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Abstract
Temporal distances lie at the heart of many algo-
rithms for planning, control, and reinforcement
learning that involve reaching goals, allowing one
to estimate the transit time between two states.
However, prior attempts to define such temporal
distances in stochastic settings have been stymied
by an important limitation: these prior approaches
do not satisfy the triangle inequality. This is not
merely a definitional concern, but translates to an
inability to generalize and find shortest paths. In
this paper, we build on prior work in contrastive
learning and quasimetrics to show how succes-
sor features learned by contrastive learning (after
a change of variables) form a temporal distance
that does satisfy the triangle inequality, even in
stochastic settings. Importantly, this temporal
distance is computationally efficient to estimate,
even in high-dimensional and stochastic settings.
Experiments in controlled settings and benchmark
suites demonstrate that an RL algorithm based
on these new temporal distances exhibits combi-
natorial generalization (i.e., “stitching”) and can
sometimes learn more quickly than prior methods,
including those based on quasimetrics.

1 Introduction
Graph search is one of the most important ideas in CS, being
introduced in almost every introductory CS class. However,
classes often overlook a key assumption: that transitions
be deterministic. With deterministic transitions, shortest-
path lengths obey the triangle inequality. This property,
encoded into dynamic programming algorithms, allows one
to search over an exponential number of paths and find
the shortest in polynomial time. This property also allows
for generalization, finding new paths unseen in the data.
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However, in graphs (or, more generally, Markov processes)
with stochastic transitions, it is unclear how to define the
distance between two states such that this distance obeys
the triangle inequality.

A reasonable solution for goal-reaching is to learn tem-
poral distances, which reflect some notion of transit time
between states (Venkattaramanujam et al., 2019; Savinov
et al., 2018; Durugkar et al., 2021; Ma et al., 2023b; Har-
tikainen et al., 2019). However, simply defining distances as
hitting times breaks down in stochastic settings, as shown in
prior work (Akella et al., 2023). Stochastic settings are ubiq-
uitous in real-world problems: from autonomous vehicles
navigating around drunk bar-goers, to healthcare systems
rife with unobservable features. Indeed, many advances in
ML over the last decade have been predicated on probabilis-
tic models (e.g., diffusion models, VAEs), so it seems rather
anachronistic that an important control primitive (the notion
of distances) is not well defined in a probabilistic sense.

The key challenge is that the prior notions of temporal dis-
tance break down in stochastic settings. Nonetheless, the
triangle inequality holds great appeal as a strong inductive
bias for learning temporal distances: the distance between
two states should be less than the length of a path that goes
through a particular waypoint state. Indeed, prior work has
aimed to exploit this notion by learning “temporal distance
metrics” that can broadly generalize from less data.

The starting point for our work is to think about distances
probabilistically. Because the dynamics may be stochas-
tic, the number of steps it takes to traverse between two
states is not a definite quantity, but rather a random vari-
able. To estimate the (long-term) probabilities of transiting
between two states, we will build on prior temporal con-
trastive learning (van den Oord et al., 2019; Eysenbach et al.,
2022), a popular and stable class of time series represen-
tation learning methods. Intuitively, these methods learn
representations from time series data so that observations
that occur nearby in time are given similar representations.
Importantly, contrastive methods based on NCE and in-
foNCE have a probabilistic interpretation, making them
ripe for application to stochastic environments. Like prior
work (Eysenbach et al., 2022; 2023), we account for the
arrow of time (Popper, 1956) by using asymmetric repre-
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(a) Starting at state s, we visualize the (discouted) probability
of reaching state g after exactly t steps (teal). The sum of
these probabilities (■ area) is the probability of reaching state
g at some point in the future. Our method defines the distance
between states s and g as the difference in these shaded areas
(■ area - ■ area).
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(b) Our proposed distance obeys the triangle inequality. Starting at
state s, we look at the distribution over future states (■ area) and
subtract off those states that the policy would reach starting from
w (■ area). Our distance is defined as the difference in these areas,
dSD(s, w) ≜ ■−■.

Figure 1. An overview of our theoretical distance construction as well as the concrete implementation with metric distillation.

sentations, allowing the learned representations reflect the
fact that (say) climbing up a mountain is more difficult from
sliding back down. The representations learned by these
temporal contrastive learning methods do not themselves
satisfy the triangle inequality. However, we prove that a
simple change of variables results in representations that
do satisfy the triangle inequality. Intuitively, this change
of variables corresponds to subtracting off the “distance”
between a state and itself. Note that because the representa-
tions are asymmetric (see above), this extra “distance” is not
zero, but rather corresponds to the likelihood of returning to
the current state at some point in the future.

The main contribution of this paper is to propose a notion
of temporal distance that provably satisfies the triangle in-
equality, even in stochastic settings. Our constructed tem-
poral distance is easy to learn – simply take the features
from (temporal) contrastive learning and perform a change
of variables – no additional training required! After in-
troducing and analyzing our proposed temporal distance,
we demonstrate an application of our temporal distance to
goal-conditioned reinforcement learning, using the distance
function as a value function. We use a carefully controlled
synthetic benchmark to test properties such as combinatorial
generalization, temporal generalization, and finding shortest
paths; our results here show that the proposed distance has
appealing properties that prior methods lack. We also show
that the RL method based on our distances can scale to 111-
dimensional locomotion tasks, where it is competitive with
prior methods on a parameter-adjusted basis.

2 Related Work
Our work builds on prior work in learning temporal dis-
tances and contrastive representation learning.

2.1 Learning distances

Within any Markov decision process (MDP), there is an
intuitive notion of “distance” between states as the difficulty
of transitioning between them. There are many seemingly
reasonable definitions for distance a priori: likelihood of
reaching the goal at a particular time, expected time to reach
the goal, likelihood of ever reaching the goal, etc. (under
some policy). The key mathematical structure for a distance
to be useful for reaching goals is that it must satisfy the
triangle inequality d(a, c) ≤ d(a, b) + d(b, c): being able to
go from a → b and from b → c means going from a → c
can be no harder than both of the aforementioned steps.
Such a distance is called a metric over the state space if it is
symmetric and more generally a quasimetric (Paluszyński
& Stempak, 1931).

While prior work on bisimulations (Hansen-Estruch et al.,
2022; Ferns et al., 2011) use a reward function to construct
such a distance, our aim will be to define a notion of distance
that does not require a reward function.

For the correct choice of distance, learning a goal-
conditioned value function will correspond to selecting a
distance metric that best enables goal reaching. Such a dis-
tance can then be learned with an architecture that directly
enforces metric properties, e.g., Euclidean distance, met-
ric residual network (MRN), interval quasimetric estimator
(IQE), etc. (Wang & Isola, 2022a;b; Liu et al., 2023). Since
the space of value (quasi)metrics imposes a strong induction
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bias over value functions, using the right metric architecture
can enable better combinatorial and temporal generalization
without requiring additional samples (Wang et al., 2023).

In deterministic MDPs, these notions of distance all coincide
with distance d(s, g) being proportional to the (minimum)
amount of time needed to reach the goal g when starting in
state s. Approaches like Quasimetric RL (Wang et al., 2023;
Liu et al., 2023) learn this notion of distance, allowing opti-
mal goal reaching in deterministic MDPs. In general MDPs,
alternative notions of distance are required (Akella et al.,
2023; N’Guyen et al., 2013; Ma et al., 2023b; N’Guyen
et al., 2013; Lan et al., 2021; Hejna et al., 2023). Exist-
ing approaches are often limited by assumptions such as
symmetry or fail to satisfy metric properties. Our contribu-
tion is to construct a general formulation for a quasimetric
over MDPs that can be easily learned from discounted state
occupancy measures.

2.2 Contrastive Representations

Contrastive learning has seen widespread adoption for learn-
ing to represent time series (van den Oord et al., 2019;
Mikolov et al., 2013). These representations can be trained
to approximate mutual information without requiring labels
or reconstruction (Gutmann & Hyvärinen, 2010; Mazoure
et al., 2020; Wu et al., 2021; van den Oord et al., 2019;
Gutmann & Hyvarinen, 2012), and are useful for learning
self-supervised representations across broad application ar-
eas (Radford et al., 2021; Sermanet et al., 2017; Qian et al.,
2021; Chen et al., 2020; 2021b; Saunshi et al., 2019; Wang
& Isola, 2020; Saunshi et al., 2019).

Within RL, contrastive learning can be used for goal-
conditioned control as successor features (Barreto et al.,
2017; Eysenbach et al., 2022; 2023). Approaches that use
contrastive representations for control are typically limited
in combinatorial and temporal generalization since they do
not bootstrap value functions (Zheng et al., 2023). Unlike
past approaches that use contrastive learning for decision-
making, we show that these generalization capabilities can
be obtained from contrastive successor features by imposing
an additional metric structure.

2.3 Goal-conditioned reinforcement learning (GCRL)

Goal-reaching presents an attractive formulation for learning
useful behaviors in unsupervised RL settings (Laird et al.,
1987; Kaelbling, 1993). Recent advances in deep reinforce-
ment learning have renewed interest in this problem as many
real-world offline and online RL problems lack clear reward
signals (Andrychowicz et al., 2017; Eysenbach et al., 2022;
Park et al., 2023a; Yang et al., 2023; Ghosh et al., 2019).
GCRL methods can learn goal-conditioned policies (Yang
et al., 2022; Ghosh et al., 2021), value functions (Eysen-
bach et al., 2021; Ghosh et al., 2023), and/or representations
that enable goal-reaching (Eysenbach et al., 2022; Zheng

et al., 2023; Ma et al., 2023b). Approaches that recover
goal-conditioned policies can also enable additional capa-
bilities like planning (Fang et al., 2023; Chane-Sane et al.,
2021), skill discovery (Mendonca et al., 2021; Park et al.,
2023b) and interface with other forms of task specification
like language (Ma et al., 2023a; Myers et al., 2023; Shah
et al., 2023; Black et al., 2023; Touati & Ollivier, 2021).

These GCRL techniques typically require bootstrapping
with a learned value function, which can be costly and un-
stable, or struggle with long-horizon combinatorial and tem-
poral generalization (Ghugare et al., 2024). Our approach
avoids both of these shortcomings by learning a distance
metric that can implicitly combine behaviors without boot-
strapping or making any assumptions about the environment
dynamics.

3 General distances for goal-reaching
In this section, we introduce a novel distance metric for
goal-reaching in controlled Markov processes. We show
that this distance is a quasimetric, i.e., a metric that relaxes
the assumption of symmetry. In the subsequent section (4),
we show that this distance construction can enable addi-
tional generalization capabilities through a choice of model
parameterization for temporal contrastive learning.

3.1 Preliminaries

We consider a discrete controlled Markov process M con-
sisting of states s ∈ S, actions a ∈ A, dynamics P (s′ |
s, a), initial state distribution p0(s0 = s0), and a discount
γ ∈ (0, 1).

By augmenting M with the reward for any fixed goal g ∈ S ,
which we define as

rg(s) = (1− γ) δg(s),

where δg(s) =
{

1 if s=g
0 otherwise is the Kronecker delta, we can

extend M to a goal-dependent Markov decision process
Mg . Denote by Π the (compact) set of stationary of policies
π(a | s) on M . We also define ΠNM ⊃ Π to be the set
of non-Markovian policies π(at | s0 . . . st). We can then
derive the optimal goal-conditioned value function,

V ∗
g (s) = max

π∈Π
pπγ (s

+=g | s0=s), (1)

where the discounted state occupancy measure pπγ is defined
as the discounted distribution over future states s+,

pπγ (s
+=s′ |s0=s) = (1− γ)

∞∑
k=0

γkpπ(sk=s
′ |s0=s)

where pπ(st+1=s
′ |st = s)=

∑
a∈A

π(a |s)P (s′ |s, a). (2)

i.e., the distribution of s+ ≜ sK for K ∼ Geom(1− γ).
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Here, st denotes the state at time t as a random variable,
and s+ denotes the state at a geometrically distributed time
in the future. When needed, under a policy π, we will
additionally use the notation at and a+ to denote actions as
random variables, defined analogously to st and s+.

Since (1) is the optimal value function corresponding to
the reward rg, there will always be a stationary optimal
goal-reaching policy πg ∈ Π that attains the max in (1).

We can additionally view the setting of an uncontrolled
Markov process (i.e., a Markov chain) as a special case of
controlled Markov processes where there is a single action
A = {a} with a fixed policy Π = {π}.

To reason about the effects of actions, we can also consider
the natural generalization of the successor state-action dis-
tribution, which is the distribution over future states and
actions s′, a′ given that action a is taken in state s under π:

pπγ (s
+=g, a+=a′ |s0=s, a0=a) =

(1− γ)δs,a(g, a
′) + (1− γ)γ

[ ∞∑
k=0

∑
s′∈S

γkpπ
(
sk = g | s0 = s′

)
π(a′ | g)P (s′ | s, a)

]
. (3)

Finally, we recall the definition of a quasimetric space:

Definition 3.1. A quasimetric on S is a function d : S ×
S → R satisfying the following for any x, y, z ∈ S.

Positivity: d(x, y) ≥ 0

Identity: d(x, y) = 0 ⇐⇒ x = y

Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

3.2 Our Proposed Temporal Distance

With these definitions in place, we can now define the pro-
posed temporal distance. We will start by describing a
“strawman” approach, and then proceed with the full method.

Motivated by prior work on successor representa-
tions (Dayan, 1993) and self-predictive representa-
tions (Schwarzer et al., 2020; Ni et al., 2024), a candidate
temporal distance is to directly use the critic function from
temporal contrastive learning. When positive examples are
sampled from the discounted state occupancy measure, this
critic has the following form:

−d(s, g) = log
(
pπγ (s

+=g |s0=s)
p(g)

)
. (not a quasimetric)

However, a distance defined in this way does not satisfy the
identity property of the quasimetric; namely, the distance
between a state and itself can be non-zero. Our solution
is to subtract off the “extra distance” between a state and
itself, d̃(s, g) = d(s, g)− d(g, g). Doing this results in the
proposed temporal distance that we propose in this paper.

We now proceed with our main definition, which is a tem-
poral distance that obeys the triangle inequality (and is a
quasimetric) even in stochastic settings. We provide two
definitions, one for controlled Markov processes and one
for (uncontrolled) Markov processes:

Definition 3.2. We define the successor distance
for a controlled Markov processes by:

dSD(s, g) ≜ min
π∈Π

log

(
pπγ (s

+=g |s0=g)
pπγ (s

+=g |s0=s)

)
, (4)

As a special case for an uncontrolled Markov pro-
cess, we can define:

dSD(s, g) ≜ log

(
pγ(s

+=g |s0=g)
pγ(s

+=g |s0=s)

)
. (5)

To use these distances for control in model-free settings, we
can extend this notion to include actions, yielding a distance
over S ×A.
Definition 3.3. We define the successor distance with ac-
tions for a controlled Markov process by:

dSD

(
(s, a), (g, a′)

)
≜

min
π∈Π

(
log

pπγ (s
+=g, a+=a′ |s0=g, a0=a′)

pπγ (s
+=g, a+=a′ |s0=s, a0=a)

)
. (6)

We make two brief lemmas about this definition; the proofs
can be found in Appendix C Within S ×A, we can also say:

Lemma 3.1. dSD

(
(s, a), (s′, a′)

)
is independent of a′ when

s ̸= s′.

In light of this independence, we denote dSD

(
s, a, s′

)
≜

dSD

(
(s, a), (s′, a′)

)
where applicable. Selecting actions that

minimizes this distance corresponds to policy improvement:

Lemma 3.2. Selecting actions to minimize the successor
distance is equivalent to selecting actions to maximize the
(scaled and shifted) Q-function:

− dSD(s, a, g) =
1

pg(g)
Q(s, a, g) + cψ(g)

=⇒ argmax
a

dSD(s, a, g) = argmax
a

Q(s, a, g).

Geometric interpretation. Before proceeding to prove
that this distance construction obeys the triangle inequality
and the other quasimetric properties (Section 3.3), we pro-
vide intuition for this distance. We visualize this distance
construction in Figure 1 (b). The distribution over states vis-
ited starting at s (pπγ (s

+=w |s0=s)) is shown as the teal re-
gion; while states visited starting at w (pπγ (s

+=w |s0=w))
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is shown as the orange region. Our proposed distance met-
ric is the difference in the areas of these regions (■ − ■).
The theoretical results in the next section prove that this
difference is always non-negative. Zooming out to look at
the s, w, and g together, we see that these set differences
obey the triangle inequality – the area between s and g is
smaller than the areas between s and w and between w and
g. Concrete examples to build intuition for these definitions
and results are presented in Appendix H.

Hitting times as a special case. To provide additional
intuition into our construction, we consider a special case;
the subsequent section shows that the proposed distance
is a valid quasimetric in much broader settings. In this
special case, consider a controlled Markov process where
the agent can remain at a state indefinitely. This as-
sumption means that the pπγ (s

+=g |s0=g) = 1, so the
proposed distance metric can be simplified to d(s, g) =
− log pπγ (s

+=g |s0=s). This assumption also means that
the hitting time of g from s has a deterministic value, which
we will callH(s, g). Thus, we can write the discounted state
occupancy measure as pπγ (s

+=g |s0=s) = γH(s,g), so the
proposed distance metric is equivalent to the hitting time:
d(s, g) = H(s, g). Importantly, and unlike prior work, our
proposed distance continues to be a quasimetric outside of
this special case, as we prove in the following section.

3.3 Theoretical results

Before proving this distance is a quasimetric over S , we pro-
vide a helper lemma relating the difficulty of reaching a goal
through a waypoint to the difficulty without the waypoint.
The key insight we use here is that the notion of a hitting
time can be generalized to represent distances in terms of
discounted state occupancies.
Lemma 3.3. For any s, w, g ∈ S, π ∈ Π,

max
π′∈Π

[
pπ

′

γ (s+=g |s0=w)pπγ (s+=w |s0=s)
pπγ (s

+=w |s0=w)

]
≤ max
π′∈Π

pπ
′

γ (s+=g |s0=s).

The proof is in Appendix D. This lemma is the key to prov-
ing our main result:

Theorem 3.4. dSD is a quasimetric over S, satisfy-
ing the triangle inequality and other properties from
Definition 3.1.

The proof is in Appendix E. Compared with prior
work (Wang et al., 2023), our result extends to stochas-
tic settings; we will empirically compare to this and other
prior methods in Section 5.

To make this result applicable to settings with unknown dy-
namics or without actions, we note the following corollaries

Corollary 3.4.1. dSD is a quasimetric over S ×A.

Corollary 3.4.2. dSD is a quasimetric over an uncontrolled
Markov process as in Eq. (5).

See Appendix E for discussion of these results.

4 Using our Temporal Distance for RL
In this section we describe an application of our proposed
temporal distance to goal-conditioned reinforcement learn-
ing. The main challenge in doing this will be (1) estimating
the successor distance defined in Eq. (4), and (2) doing so
with an architecture that respects the quasimetric properties.
Once learned, we will use the successor distance as a value
function for training a policy.

To introduce our methods, Section 4.1 will first discuss how
contrastive learning almost estimates the successor distance.
We will then introduce two variants of our method, Con-
trastive Metric Distillation (CMD). The first method (CMD
1-step, Section 4.2) will acquire the successor distance by
applying contrastive learning with an energy function that
is the difference of two other functions. The second method
(CMD 2-step, Section 4.3) will acquire the successor dis-
tance by taking the features from contrastive learning and
distilling those features into a quasimetric architecture. In
both cases, we then use the learned successor distance to
train a goal-conditioned policy.

We emphasize that the key contribution here is the mathe-
matical construct of what constitutes a temporal distance,
not that we use a certain architecture to represent this tem-
poral distance. Practically, we will use the Metric Residual
Network (MRN) architecture (Liu et al., 2023) in our im-
plementation. Pseudocode for the full algorithms (both
one-step and two-step) is provided in Algorithms 1 and 2.
We highlight the differences between the two methods in
orange for clarity.

Algorithm 1: 1-step Contrastive Metric Distillation (CMD-1)

1: input: batch size B, number of iterations T
2: initialize potential ψ, quasimetric ϕ, and policy µ parameters
3: define fθ(s, a, g) ≜ cψ(g)− dϕ(s, a, g)
4: for t = 1 . . . T do
5: sample {(si, ai) ∼ ps}Bi=1

6: sample {(gi, a′i) ∼ pπγ (s+=gi |s0=si, ai)}Bi=1

7: ϕ← ϕ− α∇ϕ
[
Lc
ϕ,ψ ({si, ai}, {gi})

]
(Eqs. 8,12)

8: ψ ← ψ − α∇ψ
[
Lc
ϕ,ψ ({si, ai}, {gi})

]
(Eqs. 8,12)

9: µ← µ− α∇µ
[
Lπµ({si, ai}, {gi, a′i})

]
(Eq. 19)

10: end for
11: output πµ

4.1 Building block: contrastive learning

Both of our proposed methods will use contrastive learning
as a core primitive, so we start by discussing how we use
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Algorithm 2: 2-step Contrastive Metric Distillation (CMD-2)

1: input: batch size B, number of iterations T
2: initialize representations ϕ, ψ, and policy parameters µ
3: initialize quasimetric θ̂, margin λ
4: define fθ(s, a, g) ≜ ϕ(s, a)Tψ(g)
5: for t = 1 . . . T do
6: sample {(si, ai) ∼ ps}Bi=1

7: sample {(gi, a′i) ∼ pπγ (s+=gi |s0=si, ai)}Bi=1

8: ϕ← ϕ− α∇ϕ
[
Lc
ϕ,ψ ({si, ai}, {gi})

]
(Eqs. 8,16)

9: ψ ← ψ − α∇ψ
[
Lc
ϕ,ψ ({si, ai}, {gi})

]
(Eqs. 8,16)

10: µ← µ− α∇µ
[
Lπµ({si, ai}, {gi, a′i})

]
(Eq. 19)

11: θ̂ ← θ − α∇θ̂
[
Ld
θ̂,ϕ,ψ

(
{si, ai}, {gi, a′i}

)]
(Eq. 17)

12: λ← λ+ α
(
Cθ̂({si, ai}, {gi, a

′
i})− ε2

)
(Eq. 17)

13: end for
14: output πµ

contrastive learning to learn an energy function fθ(s, a, g),
and the relationship between that energy function and the
desired successor distance.

Following prior work (Eysenbach et al., 2022), we will apply
contrastive learning to learn an energy function fθ(s, a, g)
that assigns high scores to (s, a, g) triplets from the same
trajectory, and low scores to triplets where the goal g is un-
likely to be visited at some point after the state-action (s, a)
pair. Let psa(s, a) be a marginal distribution over state-
action pairs, and let pg(g) =

∑
s∈S ps(s)p

π
γ (s

+=g |s0=s)
be the corresponding marginal distribution over future states.
Contrastive learning learns the energy function by sampling
pairs of state-action (s, a) and goals g from the joint dis-
tribution si, ai, gi ∼ pπγ (s

+=gi |s0=si, ai)psa(si, ai). We
will use the symmetrized infoNCE loss function (without re-
substitution) (van den Oord et al., 2019; Sohn, 2016), which
provides the following objective:

min
θ

E{si,ai,gi}Bi=1
Lc
θ

(
{si, ai}, {gi}

)
. (7)

given the forward and backward classification losses:

Lc
θ = Lfwd

θ + Lbwd
θ (8)

Lfwd
θ

(
{si, ai}, {gi}

)
=

B∑
i=1

log

(
efθ(si,ai,gi)∑B
j=1 e

fθ(si,ai,gj)

)

Lbwd
θ

(
{si, ai}, {gi}

)
=

B∑
i=1

log

(
efθ(si,ai,gi)∑B
j=1 e

fθ(sj ,aj ,gi)

)
.

We highlight the indices i and j for clarity. As the batch
size B becomes large, the optimal critic parameters θ∗ then
satisfy (Ma & Collins, 2018; Poole et al., 2019)

fθ∗(s, a, g) = log

(
pπγ (s

+=g |s0=s, a)
C · pg(g)

)
, (9)

where C is a free parameter. Finally, note that we can
represent the successor distance (4) as the difference of this

optimal critic evaluated on two different inputs:

fθ∗(g, a, g)− fθ∗(s, a, g) =
pπγ (s

+=g |s0=g, a)
pπγ (s

+=g |s0=s, a)
. (10)

The next two section present practical methods for represent-
ing this difference, either via (1) a special parametrization
of this critic (Section 4.2) or (2) distillation (Section 4.3).

4.2 One-step distillation (CMD 1-step):

In this section, we describe how to directly learn the suc-
cessor distance using an architecture that is guaranteed to
satisfy the triangle inequality and other quasimetric proper-
ties.

The key idea is to apply the contrastive learning discussed in
the prior section to a particular parametrization of the energy
function, so that the difference in Eq. (10) is represented
as a single quasimetric network. We start by noting that
the function learned by contrastive learning (Eq. 9) can be
decomposed into the successor distance plus an additional
function that depends only on the future state g:

fθ∗(s, a, g) = log

(
pπγ (s

+=g |s0=s, a)
C · pg(g)

)
(11)

= log

(
pπγ (s

+=g |s0=s, a)
pπγ (s

+=g |s0=g)

)
︸ ︷︷ ︸

−dϕ(s,a,g)

− log

(
pπγ (s

+=g |s0=g)
C · pg(g)

)
︸ ︷︷ ︸

−cψ(g)

.

Thus, we will apply the contrastive objective from Eq. 8
to an energy function fθ=(ϕ,ψ)(s, a, g) parametrized as the
difference of a quasimetric network dϕ(s, a, g) an another
learned function cψ : R → R:

fϕ,ψ
(
s, a, g

)
= cψ(g)− dϕ(s, a, g). (12)

The term cψ(g) is important for allowing fθ(s, a, g) to rep-
resent positive numbers, as −dϕ(s, a, g) is non-positive be-
cause it is a quasimetric network. With this parametrization,
we can use Eq. (10) to obtain the successor distance as

fθ∗(g, a, g)− fθ∗(s, a, g)

=�����:0
−dϕg, a, g +���cψ(g) + dϕ(s, a, g)−���cψ(g). (13)

After contrastive learning, we will discard cψ(g) and use
dϕ(s, a, g) as our successor distance. We conclude by pro-
viding the formal result that this approach recovers the suc-
cessor distance:

Lemma 4.1. For s ̸= g, the unique solution to the the loss
function in Eq. (8) with the parametrization in Eq. (12) is

dϕ∗(s, a, g) = log
pπγ (s

+=g |s0=s, a0=a)
pπγ (s

+=g |s0=g)
. (14)
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See Appendix F for the proof.

One appealing aspect of this approach is that it only involves
one learning step. The next section provides an alternative
approach that proceeds in two steps.

4.3 Two-step distillation (CMD 2-step)

In this section we present an alternative approach to esti-
mating the successor distance with a quasimetric network.
While the first approach (CMD 1-step) is appealing because
of its simplicity, this approach may be appealing in settings
where pre-trained contrastive features are already available,
but users want to boost performance by capitalizing on the
inductive biases of quasimetric networks.

The key idea behind our approach is that that optimal critic
from contrastive learning (Eq. 9) can be used to estimate the
successor distance by performing a change of variables:

fθ(g, a, g)− fθ(s, a, g)

= log
pπγ (s

+=g |s0=g,a)
Cpg(g)

− log
pπγ (s

+=g |s0=s,a)
Cpg(g)

= log
pπγ (s

+=g |s0=g,a)
pπγ (s

+=g |s0=s,a) . (15)

This final expression is the successor distance; Appendix I
will discuss why the action a in the numerator can be ig-
nored. Because the successor distance obeys the triangle
inequality (and the other quasimetric properties), we will
distill this difference into a quasimetric network. We will
call this method CMD 2-Step.

4.3.1 DISTILLING TO A QUASIMETRIC ARCHITECTURE

The representations in Eq. 15 already form a quasimetric
on S × A, and could directly be used for action selection.
However, because we know that these representations satisfy
the triangle inequality, distilling them into a network that is
architecturally-constrained to obey the triangle inequality
serves as a very strong prior: a way of potentially combating
overfitting and improving generalization. To do this, we
distill the bound into a distance dϕ parameterized by an
MRN quasimetric (Liu et al., 2023).

CMD 2-Step works by applying contrastive learning
(Eq. 8). Following prior work (Eysenbach et al., 2022),
we will parametrize the energy function as the inner
product between learned representations: fϕ,ψ(s, a, g) =
ϕ(s, a)Tψ(g). The critic parameters are thus θ = (ϕ, ψ).
We then distill the quasimetric architecture using Eq. (15)
as a constraint. We enforce the constraint with a Lagrange
multiplier λ to ensure that the margin Cθ̂({si, ai}, {gi, a′i})
for Eq. (15) satisfies Cθ̂({si, ai}, {gi, a′i}) ≤ ε2 on pairs of
states and future goals sampled from the data:

Cθ̂({si, ai}, {gi, a′i})

≜
B∑

i,j=1

max
(
0, dθ̂

(
(si, ai), (gi, a

′
j)
)
− fϕ,ψ(si, ai, gi)

)2

where fϕ,ψ(s, a, g) ≜
(
ϕ(g, a)− ϕ(s, a)

)T
ψ(g). (16)

When distilling a distance dSD, subject to the constraint
above, we want to be maximally conservative in determining
which goals we can reach. We assume Eq. (15) as a prior,
and use dual descent to perform a constrained minimization
of the objective

Ld
θ̂,ϕ,ψ

(
{si, ai}, {gi, a′i}

)
≜

B∑
i,j=1

max
(
0, fϕ,ψ(si, ai, gj)− dθ̂(si, ai, gj)

)2
, (17)

yielding an overall optimization

min
θ̂

max
λ≥0

∑
{si,ai,gi,a′i}Bi=1

[
Ld
θ̂,ϕ,ψ

(
{si, ai}, {gi, a′i}

)
+ λ

(
Cθ̂
(
{si, ai}, {gi, a′i}

)
− ε2

)]
. (18)

4.4 Policy extraction

Once we extract distance dSD, we learn a goal-conditioned
policy πµ to select actions that minimize the distance succes-
sor between states and random goals (Schaul et al., 2015):

min
µ

Eps(s) pg(g,a′)πµ(â|s,g)
[
Lπµ
(
{si, âi}, {gi, a′i}

)]
(19)

To prevent the policy from sampling out-of-distribution ac-
tions for offline RL (Fujimoto & Gu, 2021; Kumar et al.,
2020; 2019), we adopt another goal-conditioned behavioral
cloning regularization from Zheng et al. (2023) or use ad-
vantage weighted regression (Nair et al., 2021).

With the behavior cloning regularization, the policy extrac-
tion loss becomes:

Lπµ
(
{si, ai}, {gi, a′i}

)
=

B∑
i,j=1

Eâ∼πµ(â|si,gj)[
dϕ
(
(si, â), (gj , a

′
j)
)
+ log πµ(ai | si, gi)

]
. (20)

5 Experiments
Our experiments study a synthetic 2D navigation task to
see whether our proposed temporal distance can learn mean-
ingful distances of pairs of states unseen together during
training (i.e., combinatorial generalization). We also study
the efficacy of extracting policies from this learned distance
function, both in this 2D navigation setting and in a 111-dim
robotic locomotion problem from the AntMaze benchmark
suite. As discussed below, for the latter experiment our
comparison will be restricted to small neural network sizes.
Code for our experiments is linked in Appendix A and addi-
tional implementation details are provided in Appendix G.
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Figure 2. (Left) We collect four types of trajectories on this 2D navigation task. The large gray arrows depict the direction of motion. Note
that navigating between certain states requires piecing together trajectories of different colors (Right) Our proposed temporal distance
correctly pieces together trajectories, allowing an RL agent to successfully navigate between pairs of states that never occur on the same
trajectory. This combinatorial generalization (Ghugare et al., 2024) or “stitching” (Fu et al., 2020) property is typically associated with
bootstrapping with temporal difference learning, which our temporal distances do not require.

Table 1. Offline RL benchmarks: We use the AntMaze suite (Fu et al., 2020) of goal-conditioned RL tasks to compare our method to
prior methods, measuring the success rate and standard error across multiple seeds.

CMD 1-step (Ours) CMD 2-step (Ours) QRL CRL (CPC) GCBC IQL1

umaze 90.3± 4.2 97.0± 0.4 76.8± 2.3 79.8± 1.6 65.4± 87.5 87.5
umaze-diverse 90.3± 4.6 90.5± 1.4 80.1± 1.3 77.6± 2.8 60.9± 62.2 62.2
medium-play 78.0± 4.0 72.3± 2.6 76.5± 2.1 72.6± 2.9 58.1± 71.2 71.2

medium-diverse 83.0± 3.1 71.8± 1.0 73.4± 1.9 71.5± 1.3 67.3± 70.0 70.0
large-play 68.0± 2.1 59.2± 1.8 52.9± 2.8 48.6± 4.4 32.4± 39.6 39.6

large-diverse 74.5± 2.3 63.6± 1.9 51.5± 3.8 54.1± 5.5 36.9± 47.5 47.5
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Figure 3. Metric distillation enables more efficient training and
long-horizon compositional generalization.

5.1 Controlled experiments on synthetic data

We first present results in a simple 2D navigation environ-
ment to illustrate how our approach can recombine pieces
of data to navigate between pairs of states unseen together
during training (i.e., combinatorial generalization).

We start by collecting four types of trajectories, identified
in Fig. 2 (left). We will be primarily interested in what
distances our method assigns to pairs of states that occur
on different types of trajectories. Our hypothesis is that, by
virtue of the triangle inequality, our method will correctly
reason about global distances, despite only being trained
on locally on individual trajectories. Note that the collected
data is directed, so we will also be test whether our learned
distance obeys the arrow of time.

Visualizing the paths. Using these data, we learn the con-
trastive representations and distill them into a quasimetric
architecture, as described in Section 4. In the subfigures
in Fig. 2 (right), we visualize these distances using the col-
ormap, with the goal set to the state identified with the ⋆.
This figure also visualizes paths created using the learned
distances. Starting at the state identified as •, greedily select
a next state within an L2 ball that has minimal temporal
distance to the goal. We repeat this process until arriving at
the goal. These planned paths demonstrate that the learned
temporal distances perform combinatorial generalization;
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each of the subfigures in Fig. 2 show examples of inferred
paths that require correctly assigning distances to pairs of
states that were unseen together during training. Note, too,
that these paths follow the arrow of time: the small arrows
depicting the paths go in the same direction that the data
was collected (large gray arrows in the left subplot).

Control performance. We next study whether these
learned distances can be used for control, using the same
synthetic dataset as above. We will compare with four
baselines. AWAC/TD learns distances using Q-learning
with a reward that is −1 at every transition until the goal
is reached (Lin et al., 2019; Kaelbling, 1993); at least in
deterministic settings, these distances should correspond
to hitting times. Quasimetric RL (Wang et al., 2023) is
an extension of this baseline that uses a quasimetric archi-
tecture to represent these distances. Contrastive RL (Ey-
senbach et al., 2022) estimates distances directly using the
contrastive features (the same as used for our method), but
without the metric distillation step. For all these methods
as well as our method, a policy is learned using advantage-
weighted maximum likelihood (Neumann & Peters, 2008;
Peters & Schaal, 2007). We also compare with a behavioral
cloning baseline, which predicts the action that was most
likely to occur in the dataset conditioned on state and goal.

We measure performance by evaluating the success rate of
each these approaches at reaching randomly sampled goals.
In Fig. 3, we plot this success rate over the course of training.
Note that this experiment is done in the offline setting, so
the X axis corresponds to the number of gradient steps. We
observe that our temporal distance can successfully navigate
to approximately 80% of goals, while the best prior method
has a success rate of around 50%. Because our method
starts with the same contrastive features as the contrastive
RL baseline, the better performance of ours highlights the
importance of the quasimetric architecture (i.e., of imposing
the triangle inequality as an inductive bias). While both our
method and quasimetric RL use a quasimetric architecture
to represent a distance, we aim to represent the proposed
distance metric from Section 4 while quasimetric RL aims
to represent a hitting time; the better performance of our
method highlights the need to use a temporal distance that
is well defined in stochastic settings such as this.

5.2 Scaling to higher-dimensional tasks

To study whether our temporal distance learning approach
is applicable to higher-dimensional tasks, we apply it to a
111-dimensional robotic control task (AntMaze (Fu et al.,
2020)). In this problem setting we additionally condition the
temporal distance on the action and use the learned distance
as a value function for selecting actions.

We compare our approach to three competitive baselines.
GCBC is a conditional imitation learning method that learns

a goal-conditioned policy directly, without a value function
or distance function (Ding et al., 2023; Lynch & Sermanet,
2021; Chen et al., 2021a; Ghosh et al., 2021). Both our
method and Contrastive RL (CRL) (Eysenbach et al., 2022)
learn representations in the same way (Sec. 4); the differ-
ence is that our method additionally distills these represen-
tations into a quasimetric architecture. Thus, comparing our
method to CRL tests the importance of the triangle inequal-
ity as an inductive bias. We consider two variants of CRL
using either rank-based NCE (van den Oord et al., 2019;
Zheng et al., 2023) or binary-NCE (Gutmann & Hyvärinen,
2010), namely CRL (CPC) and CRL (NCE). Finally, Quasi-
metric RL (QRL) (Wang & Isola, 2022b) represents a dif-
ferent type of temporal distance with the same quasimetric
architecture as our method; it is unclear whether the tem-
poral distance from QRL obeys the triangle inequality in
stochastic settings. Thus, comparing our method to QRL
tests the importance of using a temporal distance that is
well defined in stochastic settings. Prior work (Zheng et al.,
2023) has shown that these baselines are more competi-
tive than other recent alternatives, including IQL (Kostrikov
et al., 2021) with HER (Andrychowicz et al., 2017) and
decision transformer (Chen et al., 2021a).

6 Conclusion
The main contribution of this paper is a mathematical def-
inition of temporal distance: one that obeys the triangle
inequality, is meaningful in stochastic settings, and can be
effectively estimated using modern deep learning techniques.
Our results build upon prior work on quasimetric networks
by showing how those architectures networks can be used to
estimate temporal distances, including in stochastic settings.
Our empirical results show that our learned distances stitch
together data, allowing RL agents to navigate between states
even when there does not exist a complete path between
them in the training data. Taken together, these results sug-
gest that some elements of dynamic programming methods
might be realized by simple supervised learning methods
combined with appropriate architectures.

Limitations. While we show that the method works ef-
fectively even on continuous settings, our theoretical results
require that the MDP have discrete states. Our proposed
distance may also be infinite in non-ergodic settings.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

1IQL results are taken from Kostrikov et al. (2021) which does
not report standard errors.
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A Code
An implementation of the evaluated methods is available at https://github.com/vivekmyers/contrastive_
metrics.

B Hitting Times
In this section, we show several lemmas relating the discounted state occupancy measure (defined in Eqs. (2) and (3)) to the
hitting times of states and goals. We start by defining a notion of hitting time:
Definition B.1. For π ∈ Π and s, g ∈ S, define the random variable Hπ

s (g) by

Hπ
s (g) = min{t ≥ 0 : Et} (21)

where Et is the event that st = g given s0 = s.

In other words, Hπ
s (g) is the smallest t such that st = g starting in s0 = s, i.e., the hitting time of g.

Now, we can relate the discounted state occupancy measure to the hitting time of a goal.
Lemma B.1. For Hπ

s (g) defined as (21),

pπγ (s
+=g |s0=s) = E

[
γH

π
s (g)

]
pπγ (s

+=g |s0=g).

Proof. Let pπ(st = g | s0 = s,Hπ
s (g) = h) be the probability of reaching goal g at time step t when starting at state s

given hitting time Hπ
s (g) = h. By the definition of Hπ

s (g), we have

pπ(st = g | s0 = s,Hπ
s (g) = h) =

{
0 t < h

pπ(st = g | sh = g) t ≥ h
. (22)

Thus,

pπγ (s
+=g |s0=s) = (1− γ)

∞∑
t=0

γtpπ(st = g | s0 = s)

= (1− γ)

∞∑
t=0

∞∑
h=0

γtpπ(st = g,Hπ
s (g) = h | s0 = s)

=

∞∑
h=0

p(Hπ
s (g) = h)

(
(1− γ)

∞∑
t=0

γtpπ(st = g | s0 = s,Hπ
s (g) = h)

)
=

∞∑
h=0

p(Hπ
s (g) = h)

(
(1− γ)

∞∑
t=h

γtpπ(st = g | sh = g)
)

(Plug in Eq. (22))

=

∞∑
h=0

γhp(Hπ
s (g) = h)

(
(1− γ)

∞∑
t=h

γt−hpπ(st−h = g | s0 = g)
)

(Stationary property of MDP)

=

∞∑
h=0

γhp(Hπ
s (g) = h)

(
(1− γ)

∞∑
t=0

γtpπ(st = g | s0 = g)
)

(Change of variables)

= E
[
γH

π
s (g)

]
pπγ (s

+=g |s0=g),
as desired.

We can generalize this result to account for actions as well.
Definition B.2. For π ∈ Π, s, g ∈ S, and a, a′ ∈ A, we define the following additional hitting time random variables

Hπ
s,a(g, a

′) = min{t ≥ 0 : Et} (23)

where Et is the event that st = g, at = a′ given s0 = s, a0 = a

Hπ
s,a(g) = min{t ≥ 0 : Et} (24)

where Et is the event that st = g given s0 = s, a0 = a.
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We now show an analogous result for the discounted state-action occupancy measure.
Lemma B.2. For Hπ

s,a(g, a) defined as (23) and s ̸= g,

pπγ (s
+=g, a+=a′ |s0=s, a0=a) = E

[
γH

π
s,a(g,a

′)
]
pπγ (s

+=g, a+=a′ |s0=g, a0=a′).

Proof. Let pπ(st = g, at = a′ | s0 = s, a0 = a,Hπ
s,a(g, a

′) = h) be the probability of reaching goal g at time step t then
taking action a′, when starting at state s given the hitting time Hπ

s,a(g) = h and π takes action a′ at time h. By the definition
of Hπ

s,a(g), we have

pπ(st = g, at = a′ | s0 = s, a0 = a,Hπ
s,a(g, a

′) = h) =


0 t < h

1 t = h

π(a′ | g)pπ(st = g | sh = g, ah = a′) t > h.

(25)

Thus,

pπγ (s
+=g, a+=a′ |s0=s, a0=a)

= (1− γ)

∞∑
t=0

γtpπ(st = g, at = a′ | s0 = s, a0 = a)

= (1− γ)

∞∑
t=0

∞∑
h=0

γtpπ(st = g, at = a′, Hπ
s,a(g, a

′) = h | s0 = s, a0 = a)

=

∞∑
h=0

p
(
Hπ
s,a(g, a

′) = h
)(

(1− γ)

∞∑
t=0

γtpπ(st = g, at = a′ | s0 = s, a0 = a,Hπ
s,a(g, a

′) = h)
)

=

∞∑
h=0

p
(
Hπ
s,a(g, a

′) = h
)
(1− γ)

(
1 +

∞∑
t=h+1

γtπ(a′ | g)pπ(st = g | sh = g, ah = a′)
)

(Plug in Eq. (25))

=

∞∑
h=0

γhp
(
Hπ
s,a(g, a

′) = h
)
(1− γ)

(
1 +

∞∑
t=h+1

γtπ(a′ | g)pπ(st−h = g | sh = g, ah = a′)
)

(Stationary property of MDP)

=

∞∑
h=0

γhp
(
Hπ
s,a(g, a

′) = h
)
(1− γ)

(
1 +

∞∑
t=1

γtπ(a′ | g)pπ(st = g | s0 = g, a0 = a′)
)

(Change of variables)

=

∞∑
h=0

γhp
(
Hπ
s,a(g, a

′) = h
)
(1− γ)

(
1 +

∞∑
t=1

γtπ(a′ | g)pπ(st = g | s1 = s′)P (s′ | s, a)
)

=
∞∑
h=0

γhp
(
Hπ
s,a(g, a

′) = h
)
(1− γ)

(
1 + γ

∞∑
t=0

γtpπ(st = g | s0 = s′)π(a′ | g)P (s′ | s, a)
)

(Change of variables)

=

∞∑
h=0

γhp
(
Hπ
s,a(g, a

′) = h
)
(1− γ)

(
δg,a′(g, a

′) + γ

∞∑
t=0

γtpπ(st = g | s0 = s′)π(a′ | g)P (s′ | s, a)
)

=

∞∑
h=0

γhp
(
Hπ
s,a(g, a

′) = h
)
pπγ (s

+=g, a+=a′ |s0=g, a0=a′)

= E
[
γH

π
s,a(g,a

′)
]
pπγ (s

+=g, a+=a′ |s0=g, a0=a′),

Remark B.3. The hitting times Hπ
s (g) and Hπ

s,a(g) are independent of the distribution π(· | g).
Remark B.4. We can write

Hπ
s,a(g, a

′) = Hπ
s,a(g) + Eπ(â|g)

[
Hπ
g,â(g, a

′)
]
.

These remarks follow from the definitions in Eqs. (23) and (24) and the conditional independence of the states before g is
reached and the action taken at g.

15



Learning Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for Decision-Making

C Proofs of Lemmas 3.1 and 3.2

Lemma 3.1. dSD

(
(s, a), (s′, a′)

)
is independent of a′ when s ̸= s′.

Proof. Suppose s ̸= g. We have from Eq. (6) that

dSD

(
(s, a), (g, a′)

)
= min

π∈Π

[
log

pπγ (s
+=g, a+=a′ |s0=g, a0=a′)

pπγ (s
+=g, a+=a′ |s0=s, a0=a)

]
= −max

π∈Π

[
logE

[
γH

π
s,a(g,a

′)
]]

(Lemma B.2)

= −max
π∈Π

logE
[
γH

π
s,a(g)+Eπ(â|g)[H

π
g,â(g,a

′)]
]
. (Remark B.4)

Now, from Remark B.3, the first term Hπ
s,a(g) is independent of π(· | g). Meanwhile, the second term Eπ(â|g)[Hπ

g,â(g, a
′)]

is minimized when π(â | g) = δa′(â), i.e., when the action taken at g is a′. Thus, at the maximum π(· | g) = δa′(·);
continuing, we see

dSD

(
(s, a), (g, a′)

)
= −max

π∈Π
logE

[
γH

π
s,a(g)+Eπ(â|g)[H

π
g,â(g,a

′)]
]

= −max
π∈Π

logE
[
γH

π
s,a(g)

]
.

From this last expression we see that dSD

(
(s, a), (g, a′)

)
is independent of the action at the goal a′, as desired.

Lemma 3.2. Selecting actions to minimize the successor distance is equivalent to selecting actions to maximize the (scaled
and shifted) Q-function:

− dSD(s, a, g) =
1

pg(g)
Q(s, a, g) + cψ(g)

=⇒ argmax
a

dSD(s, a, g) = argmax
a

Q(s, a, g).

Proof. As noted in prior work Eysenbach et al. (2022, Lemma 4.1), the optimal critic (Eq. 9) is equivalent to a scaled Q
function:

efθ∗ (s,a,g) =
1

C · pg(g)
pπγ (s

+=g |s0=s, a)︸ ︷︷ ︸
Q(s,a,g)

.

Eq. (11) then tells us that the successor distance differs from fθ∗(s, a, g) by a term that depends only on g, so taking the
argmin of the successor distance is the same as taking the argmax of this scaled Q function.

D Proof of Lemma 3.3
Now, we will prove Lemma 3.3.

Lemma 3.3. For any s, w, g ∈ S, π ∈ Π,

max
π′∈Π

[
pπ

′

γ (s+=g |s0=w)pπγ (s+=w |s0=s)
pπγ (s

+=w |s0=w)

]
≤ max
π′∈Π

pπ
′

γ (s+=g |s0=s).

Proof. Define π̃ ∈ ΠNM to be the non-Markovian policy that starts executing π′ and switches to π after reaching w:

π̃(at | st) =
{

π(at | st) w ∈ {s0, s1, . . . , st}
π′(at | st) otherwise.
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We take π′ ∈ Π to be an arbitrary policy. Let E1 be the event where the hitting time of waypoint w is less than the hitting
time of goal g starting from state s, i.e., E1 = {H π̃

s (w) < H π̃
s (g)}. Complementary, let E2 be the event where the hitting

time of waypoint w is greater than or equal to the hitting time of goal g starting from state s, i.e., E2 = {H π̃
s (w) ≥ H π̃

s (g)}.
We note that E1 and E2 are mutually exclusive.

We start by rewriting pπ̃γ (s
+=g |s0=s):

pπ̃γ (s
+=g |s0=s) =

∞∑
h=0

p(H π̃
s (w) = h)

(
(1− γ)

∞∑
t=0

γtpπ̃(st = g | s0 = s,H π̃
s (w) = h)

)

=

∞∑
h=0

p(Hπ′

s (w) = h)

(
(1− γ)

∞∑
t=0

γtpπ̃(st = g | s0 = s,H π̃
s (w) = h)

)
. (26)

Now, pπ̃(st = g | s0 = s,H π̃
s (w) = h) can be written as

pπ̃(st = g | s0 = s,H π̃
s (w) = h) =


0 t < h, under E1

pπ̃(st = g | s0 = s,H π̃
s (w) = h,H π̃

s (g) ≤ h) t < h, under E2

pπ(st = g | sh = w) t ≥ h

. (27)

Dropping the first h terms (which are all non-negative), we get
∞∑
t=0

γtpπ̃(st = g | s0 = s,H π̃
s (w) = h) ≥

∞∑
t=h

γtpπ̃(st = g | s0 = s,H π̃
s (w) = h) =

∞∑
t=h

γtpπ(st = g | sh = w)

Plugging this inequality into Eq. (26), we have

pπ̃γ (s
+=g |s0=s) ≥

∞∑
h=0

p(Hπ′

s (w) = h)

(
(1− γ)

∞∑
t=h

γtpπ(st = g | sh = w)

)

=

∞∑
h=0

γhp(Hπ′

s (w) = h)

(
(1− γ)

∞∑
t=h

γt−hpπ(st−h = g | s0 = w)

)
(Stationary property of MDP)

=

∞∑
h=0

γhp(Hπ′

s (w) = h)

(
(1− γ)

∞∑
t=0

γtpπ(st = g | s0 = w)

)
(Change of variables)

= E
[
γH

π′
s (w)

]
pπγ (s

+=g |s0=w).
Applying Lemma B.1 to the last step, we see

pπ̃γ (s
+=g |s0=s) ≥ E

[
γH

π
s (w)

]
pπ

′

γ (s+=g |s0=w)

=
pπ

′

γ (s+=g |s0=w)pπγ (s+=w |s0=s)
pπγ (s

+=w |s0=w)
.

Since there is a stationary Markovian optimal policy π∗ for rg in M , we know from Lemma 3.2 that

pπ̃γ (s
+=g |s0=s) ≤ max

π′∈Π
pπ

′

γ (s+=g |s0=s),

so we have

max
π′∈Π

pπ
′

γ (s+=g |s0=s) ≥
pπ

′

γ (s+=g |s0=w)pπγ (s+=w |s0=s)
pπγ (s

+=w |s0=w)
.

Since π′ on the RHS was arbitrary, we conclude

max
π′∈Π

[pπ′

γ (s+=g |s0=w)pπγ (s+=w |s0=s)
pπγ (s

+=w |s0=w)
]
≤ max
π′∈Π

pπ
′

γ (s+=g |s0=s).
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Lemma D.1. For any s, w, g ∈ S, as, aw, ag ∈ A, and π ∈ Π, we have

max
π′∈Π

[
pπ

′

γ (s+=g, a+=ag |s0=w, a0=aw)pπ
′

γ (s+=w, a+=aw |s0=s, a0=as)
pπ′
γ (s+=w, a+=aw |s0=w, a0=aw)

]
≤ max
π′∈Π

[
pπ

′

γ (s+=g, a+=ag |s0=s, a0=as)
]
.

The proof follows from the same argument as in Lemma 3.3 but applying Lemma B.2 instead of Lemma B.1.

E Proof of Theorem 3.4
Theorem 3.4. dSD is a quasimetric over S, satisfying the triangle inequality and other properties from Definition 3.1.

Proof. We check the conditions of Definition 3.1:

Positivity: Applying Lemma B.1, we see

dSD(s, g) = min
π∈Π

log pπγ (s
+=g |s0=g)− log pπγ (s

+=g |s0=s)

= min
π∈Π

log pπγ (s
+=g |s0=g)− logE

[
γH

π
s (g)

]
pπγ (s

+=g |s0=g)

≥ min
π∈Π

log pπγ (s
+=g |s0=g)− log pπγ (s

+=g |s0=g)

= 0.

Identity: We see dSD(s, g) = 0 precisely iff pπγ (s
+=g |s0=g) = pπγ (s

+=g |s0=s) for some π ∈ Π. This holds when
s = g. For s ̸= g, we have pπγ (s

+=g |s0=s) ≤ γpπγ (s
+=g |s0=g). Since pπγ (s

+=g |s0=g) ≥ 1 − γ by construction,
dSD(s, g) ̸= 0.

Triangle inequality: We see:

dSD(s, g) = min
π∈Π

log pπγ (s
+=g |s0=g)− log pπγ (s

+=g |s0=s)

≤ min
π∈Π

log pπγ (s
+=g |s0=g)− log

(
max
π′∈Π

[
pπγ (s

+=g |s0=w)pπ
′

γ (s+=w |s0=s)
pπ′
γ (s+=w |s0=w)

])
(Lemma 3.3)

= min
π∈Π

log pπγ (s
+=g |s0=g)−max

π′∈Π
log

(
pπγ (s

+=g |s0=w)pπ
′

γ (s+=w |s0=s)
pπ′
γ (s+=w |s0=w)

)
=

(
min
π∈Π

log
pπγ (s

+=g |s0=g)
pπγ (s

+=g |s0=w)

)
−
(
max
π′∈Π

log
pπ

′

γ (s+=w |s0=s)
pπ′
γ (s+=w |s0=w)

)
=

(
min
π∈Π

log
pπγ (s

+=g |s0=g)
pπγ (s

+=g |s0=w)

)
+

(
min
π′∈Π

log
pπ

′

γ (s+=w |s0=w)
pπ′
γ (s+=w |s0=s)

)
= dSD(w, g) + dSD(s, w) (28)

as desired.

Consider the following didactic example for why we might want to extend the successor distance to the state-action space
S ×A (Eq. 4).
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π1 data : (s,→) (w,⟳) (g ⟳)

π2 data : (s,⟳) (w,→) (g,⟳)

π′ behavior : (s,→) (w,→) (g,⟳)

≈

Figure 4. A simple illustration of a metric over S ×A. To stitch the behavior s→ w from π1 and w → g from π2 to the behavior s→ g
that is possible under some policy π’, we enforce an additional constraint that distances to (w,→) are the same as distances to (w,⟳).

Corollary 3.4.1. dSD is a quasimetric over S ×A.

This statement follows from the same argument as in Theorem 3.4 but applying Lemma D.1 instead of Lemma 3.3 to the
triangle inequality.

Corollary 3.4.2. dSD is a quasimetric over an uncontrolled Markov process as in Eq. (5).

This statement follows from Theorem 3.4 by taking A = {a} so Π = {π}.

F Analysis of CMD-1
Lemma 4.1. For s ̸= g, the unique solution to the the loss function in Eq. (8) with the parametrization in Eq. (12) is

dϕ∗(s, a, g) = log
pπγ (s

+=g |s0=s, a0=a)
pπγ (s

+=g |s0=g)
. (14)

Proof. Eq. (10) together with Eq. (13) tell us that, if f(s, a, g) satisfies Eq. (9), then the learned dϕ(s, a, g) is the successor
distance. What remains is to show that the parametrization in Eq. (12) is sufficient to represent Eq. (9): Eq. (11) tells us that
it is sufficient for (1) we use a universal quasimetric network for dϕ(s, a, g) (Liu et al., 2023; Wang & Isola, 2022a), and (2)
use a universal network cψ(g) (e.g., sufficient layers in a neural network (Hornik et al., 1989)).

G Implementation Details
We implement CMD, CRL (CPC / NCE), and GCBC using JAX building upon the official codebase of contrastive
RL (Eysenbach et al., 2022). For the QRL baseline, we use the implementation provided by the author (Wang & Isola,
2022b). Whenever possible, we used the same hyperparameters as contrastive RL (Eysenbach et al., 2022) and match the
number of parameters in the model for different algorithms. We used 4 layers of 512 units of MLP as our neural network
architectures and set batch size to 256. We find that using a smaller learning rate 5 · 10−6 for the contrastive network is
useful for improving performance. In light of Lemma 3.1, when learning the dSD critic in Eqs. (14) and (15), we use a
dummy action a′ sampled from the marginal distribution over geometrically-discounted future actions.

We compared approaches in the offline settings across the best performance from 500k steps of training, consistent with
past work (Zheng et al., 2023; Eysenbach et al., 2022). All approaches were tested with similar model sizes and runtime,
and used tuned hyperparameters. Our code at https://github.com/mnm-anonymous/qmd features the precise
configurations for the experiments.

H Worked Examples
We present a few examples of how the successor distance defined in Eq. (5) yields a valid quasimetric.

H.1 Example 1: 3-state Markov Process.

1 2 3
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Eq. (2) Assume that the initial state is “1”, a discount factor of γ, and that state “3” is absorbing. We assume that the
discounted state occupancy measure states at t = 0, so that it includes the current time step.

p(3 | 3) = 1

p(2 | 2) = 1− γ

p(2 | 1) = γ(1− γ)

p(3 | 2) = γ

p(3 | a) = γ2

d(1, 3) = log p(3 | 3)− log p(3 | 1) = log 1− log γ2 = 0 + 2 log 1
γ

d(1, 2) = log p(2 | 2)− log p(2 | 1) = log(1− γ)− log γ(1− γ) = log 1
γ

d(2, 3) = log p(3 | 3)− log p(3 | 2) = log 1− log γ = log 1
γ

d(1, 2) + d(2, 3) = 2 log 1
γ ≥ d(1, 3) = 2 log 1

γ .✓

In this example, note that the triangle inequality is tight. This is because there is a single state that we are guaranteed to visit
between states “1” and “3.”

H.2 Example 2: 4-state Markov Process.

1
2
3

4

From state “1”, states “2” and “3” each occur with probability 0.5.

p(4 | 4) = 1

p(2 | 2) = 1− γ

p(2 | 1) = 1
2 (1− γ)γ

p(4 | 1) = γ2

p(4 | 2) = γ

d(1, 2) = log p(2 | 2)− log p(2 | 1)
= log(1− γ)− log 1

2 (1− γ)γ = log 1
γ + log 2

d(2, 4) = log p(4 | 4)− log p(4 | 2)
= log 1− log γ = log 1

γ

d(1, 4) = log p(4 | 4)− log p(1 | 4)
= log 1− log γ2 = 2 log 1

γ

d(1, 2) + d(2, 4) = 2 log 1
γ + log 2 ≥ d(1, 4) = 2 log 1

γ .✓

In this example, the triangle inequality is loose. This is because we have uncertainty over which states we will visit between
“1” and “4.” One way to resolve this uncertainty is to aggregate states “2” and “3” together; if we did this, we’d be back at
example 1, where the triangle inequality is tight.
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I Action-Invariance
Let’s assume that data are collected with a Markovian policy, so p(s′, a′ | s, a) = β(a′ | s′)p(s′ | s, a). Then CRL will learn

ef(s,a,s
′,a′) =

p(s′, a′ | s, a)
p(s′, a′)

(29)

= ����β(a′ | s′)p(s′ | s, a)
����β(a′ | s′)p(s′) . (30)

Thus, if data are collected with a Markovian policy, then the optimal critic will not depend on the future actions. Note that
this remains true for any parametrization of the critic (including MRN) that can represent the optimal critic.

However, the assumption on a Markovian data collection policy can be violated in a few ways:

1. In the online setting, data are collected from policies at different iterations. In this setting, conditioning on a previous
state and action can give you a better prediction of a′ (violating the Markov assumption) because it can allow you to
infer which policy you’re using.

2. In goal-conditioned settings, the data collection policy is conditioned on the goal. Conditioning on a previous state and
action can leak information about the desired goal.

One way of fixing this is to apply CRL to a different data distribution. Let p(s′, a′ | s, a) be given, and let β(a) be some
distribution over actions (in practice, we might use the marginal distribution over actions in the dataset). Define

p̃(s′, a′ | s, a) ≜ p(s′ | s, a)β(a′), p̃(s′, a′) ≜ p(s′)β(a′). (31)

In practice, this corresponds to augmenting the CRL training examples (s, a, s′, a′) → (s, a, s′, ã′) by resampling the future
actions. Now, consider applying CRL to this new distribution:

ef(s,a,s
′,a′) =

p̃(s′, a′ | s, a)
p̃(s′, a′)

(32)

= ����β(a′ | s′)p̃(s′ | s, a)
����β(a′ | s′)p̃(s′) . (33)

Thus, if we apply CRL to data augmented in this way, we’re guaranteed to learn a critic function f(s, a, s′, a′) that is
invariant to a′.
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