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ABSTRACT

Federated Learning (FL) has been widely researched for the growing public data
privacy issues, where only model parameters, instead of private data, are communi-
cated. However, recent studies debunk the privacy protection of FL, showing that
private data can be leaked from the communicated gradients or parameter updates.
In this paper, we propose a framework called Synergistic Neuromorphic Federated
Learning (SNFL) that enhances privacy during FL. Before uploading the updates of
the client model, SNFL first converts clients’ Artificial Neural Networks (ANNs)
to Spiking Neural Networks (SNNs) via calibration algorithms. In a way that not
only loses almost no accuracy but also encrypts the client model’s parameters,
SNFL manages to obtain a more performant model with high privacy. After the
aggregation of various SNNs parameters, the server distributes the parameters back
to the clients. This design offers a smooth convergence to continue the model
training under the ANN architecture. The proposed framework is demonstrated
to be private, introducing a lightweight overhead as well as yielding prominent
performance boosts. Extensive experiments with different kinds of datasets have
demonstrated the efficacy and the practicability of our method. In most of our
experimental IID and not extreme Non-IID scenarios, the SNFL technique has
significantly enhanced the model performance. For instance, SNFL improves the
accuracy of FedAvg on Tiny-ImageNet by 13.79%. Besides, the original image
cannot be reconstructed after 280 iterations of attacks with the SNFL method,
whereas it can be reconstructed after just 70 iterations with FedAvg.

1 INTRODUCTION

Recent advancements in machine learning, particularly deep learning, rely heavily on large data sets
to obtain decent inference performance. Due to the growing demand for data, it is now necessary to
feed models with information from multiple entities. However, this transfer, exchange, and trade of
data among entities may violate the General Data Protection Regulation (GDPR) and get punished
by the Act (Wachter, 2018), posing an unprecedented challenge to the field of machine learning.
Federated learning (McMahan et al., 2017) then emerges and flourishes as a privacy-preserving
approach by training a shared model collaboratively while keeping data locally. Despite that the
data are stored locally, clients that join the federated learning need to transmit their local gradients
to the server to update the shared model. Recent studies Zhu & Han (2020); Zhao et al. (2020);
Huang et al. (2021) have revealed that sensitive local data could be leaked from these transmitted
local gradients via model inversion attack Zhu & Han (2020). To defend against such kind of attack
and prevent privacy leakage, defense strategies including differential privacy (Geyer et al., 2017),
secure multi-party computation (Byrd & Polychroniadou, 2020), and MixUp (Zhang et al., 2017)
have been developed. In exchange for privacy, the cost is then either severe computational overheads
(Hardy et al., 2017) or unavoidable accuracy losses (Kim et al., 2021).

What’s the intrinsic source of privacy in these defense strategies? If we consider this question from
an information theory perspective, it is indeed the asymmetry of entropy in the encryption and
decryption steps for clients and servers when partial encryption information is kept locally only.
From this standpoint, as long as an encryption method is capable of inevitability between clients
and servers while still allowing for effective aggregation, it would be feasible to improve the privacy
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Figure 1: Right: Workflow of Synergistic Neuromorphic Federated Learning with ANN-SNN
Conversion (SNFL). Left: Each client communicates parameters VIV 4 generated by the model
trained on private local data. The attacker updates randomized dummy input and label to minimize
the gradient distance ||[VIV4 — VWW’||. When the optimization is complete, the attacker can obtain the
training set from the client. However, in SNFL, the client’s model has been converted and calibrated
to SNN before communication.

for federated learning. Recent progression in neuromorphic computing, especially the conversion
from traditional artificial neural networks (ANNG5) to spiking neural networks (SNNs) (Deng & Gu,
2020), provides a pair of source ANN and target SNN that both achieve high accuracy, with the
source ANN not recoverable from the resulted SNN (Li et al., 2021b). This property fits naturally
with the demand for privacy protection in federated learning. Indeed, if we train ANNSs on clients
and only send the converted SNNs with partial parameters to the server for aggregation, we can
then expect to obtain a feasible privacy-protected FL algorithm with an effective parameter-sharing
paradigm. In addition, such an ANN-SNN conversion is lightweight and performance-preserving
(or even performance-improving) by careful design. Fig. 1 illustrates the pipeline of our proposed
method.

Besides the natural feasibility of SNNs (Esser et al., 2016; Kim et al., 2019), this synergistic
framework also brings two additional benefits that are special for federated learning. First, in contrast
to existing noise injection methods (e.g., differential privacy Geyer et al. (2017)), our ANN-SNN
conversion process is optimized to improve performance by fine-tuning SNN’s weights rather than
trading off performance drop versus noise level. As a result, our method is able to achieve even
better performance against standard federated learning. Second, the SNN emits discrete spikes and is
not differentiable, thus the induced synergistic FL could be more robust to small perturbations and
adversarial attacks like white-box attacks (Liang et al., 2021). Our contributions are summarized as
follows:

* Innovation/Privacy: We design a federated learning framework where the server and clients run two
different models in a privacy-preserving manner as a new solution. To the best of our knowledge,
our work is one of the first to train different types of neural network models on server and clients.

* Accuracy: Compared to the conventional approach, extensive experiments validate SNFL can
deliver similar or superior accuracy relative to other common methods.

* Effectiveness: Based on the SNFL framework, we analyze the backdoor attack and develop a
method to simply detect it through abnormal SNN thresholds.

2 RELATED WORK

2.1 FEDERATED LEARNING (FL)

In federated learning, each client computes a model update, i.e. gradient, on its local data. While
sharing gradients was assumed to leak little information about the client’s private data, recent papers
(Zhu & Han, 2020; Zhao et al., 2020; Huang et al., 2021) devised "gradient inversion attack" in
which an attacker listening to one client’s communications with the server can begin to reconstruct
the client’s private data. To defend against this, methods such as gradient clipping (Sun et al., 2019),
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perturbing gradients (Zhu & Han, 2020), and robust aggregation (Blanchard et al., 2017; Goryczka &
Xiong, 2015; Yin et al., 2018) are commonly used.

2.2 SPIKING NEURAL NETWORK (SNN)

Conventionally, there are two distinct routes to obtain a deep SNN (Deng et al., 2020):(1) direct
training SNN from scratch, and (2) converting a pretrained ANN to SNN. In this work, we mainly
focus on the conversion-based method. ANN-SNN conversion directly reuses the features learned in
ANN to obtain a performant SNN. However, it requires a trade-off between inference latency and task
performance. Data-based normalization (Diehl et al., 2016) and threshold balancing (Sengupta et al.,
2018) are the basic methods of ANN-to-SNN conversion. Then Rueckauer et al. (2016); Han et al.
(2020) propose the soft mechanism to reduce information loss by membrane potential reset. Recently,
Deng & Gu (2020) analyze the conversion error and propose a shift method to reduce it by half. Li
et al. (2020) propose a light pipeline and an advanced pipeline, which apply layer-wise calibration
algorithms to modify the network parameters to diminish the conversion error, significantly reducing
the required simulation length. We adopt the layer-wise calibration algorithm for high-performance
and low-latency SNN in the SNFL framework.

3 PRELIMINARIES

In this section, we briefly introduce the concept and the baseline method for Federated Learning (FL).
We also point out the privacy issue in FL, which can lead to the leakage of user data.

Federated Learning (FL). FL enables mobile devices to collaboratively learn a shared prediction
model while keeping all the training data on device, decoupling the ability to do machine learning
from the need to store the data in the cloud. Formally, assuming we have K clients, the optimization
objective in FL is to solve the following empirical risk minimization problem:

K
. 1
min L(0) = 4 ;zi(e), where £;(0) = £ (g, 4oy~ (T4, Y33 0). (1)

Here, 6 is the model parameters vector and ¢; () denotes the loss function of # evaluated on the é-th
client’s dataset D;. (x;,y;) is the input-label pair on D;. The goal of this objective is to achieve
minimum average loss on each client. We assume {Di}f(:l are randomly sampled from Dy, Where
both IID sampling and Non-IID sampling are considered in this work.

To ensure the minimization of average loss on all clients while not sharing the local input data, the
clients will upload their model parameters to the server periodically. A communication round is used
for client upload, server aggregation, and server distribution. Here we introduce the FedAvg (McMa-
han et al., 2017) communication for client-server update.

* In the r-th communication round, each client ¢ uploads it’s local model parameters change AHET) to
the server. The ervser aggregates the local model updates from all participating clients, given by

K
1
(r) _ p(r—1) (r)
0\ =0 + — Eﬂ Ab; 7, 2)

after which the server distributes the aggregated parameters (6(")) to clients.
* Upon receiving the aggregated parameters from server, the clients start their own local learning
using the private datasets, i.e., {D; } £ |, which creates new model parameters update for the next

round AHZ(TH), given by

A@(Hl) =10V Lz, yi)~D; (Ti, Yi, 0m), 3)

where 7; is the learning rate in local learning. The clients usually update multiple iterations with
gradient descent (we only show one update in above equation).
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Gradient-Inversion Attack. Proposed in Zhu & Han (2020), the Deep Leakage from Gradients
(DLGQG) attack can utilize the gradient information to reverse the private local data and the label
information, that is, given the model parameters update Ad; one can obtain the similar (x;,y;) pairs.
This is done by mimicking the real gradient (also the parameters update, see Eq. (3)). Formally,
DLG first randomly initialize a dummy input and a dummy label (2}, y}), and optimize them by
minimizing the discrepancy between real gradients and current gradients, given by

min |[Vol(!,}) — Vol o)l [} + aR(a), )
TY;

where V/l(x;,y;) is the real gradient uploaded to the server. R(z’) is an image prior loss function
with « as the coefficient. The current gradient V/¢(x;, therefore, can be made as close as possible to
the real gradient and generate corresponding input data and label.

So far, some defensive methods have been proposed. For example, Gradient Pruning (Zhu & Han,
2020), Gradient Noise (Zhu & Han, 2020), and Mixup (Zhang et al., 2017) aim to provide less or
distributed information in gradients. However, these methods sacrifice task performance for better
privacy. In this paper, we seek a method for preserving privacy during federated learning while not
jeopardizing its accuracy.

4 METHODOLOGY

In this section, we introduce our method—combining both Artificial Neural Networks (ANNs) and
Spiking Neural Networks (SNNs) for privacy-preserving federated learning.

4.1 SPIKING NEURAL NETWORKS

Compared to artificial neurons i.e., ReLU: max(0, z), spiking neurons are biologically-inspired,
where each neuron maintains a variable dubbed membrane potential v. Here, we describe the
dynamics using the iterative expression of the Integrate-and-Fire (IF) neuron model (Liu & Wang,
2001), which is favorable for ANN-SNN conversion regime (Rueckauer et al., 2016; Han et al., 2020).
Formally, at time step ¢, the IF neuron receives the pre-synaptic input, and then charges the membrane
potential, given by

Vin ifo(t+1) >V,

t) =v(t I(t t) = t+1)=v(t) — s(t 5
o) = o) + 1), s = {¢" XL DEV oy o) -s0, )
where I(t) is the pre-synaptic input calculated by the weights W and the spike s from last layer.
As long as the membrane potential exceeds the firing threshold V3, the neuron will elicit a spike s,
otherwise, it will stay silent. For fired neurons, the membrane potential will be reset by subtraction,

i.e., the third term in Eq. (5). Noting that the threshold Vt(hl) differs between layers, the server can

further apply weight normalization (Diehl et al., 2016) to convert the output {0, Vt(,f)} to a binary
spike {0, 1}.

4.2 SYNERGISTIC NEUROMORPHIC FEDERATED LEARNING

In the conversion from a source ANN to a target SNN, the discrepancy of output activation between
the two networks will accumulate layer-by-layer, resulting in significantly different output at the final
output layer. To address this issue, a layer-wise parameter calibration technique (Li et al., 2021b) is
proposed to adjust the SNN parameters so that its activation frequency gets close to the activation in
the source ANN. Mathematically, denote the average spike rate over time in SNN is s, we can write
the conversion error as e = a — S, where a is the activation in source ANN. For each channel c,
the average activation is then calculated as p.(a) = =7 Y17 | 2?:1 Zc,i,j» Where w, h are the width
and height of the feature. The bias calibration (BC) algorithm computes the spatial mean of the error
term, given by

pe(€) = pe(a@) — pic(8). (6)
Afterwards, ;1.(e) can be added to the c-th channel of bias term b in SNNs. When calculating z..(e),
we need to estimate yi.(a) and p.(8) based on a small calibration dataset (e.g. 128 images), which
is not accessible on the server set. Given that the small calibration dataset is a subset of the client’s
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private dataset and differs between clients, the attacker will be unable to recover every client’s y.(e).
Our framework can take advantage of this algorithm to encrypt the gradient information, therefore
improving privacy in FL. The overall pipeline (Algo. 1) in our SNFL is described as follows:

Client Encryption. Before uploading the parameter updates to the server, the clients convert the
ANN models into SNN models. The conversion first replaces all the ReLLU neurons into IF neurons.
Due to there is no corresponding module in SNN for BN layer, Rueckauer et al. (2017) propose
to absorb the BN parameters to the weight and bias, which can be represented as Wg < W42,
bs < [+ (ba — p)ZL, where Wa,ba are the weight and bias of ANN model, Wy, bs are the
weight and bias of SNN model, p, o are the running mean and standard deviation and +, 3 are
the transformation parameters of the Batch Normalization (BN) layer. Then, all clients run bias
calibration algorithm to update the bias parameters for SNN. Note that each local BC process will
infer its own local model using its private dataset to record some activation, i.e., a; and s; for the i-th
client’s ANN and SNN. The bias parameters can then be calibrated as b’y + bl + u(a;) — u(8;).
Because the curious server couldn’t recover p(a;) — (8;), and that couldn’t recover bg from b,
it couldn’t possibly recover b 4. The BC algorithm has two advantages: (1) the uploaded SNN has
higher accuracy since its parameters are calibrated, and (2) the uploaded parameters are not the
same as the original ANNs, which prevents leakage from gradients. In the sharing step, clients send
parameters to the server, which include the weight (Wg), bias (bis’ ), threshold (V'*) of SNN models
as well as BN layer (7%, 0%, 8¢, u*) of ANN models.

Server Aggregation. In the global communication round, the server will receive the encrypted
parameters from clients. Then, on the server side, we apply FedAvg (McMabhan et al., 2017) (cf:
Eq. (2)) to aggregate the massive clients updates. The server averages parameters uploaded by all
clients to obtain the averaged SNN model (WSS , bg, V) and BN layer parameters (v°, 0, 3%, i),
where the subscript S/A indicates that the parameters are from the SNN or ANN model and the
superscript S indicates that the model is owned by the server. Thus, the aggregated model is also SNN.
Since SNN has discrete spikes, it might be less sensitive to a small amount of random noise, which
leads to the robustness of SNN (Venkatesha et al., 2021). In practice, we find that the aggregation of
SNNs loses less task performance than that of ANNs in most cases. Note that clients do not require
the aggregated SNN’s parameters. So the server has to take an additional step while processing the

W 4 from each client to obtain the parameters that clients require. The server gets W < Wé%

from the i-th client and then applies (c¢f. Eq. (2)) to aggregate all W4 from clients to obtain Wf ,
which is the parameter required by clients. In the sharing step, the server sends W7 ,+°, 0%, 39 1%
to each client.

Server Distribution. Following the FedAvg setting, clients use these parameters updated by the
server to recreate the ANN model and continue to train the ANN using the local dataset. Note that
clients will not receive the updates of bias parameters from the server; rather, they continue to use
their original ANN bias (before calibration) for the next round of training. On the client-side, they
lose less information compared to FedAvg since the bias parameters are kept intact, which helps them
learn a better local model. On the server-side, it always uses SNN model for evaluation.

5 EXPERIMENTS

In FL, it is frequently vital to consider the presence of semi-honest (honest-but-curious) adversaries for
the sake of privacy protection. The adversary is honest in the sense that he/she faithfully follows the
collaborative learning protocol, but he/she may be curious about the training data of other participants.
On the one hand, given the presence of semi-honest partners, private data must be kept as secure
as possible, while a certain amount of information must be transferred across parties for the sake
of learning utility. In this section, we conduct experiments to demonstrate the benefits of SNFL in
protecting privacy and, in most cases, improving accuracy.

5.1 PRIVACY

The parameters that the server can get are AWZ(r) = Wi(r) — Wi(r — 1), AW (r) = Wi(r) —
Wi (r —1), Abi(r) = b'(r) — b*(r — 1)’, where 7 is the global round and i is the i-th client.
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Algorithm 1 Synergistic Neuromorphic Federated Learning (SNFL)

Input:Set of K clients with local datasets; B is the local minibatch size, Fr, is the number of local
epochs, E¢ is the number of Global communication round, and 7 is the learning rate.
Parameter: fs¢ is the global SNN model of server, fs, is the local SNN model of client, f 41, is the
local ANN model of client
QOutput: Well-trained model fsq
Algorithm: MAIN

1: Initialize global SNN model fs¢ and local ANN model f,4; with random weights

2: for round m < 0 to Eg do

3:  Broadcast the weight parameters of current global ANN model w’ € fsq to all clients

4 for Client ¢ + 0 to K do

5 Transplants w’ to local ANN model f4;,

6: for epochn <~ 0to Er do

7: Train f4;, with local private dataset

8: end for

9: Perform ANN-TO-SNN() and obtain fg,
10:  end for

11:  Randomly select P participating clients
12:  Aggregate the parameters of fgy, using FedAvg and obtain fsg
13:  Send fsg parameters to the clients
14: end for
Procedure: ANN-TO-SNN ()
1: foralli =1,2,...,p-thlayers in the ANN do
2:  Collect input data 2(*) output data 2(**+1) in one batch
3:  Get MMSE threshold Vt(,z) using grid search
4:  Get SNN output 5+
5. Compute Error term e(+1) = g(+1) _ 5(+1)
6:  Calibrate bias term b(i) < b(i) + p(ei™h)
7: end for
8: output Converted SNN model

Attack on SNN model: We employ gradient inversion attack (Zhu & Han, 2020) (cf.) Eq. (4) on
LeNet (LeCun et al., 2015) with batch size 1 and optimize for 280 iterations. We use CIFARI10
(Krizhevsky et al., 2010) to evaluate the attack and defense performance. The leaking process is
visualized in Fig. 2 (a). This attack can recover every image from ANN model gradients. However,
when the model is converted into SNN, the attack is rendered ineffective. This is because, as
mentioned in 4.2, SNN replaces the differentiable ReLU neurons into non-differentiable IF neurons.
For SNN, there is no gradient.

Attack on ANN model converted from SNN model: We also consider a case where an attacker
ignores the bias calibration and forcibly converts the SNN model to an ANN model. We employ a
more sophisticated gradient inversion attack (Huang et al., 2021) on ResNet20 (Sengupta et al., 2018)
with a more realistic setting in which the attacker is unaware of the exact batch size. ANN1 —
SNN — AN N2. The difference between AN N2 and AN N1 is the value of bias. As shown in Fig.
2 (b), the images reconstructed by ANN2 are more blurry than the images reconstructed by ANNI.

5.2 ACCURACY

Implementation Details: We perform experiments on widely adopted benchmarks CIFAR10
(Krizhevsky et al., 2010), CIFAR100 (Krizhevsky et al., 2010), and Tiny-ImageNet constructed from
ImageNet (Russakovsky et al., 2015). To simulate federated learning scenario, we randomly split the
training set of each dataset into IV parties, and assign one training party to each client. Namely, each
client owns its local training set. We are interested in different partitions: IID and Non-IID, where the
overall label distribution across clients is the same in the IID setting, whereas class proportions and
the number of data points of each client are unbalanced in the Non-IID setting. Especially, for the
Non-IID setting, we impose data shift as follows (Li et al., 2022): The size of the local dataset | D?|
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Figure 2: Results of gradient inversion attack. The left half shows the attack on ANN model and SNN
model, respectively. The right half shows the attack on ANN model and ANN model reconverted
from SNN model.

Table 1: Accuracy(%) on CIFAR10, CIFAR100, and TinyImageNet test dataset with IID. "P" means
the number of participating clients. "Client Accuracy" shows the mean and variance of all clients’
ANN models. "Server Accuracy" is the accuracy of the server model."S-" means applying SNFL.

Dataset P FedAvg S-FedAvg FedProx S-Fedprox MOON S-MOON SOLO
Client Accuracy

5  94440.06 94.7+0.06 94.6£0.06 95.4+0.05 94.8+0.08 95.3+0.04 89.6+0.18

10 92.0+£0.11 93.1+0.07 91.4+0.08 95.1+x0.09 92.9+0.07 94.7+0.09 84.2+0.89

CIFARID 15 264018 91.120.08 84.8+0.10 95.0£0.12 89.5:0.09 94.4+008 79.7+1.07
S 70.120.08 7145022 703%0.12 7282039 7158024 7228056 524088
ClpARloe 10 6708003 689:017 6758019 7282018 6921010 7213045 40.240.46

15 60.2+0.26 66.8+0.19 59.7+0.11 71.7£0.22  67.2+0.21 71.74#0.30 31.4+2.50

5 39.0£0.02 43.7+£0.01 38.2+0.01 41.7£0.00 25.2+0.12 34.6+3.08 19.5+1.45

10 31.0+£0.01 41.3x0.03 29.9+0.00 39.2+0.02 21.5+0.38 34.9£1.22 9.38+0.66

15 22.1+x0.02 35.9+0.04 26.5£0.02 37.7£0.31 18.2+0.24 32.8+0.84 5.31+0.38
Server Accuracy

Tiny-ImageNet

5 045 952 946 952 94.9 944 7
0 922 953 916 95.1 928 94.6 /
CIFARID 5 o' 94.8 85.0 95.0 89.5 943 /
s 702 731 704 735 722 736 7
0 621 723 678 735 69.6 73.0 /
CIFARIO0O 5 (g 724 60.1 72.0 68.0 722 /
5389 34 332 15 305 352 7
TinvImageNe 10 311 413 30.0 38.7 25.9 355 /
y-Imag 15 229 3590 26.6 359 209 334 /

varies across clients. We sample ¢ ~ Dir () and allocate a ¢; proportion of the total data samples
to client i. We should note that if 3 is set to a smaller value, then the partition is more unbalanced.
we use ¢ ~ Diry (/) to denote such a partitioning strategy.

For all the experiments, we use ResNet20 (Sengupta et al., 2018) architecture and SGD optimizer
with a weight decay of 1e-5 and momentum of 0.9. The adopted learning is 0.1, which is multiplied
by 0.1 at communication rounds 61 and 96. We set the total global communication rounds F, at 100
and train each client for £y = 5 epochs in every global communication round. The simulation length
T of SNN model is 256.

Baselines: (1) FedAvg (McMahan et al., 2017): it involves multiple local random gradient updates
on the client nodes, followed by server model averaging updates. (2) FedProx(Li et al., 2020): it
improves the local objective based on FedAvg and introduces an additional Lo regularization term in
the local objective function to limit the distance between the local model and the global model. A
hyper-parameter 1 is introduced to control the weight of the Lo regularization. (3) MOON (Li et al.,
2021a): it corrects the local updates by maximizing the agreement of representation learned by the
current local model and the representation learned by the global model. (4) SOLO: each client uses
local private data to train its own model without communicating with others.
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Table 2: Accuracy(%) on CIFAR10 and CIFAR100 with different degrees of Non-IID. There are 10
participating clients.

Dataset Partition FedAvg S-FedAvg FedProx S-FedProx MOON S-MOON
g~ Dirn(2.0)  92.15 94.74 92.54 94.87 92.59 94.74
q ~ Diry(1.0)  90.83 94.6 91.8 94.45 91.83 94.6
CIFAR10 q ~ Dirn(0.5)  88.67 86.88 89.97 93.88 90.95 93.38
q ~ Dirn(2.0) 68.81 72.54 68.52 72.4 69.07 73.95
q ~ Diry(1.0) 66.3 72.47 67.58 71.78 70.27 73.02
CIFAR100 ~ Dirn(0.5)  68.17 71.47 67.81 71.63 70.23 72.29

Table 3: The impact of bias. "v/X" denotes whether to do bias calibration (BC), or whether the server
shares its bias with clients (Bias Back). "T=" means the simulation length T of SNN model. The
dataset is CIFAR10.

BC Biasback T=64 T=128 T=256

X X 9446 95.08 95.14
X v 944 9482  95.00
v X 94.75 95.05 95.14
v 4 94.51 9491  95.08

Validation in the IID Case: Since a real-world federated system involves many devices, a federated
learning model must be scalable with the number of devices. In this experiment, we verify the cases
of 5, 10, and 15 clients, respectively. As shown in Table. 5.1, we present the test accuracy on all
datasets before and after applying SNFL. From a horizontal perspective, it can be observed that
applying SNN-conversion increases accuracy for all baseline methods, even with an accuracy gain of
up to 13.79%. This is particularly inspiring because SNPL requires no modification to the original
federated training process. One can easily get considerable accuracy profits by simply post-processing
the trained global model. Comparing the accuracy gains of different methods after applying SNFL
and whole data calibration, we find that FedProx and MOON have the greatest improvement. From
the vertical, the accuracy of baseline methods using SNFL drops more slowly as the number of clients
increases. For example, on CIFAR100, when 5 clients participate, the accuracy of S-MOON is 0.71%
higher than MOON, while the difference between S-MOON and MOON increases to 4.46% when
15 clients participate. This reflects the SNFL benefits that are better suited to the federated learning
situation with a large number of clients.

Validation in the Non-IID Case: A key challenge in FL is the Non-IID data among the parties. As
shown in Table. 5.2, although accuracy decreases to varying degrees as [ decreases, SNFL can still
increase the performance of model, with MOON and Fed seeing the most benefit. For instance, on
CIFARI10, when 8 = 0.5, S-FedProx is 3.91% higher than FedProx and S-MOON is 2.43% higher
than MOON.

5.3 BIAS ANALYSIS

Compared to FedAvg, SNFL has two different operations on bias. (1) In the conversion between
ANN and SNN, one client uses its local private data to calibrate the SNN model’s bias. (2) When
sending back server’s model to clients, standard FL returns all parameters of server’s model including
bias, but the server of SNFL keeps bias as a private key and does not share it with clients. Since both
clients and server use bias as their private key, SNFL secures the privacy of all parties to some extent.
To investigate the effect of the above two operations on bias, we design four ablation studies (Table.
5.2). It can be seen that the extra BC operations have no significant effect on the final server accuracy
when clients use their own saved bias instead of the server’s bias. There is a slight increase in accuracy
if the server does not share its bias with clients. In other words, we are protecting privacy while
maintaining the performance of the model, rather than trading precision for privacy as in previous
studies.
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Figure 3: Bias and threshold analysis. (A) The L2 distance between the true bias and the inferred bias.
(B) Scatter image for the thresholds of the last two layers. 2/10 clients are attack clients. (C) The
thresholds comparison between the normal clients and the poisoned clients. The dataset is CIFAR10.

Then, we simulate an honest but curious server, which attempts to infer one client ANN’s full
parameters. In this experiment, we used 10 clients with IID and Non-IID (g ~ Diry(0.5)). Since
the malicious server cannot directly access the bias of ANN in SNFL, it can only calculate a new
bias using the bias of SNN and ANN’s BN parameters. Fig. 3 (A) shows the L2 distance between
the true bias and the inferred bias. In the IID case, the disparity between them is much greater than
in Non-IID case, showing BC needs more huge bias shift (more huge difference between ANN and
SNN) when layer-by-layer calibration in the IID case.

5.4 BACKDOOR ATTACK AND DETECTION

In federated learning, backdoor attack (Bagdasaryan et al., 2020) attempts to cause the model to make
wrong judgments about data with a certain characteristic (trigger), but the model does not affect on
the main task. In other words, the attacked model still exhibits high accuracy on the test dataset, but
its output will be different from the output of the clean model when input activates the backdoor
trigger. Since the server cannot access the client’s training data in federated learning, it is difficult to
determine whether the global model has been poisoned through data detection.

In recent paper (Bhagoji et al., 2019), the server identifies the abnormal client based on clustering or
mean detection on the model weight and bias. However, these detection methods are cumbersome
since the number of parameters in ANN is enormous, e.g., the number of parameters in ResNet20
has reached over 11 million. For SNFL, the server adopts the SNN model, which has a special type
of parameter called "threshold". As shown in Fig. 3 B and C, we find that the thresholds (only 20
thresholds in ResNet20, including the converted pooling layer) of poisoned clients and normal clients
are significantly different. The distance between the normal clients’ threshold set and the cluster
center is less than 17.62, whereas the distance between the poisoned client and the cluster center is
more than 103.53, making the distinction very clear.

6 CONCLUSION

In this paper, we propose that SNFL, a simple FL framework, protects privacy while improving model
accuracy in most cases. To the best of our knowledge, this is the first paper that allows clients and
server to use different types of neural network models. SNFL can be thought of as a lightweight
encryption component add-on for any global federated objective. We investigate the root cause of its
privacy from both theoretical and experimental perspectives and conduct experiments to demonstrate
that the framework does not jeopardize the model’s performance. Empirical results demonstrate that
SNFL can result in both more privacy and more accurate models compared with the strong baseline.
Our work suggests several interesting directions for future studies, such as exploring the applicability
of SNFL to other attacks and its ability to migrate to other algorithms.
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A APPENDIX

A.1 IMPACT OF NUMBER OF CLIENTS

The total number of clients is one aspect of scalability that influences the performance of a federated
learning system. To study the impact of client count, we use the case with CIFAR10 in IID setting.
We observe, in Table. A.1, that there is a sharp drop as the number of clients increases in standard FL.
However, in SNFL, the server model accuracy lowers just little as show in Fig. A.1.

Table 1: Impact of Number of Clients-CIFAR10

Dataset Party FedAvg S-FedAvg FedProx  S-Fedprox MOON S-MOON
5 94.3840.06 94.71+£0.06 94.59+0.06 95.40+0.05 94.80+0.08 95.26+0.04
10 92.0240.11 93.09+0.07 91.39+0.08 95.11+£0.09 92.90+0.07  94.73+0.09

Clients |5 2¢'6240.18 91.10£0.08 84.76£0.10 95.0120.12 89.5040.10 94.36:+0.08
60  57.0120.18 90.14+0.02 73.46+0.05 90.88+0.02 59.68+0.22 90.57+0.038
5 94.45 9502 94.64 95.18 94.85 9444
Server 10 92.19 95.25 91.6 95.07 92.81 94.62
15 88.80 94.76 84.97 94.98 89.5 94.27
60 57.62 90.31 73.94 91.00 60.48 90.66
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Figure 1: Impact of Number of Clients-CIFAR10

A.2 SENSITIVITY TO STRAGGLERS

Because real-world networks are inherently unstable, assuming updates communication would be
effective from all selected devices is impracticable. Hence, the model needs to be robust enough to
handle devices that fail to communicate updates. These devices are referred to as stragglers. In this
section, we analyze the impact of stragglers on the performance of final SNN model. We use a case
with a total of N = 60 clients. In each round, we randomly select PN clients upload parameters
to server. We consider different levels of probabilities and summarize in Table. A.2. We found that
when the number of stragglers decreased, the accuracy of FedAvg increased first and subsequently
declined to 57.62%, whereas the accuracy of S-FedAvg increased amazingly consistently to 90.31%.

Table 2: The accuracy with various client drop probabilities.

Probability 0.1 0.2 0.5 0.7 1
FedAvg 65.07 66.05 68.16 6576 57.62
S-FedAvg 7329 83.53 89.87 90.13 90.31

A.3 SENSITIVITY TO THE LENGTH OF SIMULATION T

The forwarding pass in SNN is repeated for 7" steps to get the final result, where the final result is the
expectation of the ultimate layer’s output across 1" steps. This allows the flexibility of adjusting 7" to

12
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balance between the latency and accuracy of SNNs for different application scenarios. We conduct
experiments on CIFAR10 with different simulation length 7', as shown in Table. A.3. We discovered
that increasing T improved SNN accuracy to a certain extent. However, as 7' increases to a certain
point, its influence on accuracy decreases.

Table 3: The accuracy with different SNN simulation steps.

Simulation steps 64 128 192 256 320
S-FedAvg 89.26 90 90.23  90.31 90.26
S-FedProx 90.52 90.96 90.94 91 90.99
S-MOON 89.95 90.51 90.66 90.66 90.74
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