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ABSTRACT

Deep learning systems deployed in real-world applications often encounter data
that is different from their in-distribution (ID). A reliable system should ideally
abstain from making decisions in this out-of-distribution (OOD) setting. Existing
state-of-the-art methods primarily focus on feature distances, such as k-th near-
est neighbors and distances to decision boundaries, either overlooking or inef-
fectively using in-distribution statistics. In this work, we propose a novel angle-
based metric for OOD detection that is computed relative to the in-distribution
structure. We demonstrate that the angles between feature representations and de-
cision boundaries, viewed from the mean of in-distribution features, serve as an
effective discriminative factor between ID and OOD data. Our method achieves
state-of-the-art performance on CIFAR-10 and ImageNet benchmarks, reducing
FPR95 by 0.88% and 7.74% respectively. Our score function is compatible with
existing feature space regularization techniques, enhancing performance. Addi-
tionally, its scale-invariance property enables creating an ensemble of models for
OOD detection via simple score summation.

1 INTRODUCTION

A trustworthy deep learning system should not only produce accurate predictions, but also recognize
when it is processing an unknown sample. The ability to identify when a sample deviates from the
expected distribution, and potentially rejecting it, plays a crucial role especially in safety-critical
applications, such as medical diagnosis (Fernando et al.,2021)), driverless cars (Bogdoll et al., 2022)
and surveillance systems (Diehl & Hampshirel [2002). The out-of-distribution (OOD) detection
problem addresses the challenge of distinguishing between in-distribution (ID) and OOD data —
essentially, drawing a line between what the system knows and what it does not.

Various approaches have been proposed for OOD detection, mainly falling into two categories: (i)
methods that suggest model regularization during training (Lee et al., 2018a; Hendrycks et al.;
Meinke & Hein), and (ii) post-hoc methods, which leverage a pre-trained model to determine if a
sample is OOD by designing appropriate score functions (Peng et al.,|2024; Hendrycks & Gimpel,
20225 Sun et al.} 2022). Post-hoc methods are more advantageous for their efficiency and flexibility,
as they can be applied to arbitrary pre-trained models without retraining. These approaches are often
categorized based on the domain of their score functions, i.e., at which representational abstraction
level they assess if a sample is OOD or not. Earlier techniques focus on measuring the model confi-
dence in the logits space (Hendrycks & Gimpel, 2022;|Liu et al.| [2020)), while the recent works em-
ploy distance-based scores (Sun et al.,[2022;|Sehwag et al.,[2021) defined in the model feature space.
While logit-based methods suffer from the overconfident predictions of neural networks (Minderer,
et al., 2021}; [Lakshminarayanan et al., 2017; |Guo et al.,[2017), the recent success of distance-based
techniques highlights that the relationships in the latent space can provide a richer analysis.

A natural approach to feature representations is by checking their proximity to the decision bound-
aries (Liu & Qin, 2024). Conceptually, this can be related to identifying hard-to-learn examples in
data-efficient learning (Joshi et al.,|2024; |Chen et al.l 2023)). OOD samples can be viewed as hard-
to-learn since they do not share the same label distribution as ID data. The success of this approach
has been directly showed in fDBD score from [Liu & Qin/(2024). However, our derivations revealed
that the regularization term they use to incorporate ID statistics introduces an additional term that
does not correlate with ID/OOD separation, ultimately hindering their performance.
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In this work, we present Look Around and Find Out (LAFO), a novel approach that exploits the
relationship between feature representations and classifier decision boundaries, in the context of the
mean statistics of ID features. Unlike the earlier techniques, LAFO introduces a new angle-based
measure that calculates the angles between the feature representations and their projection onto the
decision boundaries, relative to the the mean statistics of ID features. Changing reference frame to
the mean of ID features adds another layer of discriminatory information to the score, as it naturally
incorporates the ID statistics to the distance notion, exploiting the disparity between ID and OOD
statistics. Moreover, the scale-invariant nature of angle-based representations, as similarly observed
in (Moschella et al.), allows us to aggregate the confidence scores from multiple pre-trained models
simply by summing their LAFO scores. This enables to have a score that can be single model based
or extended to ensemble of models. In summary, our key contributions include:

* We present a novel technique for OOD detection, which computes the angles between the
feature representation and its projection to the decision boundaries, relative to the mean of
ID-features

* Qur score is model agnostic, hyperparameter-free and efficient, scaling linearly with the
number of ID-classes. Therefore, it can flexibly be combined with various architectures
without the need of additional tuning.

* We demonstrate the state-of-the-art performance of LAFO on widely used CIFAR-10 and
ImageNet OOD benchmarks. Specifically, LAFO achieves a 7.74% reduction in FPR95
score compared to the best previous distance-based method on a large-scale ImageNet OOD
benchmark.

* The scale-invariant property of LAFO allows for straightforward aggregation of confidence
scores from multiple pre-trained models, improving ensemble performance. Our experi-
ments show that the ensemble with LAFO reduces the FPR95 by 2.51% on the ImageNet
OOD benchmark compared to the best single model performance.

2 RELATED WORK

Previous work in OOD detection falls into two categories: (i) methods that regularize models during
training to produce different outcomes for ID and OOD data, and (ii) post-hoc methods that develop
scoring mechanisms using pre-trained models on ID data.

Model Regularization Early methods addressing the OOD detection problem ?Hendrycks et al.;
Mohseni et al.| (2020); Yang et al.| (2021) utilize additional datasets to represent out-of-distribution
data, training models with both positive and negative samples. This approach assumes a specific na-
ture of OOD data, potentially limiting its effectiveness when encountering OOD samples that deviate
from this assumption during inference. [Malinin & Gales|(2018)) designed a network architecture to
measure distributional uncertainty using Dirichlet Prior Networks. In |Geifman & El-Yaniv|(2019)’s
work, they provide another architecture with an additional reject option to abstain from answer-
ing. Their selection model incorporates a hyperparameter, the coverage rate for ID, to control the
percentage of ID samples classified. |Lee et al|(2018a); Ming et al.| (2022); Du et al.| focused on
synthesizing outliers rather than relying on auxilary datasets to improve the generalizability of the
detection method. On the other hand, |[Meinke & Hein; [Van Amersfoort et al.| (2020); Wei et al.
(2022) argued that overconfident predictions of the networks on OOD data are the problem to be
mitigated. For example, Van Amersfoort et al.| (2020) puts an additional gradient penalty to limit
the confidence of the network. Whereas, Wei et al.| (2022)) tackled the same problem by enforc-
ing a constant logit vector norm during training. Although it is natural to impose structures during
training for better separability of ID and OOD, these methods face the trade-off between OOD sep-
arability and model performance. Moreover, such approaches lack the flexibility of post-hoc score
functions, as they necessitate model retraining—a process that can be both time-consuming and
computationally expensive.

Score Functions Recently, developing score functions for pretrained models on ID data has gained
attention due to its ease of implementation and flexibility. These methods typically either couple fea-
ture representations with distance metrics, or measure a model’s confidence using its logits. Beyond
canonical works such as Maximum Softmax Probability (Hendrycks & Gimpel,|2022), ODIN score
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Figure 1: Geometric visualization of LAFO for in-distribution (left) and out-of-distribution (right)
cases. LAFO focuses on the angular distance between the feature representation and the decision
boundary, from the perspective of the in-distribution mean. The angle 6 serves as the distinguishing
factor between ID and OOD samples, with 0;p > 0gop.

(Liang et al., 2018)), Energy score (Liu et al.,[2020), Mahalanobis score (Lee et al.,|2018b), Virtual
Logit Matching [Wang et al.| (2022), we observed many advancements in post-hoc score design.
For example, the activation shaping algorithms such as ASH (Djurisic et al,, [2023), Scale (Xu
et al), and ReAct (Sun et al,, [2021), apply activation truncations to feature representations, re-
ducing model’s confidence for OOD data. These methods can be used in conjunction with LAFO
improving the performance. Following a similar intuition, DICE |Sun & Li (2022) applies weight
sparsification to limit the model confidence by using the more salient weights for output. GradOrth
Behpour et al.| (2023)) offers a gradient-based perspective, projecting representations to a lower di-
mensional subspace based on gradient norms. Recent distance-based methods KNN [Sun et al.
(2022) and FDBD [Liu & Qin/(2024) successfully utilized the feature representations from networks
trained with supervised contrastive loss. KNN assigns a score to a sample based on the kth nearest
neighbor in ID training data. On the other hand, FDBD assigns a score to a sample based on its
estimate of the distance between the feature representation and the decision boundaries.

Our work falls into the score function category, serving as a plug-in for any pre-trained model on ID
data. LAFO combines feature space and logit space methods by utilizing the relative angle between
the feature representation and its projections to the decision boundaries. Among the existing works,
the closest approach to our method is |Liu & Qinl (2024)), which uses a lower bound estimate to
the decision boundaries. However, the regularization term they introduced to equalize deviations
from the in-distribution mean inadvertently includes a term in their equation that is uncorrelated
with being out- or in-distribution and can change spuriously, impeding performance. In contrast,
we provide a simple, hyperparameter-free score function that effectively incorporates in-distribution
context and maintains scale invariance, all without extra regularization terms.

3 METHOD

3.1 PROBLEM SETTING

We consider a supervised classification setting with input space X and label space )/, following
the literature |Yang et al|(2024). Given a model f : X — RIYI pretrained on an in-distribution
dataset Dip = {(x;, yz)}f\il, where elements of Dyp are drawn from a joint distribution Pxy, with
support X x ). We denote with Pjp its marginalization on X. The OOD detection problem aims
to determine whether an input sample originates from the in-distribution P;,, or not. Denoting with
Yoop a set of labels such that ) N Yoop = @, OOD samples are drawn from a distribution Poop
which correspond to the marginalization on & of the joint distribution on X’ X Voop. i.€., they share
the same input space X as in-distribution samples, but have labels outside ). Shifting from Pjp to
Poop corresponds to a semantic change in label space.
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Algorithm 1 LAFO (Look Around and Find Out)

Require: Sample x, Pretrained model f, Mean of the in-distribution features pp
Ensure: OOD score s
1: function LAFO(x, f, pp, @)

2: 9 + argmax, cy f(x)

3: z=fio...0fr_1(x) > Compute the penultimate last layer features z
4: score <— —oo

5: fory’ € Y and iy # §j do > For each other class
6: compute zg, as in Eq[l]

7: compute 0, (z) using Eq.

8: compute 3(z) using Eq.

9: if 5(z) > score then
10 score = §(z)
11: end if

12: end for
13: return score > Returns the maximum score across all other classes

14: end function

The OOD decision can be made via the function d : X — {ID,00D} given a score function
s : X — R such that:

ID if s(x; f) > A

d(x;s, f) = {OOD if s(x; f) < A

where samples with high scores are classified as in-distribution, according to the threshold A. For
example, to compute the standard FPR95 metric (Yang et al.| 2024), the threshold A is chosen such
that it correctly classifies 95% of ID held-out data. An ideal OOD score function should capture
differences in model outputs between samples drawn from Pip and Poop, effectively, determining
when the model encounters inputs from classes it was not trained on.

3.2 OOD DETECTION WITH RELATIVE ANGLES

This section presents our OOD score function, which relates the feature representations with the
decision boundaries using relative angles in the feature space to discriminate between ID and OOD
samples. Figure [I] provides a geometric visualization of our method. Our approach leverages the
geometric relationships between three key points in the feature space: (i) the initial representation of
a sample, (ii) its projection onto the decision boundary, and (iii) the mean of in-distribution features.

We propose using the relation between feature representations and decision boundaries by deriving
closed-form plane equations for the decision boundaries between any two classes. Specifically,
we examine the angle formed between the feature representation vector and its projection onto the
decision boundary. However, this angle is sensitive to the choice of origin, creating an ambiguity as
the geometric relationship between the feature representation and the decision boundary should be
translation-invariant. To address this, we propose to represent features in a reference frame relative
to the mean of the in-distribution samples. Therefore, we incorporate in-distribution characteristics
by centering around its mean, while ensuring scale and translation invariance.

We observe that the angle between the centered representation and its projection onto the decision
boundary is larger for ID data, indicating them requiring higher cost to change their label which
captures the model’s confidence. In contrast, for OOD data, angle is smaller since they are expected
to be more unstable, as they do not contain strong clues about their predicted classes (see Figure I]
for a conceptual explanation and the ID/OOD histograms in Appendix for empirical evidence).

Our framework provides a concise scoring with useful properties such as translation and scale in-
variance. These properties enable LAFO to be used in conjunction with existing activation shaping
algorithms and allow for confidence aggregation across different models through score summation.
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3.3 FEATURES ON THE DECISION BOUNDARY

In this section, we derive the mathematical equations and demonstrate the properties of our score.
The model f can be rewritten as a composed function fjo...f;_10g, where L is the number of layers
and g : RP — Rl corresponds to the last layer classification head. The function g(z) = Wz + b
maps penultimate layer features z € R” to the logits space via W € RYI*P and b € RYI. The
decision boundary between any two classes y; and ys with y; # yo can be represented as:

DBylay2 = (Wy1 - WyQ)TZ + by1 - byz =0

where w,, (or w,,) denotes the the row vectors of W corresponding to class y; (respectively y2)
and similarly, by, ,b,, are the bias values corresponding to classes y; and y,. Intuitively, given a
fixed classifier, this equation is satisfied for all z’s such that their corresponding logits for class y;
and y- are equal. Then, feature representations can be projected orthogonally onto the hyperplane
that defines the decision boundary:

Zap = 7 — (Wyl — Wyz)TZ + (byl — byz)(

Wy, — W 1
T, w2 ) W
Let pp € R be the mean of the in-distribution feature representations. Centering w.r.t. pyp corre-
sponds to shifting the origin to yp. In this new reference frame, three key points form a triangle in
D-dimensional space: the centered feature vector (z — pip), its projection onto the decision bound-
ary (zqp — pip) and the new origin (see Figure . Then, rather than the absolute distance between
z and z4;, we consider the relative angle 6,, ,,(z) from the in-distribution feature representation’s
reference frame: this captures the position of features and the decision boundaries with respect to
the in-distribution data, while also being scale invariant:

< Z— WD, Zdpb — KD >
I 7 > )

0 Z) = arccos
lll’yz( ) (||Z/1/ID|'|zde’ID|

Our score function extracts the maximum discrepancy of the relative angles between the centered
feature representation and its projections on DBy s, where § = argmax,cy g(z) and y' € Y,
y' # y. Therefore for a sample x € X, given z = f} o... o f1,, (x) we can write the score s(x, f) as
a function of z:

5(z) = max ({0y,y/(2) }y ey, 2y) 3)
Properties. Intuitively, our score function captures several key aspects:

* Confidence Measure. The angle between the feature representation and its projection onto
a decision boundary is proportional to the distance between them, serving as a proxy for
the model’s confidence.

* In-Distribution Context. By centering the space using the mean of in-distribution features,
we incorporate ID statistics, improving angle separability across points.

e Maximum Discrepancy. By considering the maximum angle across all non-predicted
classes, we identify the ’furthest’ relative decision boundary, extracting model’s confidence
on least likely class that an instance might belong.

* Scale Invariance. Unlike absolute distances, angles remain consistent even if the feature
space is scaled, allowing for fair comparisons between different models.

Relation with the state-of-the-art fDBD (Liu & Qin, [2024)). We now provide a geometric inter-
pretation for the score function fDBD. Using our analysis, we identified that their score can directly
be mapped into the triangle we formed in Figure|l} For a sample x € X:
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fDBD(z) — 1% %)
||z — |2

where z € RP is the feature representations of the input z € X, zg, € RP is its projection
onto the decision boundary, and d(-,-) is the euclidean distance. Although seemingly unrelated,
we can connect this score to our relative angle and demonstrate that the regularization term on the
denominator brings a term that does not effectively discriminate between OOD and ID. As a result,
impeding fDBD’s performance.

Using translation invariance of the euclidean distance, the same score can be written as:

d(z — pp, Zap — D)
d(Z — MID, O)

fDBD(z) =

One can observe that, this is the ratio of two sides of the triangle formed between the points z — pp,
Zdb — pip and the origin. Using the law of sines:

d(z — pip, 2ay — pip)  d(z — pp, 0)

= 4
sin (6) sin (@) @
sin (¢) _ d(z — pp; Zay — p) — fDBD(z) )
sin (Oé) d(Z — MID, 0)
where 6 and o are the angles opposite to the CIFAR-10 vs Texture

sides z — pip — (Zzab — p ) and z — pp respec- o0 in
tively. Although the observation they made on .
comparing the distances to the decision bound-
aries at equal deviation levels from the mean
of in-distribution is inspiring, we claim that the
angle « is not very informative for ID and OOD
separation. This is because « is connected
to the magnitude of the feature vector relative
to pp, which may not directly correlate with 0
OOD characteristics. On Figure 2] we show the - Y ((y)"

sin («) values between CIFAR-10 (Krizhevsky

et al., 2009) and Texture (Cimpoi et al.l2014) Figure 2: Histogram of ID (CIFAR-10) and OOD
datasets, empirically justifying that including (Texture) with respect to the sine of the angle of
this term impedes fDBD’s performance. Omit- the triangle that looks at the edge z — pp. This
ting the denominator from Equation[5]allows to  empirically shows that sin («) is not highly infor-
effectively capture the relation between the fea- mative to distinguish between ID or OOD.

ture representation and the decision boundary

from the mean of in-distribution’s view.
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4 EXPERIMENTS

In this section, we demonstrate the performance of LAFO on various settings and benchmarks. We
will first provide our results on the most common benchmarks CIFAR-10 (Krizhevsky et al., [2009)
and ImageNet (Deng et al.,|2009) to show small and large scale performance of our scoring. Then,
we show the flexibility of LAFO by (i) combining it with different activation shaping algorithms, (ii)
using it to aggregate different architectures’ confidences via simply summing their scores, exploiting
the scale-invariance property of LAFO. Moreover, an ablation study is presented to show the efficacy
of the design choices.

Benchmarks: We mainly consider two widely used benchmarks: CIFAR-10 (Krizhevsky et al.,
2009) and ImageNet (Deng et al., 2009)). We included the evaluation on CIFAR-10 OOD
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Table 1: LAFO achieves state-of-the-art performance on CIFAR-10 OOD benchmark. Evaluated on
ResNet-18 with FPR95 and AUROC. 1 indicates that larger values are better and vice versa. Best
performance highlighted in bold. Methods with * are hyperparameter-free.

SVHN iSUN Place365 Texture Avg

FPR95| AUROCT FPR95) AUROC] FPR95| AUROC| FPR95| AUROC! FPR95, AUROCt
MSP * 59.51 91.29 54.57 92.12 62.55 88.63 66.49 88.50 60.78 90.14

Method

ODIN 61.71 89.12 15.09 97.37 41.45 91.85 52.62 89.41 42.72 91.94
Energy *  53.96 91.32 27.52 95.59 42.80 91.03 55.23 89.37 44.88 91.83
ViM 25.38 95.40 30.52 95.10 47.36 90.68 25.69 95.01 32.24 94.05
MDS 16.77 95.67 7.56 97.93 85.87 68.44 35.21 85.90 36.35 86.99
CSI 37.38 94.69 10.36 98.01 38.31 93.04 28.85 94.87 28.73 95.15
SSD+ 1.35 99.72 33.60 95.16 26.09 95.48 12.98 97.70 18.51 97.02
ReAct 6.15 98.75 10.31 98.09 21.68 95.47 10.18 98.12 12.08 97.61
KNN+ 2.20 99.57 20.06 96.74 23.06 95.36 8.09 98.56 13.35 97.56
fDBD * 4.59 99.00 10.04 98.07 23.16 95.09 9.61 98.22 11.85 97.60
LAFO * 3.53 99.16 8.36 98.28 23.40 94.88 8.58 98.34 10.97 97.67

Benchmark to show the performance on smaller scale datasets. In CIFAR-10 experiments, we use a
pretrained ResNet-18 architecture He et al.|(2016) trained with supervised contrastive loss (Khosla
et al.,|2020), following previous literature|Liu & Qin|(2024); Sun et al.|(2022);[Sehwag et al.|(2021).
During inference 10.000 test samples are used to set the in-distribution scores and choose the
threshold value \; while the datasets SVHN (Netzer et al.,2011), iSUN (Xu et al.,[2015]), Places365
(Zhou et al.l [2017)) and Texture (Cimpoi et al.,|2014) are used to obtain out-of-distribution scores
and metric evaluation. Similarly, for large scale ImageNet OOD Benchmark, we use a pretrained
ResNet-50 architecture trained with supervised contrastive loss. In-distribution validation set of
size 50.000 is used to set the ID scores and the threshold, and the datasets iNaturalist (Van Horn
et al., [2018), SUN (Xiao et al.l [2010), Places365 (Zhou et al.,2017) and Texture (Cimpoi et al.,
2014) are used to obtain out-of-distribution scores and metric evaluation. We analyzed the case of
architectures trained with Cross Entropy loss, in the ensemble experiment of Table[3] Note that, in
this typical OOD Detection Benchmarks the samples that have same classes as ID are removed from
their OOD counterparts, following the work [Huang & Li/(2021)) and fitting into our problem setting.

Metrics: Throughout our experiments we report two metrics: False-positive rate at %95 true positive
rate (FPR95), and Area Under the Receiver Operating Characteristic Curve (AUROC). FPR95, sim-
ply measures what percentage of OOD data we falsely classify as ID where our threshold includes
95% of ID data. Therefore, smaller FPR95 indicates a better performance by sharply controlling the
false positive rate. On the other hand, AUROC measures the model’s ability to distinguish between
ID and OOD by calculating the area under the curve that plots the true positive rate against the false
positive rate across various thresholds. AUROC shows how rapidly we include ID data while paying
the cost of including false positives. Thus, higher AUROC shows a better result.

4.1 OOD DETECTION ON CIFAR-10 AND IMAGENET BENCHMARKS

Table [T] and Table [2] shows the performance of LAFO along with the 9 baselines on CIFAR-10 and
ImageNet OOD Benchmarks, respectively. All the baselines on CIFAR-10 use ResNet-18 architec-
ture and on ImageNet use ResNet-50. We compare with methods in three categories : (i) logit-based
score functions, (ii) methods that utilize contrastively learned representations (iii) hyperparameter
free methods. Our proposed method reaches state-of-the-art performance on both benchmarks, re-
ducing the FPR95 on average by 7.74% on Imagenet and 0.88% on CIFAR10. In the following, we
provide a detailed analysis of these results.

LAFO continues to show the success of distance-based methods over logit-based methods.
Logit-based scoring methods MSP |Hendrycks & Gimpel| (2022), Energy |Liu et al.|(2020) are one
of the earliest baselines proving their success on measuring model’s confidences. MSP measures the
maximum softmax probability as its score while Energy does a logsumexp operation on the logits.
Recent distance-based methods like KNN+ [Sun et al.| (2022) and fDBD |Liu & Qin| (2024) out-
performs the early logit-based ones. Similarly, LAFO achieves significantly better performance on
both benchmarks, reducing the FPR95 up to 49.81% and 41.91% while improving the AUROC up
to 7.53% and 12.27% on CIFAR-10 and ImageNet OOD benchmarks.
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Table 2: LAFO achieves state-of-the-art performance on ImageNet OOD benchmark. Evaluated on
ResNet-50 with FPR95 and AUROC. 1 indicates that larger values are better and vice versa. Best
performance highlighted in bold. Methods with * are hyperparameter-free.

iNaturalist SUN Places Texture Avg

FPR95| AUROCT FPR95, AUROCT FPR95| AUROCT FPR95, AUROCT FPR95| AUROCT
MSP * 54.99 87.74 70.83 80.63 73.99 79.76 68.00 79.61 66.95 81.99

Method

ODIN 47.66 89.66 60.15 84.59 67.90 81.78 50.23 85.62 56.48 85.41
Energy *  55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17
ViM 71.85 87.42 81.79 81.07 83.12 78.40 14.88 96.83 62.91 85.93
MDS 97.00 52.65 98.50 4241 98.40 41.79 55.80 85.01 87.43 55.17
SSD+ 57.16 87.77 78.23 73.10 81.19 70.97 36.37 88.53 63.24 80.09

ReAct 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 3143 92.95
KNN+ 30.18 94.89 48.99 88.63 59.15 84.71 15.55 95.40 38.47 90.91
fDBD * 17.27 96.68 42.30 90.90 49.71 88.36 21.83 95.43 32.78 92.86
LAFO * 12.27 97.42 31.80 92.85 40.71 90.10 15.39 96.68 25.04 94.26

LAFO improves on the recent success of methods using contrastively learned features. Table/I]
and@] show the success of recent methods CSI [Tack et al.|(2020), SSD+ |Sehwag et al.|(2021), KNN+
Sun et al.|(2022) and fDBD |Liu & Qin|(2024) that utilizes contrastively learned representations over
the ones those do not use. We observe that the additional structure the supervised contrastive loss
puts on the feature representations are particularly beneficial to the distance-based methods. LAFO
also benefits from more structured representations on the feature space, as it explores the relation-
ship between the representation and the decision boundaries. Notably, LAFO improves both of the
metrics on both CIFAR-10 and ImageNet benchmarks, achieving the state-of-the-art performance.

LAFO enjoys being hyperparameter-free while offering state-of-the-art performance. Methods
that use hyperparameters require a holdout set the tune them. Moreover, having different optimal
hyperparameters for different benchmarks makes it harder to use them in real world applications.
MSP Hendrycks & Gimpel (2022), Energy [Liu et al.| (2020) and fDBD |Liu & Qin| (2024) are
the baselines which do not require any hyperparameters. LAFO outperforms the most competitive
hyperparameter-free baseline fDBD by having 10.97% FPR95 on CIFAR-10 as opposed to fDBD’s
11.85%, and 25.04% FPR95 on ImageNet compared to fDBD’s 32.78%.

4.2 MODEL ENSEMBLING WITH LAFO

Recent works |Xue et al| (2024) and |Xu et al| (2024) show that creating an ensem-
ble of models can enhance the OOD performance. Inspired from these works, and from
the observation that scale invariant representations are compatible between distinct models
(Moschella et al.), we demonstrate that scale-invariant score functions can aggregate the
confidences from different models, by simply summing their scores. On Table [3] we show
the individual performances of models ResNet-50, ResNet-50 with supervised contrastive
loss and ViT-B/16 as well as their combined performances using the scale-invariant LAFO.

Figure 3: LAFO can be used for ensemble
OOD detection due to its scale-invariance prop-
erty. Evaluated on ImageNet OOD benchmark.
Best performance highlighted in bold.

Note that, we show the scale-invariance prop-
erty of fDBD on section and added it to
demonstrate the same idea and also to com-
pare with LAFO. It can be seen that for both
of the score functions, the performance of en-
semble is l?etter than their 1nd1V1c.1ual. counter- FPROS, AUROCT
parts showing that score aggregation improves o oo s 5135 29 20
their OOD performance. Moreover, the ensem-  {pBp w/ResNet50-supcon ~ 32.78 92.86
ble with LAFO achieves a performance with  fDBD w/ViT-B/16 41.55 91.05
22.53% FPR95 and 96.41% AUROC, improv-  LAFO w/ResNet50 44.58 90.68
ing the metrics compared to the best individ- ~ LAFO w/ResNet50-supcon  25.04 94.26
ual performer in the ensemble by 2.51% and LAFO w/VIT-B/16 39.92 o1.38

. o Ensemble f{DBD 31.05 95.29
2.15% respectively. We show qualititave ev-  Epgemble LAFO 22.53 96.41
idence of the improved performance by plot-
ting the ID and OOD histograms on ImageNet
(Deng et al.| 2009)(ID) and iNaturalist (Van Horn et al.l 2018) (OOD) datasets, respectively, in
Figure [6|in the Appendix, demonstrating a better separation in the ensembled model. In summary,

Method Avg
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we demonstrate that scale-invariance of LAFO allows aggregating different models’ confidences to
solve OOD Detection Problem.

Table 3: LAFO can be used as a plug-in on top of activation shaping algorithms. Evaluated under
ImageNet OOD benchmark. 1 indicates that larger values are better and vice versa. Best perfor-
mance highlighted in bold.

iNaturalist SUN Places Texture Avg

FPRO5| AUROC! FPR95] AUROC{ FPR95| AUROC FPR95| AUROC! FPR95, AUROCt
LAFO w/ReLU 1227 97.42 31.80 92.85 40.71 90.10 15.39 96.68 25.04 94.26
LAFOw/ASH  11.08 97.68 27.81 93.59 36.53 91.36 18.48 96.70 2347 94.58
LAFO w/Scale  14.65 97.05 25.43 94.02 36.21 90.78 17.07 95.65 23.34 94.37
LAFO w/ReAct  11.13 97.79 2234 94.95 33.33 91.81 14.65 96.60 20.36 96.29

Method

4.3 LAFO WITH ACTIVATION SHAPING ALGORITHMS

Recent methods ReAct |Sun et al.|(2021), ASH |Djurisic et al.| (2023) and Scale Xu et al.| show their
success to modify the feature representations to reduce model’s overconfident predictions. All three
methods adopt a hyperparameter percentile to choose how to truncate and scale the feature represen-
tations using ID data statistics. When combined with Energy [Liu et al.[(2020) score, these methods
improve the OOD Detection performance. On Table [I5| we show that applying LAFO scoring after
activation shaping algorithms improves the performance. Specifically combining LAFO with ReAct
reduces FPR95 from 25.04% to 20.36% highlighting both the flexibility and efficacy of our method.
This demonstrates that LAFO can flexibly be combined with activation shaping algorithms.

4.4 ABLATION STUDIES

In this section, we will demonstrate the effectiveness of design choices on our score function LAFO.
We first justify our choice of centering in pyp empirically, among the candidates: pip, fy,.is By
and max (zip ). Then, we compare different angle aggregation techniques across classes by replacing
our max ({0y, y'}y ey, £y) With mean and min across classes.

Table 4: Ablation on the different origin per-  Table 5: Ablation on the different score aggre-
spectives for centering. Evaluated under both  gations across classes. Evaluated under both

ImageNet and CIFAR-10 OOD benchmarks. ImageNet and CIFAR-10 OOD benchmarks.
Method CIFAR-10 ImageNet Method CIFAR-10 ImageNet
FPR95| AUROC FPR95| AUROCT FPR95, AUROCT FPR95| AUROC?
LAFO W/ 1y, 1242 9759 4302  89.86 LAFO wimin 3202 95.23 7915 8138
LAFO Wity 1326 9748 2829 9346 LAFO wimean 1184 9759 3276  92.87

LAFO w/ max (zp) 13.39 97.42 32.44 92.01

LAFO w/pup 10.97 97.67 25.04 0426 LAFO w/max 10.97 97.67 25.04 94.26

Centering with 1ip incorporates ID-statistics without biasing towards one particular class. Ta-
ble[d] shows the performance comparison between centerings with respect to different points. Using
the relative angle with respect to the predicted (tty,,,,) or target (£y,...) class centroid induce a bias
towards the corresponding class, which in the end hinders the compatibility between angles coming
across classes. On the other hand, using max (zp) shifts every feature representation to the same
orthant, reducing to simply computing the absolute distance between feature representations and the
decision boundaries, which is agnostic from the in-distribution feature statistics. We observe a sig-
nificant improvement in performance when computing relative angles using up, demonstrating the
importance of incorporating in-distribution (ID) statistics when measuring the relationship between
feature representations and decision boundaries. LAFO with pp centering improves the FPR95 by
up to 1.45% and 7.4% on CIFAR-10 and ImageNet respectively while also improving the AUROC
for both benchmarks.

Looking at the furthest class is better for ID/OOD separation. On Table |5| we explored differ-
ent ways to aggregate class specific angles. Originally, we devise our score function to return the
maximum relative angle discrepancy between the feature representation across decision boundaries.
Intuitively, this suggests that considering the furthest possible class that a feature belongs from the
mean of in-distribution’s perspective is effective to distinguish OOD from ID. On the other hand,
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comparing the minimum focuses on the smallest relative angle, reducing the separability signifi-
cantly. Table[5|demonstrates taking the maximum across classes clearly outperforms mean and min
aggregations, improving FPR95 and AUROC metrics on both benchmarks. Specifically the dif-
ference is higher on our large-scale experiments reducing the FPR95 by 7.72% and increasing the
AUROC by 1.39% compared to the second best aggregation.

5 CONCLUSION

In this paper, we introduce a novel angle-based OOD detection score function. As a post-hoc mea-
sure of model confidence, LAFO offers several key advantages: it is (i) hyperparameter-free, (ii)
model-agnostic and (iii) scale-invariant. These features allow LAFO to be applied to arbitrary pre-
trained models and used in conjunction with existing activation shaping algorithms, enhancing the
performance. Notably, its scale-invariant nature enables simple aggregation of multiple models’
confidences through score summation, allowing a creation of an effective model ensemble for OOD
detection. Our extensive experiments demonstrate that LAFO achieves state-of-the-art performance,
using the relationship between the feature representations and decision boundaries relative to the ID
statistics effectively. Despite the state-of-the-art performance achieved by LAFO, one possible lim-
itation might be the use of the mean alone to capture the ID statistics in our score. As a future
direction, we plan to mitigate this possible limitation by incorporating multiple relative angles to
better capture the ID-statistics beyond the mean, aiming to further improve OOD detection perfor-
mance. We hope that our approach inspires further research into geometric interpretations of model
confidence for OOD detection.
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A APPENDIX

A.1 COMPARISON OF SCORE DISTRIBUTIONS: CIFAR-10 vs. OOD DATASETS

In this section we report the score histogram results on the Table T for CIFAR-10 OOD Benchmark.
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Figure 4: Score distributions of ID and OOD datasets in CIFAR-10 OOD Benchmark.

A.2 COMPARISON OF SCORE DISTRIBUTIONS: IMAGENET VS. OOD DATASETS

We report the score histogram results on the Table [2| for ImageNet OOD Benchmark.
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Figure 5: Score distributions of ID and OOD datasets in ImageNet OOD Benchmark.
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Table 6: LAFO can be used as a score function to accumulate different architectures’ confidences
due to its scale-invariance property. Evaluated under both ImageNet OOD benchmark. Best perfor-
mance highlighted in bold.

Method iNaturalist SUN Places Texture Avg
FPR95| AUROCtT FPR95| AUROCt FPR95| AUROCtT FPR95, AUROCtT FPR95| AUROCT
fDBD w/ResNet50 40.10 93.70 60.89 86.86 66.75 84.14 37.66 92.09 51.35 89.20
fDBD w/ResNet50-supcon 17.34 96.68 42.26 90.92 49.68 88.38 21.84 95.44 32.78 92.86
fDBD w/ViT-B/16 12.97 97.71 51.09 89.67 56.51 87.32 45.62 89.48 41.55 91.05
LAFO w/ResNet50 34.88 94.43 54.30 88.41 61.79 85.64 27.34 94.24 44.58 90.68
LAFO w/ResNet50-supcon 12.27 97.42 31.80 92.85 40.71 90.10 15.39 96.68 25.04 94.26
LAFO w/ViT-B/16 11.81 97.85 48.98 90.06 54.60 87.75 4431 89.85 39.92 91.38
Ensemble fDBD 4.58 98.93 42.81 93.97 53.49 91.92 2333 96.34 31.05 95.29
Ensemble LAFO 2.77 99.29 30.21 95.39 42.52 93.39 14.63 97.59 22.53 96.41
ResNet50-supcon imagenet vs inat Model Ensemble imagenet vs inat
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Figure 6: Comparison of the score histograms on Imagenet (ID) and inaturalist(Van Horn et al.,
2018)(0O0D) of the best individual model (left) with the model ensemble (right). Model ensemble
improves the ID and OOD separation.

A.3 MODEL ENSEMBLE EXPERIMENT

Table[6]show the extended version for the model ensemble experiment presented on Table 3]

A.4 IMPLEMENTATION DETAILS

We used Pytorch (Paszke et al.,2019) to conduct our experiments. We obtain the checkpoints of pre-
trained models ResNet18 with supervised contrastive loss and ResNet50 with supervised contrastive
loss from [Liu & Qin|(2024)’s work for a fair comparison. In the experiment where we aggregate
different models’ confidences, ViT-B/16 (Dosovitskiy et al., 2020) checkpoint is retrieved from the
publicly available repository https://github.com/lukemelas/PyTorch-Pretrained- ViT/tree/master. In
the experiment where we merge LAFO with the activation shaping algorithms ASH (Djurisic et al.,
2023)), Scale (Xu et al.) and ReAct (Sun et al., | 2021), we used the percentiles to set the thresholds
35, 90 and 80 respectively. All experiments are evaluated on a single Nvidia H100 GPU. Note that,
due to our hyperparameter-free post-hoc score function, all experiments are deterministic given the
pretrained model.

B REBUTTAL EXPERIMENTS

Table 7: CIFAR10 Plain ResNet18 performances.

Method SVHN iSUN Places Texture Avg
FPR95/ AUROCtT FPR95] AUROCtT FPR95) AUROCT FPR95] AUROCT FPR95| AUROC?T
KNN 27.85 95.52 24.67 95.52 44.56 90.85 37.57 94.71 33.66 94.15

fDBD 22.58 96.07 23.96 95.85 46.59 90.40 31.24 94.48 31.09 94.20
LAFO 22.09 96.02 2291 95.90 46.46 90.37 31.28 94.48 30.86 94.21
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Table 8: ImageNet Plain ResNet50 performances.

Method iNaturalist SUN Places Texture Avg
FPR95] AUROCt FPR95] AUROCt FPR95) AUROCT FPR95] AUROCT FPR95| AUROCT
KNN 59.00 86.47 68.82 80.72 76.28 75.76 11.77 97.07 53.97 85.01

fDBD 40.24 93.67 60.60 86.97 66.40 84.27 37.50 92.12 51.19 89.26
LAFO 38.94 93.68 59.78 86.53 66.89 83.04 31.67 93.33 49.32 89.15

Table 9: ImageNet ViT performances.

Method iNaturalist SUN Places Texture Avg
FPR95| AUROCt FPR95] AUROCtT FPR95) AUROCT FPR95] AUROCT FPR95] AUROCT
KNN 11.41 97.65 56.91 86.39 63.76 82.61 42.23 89.61 43.58 89.07

fDBD 12.86 97.72 50.86 89.74 56.28 87.44 45.74 89.41 41.44 91.08
LAFO 11.80 97.86 48.81 90.14 54.32 87.88 44.56 89.75 39.87 91.41

Table 10: LAFO vs ReAct under ImageNet OOD benchmark.

Method iNaturalist SUN Places Texture Avg
FPR95/ AUROCT FPR95] AUROCtT FPR95), AUROCt FPR95| AUROCT FPR95, AUROCT

ReAct 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95

LAFO 12.27 97.42 31.80 92.85 40.71 90.10 15.39 96.68 25.04 94.26

LAFO w/ReAct 11.13 97.79 22.34 94.95 33.33 91.81 14.65 96.60 20.36 96.29

Table 11: LAFO vs ReAct under CIFAR OOD benchmark.

Method SVHN iSUN Places Texture Avg
FPRY5, AUROCT FPR95, AUROCt FPR95| AUROCT FPR95, AUROCT FPRYS, AUROCT
ReAct 6.15 98.75 10.31 98.09 21.68 95.47 10.18 98.12 12.08 97.61
LAFO 3.53 99.16 8.36 98.28 23.40 94.88 8.58 98.34 10.97 97.67
LAFO w/ReAct 3.5 99.18 8.11 98.29 20.84 95.25 7.87 98.45 10.04 97.79
Table 12: CIFAR10 centering with different statistics.
Method SVHN iSUN Places Texture Avg
FPR95| AUROCT FPR95, AUROCT FPRY95| AUROCT FPR95| AUROCT FPR95| AUROCt
Class 0 mean 477 98.96 8.06 98.27 2520 94.62 10.11 98.19 12.03 97.51
Class 1 mean 6.12 98.77 8.86 98.24 24.94 94.96 13.16 97.68 13.27 97.41
Class 2 mean 5.42 98.84 7.90 98.36 22.19 95.58 11.42 97.98 11.73 97.69
Class 3 mean 5.94 98.76 7.9 98.29 2280 9543 1135 97.66 12.02 97.54
Class 4 mean 5.4 98.85 8.87 98.22 22.68 95.47 11.26 97.96 1206 97.63
Class 5 mean 6.22 98.64 7.38 98.45 23.11 95.48 1.8  97.82 1214 97.60
Class 6 mean 5.74 98.82 8.50 9826  97.67 20.76 12.11 95.73 11.78 97.62
Class 7 mean 5.93 98.78 8.29 98.30 24.55 95.13 12.57 97.82 1284 9751
Class 8 mean 5.81 98.81 10.03 97.95 26.79 94.18 10.41 98.11 1326 97.26
Class 9 mean 6.11 98.78 9.00 98.19 24.89 94.62 11.35 97.95 1284 9725
Sum aggregation 5.68 98.85 8.27 98.33 2370 9534 11.33 97.98 12.25 97.62
Elementwise max 6.28 98.73 8.28 98.30 13.79 97.57 24.35 95.21 13.18 97.45
Elementwise min 3.60 99.14 14.82 97.10 9.38 97.99 27.62 92.97 13.85 96.80
Elementwise median  2.33 99.34 10.02 97.90 7.73 98.29 23.99 93.84 1102 97.34
Sum aggregation 5.78 98.65 20.31 95.64 10.35 97.80 30.42 91.60 16.72 95.92
LAFO 3.53 99.16 8.36 98.28 2340 94.88 8.58 98.34 1097 97.67
Table 13: ImageNet centering with different statistics.
Method iNaturalist SUN Places Texture Avg
FPR95| AUROCT FPRY95| AUROCT FPR95| AUROCT FPR95, AUROCT FPRY95, AUROCT
Class 1 mean 16.01 96.92 31.63 92.52 39.86  90.67 25.39 9333 2822 9336
Class 250 mean 11.48 97.65 31.20 92.69 39.53 90.77 20.16 94.87 2559 93.99
Class 500 mean 14.87 97.08 38.97 9052  45.80 88.90 26.29 93.04 31.48 92.28
Class 750 mean 11.57 97.59 34.23 92.13 4260 90.15 19.75 95.18 27.04 9376
Class 1000 mean 1136 97.63 30.20 93.01 3812 91.08 19.31 9531 2475 9426
Sum aggregation 1240 97.48 3247 9236 4042 9053 21.38 94.52 26.67 93.72
Elementwise Max 17.10  96.76 34.22 91.73 41.88 90.14 35.09 89.84 32.07 92.12
Elementwise Min 2916 94.51 60.70 85.81 65.01 83.18 22.84 95.07 44.43 89.64
Elementwise Median ~ 20.04  95.83 46.66 89.15 54.42 85.61 15.04 96.81 3404 91.85
Sum aggregation 21.09 9589  49.47 88.97 56.50 86.12 17.62 95.98 36.17 91.74
LAFO 12.27 97.42 31.80 92.85 40.71 90.10 15.39 96.68 2504 94.26
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Table 14: Resource Constrained Setting: ImageNet MobileNet_v2 performances.

Method iNaturalist SUN Places Texture Avg
FPR95, AUROC{ FPR95, AUROCT FPR95, AUROC{ FPR95, AUROC{ FPR95| AUROC?T
MSP 59.84 86.71 74.15 78.87 76.84 78.14 70.98 78.95 70.45 80.67
Energy 55.35 90.33 59.36 86.24 66.28 83.21 54.54 86.58 58.88 86.59
KNN 85.92 72.67 90.51 65.39 93.21 60.08 14.04 96.98 70.92 73.78

fDBD 53.72 90.89 68.22 82.84 73.20 80.09 37.82 91.85 58.24 86.42
LAFO 46.59 91.86 61.21 85.01 67.81 82.08 27.07 94.04 50.68 88.25

Table 15: ImageNet CLIP-ViT-H14 performances. (LP: Linear Probe, ZS: Zero Shot)

Method iNaturalist SUN Places Texture Avg

FPRO5S| AUROCt FPR95S| AUROCT FPR9S| AUROCT FPR95| AUROCT FPR95, AUROCT
MSP (LP) 15.74 96.64 46.00 88.68 48.73 87.40 40.87 87.98 37.83 90.18

Energy (LP) 7.26 97.94 34.62 92.13 41.32 90.05 37.02 90.98 30.06 92.77
KNN (ZS) 80.20 87.86 86.68 84.63 73.51 86.07 70.27 84.60 77.66 85.79
fDBD (ZS) 9.31 98.11 22.32 94.78 29.15 93.20 40.12 90.25 25.23 94.08
fDBD (LP) 5.62 98.48 32.18 93.89 35.74 92.54 27.13 93.71 25.17 94.66

LAFO (ZS) 14.12 97.41 22.97 94.97 28.01 93.41 38.28 90.73 25.85 94.13
LAFO (LP) 6.66 98.16 30.35 94.43 33.79 93.20 24.95 94.34 23.94 95.03
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Figure 7: We demonstrate the ID/OOD separability of sin(«), sin(f) and % Columns show

the performances on iNaturalist and SUN datasets respectively. It can be seen that the ID/OOD
class separability is the best when sin(6) is used: considering sin(«) impedes the performance as
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confirmed quantitatively in terms of FPR95 and AUROC metrics in TableEl
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