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Abstract

Explaining the behavior of agents operating in sequential
decision-making settings is challenging, as their behavior is
affected by a dynamic environment and delayed reward. In
this paper, we study a new way of combining local and global
explanations of sequential decision-making agents in order to
help understand their behavior. Specifically, we combine re-
ward decomposition, a local explanation method that exposes
agent preferences, with HIGHLIGHTS, a global explanation
method that shows a summary of the agent’s behavior in “im-
portant” states. We conducted a user study to evaluate the in-
tegration of these explanation methods and their respective
benefits. Our results show that local information in the form
of reward decomposition contributed to participants’ under-
standing of agents’ preferences, while HIGHLIGHTS sum-
maries did not lead to an improvement compared to a baseline
showing frequent agent trajectories.

Introduction
Artificial Intelligence (AI) agents are being deployed in a va-
riety of fields such as self- driving cars, medical care, home
assistance and more. As this field develops the need of un-
derstanding this agents behavior has become clear.

In this work, we focus on explaining the behavior of
agents that operate in sequential decision-making settings,
which are trained in a deep reinforcement learning (RL)
framework. We study the effectiveness of providing users
with global and local explanations on the behavior of RL
agents. Global explanations explain the general behavior of
the model, e.g., by describing decision rules or strategies. In
contrast, local explanations try to explain specific decisions
that an agent makes. In this paper, we will explore the com-
bination of global and local explanations. Specifically, we
focus on policy summaries as a global explanation method,
and reward decomposition as the local explanation method.
Policy summaries aim to convey the strategy of the agent by
demonstrating its behavior in a selected set of world states
(Amir and Amir 2018). Reward decomposition aims to re-
veal the agent’s reasoning in particular decision points by
decomposing the rewards to sub-rewards (e.g., a reward for
driving in the right lane, a reward for driving fast, etc.), al-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lowing to compare the tradeoffs between different actions
with respect to reward types (Juozapaitis et al. 2019).

We conducted an experiment in which participants were
randomly assigned to one of four different combinations of
(1) having or not having a local explanation (reward decom-
position) and (2) having a global (strategy summarization
HIGHLIGHTS (Amir, Doshi-Velez, and Sarne 2019)) expla-
nations or having random states chosen (Table 3). We used a
highway domain, where the RL agent controls a self driving
car. On our main task the participants’ needed to determine
the agents’ preference for different agents they saw. We also
asked the participants to rate their confidence in their an-
swers and we measured their satisfaction using Hoffman’s
explanation satisfaction scale (Hoffman et al. 2018).

Our results show that the use of reward decomposition as
a local explanation helps users comprehend the agents’ pref-
erences. Moreover, The different explanation methods did
not result in differences in terms of participants’ confidence
or satisfaction even though understanding graphs might be
more difficult then video summarization.

Related Work
In this section, we review related work from two areas re-
lated to this article: (1) explanations for reinforcement learn-
ing agents, and (2) explanations for self-driving cars.

Explainable Reinforcement Learning
Explainable reinforcement learning methods generate expla-
nations for agents and policies in sequential decision making
scenarios. Broadly, there are two classes of explanations: lo-
cal explanations which explain why a particular action was
taken, for example (Madumal et al. 2020; Tabrez, Agrawal,
and Hayes 2019; Hilton et al. 2020; Dodson, Mattei, and
Goldsmith 2011). In many RL methods the Q -value is used
in order to select actions. However, it does not supply infor-
mation with respect to the factors that contribute to the ac-
tion choice. Juozapaitis et al. (Juozapaitis et al. 2019) used
reward decomposition to get insights on these factors. De-
composing the environment’s reward into a sum of meaning-
ful reward types enables to provide explanations on which
action has an ‘advantage’ over other actions. As well as this
paper we also use reward decomposition as a mean of pro-
viding explanations.



Anderson et al. (Anderson et al. 2019) present a user study
that investigate the impact of explanations on non-experts’
understanding of reinforcement learning agents. They inves-
tigate both a common RL visualization, saliency maps, and
reward decomposition bars. They designed a four-treatment
experiment to compare participants’ mental models of an RL
agent in a simple Real-Time Strategy game. Their results
show that the combination of both saliency and reward bars
were needed to achieve a statistically significant improve-
ment in mental model score over the control.

The other class of explanation is global explanations
which attempt to describe the high-level policy of the agent
(Booth, Muise, and Shah 2019). An example for global ex-
planations is strategy summarization (Amir, Doshi-Velez,
and Sarne 2019) which demonstrates an agent’s behavior in
carefully selected world states. The states can be selected
based on different criteria, e.g., state importance (Amir and
Amir 2018) or using machine teaching approaches (Lage
et al. 2019).

The combination of local and global explanations has
been studied prior. Similarly to our work, Huber et al. (Hu-
ber et al. 2020) combined local and global explanation meth-
ods in RL agents. They used strategy summaries (global ex-
planation) with saliency maps (local explanation). Since this
study showed that using saliency maps as local explanations
is lacking, we study the integration of reward decomposition
as local explanations, together with policy summaries.

Explaining in the domain of self driving cars
In recent years, the importance of explainability in the field
of self driving cars is receiving more attention. Wiegand et
al. (Wiegand et al. 2019; Koo et al. 2015) used visualizations
to explain self-driving vehicle behavior. Shen et al. (Shen
et al. 2021) created a framework which aims to help users of
autonomous vehicles preview autopilot behaviors of updated
control policies prior to purchase or deployment in order in
order for the users to trust the self-driving technology. Our
work is not specific to the driving domain, but can also be
applied to it, as done in our user study.

Background
In this section, we review the technical background underly-
ing the current work. We first describe reinforcement learn-
ing and deep reinforcement learning. We then describe the
two explanation methods that this work integrates: reward
decomposition and policy summaries.

Reinforcement Learning
Reinforcement learning is a computational approach to un-
derstanding and automating goal - directed learning and
decision making (Sutton and Barto 2018). Reinforcement
learning uses a formal framework defining the interaction
between a learning agent and its environment in terms of
states, actions, and rewards. This is done by estimating a Q-
value function.

We assume a Markov Decision Process (MDP) setting.
Formally, MDP is a tuple < S,A,Ra, T r >:

• S: Set of states.

• A: Set of actions.
• Ra: The reward received after transitioning from state s

to state s′, due to action a.
• Tr: A transition probability function Tr(s, a, s′) →
[0, 1]s.ts, s′ ∈ S, a ∈ A defining the probability of tran-
sitioning to state s′ after taking action a in s.

An agent’s policy π(s, a) is a probability distribution over
the set of possible actions in a given state. The Q-function
is defined as the expected value of taking action a in state s
under policy π throughout an infinite-horizon while using a
discount factor γ.
Qπ(s, a) =π [

∑inf
t=0 γ

tRt+1|st = s, at = a]. Q∗(s, a)
denotes the Q-function of the optimal policy π∗ meaning,
π∗(s) = argmaxa∈AQ

∗(s, a).

Deep Reinforcement Learning Deep reinforcement
learning uses deep neural networks to approximate any
of the components of reinforcement learning such as the
Q-value, policy and model (state transition function and
reward function).

One common approach is using a deep Q network (DQN).
DQN is a multi-layered neural network that for a given state
s and action a outputs a vector of action values Q(s, a; θ),
where θ are the parameters of the network. For an n-
dimensional state space and an action space containing m
actions, the neural network is a function from Rn to Rm.
The DQN contains two networks, the target network and the
value network. The target network, with parameters θ−, is
the same as the value network except that its parameters are
copied every τ steps from the value network i.e. θ−t = θt and
kept fixed on all other steps. The target used by DQN is,
Y DQN
t ≡ Rt+1 + γmaxaQ(St+1, a; θ

−
t ). The estimation

of Q is done by minimizing the sequence of loss functions:
Li = Es,a,r,s′ [(y

DQN
i −Q(s, a; θi))

2] Moreover, there is an
experience replay, observed transitions are stored for some
time and sampled uniformly from this memory bank to up-
date the network.

In this work, we use the Double Deep Q Net-
work architecture. In Double DQN we replace
the target Y DQN

t with Y DoubleDQN
t ≡ Rt+1 +

γQ(St+1, argmaxaQ(St+1, a; θt), θ
−
t ). The update to

the target network stays unchanged from DQN, and remains
a periodic copy of the value network (Van Hasselt, Guez,
and Silver 2016).

Reward Decomposition
Originally, reward decomposition was used in order to ex-
pedite the learning rather than giving explanations. Van Sei-
jen et al. (Van Seijen et al. 2017) proposed the Heirarchi-
cal Reward Architecture (HRA) model. HRA takes as input
a decomposed reward function and learns a separate value
function for each component reward function. Because each
component typically only depends on a subset of all features,
the corresponding value function can be approximated more
easily by a low-dimensional representation, enabling more
effective learning.

Prior work has suggested the use of reward decomposi-
tion as a local explanation. Raw Q - values do not give any



insight into the positive and negative factors contributing to
the preferences since the individual reward types are mixed
into a single reward scalar. We can explicitly expose the dif-
ferent types of rewards to the agent via reward decomposi-
tion (Juozapaitis et al. 2019).

The MDP formulation can incorporate reward decompo-
sition by specifying a set of reward components C and defin-
ing a vector-valued reward function →R : S x A → R|C|,
where Rc(s, a) is the reward for component c ∈ C. The
objective remains the same, to optimize the overall reward
function R(s, a) =

∑
c∈C Rc(s, a). However, we can de-

fine vector-valued Q-function →Qπ , where Qπ
c (s, a) gives

action values that account only for rewards related to compo-
nent c. As a result of these definitions, the overall Q-function
also decomposes since Qπ(s, a) =

∑
c Q

π
c (s, a).

Policy Summaries
“Agent strategy summarization” (Amir, Doshi-Velez, and
Sarne 2019) is a paradigm for conveying the global be-
havior of an agent. In this paradigm, the agent’s policy is
articulated by a carefully selected set of world states that
conveying the agent’s behavior. The goal in strategy sum-
marization is choosing the subset of state-action pairs that
best describes the agents policy. In a formal way, Amir
& Amir (Amir and Amir 2018) defined the set T =<
t1, ..., tk > as the trajectories that are included in the sum-
mary, where each trajectory is composed of a sequence of
l consecutive states and the actions taken in those states,
< (si, si), ..., (si+l−1, ai+l−1) >. Since it is not feasible
for people to review the behavior of an agent in all possible
states, k is defined as the size of the summary e.g |T | = k.

In our work we use a summarization approach called
HIGHLIGHTS (Amir, Doshi-Velez, and Sarne 2019) that
extracts “important” states from execution traces of the
agent. An important state is denoted as I(s) and is defined
as: I(s) = maxaQπ

(s,a) − minaQπ
(s,a). According to this

formulation, a state is considered important if there is a large
gap between the expected outcome of the best and worst ac-
tion available to the agent in the state. For example, a car
reaches a crossroads, choosing one path will lead the car to
a congested road while the other path will lead to a quick
arrival. The crossroads will be an important state since the
action chosen in that state will have a significant impact on
arrival time.

Integrating Policy Summaries and Reward
Decomposition

In this section, we describe the framework and the architec-
ture used in this study to integrate global and local explana-
tions.

Neural Network Architecture
We decomposed the reward function R into |C| reward func-
tions: R(s, a, s′) =

∑|C|
c=1 Rc(s, a, s

′)∀s, a, s′, where in our
study we decided to set |C| = 3 for the basic case that each
reward function has only one reward type that is positive
(right lane, change lane and high speed). Since each sub-
reward c has a different policy, it has also its own Q-value

Figure 1: Neural network with three heads

function, Qc. In general, different policies can share mul-
tiple lower-level layers of a Double DQN. Therefore, the
combined weights of the agents can be describe by a single
vector θ. The combined network that represents all Q-value
functions is called the Hybrid Reward Architecture (HRA)
(Van Seijen et al. 2017). The actions that are selected for the
HRA are based on the sum of the agent’s Q-value functions:
QHRA(S,A; θ) :=

∑|C|
c=1 Qc(s, a; θ)∀s, a

Alternatively, the collection of agents that have one type
of reward can be viewed as a single agent with multiple
heads, such that each head calculates the action-values of
a current state under his reward function. Since the sum of
all heads should be equivalent to the original neural net-
work there are small adjustments that needed to be made,
e.g., the sum of the normalization of each head should
be equal to the normalization of the original neural net-
work. Each head calculates it’s loss function i.e. Li(θi) =

Es,a,r,s′ [
∑|C|

c=1(y
DoubleDQN
c,i −Qc(s, a; θi))

2].
We decomposed the reward function into three different

reward functions, one per each reward type. The networks
input is an array of size 25 (5X5) that represents the state.
This is followed by two fully connected hidden layer of
length 256. The last layer is connected to three heads (Fig-
ure 1). Each head consists of a linear layer and outputs a
Q-value array in length of 5 that contains the following: lane
left, idle, lane right, faster, slower. In addition, each head
computes a loss function by bellman residual and the loss
function of the neural network is the sum of all three.

Integrating HIGHLIGHTS with Reward
Decomposition
We combine HIGHLIGHTS as a global explanation with re-
ward decomposition as a local explanation. We used HIGH-
LIGHTS to find the most important states in each episode.
For each state that was chosen, we created the reward de-
composition bars that depict the Q-values for each action in
the chose state.

Sanity Check
We first wanted to ensure that the changes made to the neural
network architecture did not create an inherent problem and
resulted in learning comparable to that of an agent trained
without decomposed rewards. To this end, we compared the



cumulative rewards of two RL agents that differ only by
their neural network structure and the normalization. Table
1 presents the main parameters that where used for each RL
agent. The results show that the average reward of a RL
agent with multiple heads is in the same range as a RL agent
that had an original neural network (see Table 1). We can
conclude from this check that in our domain using reward
decomposition did not harm the performance of the agent.

Empirical Methodology
We conducted a user study in which participants were shown
videos or images of four different agents. For each agent,
they were asked to rank the reward of different actions the
agent can take being that the reward preference reflects the
agents strategy.

Experimental domain and agent training
We used a multi-lane highway environment (as seen in the
top part of Figure 2) for our experiments. The environment
allows us to control different variables such as the amount of
vehicles, vehicles density, rewards, speed range and more.

In the environment, the RL agent - a self driving car- is
trained using a double DQN architecture. The model esti-
mates the state-action value function and produces a greedy
optimal policy. The objective of the agent is to maximize
its reward by navigating a multi-lane highway that includes
other vehicles. Positive rewards can be given for each of the
following actions: changing lanes (CL), speeding up (SU)
and moving to the right most lane (RML). We trained four
RL agents in this domain which differ in their policies.

1. The Good Citizen - Highest reward for being in the right
lane, next to change lane and lastly to speed up.

2. Fast And Furious - Highest reward for speeding up, then
to change lanes and lastly to be in the right most lane.

3. Dazed and Confused - Highest reward for changing
lanes, next to be in the right most lane and lastly to speed
up.

4. Basic - Reward for being in the right most lane.

Common to all agents, when crashing a negative reward
of -3 is given, and no future rewards can be obtained due
to ending the episode. The settings of the rewards for the
different agents that we used are summarized in Table 2.

Each agent was trained for 2,000 episodes and each
episode included 80 time stamps (or fewer if the agent
crashed). In each time stamp the agent makes a decision,
i.e., an action. The product of each episode is a video that
describes the agent’s behavior (trace of actions).

Our implementation is based on an open source highway
environment and RL agents1.

Study Design
Empirical domain. We used a highway simulator environ-
ment (as seen in the upper part of Figure 2) for our exper-
iments. We chose this environment for two reasons. First,

1https://github.com/eleurent/highway-env, https://github.com/
eleurent/rl-agents

basic traffic laws are known to most adults and therefore no
additional domain knowledge was necessary to understand
using this domain. Second, it is easy to train agents that dif-
fer qualitatively in their behavior by modifying the reward
function.

Experimental conditions. In order to evaluate the impact
of combining global and local explanations, as well as each
type individually, we assigned participants to one of four
different conditions (as shown in Table 3). We set k = 8,
the size of the summary we compute using HIGHLIGHTS
therefore, all participants were shown a summary of the
agents behavior that is composed out of 8 different videos
or images regarding the specific agent. More specifically,
participants that were in conditions including RD method
received images while the other received videos. The sum-
maries were chosen through different methods as follows:

• Frequency sampling summaries (FS): In this condition,
we randomly selected states from the simulations of the
agent. Since each state has the same probability of be-
ing chosen, in practice states that appear more frequently
had more chances of being selected and are more likely
to appear in the summary. Therefore, this is equivalent to
selecting states based on the likelihood of their appear-
ance. Moreover, to ensure that the summary is not par-
ticularly good or particularly bad we created 10 different
summaries of this form.

• Highlight Summaries (H): In this condition, partici-
pants were shown summaries that were generated by the
HIGHLIGHTS algorithm.

• Frequency sampling summaries + Reward decomposi-
tion (FS+RD): In this condition, participants were shown
images of states that were generated by the likelihood
based summaries. Each chosen state was shown using an
image along with a reward decomposition bar plot that
represents the Q-values of the different components for
each available action in the chosen state, as shown in Fig-
ure 2 .

• Highlight + Reward decomposition (H+RD): In this con-
dition, participants were shown images of states that
were selected by the HIGHLIGHTS algorithm. However,
since in this condition participants are shown images,
they only see the most “important” state, meaning that
they did not get the context to that state as the HIGH-
LIGHT algorithm provides. These are the same states
that appeared in the H summaries. For each state (Fig-
ure 2), a reward decomposition bar that matches the state
depicted in the image was shown along with the image.

After training each agent for 2,000 episodes we then cre-
ated the same amount of simulations that we stored videos
of traces from which we sampled

Procedure. At first, participants were given an explana-
tion regarding the domain of the experiment. Second, they
were given a brief explanation about reinforcement learning
and specifically about q-value (the explanation were given
in layperson vocabulary and did not go into details). Lastly,
participants where given information about the type of ex-
planation they will see in the survey and an example. In



Original Multi heads
Type Multi Layer Perceptron Multi Layer Perceptron

Method Epsilon Greedy Epsilon Greedy
Loss function L2 L2

Duration of each episode 40 time stamps 40 time stamps
Number of lanes 4 4

Number of vehicles 30 30
head 1 right lane=5

right lane=5 head 1 high speed=0
head 1 lane change=0
head 2 right lane=0

Reward high speed=5 head 2 high speed=5
head 2 lane change=0
head 3 right lane=0

lane change=5 head 3 high speed=0
head 3 lane change=5

Normalization [0,1] [0,1/3]-each head
Number of episodes 2000 2000

Average result of reward 38 39

Table 1: Main values and results of RL agent with original neural network vs. multi head neural network

Figure 2: The mean success of all agents by conditions

CL SU RML
reward reward reward

The Good Citizen 3 1 8
Fast and Furious 5 8 1

Dazed and Confuse 8 1 5
Basic 0 0 15

Table 2: The settings of the four agents.

order to keep the conditions as similar as possible, all par-
ticipants were given the same amount of information and
knowledge prior to beginning the survey tasks. Moreover,
at the end of each instructions phase the participants were
asked to complete a quiz, and were only allowed to proceed
with the survey after answering all questions correctly. Par-
ticipants were compensated as follows: they received a $3
base payment, and an additional bonus of 10 cents for each
correct answer.

Task. The participants’ task was to assess the preferences
of four different agents (self-driving cars) based on the pro-
vided explanations of the agents’ behavior. The ordering
of the agents was random. Specifically, participants where
asked to rank which of a pair of options (e.g., high speed vs.
driving in the right lane) the agent prioritizes or whether it is
indifferent between the options. This was done for each pair
of reward components.

• high speed vs. driving in the right lane
• driving in the right lane vs. changing lanes
• changing lanes vs. high speed

Participants were then asked to rate their confidence in
each of their answers regarding the agents’ preferences on a
scale from 1 to 5 where 1 is “not confident at all” and 5 is
“very confident”. Lastly, participants completed several ex-
planation satisfaction questions adapted from the question-



naire proposed by (Hoffman et al. 2018). The questions are
the following:
1. The videos\ images helped me to recognize agent be-

haviours
2. The videos\ images contain sufficient detail for recog-

nizing agent behaviours
3. The videos\ images contain irrelevant details
4. The videos\ images were useful for the task
5. The specific scenarios shown in the videos\ images were

useful for the task.

FS summaries Highlights
No RD FS H

RD FS+RD H+RD

Table 3: The four study conditions.

Participants. We recruited participants through Amazon
Mechnical Turk (N = 164). We excluded participants who
did not answer the attention question correctly, as well as
participants who completed the survey in less than 7 min-
utes or in less than two standard deviations from the mean
completion time in their condition.

After screening, we had 127 participants (mean age = 36
years, 58 female, all from the US, UK, or Canada). Partici-
pants were randomly assigned to one of the four conditions.

Results
We found that reward decomposition significantly improved
participants’ ability to asses the agents’ preferences, as
shown in Figure 3. When breaking down correctness rates
by agents, we find that RD was beneficial for assessing all
four agents (see Figure 4). We report the mean values and
the 95% confidence interval (CI) computed using the boot-
strap method. In all plots the error bars correspond to the
95% confidence intervals.

In addition, our results show that the combination of
H+RD helped asses the agents preferences when the dif-
ference between the reward types was minor. For exam-
ple, when assessing the agent “Fast and Furious”, that was
trained according to the rewards of 8 points for speed up vs.
5 points for changing lanes, participants who where shown
H+RD succeeded 79% of the times compared to participants
in conditions FS+RD, FS or H that succeeded 61%, 8% and
14% respectively. This indicates that even though our over-
all results do not show that the combination of H+RD is sig-
nificantly better there were cases in which this combination
significantly helped.

We did not find differences between conditions with re-
spect to participants’ confidence. We checked the mean con-
fidence rating the participants assigned for each agent in a
scale of 1 – 5. As seen in Figure 5, for every condition
the confidence of the participants is above neutral rating.
When assessing participants’ satisfaction, we also did not
find differences between the conditions. Thus, while partici-
pants’ objective performance was better with RD compared
to video-based policy summaries, this did not lead to an in-
crease in the subjective measures.

Figure 3: The mean success of all agents by conditions

Figure 4: The mean success for each agent by conditions

Figure 5: The mean confidence for all agents by conditions

Figure 6: The mean satisfaction from explanations by con-
ditions



Discussion and Future Work
With the progress of AI, circumstances which require people
to understand and trust AI agents are more likely to appear.
This paper presented a new approach for understanding RL
agents. Experimental results show that RD helps users un-
derstand the agents’ decision making policy, specifically, it
helped users analyze the agents’ preferences.

Our results do not align with the results of prior work
(Huber et al. 2020). Huber et al. found that HIGHLIGHTS
worked and adding saliency maps as a local explanation did
not add much, while in our study local explanations (RD)
where more important than the global explanation. Our hy-
pothesis as to why HIGHLIGHTS did not contribute to the
success of the participants is since we set k to high. The do-
main that we choose is limited in the number of different
scenarios we can simulate. Therefore, when setting the size
of the summary to be to high, even without using HIGH-
LIGHTS the participants were shown enough scenarios that
gave a good enough picture of the agents. Another hypoth-
esis is that HIGHLIGHTS was shown to work when par-
ticipants’ were asked to compere between different agents
while in our study we asked participants’ to comer between
different actions of the same agent

As for future work, we note the following possible direc-
tions: i) testing whether RD can help participants predict the
agents’ actions in unseen states; ii) evaluating the explana-
tions in additional domains; iii) creating a better visualiza-
tion for RD that can contain the same data but in a more
accessible way.
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