2

ϵ2

≤ f(x̂1) +
ρ

2
∥x1 − x̂1∥2 − f) + Tρη2x(G

2 + ϵ2) +
Tρηx
2L

ϵ2

On the other hand, because x̂t = argminy∈X (f(y) + ρ
2∥xt − y∥2) and function f(y) + ρ

2∥xt − y∥2
is strongly convex with modular ρ− L, it holds that

f(xt)− f(x̂t)− L∥xt − x̂t∥2

= f(xt) +
ρ

2
∥xt − xt∥2 − (f(x̂t) +

ρ

2
∥xt − x̂t∥2) +

ρ− L− 1

2
∥xt − x̂t∥2

≥ 2ρ− 3L

2
∥xt − x̂t∥2 =

L

2
∥xt − x̂t∥2

Thus, combining the above inequalities, it holds that

ρ2

T

T∑
t=1

E∥xt − x̂t∥2

≤ 2ρ2

TL

T∑
t=1

Ef(xt)− f(x̂t)− L∥xt − x̂t∥2

≤
ρf(x̂1) +

ρ2

2 ∥x1 − x̂1∥2 − ρf)

Tηx
+ ρ2ηx(G

2 + ϵ2) +
ρ2

2L
ϵ2.

Therefore, when ηx = O(1/
√
T ), 1

T E
∑T

t=1 ∥∇̄ρf(xt)∥2 = ρ2

T

∑T
t=1 E∥xt − x̂t∥2 = O(1/

√
T +

ϵ2).

Proof of Theorem 2. With Lemma 13, we can obtain f0(w
∗(x)) has Lipschitz gradient on domain

X .

Define ξ
(i)
t = λT

t ∇wfi(wt,k)− λ∗(x)T∇wfi(w
∗(x))

When we use λt,k and wt,k with random k, as it suggests in Theorem 1, the expected norm of ξ(t i)
can be bounded by O(1/

√
K).

Let x(i)
t+1/2 = x

(i)
t − ηx(g(xt)

(i) + λT
t ∇wfi(wt,k)− λ∗(xt)

T∇wfi(w
∗(xt))),

Then, it holds that

Eg(xt)
(i) = E

[
1

ηx
(xt+1/2 − xt)− λT

t ∇wfi(wt,k) + λ∗(xt)
T∇wfi(w

∗(xt)))

]
= λ∗(xt)

T∇wfi(w
∗(xt)))

and

E
(
g(xt)

(i))2
)
≤ (1 + p)∥λ∗(xt)

T∇wfi(w
∗(xt)))∥2 + ϵ2 + σ2 ≤ (1 + p)D2

λD
2
w + ϵ2 + σ2

Thus, together with Lemma 14, we can directly get the result.

C ADDITIONAL EXPERIMENTAL RESULTS ON MNIST AND FASHION MNIST
WITH LENET5

We use 10 clients in this experiment. The first 5 clients contains i.i.d. 9000 samples, the last 5 clients
contains 9000 samples with random label. The rest setting is the same as it in the main text. The
results are shown in Figure 5, and Figure 6.
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Figure 5: Test accuracy of training LeNet5 on MNIST dataset in iid case. The left curve shows the
result when active probability is 1, and the right figure shows the result when active probability is 0.5.

Figure 6: Test accuracy of training LeNet5 on Fashion-MNIST dataset in iid case. The left curve
shows the result when active probability is 1, and the right figure shows the result when active
probability is 0.5.
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