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ABSTRACT

Locating the source of an epidemic, or patient zero (P0), can provide critical
insights into the infection’s transmission course and allow efficient resource allo-
cation. Existing methods use graph-theoretic centrality measures and expensive
message-passing algorithms, requiring knowledge of the underlying dynamics and
its parameters. In this paper, we revisit this problem using graph neural networks
(GNNs) to learn P0. We establish a theoretical limit for the identification of P0 in
a class of epidemic models. We evaluate our method against different epidemic
models on both synthetic and a real-world contact network considering a disease
with history and characteristics of COVID-19. We observe that GNNs can identify
P0 close to the theoretical bound on accuracy, without explicit input of dynamics
or its parameters. In addition, GNN is over 100 times faster than classic methods
for inference on arbitrary graph topologies. Our theoretical bound also shows
that the epidemic is like a ticking clock, emphasizing the importance of early
contact-tracing. We find a maximum time after which accurate recovery of the
source becomes difficult, regardless of the algorithm used.

1 INTRODUCTION

The ability to quickly identify the origin of an outbreak, or “finding patient zero”, is critically
important in the effort to contain an emerging epidemic. The identification of early transmission
chains and the reconstruction of the possible paths of diffusion of the virus can be the difference
between stopping an outbreak in its infancy and letting an epidemic unfold and affect a large share of
a population. Hence, solving this problem would be instrumental in informing and guiding contact
tracing efforts carried out by public health authorities, allowing for optimal resource allocation that
can maximize the probability of an early containment of the outbreak. Disease spreading is modeled
as a contagion process on a network Stroock & Varadhan (2007); Pastor-Satorras et al. (2015) of
human-to-human interactions where infected individuals are going to transmit the virus by infecting
(with a certain probability) their direct contacts. In general, contagion processes can capture a wide
range of phenomena, from rumor propagation on social media to virus spreading over cyber-physical
networks Centola & Macy (2007); Baronchelli (2018); Wang et al. (2013); Mishra & Keshri (2013).
Therefore, learning the source of a contagion process would also have broader impact on various
domains, from detecting sources of fake news to defending malware attacks.

Learning the index case, or patient zero (P0), is a difficult problem. In this paper, we model disease
spreading as a contagion process (chains of transmissions) over a graph. The evolution of an outbreak
is noisy and highly dependent on the graph structure and disease dynamics. In addition, in real-world
epidemics, there is often a delay from the start of the outbreak to when epidemic surveillance and
contact tracing starts. Hence, we might only observe the state of the graph at some intermediate
times without access to the complete chains of transmission. Furthermore, due to its stochastic nature,
the same source node might lead to different epidemic spreading trajectories. Finally, learning P0
from noisy observations of graph snapshots is computationally intractable and the complexity grows
exponentially with the size of the graph Shah & Zaman (2011).

Most work in learning the dynamics of a contagion process Rodriguez et al. (2011); Mei & Eisner
(2017); Li et al. (2018a) have focused on inferring the forward dynamics of the diffusion. In
epidemiology, for example, Pastor-Satorras & Vespignani (2001) have studied learning the temporal
dynamics of diseases spreading on mobility networks. The problem of learning the reverse dynamics
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and identifying diffusion sources has been largely overlooked due to the aforementioned challenges.
Two of the most notable exceptions in the area are “rumor centrality” Shah & Zaman (2011) for
contagion processes on trees and Dynamic Message-passing (DMP) on graphs Lokhov et al. (2014)
but both require as input the parameters of the spreading dynamics simulations.

Our goal is to provide fresh perspectives on the problem of finding patient zero using graph neural
networks (GNNs) Gilmer et al. (2017). First, we conduct a rigorous analysis of learning P0 based
on the graph structure and the disease dynamics, allowing us to find conditions for identifying P0
accurately. We test our theoretical results on a set of epidemic simulations on synthetic graphs
commonly used in the literature Erdös et al. (1959); Albert & Barabási (2002). We also evaluate our
method on a realistic co-location network for the greater Boston area, finding performance similar to
the synthetic data. While collecting labeled data to train GNN to find P0 may not be possible, training
GNN using simulations on real contact-tracing data can provide a fast method for inferring P0 and
help with planning and resource allocation. To the best of our knowledge, our work is the first to
tackle the patient zero problem with deep learning and to test the approach on a realistic contact
network. In summary, we make the following contributions:

• We find upper bounds on the accuracy of finding patient zero in graphs with cycles, indepen-
dent of the inference algorithm used.
• We show that beyond a certain time scale the inference becomes difficult, highlighting the

importance of swift and early contact-tracing.
• We demonstrate the superiority of GNNs over state-of-the-art message passing algorithms

in terms of speed and accuracy. Most importantly, our method is model agnostic and does
not require the epidemic parameters to be known.
• We validate our theoretical findings using extensive experiments for different epidemic

dynamics and graph structures, including a real-world co-location graph of the COVID-19
outbreak.

2 RELATED WORK

Learning contagion dynamics Learning forward dynamics of contagion processes on a graph
is a well studied problem area. For instance, Rodriguez et al. (2011); Du et al. (2013) proposed
scalable algorithms to estimate the parameters of the underlying diffusion network, a problem known
as network inference. Deep learning has led to novel neural network models that can learn forward
dynamics of various processes including neural Hawkes processes Mei & Eisner (2017) and Markov
decision processes-based reinforcement learning Li et al. (2018a). Learning forward contagion
dynamics have also been intensively studied in epidemiology Pastor-Satorras & Vespignani (2001);
Vynnycky & White (2010), social science Matsubara et al. (2012), and cyber-security Prakash et al.
(2012). In contrast, research in learning the reverse dynamics of contagion processes is rather scarce.
Influence maximization Kempe et al. (2003), for instance, finds a small set of individuals that can
effectively spread information in a graph, but only maximizes the number of affected nodes in the
infinite time limit. Our problem is more difficult as we care not just about the number of infected
nodes, but which nodes were infected.

Finding patient zero In order to find patient zero, we aim to learn the reverse dynamics of
contagion processes. Shah & Zaman (2011) were among the first to formalize the problem on trees in
the context of modeling rumor spreading in a network. Prakash et al. (2012); Vosoughi et al. (2017)
studied similar problems for detecting viruses in computer networks. More recent advances proposed
a dynamic message passing algorithm Lokhov et al. (2014) and belief propagation Altarelli et al.
(2014) to estimate the epidemic outbreak source. Fairly recently, Fanti & Viswanath (2017) reduced
the deanonymization of Bitcoin to the source identification problem in an epidemic and analyzes the
dynamics properties. On the theoretical side, Shah & Zaman (2011); Wang et al. (2014) analyzed
the quality of the maximum likelihood estimator and rumor centrality, but only for the simple SI
model on trees. Antulov-Fantulin et al. (2015) found detectability limits for patient zero in the SIR
model using exact analytical methods and Monte Carlo estimators. Khim & Loh (2016); Bubeck et al.
(2017) proved that it is possible to construct a confidence set for the predicted diffusion source nodes
with a size independent of the number of infected nodes over a regular tree. Our work provides fresh
perspectives on the patient zero problem on general graphs based on the recent development of graph
neural networks
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Graph neural networks Graph neural networks have received considerable attention (see several
references in Bronstein et al. (2017); Zhang et al. (2018); Wu et al. (2019); Goyal & Ferrara (2018)).
While most research is focused on static graphs, a few have explored dynamic graphs Li et al. (2018b);
You et al. (2018); Kipf et al. (2018); Pareja et al. (2019); Trivedi et al. (2019). For example, Kipf et al.
(2018) propose a deep graph model to learn both the graph attribute and structure dynamics. They
use a recurrent decoder to forecast the node attributes for multiple time steps ahead. Trivedi et al.
(2019) take a continuous-time modeling approach where they take the node embedding as the input
and model the occurrence of an edge as a point process. Xu et al. (2020) propose a temporal graph
attention layer to learn the representations of temporal graphs. However, most research is designed
for link prediction tasks and none of these existing studies have studied the problem of learning the
source of the dynamics on a graph.

3 CONTAGION PROCESS AND PATIENT ZERO

Finding patient zero means tracing the contagion dynamics back to its initial state and identifying
the first nodes that started spreading. Here, we describe the disease dynamics on a network using
Susceptible-Infected-Recovered (SIR) and Susceptible-Exposed-Infected-Recovered (SEIR) Kermack
& McKendrick (1927) compartmental models that assume that infected individuals develop immunity
once they recover from the infections.

3.1 CONTAGION PROCESSES ON NETWORKS

Figure 1: Visualization of the patient zero prob-
lem: uncover the original source (red node, left)
given a future state of a contagion process (right).

In the SIR model, the population is split into
three compartments: susceptible (S) who are
susceptible to infection by the disease; infected
(I) who have caught the disease and are infec-
tious; removed (R) who are removed from con-
sideration after experiencing the full infectious
period.

Continuous time model For a contagion pro-
cess on a graph G with N nodes, each vertex
represents an individual who is in contact only
with its neighbors. We can represent the graph
using the adjacency matrix A ∈ RN×N , where
A[i, j] = 1 if two individuals are connected, 0
otherwise. Let Si, Ii, Ri be the average probabilities of node i being in each of the states, with
Si + Ii +Ri = 1. The SIR dynamics on a graph is given by Newman (2018):

dSi
dt

= −β
∑
j

AijIjSi,
dRi
dt

= γIi,
dSi
dt

+
dIi
dt

+
dRi
dt

= 0. (1)

where β is the infection rate per contact and γ the recovery/death rate. The basic reproductive rate of
a disease R0 ≡ βλ1/γ is defined as the number of secondary infections created by an index case in a
fully susceptible population Keeling & Rohani (2011). Here λ1 is the largest eigenvalue of A. The
disease will spread and result in an epidemic if R0 > 1.

Discrete time model We can also use an equivalent discrete time SIR model. Let xti ∈ {S, I,R}
be the state of node i at time t. For a susceptible node i, its probability to become infected or removed
at time t+ 1 is

P (xt+1
i = I|xti = S) = 1−

∏
j

(1− βAijIi(t)) , P (xt+1
i = R|xti = I) = γ. (2)

The SIR model doesn’t account for the incubation period, where an individual is infected but not
infectious. This is remedied by introducing an “exposed” (E) state, leading to the SEIR model. For a
susceptible node i, the probability to enter the exposed state, and becoming infectious at time t+ 1 is

P (xt+1
i = E|xti = S) = 1−

∏
j

(1− βAijIi(t)) , P (xt+1
i = I|xti = E) = α, (3)
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An infected node eventually enters the removed state with probability γ, which is the same as SIR
(2). (2) and (3) yield (1) for very small β as

∏
j (1− βAijIi) ≈ βAijIi (proof in supp. B).

Finding patient zero Finding P0 can be formulated as a maximum likelihood estimation problem
for SIR and SEIR models. Specifically, we observe a snapshot of the state of the nodes at time step
t as xt := (xt1, · · · , xtN ), with each node’s state xti ∈ {S,E, I,R}. The problem of finding P0 is
to search for a set of nodes Z = {i|x0i = I, i ∈ {1, · · ·N}} which led to the observed state xt. A
common approach is to find Z such that the likelihood of observing xt is maximized:

Z? = argmaxZ,|Z|≤kP (x
t|Z) (4)

where P (xt|Z) is the probability of observing xt with Z being the P0 set. We assume the number
of P0s is no larger than k. Estimating the original state of the dynamic system given the future
states requires computing the conditional likelihood P (xt|Z) exactly, which is intractable due to the
combinatorics of possible transmission routes.

3.2 FUNDAMENTAL LIMIT OF FINDING PATIENT ZERO

The technical difficulty of finding P0 in SIR and SEIR stems from: (1) presence of cycles in graphs
(higher-order transmission) (2) the removed state introducing additional uncertainty about temporal
order of infections (3) uncertainty of the exact time step of the observed states. For SI dynamics (i.e.
infection is permanent) on trees, existing theoretical results Shah & Zaman (2011); Khim & Loh
(2016) have established upper bounds on the detection probability based on an estimator called “rumor
centrality”. For graphs with cycles, finding P0 becomes more elusive. We derive the fundamental
limit considering the case where at time t = 0 one node, P0, is infected and all of the other nodes are
susceptible.

Ambiguity of patient zero on cyclic graphs For graph with cycles, if a cycle is embedded within
the infected subgraph, it will reduce the accuracy of predicting P0 because multiple spreading
scenarios can lead to the same infection pattern in the cycle. For instance, take a 3-regular tree where
the infection has started from the root and spread to some level. If any two branches are connected to
make a cycle, both branches become equally likely to have spread the disease downstream. Therefore,
having cycles in the infected subgraph reduces the accuracy of finding P0. If O(N) nodes in a graph
with cycles are infected, cycles will likely interfere with finding P0. Based on this observation, the
following theorem estimates the time horizon beyond which finding P0 becomes difficult.

Theorem 1 (Time Horizon). Assume SIR dynamics (1) on a connected graph of N nodes, starting
with a single patient zero. Denoting the adjacency matrix by A and its largest eigenvalue by λ1, the
average infection probability, both over nodes and choice of patient zero, 〈I(t)〉 ≡ 〈

∑
i Ii(t)/N〉P0

becomes O(1) after tmax time steps given by

tmax ∼
logN

γ(R0 − 1)
, R0 ≡

βλ1
γ

(5)

Proof: The proof (in Supp B.5.1) follows from the exponential behavior of (1) at small t (Newman,
2018)

Ii(t) ≈
∑
j

exp [t(βA− γI)]ij Ij(0) ≈ exp [(βλ1 − γ)t]
(
ψ(1) · I(0)

)
ψ
(1)
i , (6)

and the leading eigenvector being positive
∑
i ψ

(1)
i ≥

∥∥ψ(1)
∥∥
2
= 1 (Perron-Frobenius theorem).

The maximum detection accuracy of P0 on a connected graph would decrease with increasing number
of cycles in the infected subgraph, GI . In special cases we can estimate the penalty to the accuracy
due to cycles. For example, in connected Erdős–Rényi (ER) random graphs Erdös et al. (1959),
where each edge has independent an probability p, the number of cycles can be estimated. To get a
conservative estimate, we focus on triangles, as they are the most prevalent cycles in ER, to get an
upper bound for the accuracy in the following theorem. This ignores cases where the presence of
triangles causes downstream error or the error arising from other types of cycles.
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Theorem 2 (Detection Accuracy). In contagion process on a connected random graph G, with edge
probability p and with infected subgraph GI , the prediction accuracy for P0 is bounded from above

Pmax <
1

3
+

2

3
(1− p)(

|GI |p
2 ) (7)

The proof (supp. B.5.2) follows from estimating number of triangles in subgraph GI of a dense ER
graph and noting each triangle can drop the accuracy of P0 to 1/3.

Figure 2 shows an example of how this upper bound behaves for different values of R0. The graph is
a uniformly connected ER of N = 100, p = 2 logN/N and with γ = 0.4. In conclusion, on graphs
with cycles, we expect finding P0 after a time tmax ∼ O(logN) to become difficult. This suggests
that to find P0 contact-tracing must be done promptly and in early stages.

4 FINDING PATIENT ZERO WITH GRAPH NEURAL NETWORKS

We propose using GNNs for finding P0 and show that we can improve significantly upon state-of-
the-art methods, e.g. DMP. Moreover, using GNNs gives us the distinct advantage that they are
model-agnostic and do not require access to the epidemic dynamics parameters or the time t of
the graph snapshot. Our goal is not to propose a novel graph neural network architecture, but to
understand the trade-off between different probabilistic inference methods in the context of contagion
dynamics. Before we discuss our GNN solution, we briefly review Dynamic Message Passing.

Dynamic Message Passing DMP Lokhov et al. (2014) estimates the probability of every node
being the P0 in the SIR model using message-passing equations and approximates the joint likelihood
with a mean-field time approach by assuming the following factorization:

P (xt|Z) ≈
∏

i,xt
i=S

P (xti|Z)
∏

j,xt
j=I

P (xtj |Z)
∏

k,xt
k=R

P (xtk|Z) (8)

The algorithmic complexity of the DMP equations over a graph with N nodes and t ≤ T diffusion
steps is O(TN2〈k〉) where 〈k〉 is the average degree of the graph. Furthermore, DMP requires
providing the SIR epidemic parameters and the time t of the graph snapshot before performing
inference. For comparison, on a connected random graph, 〈k〉 > logN , yielding > O(TN2 logN)
time complexity for DMP. A trained GNN with l layers (2–8 in our case) has complexity O(N2l)
in the inference step and does not require inputting the model parameters. This makes it harder to
scale DMP for large or dense graphs. DMP is proven to be exact on trees, e.g. Kanoria et al. (2011),
and has been used on more general graphs with reasonable success. In practice, we find that GNN
inference can be 50–100 times faster than DMP, as DMP has to exhaustively infer the marginals of
S, I,R states for each node for each time t ≥ 0. DMP is trying to accurately infer the distribution
over the nodes and auto-regressively infer P0, whereas GNN does not infer node states at each time t
and tries to directly infer P0. On the other hand, DMP is an unsupervised inference algorithm and
does not “learn”, while GNN is provided with labels in a standard supervised setting.

Relation between Contagion Dynamics and GNNs Our use of GNNs for finding P0 is motivated
by the fact that the contagion dynamics (1) are a special case of Reaction-Diffusion (RD) processes
on graphs Colizza et al. (2007) which is structurally equivalent to GNNs, as shown next.
Proposition 1. Reaction-diffusion dynamics on graphs is structurally equivalent to the message-
passing neural network ansatz.

Denoting pµi (t) ≡ P (xti = µ) of node i being in states such as µ ∈ {S, I,R} or µ ∈ {S,E, I,R} at
time t, a Markovian reaction-diffusion dynamics can be written as

pµi (t+ 1) = σ

(∑
j

F
(
Aij · h(pj)µ

))
, ha(pi)

µ = σ

(∑
ν

Wµ
a,νp

ν
i + bµ

)
(9)

where Aaij = θ(Aij)f(A)ij with θ(·) being the step function and σ(·) a nonlinear function. RD on
graphs is structurally equivalent to Message-passing Neural Networks (MPNN) Gilmer et al. (2017),
as RD involves a message-passing step and a node-wise interaction among features (Supp. B.3),
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same as MPNN. We choose the simpler architecture of GCN as in (10) instead of general MPNN.
Finding P0 requires learning the backward dynamics of RD, which seems to require the inverse
of the propagation rule (PR). Yet, each node can only get infected by its neighbors, so even the
backward dynamics requires message passing over the same adjacency matrix and should again have
the structure of RD.

4.1 LEARNING WITH GRAPH NEURAL NETWORKS

We employ a state-of-the-art GNN design, suggested by Dwivedi et al. (2020). We make several
modifications to the model architecture to fit our problem. Given one-hot encoded node states
xti ∈ {0, 1}M as the GNN input, where M is the number of states and where the states are either
{S,E, I,R} or {S, I,R}, we first apply a linear transformation h(0)i = Uxti with U ∈ RC×M .
Denote the output of layer l by h(l)i , where i is the node index. We use graph convolutional network
(GCN) Kipf & Welling (2016) in each layer g(h) = σg (f(A) · h ·W + b), where W ∈ RC×C ,
b ∈ RC and f is called the propagation rule in GCN. We use f(A) = D−1/2AD−1/2 for the
propagation rule, where Dij = δij

∑
k Aik is the degree matrix. To include features of the central

node, instead of adding self-loops, we use residual connections between GCN layers and notice a
significant increase in model performance. The action of these higher GNN layers is given by

h
(l+1)
i = h

(l)
i + σ

(
BN(g(h(l)i ))

)
, yi = P · ReLU(Q · h(L)i ) (10)

where L is the number of layers and the output layer is parameterized by Q ∈ RD×D and P ∈ R1×D

to generate yi ∈ R, representing the probability that node i is P0. BN(·) denotes Batch Normalization
and σ(·) is a leaky-relu nonlinear activation function.

5 EXPERIMENTS

We perform extensive studies on performance of our GCNs in finding P0 in SIR and SEIR dynamics
over synthetic graphs with various graph topologies. In addition, we generate synthetic epidemic
outbreaks on top of a real world co-location network using a SEIR compartmental model that is
calibrated to simulate a contagion process with characteristics similar to a COVID-19 outbreak.

Experimental Setup We compare the performance of DMP Lokhov et al. (2014) and different
variants of GCNs, following the architecture we described in sec. 4.1:

• DMP: Dynamic Message Passing algorithm
Lokhov et al. (2014), we sample a graph snapshot O at time t with each node having a state
xti ∈ {S, I,R}, and select the node i that has the highest likelihood of generating O, that is
P0= argmaxiP (O|x0i = I).
• GCN-S: symmetric GCN Kipf & Welling (2016) f(A) = D1/2AD1/2, GCN-R: random walk
f(A) = D−1A, GCN-M: mixture of propagation rules f(A) = A||D1/2AD1/2

• GAT: Graph Attention Network Veličković et al. (2017)

We train our models using DGL Wang et al. (2019) with a PyTorch backend. The task is to predict the
probability for each node being P0 given a single graph snapshot. We report performance averaged
over four random seeds. Details on training and hardware are given in Supp. A.2 We additionally
report inference run times.

Evaluation Metrics We use top-1 accuracy to understand the effectiveness of our method. However,
due to the ambiguity of detecting patient zero, as elaborated in our theoretical analysis, top-1 accuracy
may not be the only evaluation measure to be relied upon. Therefore we also calculate the normalized

rank defined byRt = 1− 1

|Dt|N
∑
u∈Dt

ru whereDt is the set of test samples at time t, N is the size

of the graph and ru is the index of the ground truth P0 in the reverse-sorted probability distribution.
Normalized rank is a retrieval metric that tells us how high the correct patient zero was in the learned
output distribution. It demonstrates the quality of the output distribution in learning the stochastic
dynamics and helps us understand how high was P0 ranked even if it was not ranked the first.

6



Under review as a conference paper at ICLR 2021

BA-Tree BA-Dense ER-Dense Geometric
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 o
f P

0

Performance Comparison on Synthetic Graphs
DMP GCN-S GCN-R GCN-M GAT Inference times

Dataset DMP GCN GAT

BA-Tree 14.40 hr 3.89s 3.18s
BA-Dense 77.04 hr 4.91s 8.19s
ER-Dense 71.77 hr 4.93s 9.66s
Geometric 70.35 hr 5.34s 10.87s

Figure 3: Mean Prediction accuracy/speed comparison for different methods for the test set over
T = 30 steps and R0 = 2.5. The time to perform inference over the test set for different models have
been listed above. Note that the time taken by GCN represents the mean time taken by GCN variants.
We observe that GNNs beat DMP by a large margin both in terms of speed and accuracy. The similar
performance of the three GNN models may be due to approaching the theoretical limits.

5.1 EXPERIMENTS WITH SYNTHETIC NETWORKS

We first experiment on three synthetic graph models: ER random graph, Barabási-Albert (BA)
graph Albert & Barabási (2002) and Random Geometric Graph (Geometric or RGG) Dall & Chris-
tensen (2002), and use NDLib (Rossetti et al., 2017) to simulate SIR and SEIR epidemic dynamics
on the graph (Supp. A.1). We pick a random P0 seed node at time t = 0 and run S(E)IR a
fixed number of steps T . The epidemic parameters (α, β, γ) are chosen such that we can vary
R0 to study model performance. We set γ = 0.4 and β = R0γ/λ1 where λ1 is the largest
eigenvalue of the graph. For SEIR, we set α = 0.5. We generate 20, 000 simulations and use
80 − 10 − 10 train-validation-test split. For each sample we select t ∈ {1, · · ·T} uniformly at
random and try to predict P0 at time t = 0 given the graph adjacency matrix A and node features xti.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time/tmax
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Empirical Accuracy vs Theory
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R0 = 2.5(acc)
R0 = 3.5(theo)
R0 = 3.5(acc)

Figure 2: Theoretical upper bound
on accuracy (dashed line) vs ex-
perimental (solid line) on ER for
varying R0. While accuracy drops
below the theoretical limit at t ∼
tmax.

We first compare the top-1 prediction accuracy in SIR and
SEIR for different models averaged over 1 ≤ t ≤ T . Fig 3
compares the prediction accuracy and average inference time
for different models. We can see that GNN-based models
outperform the baseline DMP both in accuracy and efficiency.
We also want to note that the training time for GNNs is under
7 hours, significantly less than the fastest DMP run of 14.40 hr.
It is also worth emphasizing that DMP requires explicit input
of β, γ and t while GNNs are model agnostic.

To validate our theory, we plot the theoretical accuracy upper-
bound and the empirical accuracy obtained from GNN in Fig. 2.
We note that the time scale and drop in accuracy are consistent
with our theoretical results on tmax (28) and the upper bound
on accuracy Pmax (7). Combined with the fact that all our
GNN models have comparable accuracies, this suggests that
our GCN-based models may be approaching the fundamental limits we described in 3.2.

Fig. 4 shows the trend of accuracy decay over the time steps t for different graph structures and R0

values. As expected, the accuracy is highest on a tree and when t is small. In graphs with cycles
(BA-Dense, ER-Dense, and Geometric) we also observe a nontrivial drop in accuracy which depends
both on t and R0. For SIR we observe a drop in accuracy as a function of R0 and time, consistent
with our theoretical upper bound. The decay is slower for SEIR as the latent stage adds a delay to
the spread of the epidemic. The normalized rank of P0 remains high even over longer time horizons,
indicating that P0 could be narrowed down to small subset of the population with impressive accuracy.

5.2 BOSTON CO-LOCATION NETWORK AND COVID-19 EPIDEMIC TRAJECTORY

Our real-world dataset consists of a co-location graph and simulations of an epidemic with the natural
progression of COVID-19. The co-location graph is constructed using the Cuebiq data1 for two
weeks from 23 March, 2020 to 5 April, 2020 (N = 384, 590 nodes). To reduce computational
costs, we sample a subgraph with N = 2, 689 nodes and |E| = 30, 376 edges while maintaining the

1https://www.cuebiq.com/about/data-for-good/ derived from Klein et al. (2020a;b)
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Figure 4: Performance of GCN-S for SIR and SEIR epidemic dynamics as top-1 accuracy over the
test set. The top-1 recovery accuracy of P0 vs time (first and second row) and normalized rank of P0
(third and fourth row) for different graph topologies with varying R0 values. Note that in BA-Tree
(a), which is a tree, the accuracy remains fairly high in both SIR and SEIR, consistent with existing
literature, and confirming that cycles significantly reduces accuracy of P0.

degree distribution and connectivity patterns of the original graph. For the epidemic simulations,
we run a modified SEIR model with asymptomatic infectious states on the co-location graph with
R0 resembling COVID-19 Chinazzi et al. (2020) and accordingly set R0 = 2.5. Each simulation
contains 1 patient zero, selected uniformly at random. The simulation is run for 50 days. We create a
dataset with 10, 000 samples and an 80− 10− 10 train-validation-test split (supp. C).
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Figure 5: Performance on Boston co-location net-
work with simulations following the natural history
of COVID-19. Shown here are the top-k accuracy and
normalized rank.

The top-k accuracy performance over differ-
ent days when the graph snapshot was ob-
served are shown in Fig. 5a. We can see that
the top-1 accuracy falls steadily over time,
the top-(10, 20) accuracy remains fairly high
for the first two weeks suggesting that we can
retrieve P0 in the most likely 20 nodes out of
a total 2, 689 candidates.

Interestingly, while the top-1 accuracy de-
creases significantly, degrading by 50% after
14 days, using normalized rank, the model
can narrow down the set of patient zeros ac-
curately even later in the epidemic, as shown
in Fig 5b. For the normalized rank, P0 can be recovered fairly accurately in the first two weeks of the
epidemic. These results highlight an important trade-off between accurately determining patient zero
and retrieving the general infected region.

6 CONCLUSION

We study contagion dynamics on a graph using graph neural networks (GNNs) to learn the reverse
dynamics of contagion processes and predict patient zero. We evaluate our method against different
epidemic models on both synthetic and a real-world contact network with a disease with the natural
history and characteristics of COVID-19. We observe that GNNs can efficiently infer the source of an
outbreak without explicit input of dynamics parameters. Most notably, GNN accuracy approaches our
predicted theoretical upper bound, indicating that further architecture refinements may not improve
performance significantly. In addition, GNN is over 100x faster for inference than classic methods for
arbitrary graph topologies. Extensions of this work may include learning using sequences of graph
snapshots, as well as allowing a set of patient zeros.
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A APPENDIX

A.1 DATASET DETAILS

We use three graph models: ER random graph, Barabási-Albert (BA) graph Albert & Barabási (2002)
and Random Geometric Graph (Geometric or RGG) Dall & Christensen (2002). The density of
all three (|E|/

(
N
2

)
) is adjustable, but BA can produce exact trees. Fixing the number of nodes to

N = 1, 000, we first obtain one random instance of tree BA, and dense BA, ER and Geometric
graphs with |E| ≈ 10, 000 using the NetworkX library (NetworkX developer team, 2014) and then
use NDLib (Rossetti et al., 2017) to simulate SIR and SEIR epidemic dynamics on the graph (supp.
A.1). For each sample graph, we pick a P0 seed node i at random to be the patient zero at time t = 0
and then we run S(E)IR a fixed number of steps T . The epidemic parameters (α, β, γ) are chosen
such that we can vary R0 to study model performance. We set γ = 0.4 and β = R0γ/λ1 where λ1 is
the largest eigenvalue of the graph. For SEIR, we set α = 0.5. We generate 20, 000 simulations and
use 80− 10− 10 train-validation-test split. For each sample we select t ∈ {1, · · ·T} uniformly at
random and try to predict P0 at time t = 0 given the graph adjacency matrix A and node features xti.

Table 1 describes the details of the synthetic datasets.

Table 1: Description of the sampled graph statistics

Dataset # of Nodes # of Edges Density Diameter
BA-Tree 1,000 999 0.99 19
BA-Dense 1,000 9,900 9.90 4
Geometric 1,000 9,282 9.28 21
ER-Dense 1,000 9,930 9.93 4

A.2 TRAINING AND HARDWARE

We train the model with an ADAM optimizer for 150 epochs with an initial learning rate of 0.003
and decay the learning rate by 0.5 when the validation loss plateaus with a patience of 10 epochs.
We perform hyperparameter tuning over a validation set with a random search strategy. We sweep
over the hyperparameter space and track our experiments using Weights and Biases Biewald (2020)
choosing the model with the lowest validation error. We run our experiments on Nvidia 2080Ti GPUs
and report performance averaged over 4 random seeds.

A.3 HYPER-PARAMETER DETAILS

Table 2: Description of hyper-parameters used. All of our models have been trained with 4 random
seeds. The initial learning rate is mentioned in the table below and additionally we decay the learning
rate by 0.5 with a patience of 10 epochs when the validation error plateaus. Note that GAT had 4
attention heads and has been trained with 5 layers due to a limitation on GPU memory.

Hyperparameters GCN-S GCN-R GCN-M GAT

Number of Epochs 150 150 150 150
Batch Size 128 128 128 32
GNN Hidden Dim 128 128 128 128
Dropout 0.265 0.265 0.265 0.265
Number of GNN Layers 10 10 10 5
Initial Learning Rate 0.0033 0.0033 0.0033 0.004

A.4 NOTES ON DMP IMPLEMENTATION

We include DMP Lokhov et al. (2014) as a baseline against our proposed GNN based method. As
DMP does not have code that is publicly available, we implemented DMP using Python for a fair
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comparison with GNNs. Accordingly, our implementation of DMP uses DGL Wang et al. (2019)
which enables us to vectorize belief propagation (BP) and marginalization and now it runs in parallel
for all nodes.

Given a graph G(V,E), we observe Ot as the state of the graph with nodes i ∈ V . DMP employs
MLE estimation to determine the node iP0 that may have led to the observed snapshot O. For a
single sample in our dataset D, we use algorithm 1. In order to implement DMP efficiently, we
implemented it as a message-passing on a graph using DGL. We sequentially initialize node and edge
features for all node i and then as we obtain N = |V | set of graphs with node i acting as P0 in Gi.
DMP then allows us to obtain i = argmaxiP (O|i). The advantage of our implementation then is that
we can process all N graphs in parallel as if it were one large graph with N2 nodes and E2 edges
thanks to DGL’s support for batching graphs. A salient feature of using DGL is that the message
passing framework allows us to additionally process all the nodes and edges for a single time step t
in parallel. The nature of BP algorithms do not allow us to do away with the for-loop over time t and
that remains the only sequential aspect of our implementation. Finally, we use algorithm 1 to process
each sample in our test set sequentially. It should be noted that we can further vectorize over a batch
of samples in our test set. However, the memory required for DMP is O(bN2E2) with b being the
size of the batch and so memory requirements quickly blow up. Accordingly, we leave this aspect of
implementation for future work.

Algorithm 1: Dynamic Message Passing given graph G, snapshot O and time t

for i ∈ V do
set node i to be P0
initialize node features and edge features with eq (12, 13) in DMP;
for (t = 0; t < t; t = t+ 1) do

for e ∈ E do
perform message passing with eq (15, 16, 17) in DMP

for j ∈ V do
marginalize and update node states with eq (18, 19, 20) in DMP.

Calculate P (O|i) with eq 21 in DMP.
return i = argmaxiP (O|i)

A.5 EFFECT OF VARYING NUMBER OF GCN-S LAYERS ON TOP-1 ACCURACY

Fig. 6 shows the top-1 accuracy of P0 of the GCN-S model for varying number of layers. We do
not observe a significant effect coming from the number of layers. This may be due to the accuracy
limitations with tmax and cycles affecting all the models equally, and superseding other effects such
as the diameter of the graph. Another possible reason may be that the 20,000 samples on a graph
of 1,000 nodes has many repetitions of the same P0, resulting in both shallow and deep models
memorizing patterns.
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Figure 6: Performance of GCN-S for SIR epidemic dynamics as top-1 accuracy over the test set with
varying number of layers.
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B THEORETICAL ANALYSIS

B.1 EARLY STAGE EVOLUTION OF SIR AND SEIR

The SIR equation on a graph are

dSi
dt

= −β
∑
j

AijIjSi,
dRi
dt

= γIi,
dSi
dt

+
dIi
dt

+
dRi
dt

= 0. (11)

In very early stages, when t� 1/γ and
∑
i Ii +Ri � N , we have Si ≈ 1 and we have exponential

for Ii because

dSi
dt

= −dIi
dt
− dRi

dt
= −dIi

dt
− γIi

dIi
dt

= β
∑
j

AijIjSi − γIi ≈
∑
j

(βAij − γδij) Ij

Ii(t) ≈
∑
j

(exp[t (βA− γI)])ij Ij(0) (12)

Expanding this using the eigen-decomposition A =
∑
i λiψiψ

T
i yields eq. (29).

B.2 TRANSITION PROBABILITIES

More generally, when the graph is weighted, the probability of susceptible node i getting infected
depends on Aij and the probability of node j being in the infected state. For brevity, define
pµi (t) ≡ P (xti = µ), with µ ∈ {S, I, ..., R}. The infection probability in SIR (2) can be written as

P (xt+1
i = I|xti = S) = 1−

∏
j

(
1− βAijpIj

)
= β

∑
j

Aijp
I
j − β2[ApI ]2 +O(β3). (13)

B.3 REACTION DIFFUSION FORMULATION

For brevity, define pµi (t) ≡ P (xti = µ). In a network diffusion process the assumption is that node i
can only be directly affected by state of node j if there is a connection between them, i.e. if Aij 6= 0.
This restriction means that the general reaction-diffusion process on a graph has the form

Fa(A; p)
µ
i ≡

∑
j

fa

(
ga(A)ijha(pj)

µ
)

(14)

pµi (t+ 1) = F (A; p(t))µi = σ ({Fa(A; p(t))µi }) (15)

With

ga(A)ij = θ(Aij)g̃a(A)ij ha(pi)
µ = σa

(∑
ν

Wµ
a,νp

ν
i + bµa

)
(16)

where θ(·) is the step function and σa(·) a nonlinear function. In regular diffusion on a graph, we
have two states S, I and diffusion is changing the S → I state. The probability Pij ≡ P (xt+1

i =
I|xtj = S) of node i getting infected at t+ 1, given node j was in the infected state at time t, can be
expressed in the form of is determined by the adjacency matrix Aij because node j can only infect its
neighbors. The infection probability is given by pIi (t+ 1) = βAijp

I
j (t) and pSi = 1− pIi . Hence,

for diffusion

f1(x) = x g1(A) = βA, h1(pj)
µ =

∑
ν

δµI δ
I
νp
ν
j . (17)

In regular diffusion there is no condition on the target node i and even if it is in the I state the
dynamics is the same. In the SI model, however, the infection only spreads to i if it is in the S state.
Thus, we have to multiply the dynamics by pSi ≡ P (xti = S) which yields

pIi (t+ 1) = βAijp
I
j (t)p

S
i . (18)
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This can still be written as (9) by adding the extra functions

f2(x) = x, g2(A) = I, h2(pj)
µ =

∑
ν

δµSδ
S
ν p

ν
j (19)

and having

pi(t+ 1)I = F1(A; p(t))
I
iF2(A; p(t))

S
i (20)

where Fa = fa(ga · ha) are as in (14). More complex epidemic spreading models such as SIR and
SEIR can also be written in a similar fashion. In SIR and SEIR the rest of the dynamic equations
are linear and do not involve the the graph adjacency A at all, meaning ga(A) = I in the rest of the
equations.

B.4 DISCRETE TIME AGENT-BASED SIR AS A REACTION DIFFUSION SYSTEM

The agent-based models (2) and (3), which correct for double-counting of infection from multiple
neighbours, are sometimes written as

P (xt+1
i = I|xti = S) = 1− (1− β)ξi , (21)

where ξi is the total number of neighbors j of i which are infected, meaning xtj = I . We will first
show that this is a special case of the form given in our paper. First, note that in (2) the terms can also
be written as

(1− β)ξi =
∏
j

(
1− βδxt

j ,I

)
(22)

In the probabilistic model, we have to replace the strict condition of j being in the I state with its
probability, so δxt

j ,I
→ P (xtj = I) = pIj (t).

P (xt+1
i = I|xti = S) = 1−

∏
j∈∂i

(
1− βÂijpIj

)
(23)

and for small β yield

P (xt+1
i = I|xti = S) = β

∑
j

Âijp
I
j − β2

∑
j,k

Âijp
I
j Âikp

I
k +O(β3) (24)

which yields the simplified equation pi(t + 1)I = pSi (t)
∑
j βÂijp

I
j (t). Note that if the infection

rate per time step β is large β
∑
j Âijpj can exceed 1, rendering (24) inconsistent with pIi being

probabilities. Both (23) and (24) both can be written in the form of RD (15) and (9). We utilize the
h1, g1 and h2, g2 found for diffusion (17) and SI (19)

F1(A; p)
µ
i =

∑
j

log
(
1− βÂijh1(pj)µ

)
F1(A; p)

µ
i = h2(pi)

µ (25)

and defining the probability as

pIi (t+ 1) = F1
S
i

(
1− exp

[
F2

I
i

])
= pSi (t)

1−
∏
j

(
1− βAijpIj (t)

)
≈ βpSi (t)

∑
j

Aijp
I
j (t) (26)

B.5 PROOFS

Proposition 2. Reaction-diffusion dynamics on graphs is structurally equivalent of the message-
passing neural network ansatz.
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Proof: Analyzing the full stochastic model requires closely tracking the individual events and varies
in each run. Hence, we will work with mean-field diffusion dynamics using transition probabilities,
instead. Denoting pµi (t) ≡ P (xti = µ) of node i being in states such as µ ∈ {S, I, ..., R} at time t, a
Markovian reaction-diffusion dynamics can be written as

pµi (t+ 1) = σ

∑
j

F
(
Aij · h(pj)µ

) , ha(pi)
µ = σ

(∑
ν

Wµ
a,νp

ν
i + bµ

)
(27)

where Aaij = θ(Aij)f(A)ij with θ(·) being the step function and σ(·) a nonlinear function. To see
this, note that RD processes on graphs involve a message-passing (MP) step (e.g. an infection signal
coming from neighbors of a node), and a reaction step where messages of different states µ passed
to node i interact with each other on node i. RD dynamics such as the SIR and SEIR models are
also Markovian and the probability pµi (t) only depends on the probabilities at t− 1. These are also
the conditions satisfied by MPNN. In (27), A are a set of propagation rules for the messages, which
are only nonzero where A is nonzero, same as the aggregation rule in MPNN. To have interactions
between states µ occurring inside each fixed node i, h(pi) can mix the states µ but not change the
node index i, leading to the form of h(pi) in (27), which is the general ansatz for a neural network
with weight sharing for nodes, same as in MPNN, and graph neural networks in general.

B.5.1 PROOF OF THEOREM 3

Theorem 3 (Time Horizon). Assume SIR dynamics (1) on a connected graph of N nodes, starting
with a single patient zero. Denoting the adjacency matrix by A and its largest eigenvalue by λ1, the
average infection probability, both over nodes and choice of patient zero, 〈I(t)〉 ≡ 〈

∑
i Ii(t)/N〉P0

becomes O(1) after tmax time steps given by

tmax ∼
logN

γ(R0 − 1)
, R0 ≡

βλ1
γ

(28)

Proof: Consider the spectral expansion A =
∑N
a=1 λaψ

(a)ψ(a)T , with λ1 > · · · > λN . In (1) early
in the disease spreading, all nodes are susceptible, meaning Si ≈ 1, Ri ≈ 0, and Ii ≈ 1− Si. Thus,
combining the three SIR equations, keeping only Ii, the infection spreads as Newman (2018)

Ii(t) ≈
∑
j

exp [t(βA− γI)]ij Ij(0) ≈ exp [(βλ1 − γ)t]
(
ψ(1) · I(0)

)
ψ
(1)
i , (29)

Here, I is the identity matrix, λ1 is the largest eigenvalue of A and ψ(1) is the corresponding
eigenvector. Averaging over a uniform choice of patient zeros, for the average infection probability
we have

〈I(t)〉 ≈ 1

N
exp [(βλ1 − γ)t]

〈
ψ(1) · I(0)

〉
P0

∑
i

ψ
(1)
i ≥ 1

N
exp [(βλ1 − γ)t] (30)

where we used the inequality between L1 and L2 norms to get
〈
ψ(1) · I(0)

〉
P0

=
∥∥ψ(1)

∥∥
1
≥∥∥ψ(1)

∥∥
2
= 1. Connectedness means A is irreducible and by the Perron-Frobenius theorem its leading

eignvector is positive, hence
∑
i ψ

(1)
i =

∥∥ψ(1)
∥∥
1
≥
∥∥ψ(1)

∥∥
2
. Setting the lower bound of (30) equal

to 1 and solving for t we get (28).

B.5.2 PROOF OF THEOREM 2 Ptri

Proof: If P0 is in a triangle, we may miss it 2/3 of the times. Thus, the probability of detecting P0 is
bounded by P < 1− Ptri × 2/3, where Ptri is the probability that P0 is in a triangle. Since edges in
G are uncorrelated, each having probability p, GI is also a connected random graph with the same
edge probability p. Hence, in GI all nodes have degree k ≈ p|GI |. Ptri is one minus the probability
that none of the k neighbors of P0 are connected, i.e. Ptri = 1− (1− p)(

|GI |p
2 ), which proves the

proposition.

16



Under review as a conference paper at ICLR 2021

1 2 3 4 5 6 7 8 9
log(degree)

0

20000

40000

60000

80000

100000

Fr
eq

ue
nc

y

Histogram of log(degrees) - 10 bins (Original Graph with 384, 590 nodes)

(a) Degree distribution of original network
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(b) Degree distribution of subsampled network

Figure 7: Degree distribution of the original co-location network with 384, 590 nodes and the
subsampled network with 2, 689 nodes. We subsample the larger network to find a subgraph in order
to reduce computational costs of our experiments. We observe that the distribution of our subsampled
network is similar to the original graph.

C COVID-19 DATA AND SIMULATIONS

Geolocation data Mobility data are provided by Cuebiq, a location intelligence and measure-
ment platform. Through its Data for Good program (https://www.cuebiq.com/about/
data-for-good/), Cuebiq provides access to aggregated and privacy-enhanced mobility data for
academic research and humanitarian initiatives. These first-party data are collected from users who
have opted in to provide access to their GPS location data anonymously, through a GDPR-compliant
framework. Additionally, Cuebiq provides an estimate of home and work census areas for each user.
In order to preserve privacy, noise is added to these “personal areas”, by upleveling these areas to the
Census block group level. This allows for demographic analysis while obfuscating the true home
location of anonymous users and preventing misuse of data.

Colocation network The method for constructing the co-location graphs is as follows. First, we
split each day into five minute time windows, resulting in 288 time bins per day. For every location
event, we use its timestamp to assign it to a time bin, then assign the longitude-latitude coordinate of
the observation to an 8-character string known as a geohash. A geohash defines an approximate grid
covering the earth, the area of which varies with latitude. The largest dimensions of an 8-character
geohash are 38m x 19m, at the equator. If a user does not have an observation for a given time bin,
we carry the last observation forward until there is another observation. We finally define two users
to be co-located — and therefore to have a timestamped edge in the graph — if they are observed
in the same geohash in the same time bin. Accordingly, our co-location graph is constructed by
observing the greater Boston area over two weeks from 23 March, 2020 to 5 April, 2020 and results
in a graph with N = 384, 590 nodes. To reduce computational costs, we sample a subgraph with
N = 2, 689 nodes and |E| = 30, 376 edges with similar degree distribution and connectivity patterns
as the original graph and can be observed in Fig 7.

Epidemic simulations in real data. We run a SEIR model on the real co-location network. In
doing so, we select parameters and modify the structure of the model to resemble the natural history
of COVID-19 Chinazzi et al. (2020). At each time step nodes, according their health status, can be in
one of five compartments: S, E, I , Ia, or R. Thus, we split infectious nodes in two categories. Those
that are symptomatic (I) and those that are asymptomatic (Ia). The first category infects susceptible
node, with probability λ per contact. The second category instead with probability raλ. We set
ra = 0.5 and consider that probability of becoming asymptomatic as pa = 0.5. The generation time,
that is the sum of incubation (α−1) and infectious period (γ−1), is set to be 6.5 days. Specifically,
we fix α−1 = 2.5 and γ−1 = 4 days. In a single, homogeneously mixed, population the basic
reproductive number of such epidemic model is R0 = (1− pa + rapa)β/γ where β is the per capita
spreading rate Keeling & Rohani (2011). Here however, the epidemic model unfolds on top of the
real co-location network. Hence, infected nodes are able to transmit the disease only via contacts
(with susceptible individuals) established during the observation period. As mentioned above, the
value of R0 is defined by the interplay between the disease’s parameters as well as the structural
properties of the network Pastor-Satorras et al. (2015); Masuda & Holme (2017). For simplicity we
approximate β = 〈k〉λ, where 〈k〉 is the average number of connections in the network. We obtain
λ = 0.073 after solving for R0 and plugging in 〈k〉 = 30376/2689 = 11.29. The simulations start
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with an initial infectious seed selected uniformly at random among all nodes. We then read and store
the time-aggregated network in memory. The infection dynamics, which are catalysed by the contacts
between infectious and nodes, take place on such network. The spontaneous transitions instead (i.e.
transition from S toE and the recovery process), take place independently of the connectivity patterns.
After the infection and recovery dynamics, we print out the status, with respect to the disease, of each
node. Finally, we create a dataset with 10, 000 samples and an 80− 10− 10 train-validation-test split.
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