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Abstract

Reasoning over Temporal Knowledge Graphs
(TKGs) that predicts temporal facts (e.g.,
events) in the future is crucial for many applica-
tions. The temporal facts in existing TKGs only
contain their core entities (i.e., the entities play-
ing core roles therein) and formulate them as
quadruples, i.e., (subject entity, predicate, ob-
ject entity, timestamp). This formulation over-
simplifies temporal facts and inevitably causes
information loss. Therefore, we propose to de-
scribe a temporal fact more accurately as an n-
tuple, containing not only its predicate and core
entities, but also its auxiliary entities, as well
as the roles of all entities. By so doing, TKGs
are augmented to N-tuple Temporal Knowledge
Graphs (N-TKGs). To conduct reasoning over
N-TKGs, we further propose N-tuple Evolu-
tional Network (NE-Net). It recurrently learns
the evolutional representations of entities and
predicates in temporal facts at different times-
tamps in the history via modeling the relations
among those entities and predicates. Based
on the learned representations, reasoning tasks
at future timestamps can be realized via task-
specific decoders. Experiment results on two
newly built datasets demonstrate the superiority
of N-TKG and the effectiveness of NE-Net.

1 Introduction

Knowledge Graphs (KGs), which represent facts in
the form of triples (Bordes et al., 2013; Dettmers
et al., 2018), i.e., (subject entity, predicate, object
entity), have attracted increasing research attention
in recent years. As the validity of facts can change
over time, Temporal Knowledge Graphs (TKGs)
extend triples into quadruples (Han et al., 2020b;
Park et al., 2022), i.e., (subject entity, predicate, ob-
ject entity, timestamp), to represent temporal facts,
such as events. Reasoning over TKGs aims to an-
swer queries about future temporal facts, such as
(America, Sanction, ?, 2024-1-10), based on the
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Figure 1: A comparison of quadruples in TKG and n-
tuples in N-TKG.

observed history. Such task can be applied to many
practical applications, including disaster relief (Sig-
norini et al., 2011), financial analysis (Bollen et al.,
2011), etc.

Actually, besides its core entities (i.e., subject
entity and object entity), a temporal fact often in-
volves other auxiliary roles and the corresponding
arguments (i.e., entities). As illustrated in Figure 1,
the “Demand” event involves not only the core
roles and entities, but also the auxiliary role “De-
mand Content” and its corresponding entity “Oil”.
Moreover, the number of roles in temporal facts
may be variable. For example, the “Hold a Visit”
event contains two roles, while the “Criticize” event
has three. Above all, the existing quadruple-based
formulation cannot describe temporal facts accu-
rately, thus limiting the applications of TKGs.

Motivated by these, we propose to describe
temporal facts more accurately as n-tuples and
correspondingly augment TKGs as N-tuple Tem-
poral Knowledge Graphs (N-TKGs), so as not
to cause information loss. Specifically, each n-
tuple in N-TKGs is denoted in form of (predicate,
role1:entity1, ..., timestamp). For example, the
event “Consult” in Figure 1 is described as (Con-
sult, Client: Germany, Consultant: France, Consult
Content: Iran, t2).



Similar to that of TKGs, reasoning over N-TKGs
is an important task for their practical applications.
However, existing methods for the reasoning task
on either TKGs with quadruples or static KGs with
n-tuples have limitations when facing N-TKGs. In
more detail, the reasoning methods for quadruple-
based TKGs (Dasgupta et al., 2018; Goel et al.,
2020; Jin et al., 2020; Han et al., 2020b; Park et al.,
2022) cannot be directly applied to n-tuples and
have to take adaptation measures. Those reason-
ing methods for static n-tuple KGs (Rosso et al.,
2020; Guan et al., 2020; Liu et al., 2021; Guan
et al., 2019) cannot capture temporal information
contained in those facts at different timestamps.

To solve the above problems, we propose a
model called N-tuple Evolutional Network (NE-
Net) to conduct reasoning tasks over N-TKGs. NE-
Net consists of an entity-predicate encoder and
task-specific decoders. The entity-predicate en-
coder is used to learn the evolutional representa-
tions of entities and predicates in different temporal
facts. Specifically, at each timestamp, it employs
an entity-predicate unit to capture the relations
among entities and predicates formed upon con-
current facts. It also adopts a core-entity unit to
emphasize and more directly model the relations
between core entities (in terms of predicates) of
individual temporal facts, as such relations contain
the most primary information of the facts. Next, an
aggregation unit is utilized to integrate the outputs
of these two units so as to obtain more accurate rep-
resentations of entities and predicates. Note that the
encoder employs a recurrent mechanism to auto-
regressively learn the evolutional representations
from the facts at temporally adjacent timestamps,
and thus implicitly reflects temporal behavioral pat-
terns of entities in their evolutional representations.

NE-Net finally leverages task-specific decoders
to conduct different reasoning tasks, namely, pred-
icate reasoning and entity reasoning, respectively,
based on the learned representations of entities
and predicates. In addition, as there is no N-TKG
dataset publicly available, we construct two new
datasets, named NWIKI and NICE, to facilitate the
research on reasoning over N-TKGs.

In summary, our contributions are as follows: (1)
We propose to use n-tuples to describe temporal
facts more accurately, and further enhance TKGs
as N-TKGs; (2) We propose NE-Net to conduct
the reasoning tasks over N-TKGs. It leverages an
entity-predicate encoder to learn accurate evolu-

tional representations via capturing the relations
among entities and predicates formed upon con-
current facts and simultaneously emphasizing the
relations between core entities. NE-Net further
utilizes task-specific decoders to address different
reasoning tasks; (3) Experiments on the two new
datasets demonstrate the superiority of N-TKG and
the effectiveness of NE-Net.

2 Related Works

Static N-tuple KG Reasoning. Static n-tuple
KG reasoning aims to infer the missing elements
of a given n-tuple. Existing methods can be di-
vided into three categories, namely, hyperplane
methods, multi-linear methods and neural meth-
ods. Hyperplane methods (Wen et al., 2016; Zhang
et al., 2018) project entities into relation hyper-
planes to calculate the plausibility scores for n-
tuples. Multi-linear methods (Liu et al., 2021) ap-
ply the multi-linear product to measure the plausi-
bility scores. Neural methods (Guan et al., 2019;
Galkin et al., 2020) leverage CNN or GCN to cap-
ture the relatedness scores of role-entity pairs in
n-tuples. Particularly, NeuInfer (Guan et al., 2020)
and HINGE (Rosso et al., 2020) notice that differ-
ent elements in n-tuples are of different importance
and propose to represent an n-tuple as a main triplet
along with auxiliary role-entity pairs. However, the
occurrence time of temporal facts is viewed as a
common kind of information about the facts and is
usually ignored by the above methods (Rosso et al.,
2020). Therefore, these methods cannot model
the temporal behavioral patterns across adjacent
timestamps and are not effective enough to exploit
historical data for future predictions.
TKG Reasoning. There are two different task set-
tings for TKG reasoning, namely, interpolation and
extrapolation (Li et al., 2022c; Han et al., 2021b;
Sun et al., 2021; Li et al., 2022b,a). TKG rea-
soning under the former setting is to infer miss-
ing elements of facts at known timestamps (i.e.,
the history) (Sadeghian et al., 2016; Esteban et al.,
2016; Han et al., 2020a; Leblay and Chekol, 2018).
Under the interpolation setting, HyTE (Dasgupta
et al., 2018) extends the idea of TransH (Wang
et al., 2014) and associates each timestamp with
a corresponding hyperplane. DE-DistMult (Goel
et al., 2020) and DE-SimplE (Goel et al., 2020)
both utilize a diachronic embedding for entities
and relations, dividing the representations of enti-
ties into a static segment and a time-varying seg-
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Figure 2: An illustrative diagram of the proposed NE-Net model for N-TKG reasoning.

ment. TKG reasoning under the latter setting,
which this paper focuses on, is to infer missing
elements of facts at future timestamps (Han et al.,
2020b, 2021a; Park et al., 2022). RE-Net (Jin
et al., 2020) and REGCN (Li et al., 2021b) both
adopt a relation-aware GCN and a recurrent com-
ponent to capture temporal associations within the
history. CyGNet (Zhu et al., 2020) applies a time-
aware copy-generation network to model the repet-
itive pattern of frequently occurring facts. Fo-
cusing on the explainable TKG reasoning meth-
ods, TITer (Sun et al., 2021) and CluSTeR (Li
et al., 2021a) employ reinforcement learning to
adaptively search informational facts in the history.
More recently, CEN (Li et al., 2022b) utilizes a
length-aware CNN to mine complex temporal pat-
terns of different lengths. CENET (Xu et al., 2023)
employs the contrastive learning strategy to identify
potential entities from historical and non-historical
dependency. In the above methods, the facts are all
in the form of quadruples. Therefore, they cannot
directly model the temporal associations involving
auxiliary entities.

3 Problem Formulation

N-TKG. An N-TKG G can be formalized as a se-
quence of KGs with timestamps, i.e., G = {G1,G2,
...,Gt, ...}. The KG, Gt, at timestamp t can
be denoted as Gt=(Vpred, Vent, Vρ, Ft), where
Vpred, Vent, Vρ, Ft are the sets of predicates, en-
tities, roles and temporal facts (hereinafter referred
to as facts if not causing any confusion) occurring
at timestamp t, respectively. Each fact f ∈ Ft

is denoted as (pred, ρ1 :e1, ..., ρi : ei, ...,ρn : en, t),
where pred ∈ Vpred is its predicate; each ei ∈ Vent
(1 ≤ i ≤ n) is an entity involved in this fact, where

it plays the role as ρi ∈ Vρ; n and t are the total
number of role-entity pairs and the timestamp of
the n-tuple f , respectively. Note that in any fact
f ∈ Ft, e1 and e2 are the two core entities, corre-
sponding to its subject and object ones, respectively.
Moreover, in this paper, the same type of facts is
denoted with the same predicate. Therefore, pred
also denotes the type of f .
Predicate reasoning. It aims to predict the type
of the fact (i.e., predicate) that will occur on the
given entity es at the next timestamp t+1. In other
words, it aims to answer the query like (?, - : -, ..., - :
es, ...,- : -, t+1). Here, only the target entity es is
available and it can be any entity in the fact.
Entity reasoning. It aims to predict the unknown
entity playing the given role ρq in a fact of the type
specified by predicate pred at the next timestamp
t+ 1. Formally, this task aims to answer the query
like (pred, ρ1 :e1, ρ2 :e2, ..., ρq :?, ..., ρn :en, t+1).
Here, all ρi and ei (1 ≤ i ≤ n and i ̸= q) are given.

4 The NE-Net Model

As illustrated in Figure 2, NE-Net consists of an
entity-predicate encoder and task-specific decoders.
The entity-predicate encoder recurrently models
the relations among entities and predicates gener-
ated by concurrent facts in the history and outputs
the evolutional representations of all entities and
predicates. Based on the learned representations,
task-specific decoders are adopted to conduct dif-
ferent reasoning tasks.

4.1 The Entity-Predicate Encoder

There are mainly two kinds of information in his-
torical facts, namely, the explicit relations among
entities and predicates in concurrent facts at the



same timestamp, and the implicit temporal behav-
ioral patterns of entities reflected in different times-
tamps. The entity-predicate encoder incorporates
these two kinds of information into the represen-
tations of entities and predicates, via recurrently
modeling the KG sequences. In this paper, we con-
sider the history at the latest m timestamps, i.e.,
{Gt−m+1,Gt−m+2, ...,Gt}, where t is the current
timestamp.

4.1.1 Entity-Predicate Modeling in
Concurrent Facts

In this paper, by denoting a temporal fact f as
(pred, ρ1 :e1, ..., ρi : ei, ...,ρn : en, t), its predicate
pred forms natural relations with its all entities ei
(1 ≤ i ≤ n) specified by ρi, respectively. Such
relations between the entities and predicate pre-
serve the relatively complete information of the
fact and are referred to as the entity-predicate re-
lations. Among these relations, those between the
predicate and core entities are more important than
others, as they reflect the primary information of
the fact and should thus be given more attention.
Besides these relations within a fact, by sharing the
same entity, the predicates and entities in different
facts, being concurrent in the same timestamp, may
form more complicated structures.

To capture the above relations and structures so
as to finally learn the representations of entities
and predicates, the encoder first utilizes an Entity-
Predicate unit (“EP unit” in Figure 2) to model
the relatively complete entity-predicate relations
in concurrent facts. It then utilizes a Core-Entity
unit (“CE unit” in Figure 2) to highlight the re-
lations between core entities. Finally, the above
relational information captured by the EP and CE
units is integrated via an Attention-based Aggre-
gation unit (“AA unit” in Figure 2) to obtain more
accurate evolutional representations of entities and
predicates.

The Entity-Predicate Unit. In order to em-
ploy the EP unit to model the relatively complete
entity-predicate relations in all concurrent facts at
timestamp τ (t −m ≤ τ < m), we first need to
construct an Entity-Predicate Graph (“EPG” in Fig-
ure 2) based on them. To do so, for each fact, we
denote its predicate and all entities as the nodes
of the EPG and the entity-predicate relations as
its edges. As aforesaid, in this paper, the facts
of the same type use the same predicate. There-
fore, in order to avoid confusion between different
facts of the same type, we create the same num-

ber of predicate instance nodes in the EPG, each
of which corresponds to a specific fact. By so do-
ing, the EPG at timestamp τ can be formulated as
Gτ = (Vent ∪ V̂ τ

pred, Eτ ), where Vent, V̂ τ
pred and

Eτ are the sets of entity nodes, predicate instance
nodes, and edges, respectively. Here, each predi-
cate instance node is only associated with the enti-
ties in the corresponding fact. And, there is a map-
ping function φ(·) : V̂ τ

pred→Vpred, which maps the
predicate instance node v to its type φ(v)∈Vpred
to indicate which kind of predicate it belongs to.
Each edge eij = (vi, ρ, vj) ∈ Eτ links the entity
node vi and the predicate instance node vj via the
corresponding role ρ. Note that for those entities
and predicates not involved in any fact at timestamp
τ , self-loop edges are added.

Upon the EPG, the EP unit works with two steps,
namely, the message-passing step and the pred-
aggregation step. It finally updates and outputs the
entity representation matrix Ĥτ

ent and the predicate
representation matrix Hτ

pred at timestamp τ .
The message-passing step employs a

CompGCN (Vashishth et al., 2019) with ω1

layers, to update the representations of entities and
predicate instances. Specifically, the representation
of the node v at layer l ∈ [0, ω1 − 1] is obtained as
follows:

hτ,l+1
v = ψ

 ∑
(u,ρ,v)∈Gτ

Wl
0(h

τ,l
u +ρ)+Wl

1h
τ,l
v

 , (1)

where hτ,l
v denotes the representation of node v

obtained after l layers; ρ denotes the representation
of the role ρ; Wl

0 and Wl
1 are the parameters in

the l-th layer; ψ(·) is an activation function. The
representations of predicate instance nodes at the
first layer are obtained by looking up the input evo-
lutional representation matrix of predicates Hτ−1

pred

according to its type. In particularly, at the first
timestamp t−m+1, the randomly initialized pred-
icate representation matrix Hpred is used as the in-
put. The representations of entity nodes at the first
layer are calculated by the CE unit, which will be
introduced in the following. The representations of
roles are obtained from the role representation ma-
trix Hρ, which is randomly initialized and shared
across timestamps.

At timestamp τ , the pred-aggregation step up-
dates the evolutional representation of a predicate
hτ
pred by aggregating the information of all related

nodes. For a predicate pred, after the message
passing step, its different predicate instance nodes
have different representations due to the different



involving entities. NE-Net utilizes the mean pool-
ing (MP) operation to summarize the information
of its predicate instance nodes ĥ

τ

pred:

ĥ
τ

pred =MP

 ∑
v∈{v|φ(v)=pred}

hτ
v,pred

 . (2)

Besides, for a predicate pred, to preserve the in-
herent semantic information, NE-Net further in-
corporates the initial representation hpred, into its
evolutional representation hτ

pred at timestamp τ as:

hτ
pred = g(ĥpred,hpred) = W2(ĥ

τ

pred||hpred), (3)

where W2 is a learnable parameter matrix and ||
denotes the concatenation operation.

The Core-Entity Unit. As aforementioned, the
most important information in a fact is the rela-
tion between its two core entities in terms of the
predicate, which is more important than other rela-
tions. To emphasize these relations between core
entities more directly, this unit views predicates
as edges, and constructs the Core Entity Graph
(“CEG” in Figure 2) for concurrent facts at times-
tamp τ . Specifically, the CEG at timestamp τ can
be formulated as G̃τ = (Vent, Ẽτ ), where Vent and
Ẽτ are the sets of core entity nodes and edges, re-
spectively. Each edge eik = (vi, pred, vk) ∈ Ẽτ

links the two core entity nodes vi and vk corre-
sponding to a certain fact occurring at timestamp
τ via its predicate pred of an n-tuple. Similarly,
for those entities not involved in any fact, self-loop
edges are added.

Based on the constructed CEG G̃τ and the
input representation matrix of entities Hτ−1

ent

at timestamp τ − 1, this unit leverages an
RGCN (Schlichtkrull et al., 2018) with ω2 layers
to encode the relations between core entities into
the updated entity representation matrix H̃τ

ent:

H̃τ,l+1
ent = RGCN(H̃τ,l

ent, G̃τ ), (4)

where H̃τ,l
ent denotes the updated entity representa-

tion matrix obtained at the l-th layer. The represen-
tations of entity nodes at the first layer are obtained
by looking up the input evolutional representation
matrix of entities Hτ−1

ent . For the first timestamp
t − m + 1, the randomly initialized entity repre-
sentation matrix Hent is used as the input. As the
relations between core entities maintain the most
primary information of temporal facts, NE-Net di-
rectly uses the output of this unit, i.e., H̃τ

ent, as
the input entity representation matrix of the entity-
predicate unit to emphasizing such information.

The Attention-based Aggregation Unit. To
integrate the information in the above two kinds
of relations, i.e., H̃ent and Ĥent, the attention-
based aggregation unit is utilized to learn impor-
tance weights of the two kinds of information, and
adaptively combine them in order to obtain the
final evolutional representations of entities Hτ

ent

at timestamp τ . Specifically, take the entity i as
an example, its evolutional representation hτ

i,ent is
calculated as follows:

hτ
i,ent = ãτi,enth̃

τ

i,ent + âτi,entĥ
τ

i,ent, (5)

where h̃i,ent and ĥ
τ

i,ent are the updated representa-
tions of entity i outputted by the above two units,
ãi,ent and âi,ent measure the importance weights
of two representations. Taking the representation
h̃
τ
i,ent as an example, NE-Net first gets its impor-

tance value w̃τ
i,ent:

w̃τ
i,ent = f(h̃

τ

i,ent) = qtanh(W3h̃
τ

i,ent + b), (6)

where W3 is the weight matrix, q is the learnable
importance gate. Similarly, ŵτ

i,ent = f(ĥ
τ

i,ent).
After obtaining the importance values of each

representation, NE-Net normalizes them to get the
final importance weights, i.e., ãτi,ent and âτi,ent, via
the softmax function.

4.1.2 Entity-Predicate Modeling across
Different Timestamps

The temporal patterns hidden in the historical facts
of a specific entity implicitly reflect its behavioral
trends and preferences. As the temporal facts at a
specific timestamp are already modeled in the evo-
lutional representations of entities and predicates
via the above three units, NE-Net directly uses the
evolutional representations of entities and predi-
cates learned from timestamp τ −1, namely, Hτ−1

ent

and Hτ−1
pred, as the input of interaction modeling

step for concurrent facts. By recurrently model-
ing on KGs at adjacent timestamps, the temporal
behavioral patterns of entities can be modeled.

4.2 Task-specific Decoders

Based on the evolutional representations of enti-
ties and predicates at timestamp t, NE-Net utilizes
task-specific decoders to conduct different types of
reasoning tasks.

4.2.1 Predicate Reasoning Decoder
Give the query of predicate reasoning (?,- : -, ..., -:
es, ..., - : -, t+ 1), NE-Net multiplies the evolu-
tional representation of es at timestamp t with the
evolutional representations of predicates Ht

pred,



to generate the conditional probability vector
p(pred|es,G1:t):

p(pred|es,G1:t) = σ(Hτ
prede

t
s), (7)

where σ(·) is the sigmoid function.

4.2.2 Entity Reasoning Decoder
To deal with queries having a varied number of
role-entity pairs and capture the relations among
elements within the query, NE-Net reorganizes
role-entity pairs in a query as a sequence and then
designs a Transformer-based decoder for the en-
tity reasoning task. Specifically, given a query
(pred, ρ1 : e1, ..., ρq :?, ..., ρn : en, t+1), NE-Net
first replaces the missing entity with a special to-
ken [MASK], and linearize the query as: X =
(pred, ρ1,e1, ..., ρq, [MASK], ..., ρn,en). To iden-
tify which kind of element the model is dealing
with, each element xi ∈ X is assigned with a type
typei ∈ {0, 1, 2}, where 0 represents a predicate,
1 represents a role, and 2 represents an entity. The
input representation of the i-th element in the se-
quence, i.e., h0

i , is calculated by:

h0
i = xt

i + typei, (8)

where xt
i is generated by looking up the evolu-

tional representation matrices of entities and predi-
cates, i.e., Ht

ent and Ht
pred, and the role representa-

tion matrix, i.e., Hρ; typei is obtained by looking
up the learnable type representation matrix Htype.
Then, all input representations are fed into a stack
of L successive Transformer blocks (Vaswani et al.,
2017). Based on the output of Transformer, the
final representation of [MASK], i.e., hL

q , can be
obtained, and is multiplied with the evolutional rep-
resentations of entities Ht

ent to obtain a probability
vector over all entities.

p(e|pred, ρ1,e1,...,ρq, ...,ρn,en,G1:t) =σ(H
t
enth

L
q ), (9)

where σ(·) is the sigmoid function.

4.3 Model Learning
Given a factf = (pred, ρ1 :e1, ..., ρn : en, t+1) ∈
Ft+1, let e denotes any entity in f , T denotes the
number of timestamps in the training set. The ob-
jective of the predicate reasoning task is to mini-
mize the following cross-entropy loss:

Lpred=−
T−1∑
t=0

∑
f∈Ft+1

|Vpred|−1∑
i=0

ypredt+1,i log pi(pred|e,G1:t), (10)

where ypredt+1,i is a 0/1 value, denoting whether the
i-th predicate occurs on e at timestamp t + 1,

pi(pred|e,G1:t) represents the probability score of
the i-th predicate.

Similarly, the objective of the entity reasoning
task is to minimize the following loss:

Lent= −
T−1∑
t=0

∑
f∈Ft+1

|Vent|−1∑
i=0

yent
t+1,i log pi(e|

pred, ρ1, e1, ..., ρq, ..., ρn, en,G1:t),

(11)

5 Experiments

5.1 Experimental Setup

5.1.1 Datasets
Since there is no N-TKG dataset available for ex-
periments, we build two datasets, namely NWIKI
and NICE.

About NWIKI: (1) We downloaded the Wikidata
dump dump1 and extracted the facts which contain
the timestamp information and involve human enti-
ties; (2) To extract n-tuple facts, we selected predi-
cates with more than 3 role types and retained their
corresponding facts; (3) We filtered out entities of
low frequency, as their behaviors are difficult to
learn and predict for most data-driven based meth-
ods. Correspondingly, facts involving these entities
were also filtered out; (4) The fact related to the
“Position Held” predicate comprise over 50% of
the dataset. However, the filtering operation in the
previous step could impair connectivity. To main-
tain a robust connection with other predicates, we
retained facts that are associated with other predi-
cates and share core entities with the facts related
to the “Position Held” predicate; (5) Following RE-
NET (Jin et al., 2020), all facts were split into the
training set, the validation set, and the test set by a
proportion of 80%:10%:10% according to the time
ascending order.

About NICE: (1) We collected the raw event
records from ICEWS 2 from Jan 1, 2005 to Dec
31, 2014; (2) From these raw event records, we
extracted core entities, timestamps, and partial aux-
iliary information, i.e., the occurrence places. (3)
We observed that the predicate names contain addi-
tional auxiliary information. For example, the pred-
icate names “Cooperate Economically” and “En-
gage in Judicial Cooperation” contain the specified
cooperation aspects of the general predicate “En-
gaged in Cooperation”, namely “Economic” and

1https://archive.org/details/wikibase-wikidatawiki-
20171120

2https://dataverse.harvard.edu/dataverse/icews



Dataset |Vpred| |Vent|
#Train #Valid #Test

Timestamps Time Interval
Binary Nary Overall Binary Nary Overall Binary Nary Overall

NWIKI 22 17,481 20,686 87,711 108,397 1,847 12,523 14,370 2,438 13,153 15,591 205 1 year
NICE 20 10,860 46,176 322,692 368,868 5,395 40,907 5,268 40,891 46,302 46,159 4,017 24 hours

Table 1: The statistics of the two proposed datasets, NWIKI and NICE.

Model
NWIKI NICE

Precision Recall F1 Precision Recall F1

MLkNN 53.20 60.87 55.26 6.16 25.33 8.57
BRkNN 54.07 61.62 56.11 5.91 27.23 8.45

MLARAM 53.50 61.14 55.55 8.48 45.52 12.23
DNN 47.72 54.77 49.65 10.56 60.36 15.45

T-GCN 73.20 75.27 72.04 16.70 39.47 27.48
RENET 76.17 93.60 83.30 43.62 40.20 38.82

NE-Net 78.34 94.86 84.29 32.43 85.04 45.78

Table 2: Experimental results on predicate reasoning.

“Militarily”, respectively. To obtain such auxil-
iary information, we designed rule templates to
extract them from the specified predicate names
and merged these specified predicates into the gen-
eral ones. (4) Considering the absence of role in-
formation in the raw event records, we manually
assigned role names to each predicate. (5) Similar
to NWIKI, NICE was also split into the training set,
the validation set, and the test set by a proportion
of 80%:10%:10%.

5.1.2 Evaluation Metrics
We employ F1, recall, and precision as metrics for
the predicate reasoning task. We adopt Hits@{1, 3,
10} and MRR as metrics for the entity reasoning
task. Following Han et al. (2021a), we report the
results under the time filter setting.

5.1.3 Baselines
For the predicate reasoning task, we compare NE-
Net with temporal reasoning models, including
RENET (Jin et al., 2019) and T-GCN (Zhao et al.,
2019). Following Deng et al. (2019), we further
compare NE-Net with DNN, MLkNN (Zhang and
Zhou, 2007), BRkNN (Spyromitros et al., 2008),
MLARAM (Deng et al., 2019). These four models
are simple DNN or KNN-based methods, which
use basic count features to conduct reasoning tasks.

For the entity reasoning task, we compare NE-
Net with static n-tuple KG reasoning methods and
TKG reasoning methods. The static n-tuple KG
reasoning methods include: NALP (Guan et al.,
2019), NeuInfer (Guan et al., 2020), HypE (Fatemi
et al., 2021), HINGE (Rosso et al., 2020), Hy-
Transformer (Yu and Yang, 2021), RAM (Liu et al.,
2021). Since these methods are not able to model
the temporal information, we construct a cumula-
tive graph for all the training facts. The TKG rea-

soning methods include DE-DistMult (Goel et al.,
2020), DE-SimplE (Goel et al., 2020), HyTE (Das-
gupta et al., 2018), RE-NET (Jin et al., 2020),
CyGNet (Zhu et al., 2020), REGCN (Li et al.,
2021b), GHT (Sun et al., 2022), CEN (Li et al.,
2022b) and TiRGN (Li et al., 2022a). To facilitate
this kind of methods to N-TKG, we convert the
historical n-tuples into a KG sequence. In each KG,
we view both entities and predicate as nodes, and
link entity nodes with fact nodes via roles. Such
KG sequence is taken as the input of TKG reason-
ing methods.

5.1.4 Implementation Details
For the evolution encoder, the history length m on
two datasets is set to 2; the number of Transformer
blocks L for NICE and NWIKI is set to 1 and 2,
respectively. For all datasets, the numbers, ω1 and
ω2, of GCN layers in the entity-predicate and core-
entity units are set to 4 and 2, respectively; the
number of self-attention heads is set to 4.

5.2 Experimental Results

5.2.1 Results on Predicate Reasoning
To analyze the effectiveness of NE-Net on predi-
cate reasoning task, we compare NE-Net with base-
lines on both datasets. The results are presented
in Table 2. It is shown that NE-Net outperforms
baselines across all datasets in terms of F1 and Re-
call. Notably, the counting-based methods have
the worst performance on both datasets, indicating
the importance of modeling the relations among
entities and predicates at different timestamps in
the predicate reasoning task. It can be particularly
observed that NE-Net shows lower performance
on the precision metric in NWIKI, as compared
with RENET. This is because RENET focuses on
a target entity to retrieve historical facts, enabling
it to utilize a longer history, while NE-Net solely
considers the history in the latest timestamps.

5.2.2 Results on Entity Reasoning
To investigate the effectiveness of NE-Net, we di-
vide the test set into core and auxiliary categories
(denoted as C and AUX) based on the role to be
predicted, and conduct the entity reasoning task



Model
NWIKI NICE

H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

C AUX C AUX C AUX C AUX C AUX C AUX C AUX C AUX

NALP 10.59 7.54 10.59 10.84 22.52 15.17 14.86 10.25 14.66 39.82 26.17 49.48 43.40 59.87 23.96 46.92
NeuInfer 19.83 6.07 25.22 8.62 28.94 11.91 23.08 8.14 13.77 14.48 28.35 18.30 47.56 29.59 24.78 19.32
HINGE 19.10 10.85 23.47 14.05 25.91 19.88 21.74 13.83 2.92 15.88 21.04 27.85 42.83 43.52 16.01 24.89
RAM 31.42 22.68 33.36 26.01 34.36 28.14 32.63 24.72 8.37 14.48 16.41 23.26 27.13 47.64 14.38 23.45
HypE 24.91 19.83 25.39 19.95 25.75 19.98 25.26 19.91 19.16 49.88 37.22 74.31 56.33 84.89 31.50 63.35

Hy-Transformer 33.40 18.36 35.85 23.60 37.84 27.60 34.97 21.66 28.51 61.02 44.49 82.46 61.11 91.38 39.47 72.71
DE-DistMult 11.44 - 16.10 - 18.85 - 14.17 - 8.61 - 18.41 - 33.59 - 16.75 -
DE-SimplE 10.87 - 16.41 - 19.14 - 13.87 - 11.53 - 21.86 - 34.80 - 19.30 -

HyTE 17.55 - 29.99 - 35.33 - 23.88 - 2.35 - 21.82 - 39.02 - 15.15 -
RENET 33.56 - 38.41 - 41.28 - 36.57 - 33.43 - 47.77 - 63.06 - 43.32 -
CyNet 44.12 - 64.71 - 67.65 - 53.12 - 26.61 - 41.63 - 56.22 - 36.81 -

REGCN 46.25 - 65.13 - 72.31 - 56.78 - 37.33 - 53.85 - 68.27 - 48.03 -
GHT 30.71 - 37.78 - 39.94 - 34.57 - 26.61 - 41.63 - 56.22 - 36.81 -
CEN 30.28 - 45.20 - 61.04 - 40.61 - 33.32 - 49.29 - 64.65 - 43.98 -

TiGRN 50.61 - 68.24 - 81.13 - 61.10 - 34.82 - 51.54 - 66.47 - 45.66 -
NE-Net 66.87 46.45 76.08 66.01 80.29 77.32 72.03 57.68 38.36 68.55 54.18 88.16 69.99 94.61 48.98 79.06

Table 3: Experimental results on the entity reasoning task for predicting core and auxiliary entities, respectively.

on two datasets. Comprehensive results on these
two categories are presented in Table 3. Especially,
we only report the results of TKG reasoning meth-
ods on the core category, as they only focus on
quadruples.

As shown in Tables 3, NE-Net consistently sig-
nificantly outperforms static n-tuple KG reason-
ing methods across all metrics on both datasets.
This can be attributed to the capacity of NE-Net to
model the rich relations among entities and predi-
cates at different timestamps. On the core category,
we observe that TKG reasoning methods under the
interpolation setting, perform worse than NE-Net.
These methods focus on predicting facts occurring
at known timestamps, and can not capture the rela-
tions between entities and predicates within newly-
emerged temporal facts. Moreover, NE-Net shows
better performance than TKG reasoning methods
under the extrapolation setting. Different from
these methods, NE-Net learns the representations
of the predicates as they dynamic evolve, and em-
phasizes the relations between core entities within
facts containing various numbers of auxiliary en-
tities. Besides, NE-Net can capture information
of elements within queries. In short, these results
convincingly suggest that NE-Net is effective in
conducting the reasoning task over N-TKGs.

5.3 Ablation Study
To study the effectiveness of each module of NE-
Net, we conduct ablation studies on all datasets.
The results are summarized in Table 4.

It can be observed that removing the core-entity
unit (denoted as -CE) results in worse performance
on both datasets, which illustrates that addition-
ally capturing the relations between core entities
can help NE-Net learn more precise representa-

Dataset -CE -AA -PredAgg -Trans NE-Net

NWIKI
C 66.25 59.47 70.94 57.02 72.03

AUX 53.97 40.69 56.52 48.03 57.68
All 59.23 48.73 62.69 51.88 63.82

NICE
C 47.21 47.86 48.71 43.74 48.98

AUX 78.34 78.13 78.78 75.58 79.06
All 64.16 64.34 65.09 61.07 65.37

Table 4: MRR results by different variants of NE-Net.

Dataset 0% 30% 60% 100%

NWIKI
C 48.24 67.85 71.25 72.03

AUX 10.44 34.39 52.41 57.68
All 26.62 48.71 60.47 63.82

NICE
C 47.65 47.91 48.37 48.98

AUX 77.86 78.09 78.47 79.06
All 64.10 64.34 64.76 65.36

Table 5: MRR results of NE-Net modeling different
ratios of auxiliary information.

tions. Notably, -CE has a more significant impact
on the core category when compared with that on
the auxiliary category, as CEGs predominantly em-
phasize entities playing core roles in n-tuples. Fur-
thermore, -CE has a greater performance drop on
NWIKI in comparison to NICE. Notably, NWIKI
has a higher proportion of facts that involve three
or more role-entity pairs (46.32%), as compared
to NICE (30.97%). As a result, NWIKI exhibits
richer relations among entities and predicates. -CE
makes it more difficult for the model to distinguish
the most important information contained in the
relations among core entities in NWIKI.

To verify the necessity of the attention-based ag-
gregation unit (denoted as -AA), we simply use the
max pooling operation to integrate the outputs of
the entity-predicate unit and the core-entity unit.
It can be seen that -AA yields worse results com-
pared to NE-Net, which demonstrates the necessity
of adaptively integrating the information learned
from the entity-predicte unit and the core-entity
unit. Also, the removal of the pred-aggregation



History at t− 1 History at t Query at t+ 1 Answer

(Disapprove,
Opponent: Barack Obama,
Proponent: Head of Government (Kenya),
Disapprove Way: Denounce,
Place: Kenya)

(Consult,
Consulter: Barack Obama,
Consulted: Mulatu Teshome,
Consult Way: Engage in Negotiation,
Place: Ethiopia)

(Engage in Diplomatic Cooperation,
Cooperator: Barack Obama,
Cooperator: ?
Cooperation way: Praise or Endorse)

Ethiopia

History at t− 1 History at t Query at t+ 1 Answer

(Express Intent to Cooperate,
Volunteer: Iran,
Cooperation Target: South Africa,
Cooperate Content: Engage in Diplomatic Cooperation)
(Express Intent to Cooperate,
Volunteer: Iran,
Cooperation Target: Yemen,
Cooperate Content: Provide Humanitarian Aid)

(Engage in Diplomatic Cooperation,
Cooperator: Iran,
Cooperator: South Africa,
Cooperation way: Sign Formal Agreement)

(Provide Aid,
Provider: Iran,
Recipient: ?;
Aid Content: Humanitarian Aid)

Yemen

Table 6: Case studies on the predictions of NE-Net.

operation (denoted as -PredAgg) also results in
worse performance than NE-Net, which demon-
strates that aggregating the influence of predicate
instances and the inherent representations can help
learn better representations of predicates. To verify
the necessity of the Transformer-based decoder on
the entity reasoning task, we replace this decoder
with ConvTransE (Dettmers et al., 2018), denoted
as -Trans. It can be seen that removing the trans-
former decoder leads to a decrease in performance,
which demonstrates the effectiveness of our entity
reasoning decoder.

5.4 Detailed Analysis

To illustrate the superiority of N-TKGs, we inves-
tigate the performance of NE-Net with different
ratios of auxiliary information. We provide NE-
Net with histories containing varying ratios (0%,
30%, 60%,100%) of auxiliary information. Here,
the auxiliary information in the history is randomly
selected, and we run NE-Net three times and report
the averaged results.

From Table 5, it can be observed that the per-
formance of NE-Net is positively correlated with
the amount of auxiliary information utilized. This
suggests that providing more precise descriptions
of temporal facts can enhance the performance of
TKG reasoning, thereby demonstrating the superi-
ority of the proposed N-TKGs. Additionally, we
notice that the ratio of auxiliary information has
a greater impact on NWIKI than NICE. Actually,
the types of auxiliary roles in NICE are limited,
while in NWIKI, there are more diverse types of
auxiliary roles, including occupation, employer,
winners, and more. These richer types of auxiliary
roles in NWIKI can better help with predictions.

5.5 Case Studies
We present two cases in Table 6 where NE-Net cor-
rectly predicts the answer entity. In this table, t− 1
and t represent historical timestamps, while t+ 1
represents the query timestamp. In the first case,
the correct answer to the query plays as an auxiliary
entity in the latest historical fact. It is hard for the
model to predict the correct answer without such
auxiliary information. In the second case, the aux-
iliary entity “Humanitarian Aid” helps the model
establish a connection between the query and the
most informative historical fact, and thereby en-
abling more accurate predictions.

6 Conclusions

In this paper, we proposed to utilize n-tuples to
represent temporal facts more precisely, and corre-
spondingly enhanced TKGs as N-TKGs. We fur-
ther introduced a model called NE-Net, to conduct
reasoning over N-TKGs. NE-Net learns evolutional
representations of entities and predicates, via mod-
eling the relations among entities and predicates,
and highlighting the relations among core entities.
Further, it adopts task-specific decoders to conduct
different reasoning tasks. Experimental results on
two new datasets show the superiority of N-TKG
and the effectiveness of NE-Net.
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8 Limitations

The proposed NE-Net model cannot handle tem-
poral facts that involve roles with multiple enti-
ties, such as the temporal fact “(Attack, Attacker:
{entity1, entity2}, Victim: {entity3, entity4}, 2026-
10-01)”. Furthermore, it is unable to model long
history, as the use of deep GCN layers can bring
the over-smoothing problem.
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