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Abstract

The essence of sequential recommender systems (RecSys) lies in understanding
how users make decisions. Most existing approaches frame the task as a sequential
prediction based on users’ historical purchase records. While effective in capturing
users’ natural preferences, this formulation falls short in accurately modeling actual
recommendation scenarios, particularly in accounting for how unsuccessful rec-
ommendations influence future purchases. Furthermore, the impact of the RecSys
itself on users’ decisions has not been appropriately isolated and quantitatively ana-
lyzed. To address these challenges, we propose a novel formulation of sequential
recommendation, termed Causal Sequential Recommendation (CSRec). Instead of
predicting the next item in the sequence, CSRec aims to predict the probability of
a recommended item’s acceptance within a sequential context and backtrack how
current decisions are made. Critically, CSRec facilitates the isolation of various fac-
tors that affect users’ final decisions, especially the influence of the recommender
system itself, thereby opening new avenues for the design of recommender systems.
CSRec can be seamlessly integrated into existing methodologies. Experimental
evaluations on both synthetic and real-world datasets demonstrate that the proposed
implementation significantly improves upon state-of-the-art baselines. github link
here.

1 Introduction

In the contemporary data-driven landscape, the significance of building a recommender system
(recsys) cannot be overstated. These systems form the foundation for delivering personalized user
experiences, improving customer satisfaction, and optimizing decision-making processes across a
wide range of industries.

The fundamental objective of recommender systems is to understand how users make decisions
and to provide support in this process. Most existing works, however, equate this objective with
recommending the item that users are likely to prefer the most. Consequently, these approaches focus
on estimating users’ inherent preferences based on observational data, such as purchasing records,
click data, and item reviews [18], and develop various methods to mitigate biases, such as popularity
bias and exposure bias [15; 8]. Later, the study of sequential recommendation recognizes that users’
preferences are also affected by temporal factors, taking into consideration that preferences may
evolve over time or that previous purchase decisions can influence future choices. Consequently,
recommendation tasks are formulated to predict the most likely next purchased item based on previous
purchases, offering a more personalized recommendation [31; 30; 27].

However, recovering users’ preferences is not fully equivalent to understanding the decision-making
process. Despite their notable success, such formulations tend to oversimplify the complexities of
real-world recommendation scenarios and fall short in precisely characterizing the recommendation
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process. This oversimplification, to some extent, limits the potential for developing truly effective
recommender systems.

Recommendation differs from users’ natural selection processes in that the recsys controls how
items are exposed to users, effectively serving as an intervention in their purchase decisions. In the
formulation of predicting the next possible purchase, predictions are typically based on the user’s
previous acceptance of a series of items. However, it is entirely plausible that a user may dislike
the system’s recommendations or show no interest in the suggested items, leading to sequences that
include both acceptance and rejection of items. Unfortunately, these possible sequences are excluded
from current formulations[37; 27; 15] due to the fundamental difference in the training goal.

In addition, an increasing number of recent works have recognized the interventional nature of
recommender systems and have attempted to model the system’s influence on users[9; 12]. For
instance, [9] highlighted the phenomenon of echo chambers, where users receive increasingly
homogenized recommendations. Similarly, [12] sought to address the issue of amplified preference
loops, where user preferences in observational data are repeatedly reinforced, ultimately undermining
the personalized recommendation experience. The emergence of these problems underscores the need
for an analytic framework capable of measuring the system’s influence on users in a differentiable
manner. While specific solutions have been proposed, they often overlook the fact that users’ decisions
are collaboratively influenced by multiple factors, not just the system itself. This reveals a gap in the
existing methods, which lack the ability to isolate the system’s influence from other factors, such as
users’ inherent preferences or previous purchase decisions.

In this paper, we introduce a novel formulation called CSRec (Causal Sequential Recommendation),
which can be integrated into existing recommender systems that preserves the underlying causal
structure in sequential recommendations, thereby overcoming existing limitations. Given a causal
graph, the causal inference perspective offers an explicit and differentiable framework to isolate
and quantify the influence of each variable on a user’s decision. While the underlying causal graph
may differ across contexts, the same procedure can be consistently applied, making it a flexible
and broadly applicable framework. Moreover, we introduce a method to quantitatively analyze
the influence of recommender systems on users through treatment effect estimation, defined as the
average difference in a user’s decisions with and without the recommendation. This formulation opens
up new possibilities for developing personalized recommender systems. In Section E, we present
several examples demonstrating how this approach can be used as an evaluation metric to assess
whether users are building trust in the system. Additionally, it offers a framework for developing
strategies to balance the exploration-exploitation trade-off when navigating users’ preferences in
unknown domains.

We conduct extensive experiments on both synthetic and real-world dataset and empirically show that
this simple adjustment of existing baselines generally improves the performance and outperforms
SOTA baselines.

2 Sequential Recommendation Represented in Causal Graph

Figure 1: Causal Graph for Sequential Recommendation.

In this section, we introduce the causal graph for the sequential recommendation as shown in Figure 1.

In this paper, we assume a general graph description of a recommendation that a user’s decisions
are influenced by their inherent preferences, the recommender system, and their previous decisions.
Without the intervention of recommendation system, users select which item to purchase according
to their own natural preference, and this purchase/rating/clicking behavior is collected as the observa-
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tional/historical data. We use P to denote the user’s preference. Since the sequential nature of the
data, we use subscript to denote the timestamp. Thus Pt reflects the user’s preference at time step t.
We use S to denote the exposure of items to users. Specifically, under an interventional setting, it
represents the system’s recommendation; under an observational setting without recommendations, it
means that users are exposed to the item from a different source. We use D to denote user’s decision
towards inquired items and user’s decision towards the recommended items in an observational and
interventional setting respectively. While in an online setting, there might be an additional causal
link from Dt to St+1, in this work, we adhere to an offline training schedule and do not consider the
causal relationship depicted by the yellow arrow.

3 Demystifying User’s Decision-Making Through Causal Formulation

In this section, we demonstrate how to estimate the impact of various factors on users’ decisions.
Specifically, we adhere to the causal graph outlined in Figure 1 and illustrate how users’ decisions
are influenced by the recommender system, previous decisions, and their inherent preferences.

3.1 Problem Setting

From a causal perspective, estimating how a sequence of system recommendation affects user’s
decision at T = t is equivalent to estimating the causal effect of the decision under intervention from
the system.

P(Dt|do(St, St−1, ..., S1), Pt). (1)

We intervene only in system recommendations to improve the purchasing likelihood under the
recommendations. We cannot directly change a user’s behavior or purchasing logic; instead, we aim
to increase the probability of purchase through our recommendations.

From Figure 1, we observe that the decision Dt is directly influenced by the recommender system
St at time t, the user’s preference Pt, and the user’s previous decision Dt−1. In a sequential
recommendation setting, Dt−1 inherently includes information about the recommender system at the
prior time step St−1, the user’s preference Pt−1, and the decision Dt−2. Therefore, while the most
recent decision is a direct cause, the entire history can indirectly affect the user’s current decision.

3.2 Estimating the Interventional Distribution.

To estimate such an interventional distribution, we need to (1) sequentially recover the causal
relationship at the current timestamp and (2) maintain such causal structure in the training of a
recommender system. We start with revealing the causal dependency between two subsequent
decisions under a series system recommendations in the following theorem, which naturally reveals a
constraint to maintain the causal structure.

Theorem 3.1. At time T = t, the probability distribution for a user’s decision given precedent
recommendations do(St−1, ..., S1) and the preference Pt follows the equality

P(Dt|do(St, St−1, ..., S1), Pt) =
∑
Dt−1

P(Dt|St, Dt−1, Pt) · P(Dt−1|do(St−1, ..., S1), Pt) (2)

The proof for the theorem is shown in Appendix C.

Theorem 3.1 describes how user’s current decision is affected by previous decisions, the system and
the user’s preference. To explain this theorem in details, we write this summation for time t = 2,
denoting the system recommended items as s1, s2 for t = 1 and t = 2 respectively. For simplicity,
we consider Dt ∈ {0, 1} where 0 denotes a negative decision and 1 denotes a positive decision. We
can write

P(D2|do(S2 = s2, S1 = s1), P2) =
∑

D1∈{0,1}

P(D2|S2 = s2, D1, , P1)P(D1|do(S1 = s1), P1)

= P(D2|D1 = 1, S2 = s2, P2)P(D1 = 1|do(S1 = s1), P1)+

P(D2|D1 = 0, S2 = s2, P2)P(D1 = 0|do(S1 = s1), P1).
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Here do(·) represents the interventional distribution where the recommender system controls the
exposure as stated in Appendix B, and P(D2|D1 = 1, S2 = s2, P2) represents the observational
distribution such that the source of exposure is not the recommender system.

Hence, the estimation of this probability is equivalent to the prediction of one user’s reaction to
the recommended item s2, taking their decision on s1 into consideration, and weighted by the
corresponding interventional probability. So long as this equality maintained at each timestamp, the
causal relationship remains intact throughout the entire recommendation process.

3.3 Maximizing Users’ Positive Decisions.

A general goal of a recommender system is to maximize the probability of users’ positive decisions,
e.g., purchase or click rate. Existing works equate such a goal as selecting the item that has the highest
preference score for users. We on the other hand, consider to maximize the purchasing probability by
adjusting system’s behavior. This subtle distinction enables us to first generalize the concept and then
incorporate Theorem 3.1 to maintain the inherent causal structure.

Instead of examining the user’s preference towards each product, we compute the probability of
positive decisions given a series of recommendations do(St, St−1, ..., S1), together with their current
preference Pt. Hence, we can formulate the task at time t as an optimization problem:

st = argmax
do(St)∈S

P(Dt|do(St, St−1, ..., S1), Pt). (3)

Note that an alternative way to define the optimization problem is to consider the cumulative decisions∑T
i=1 Di. For simplicity we consider a one-step maximization as Equation (3) only, but the framework

can be generalized to cumulative decisions easily.

To preserve the causal structure, we refer to Theorem 3.1 and accordingly propose CSRec (Causal
Sequential Recommender) with this new optimization goal as the following:

max
do(St)∈S

P(Dt|do(St, ..., S1), Pt) (4)

s.t. P(Dt|do(St, ..., S1), Pt) =
∑
Dt−1

P(Dt|St, Dt−1, Pt) · P(Dt−1|do(St−1, ..., S1), Pt) (5)

Remark 3.2. Concretely, CSRec considers optimizing the probability of users’ positive decision rate
by incorporating the causal relationship for a variety of factors.

3.4 Enforcing the constraint.

To enforce the constraint Equation (5), we need to estimate quantities from both the interven-
tional distribution P(Dt−1|do(St−1, ..., S1), Pt) and observational distribution P(Dt|St, Dt−1, Pt).
Here we emphasize the difference between these two distributions. The do(·) notation in
P(Dt−1|do(St−1, ..., S1), Pt) refers to situations where the exposure is completely controlled by
recommendation while St in observational distribution P(Dt|St, Dt−1, Pt), where St represents to
items exposed to users from a different source than a recommender system.

Hence, probability P(Dt|St, Dt−1, Pt) can be understood as users’ natural decision behavior Dt

towards items St based on their previous decision Dt−1 and temporal preference Pt. This is a natural
goal for a traditional neural network based recommendation system such as SASRec [13] or BSARec
[27]. Therefore, we estimate this quantity using an neural network recommender system trained on
observational dataset.

Putting everything together, we build a recommender system that models users’ decisions under the
intervention of recommendations, parameterized as ft(θ) := P(Dt|do(St, ..., S1), Pt). Consequently,
Equation (5) can be written as

ft =
∑
Dt−1

P(Dt|St, Dt−1, Pt)ft−1. (6)

We adapt a sequential recommender system trained on historical data, and parameterize it as f̃ :

P(·|St, Dt−1, Pt) = f̃(Dt−1, ..., D; η). (7)

4



With the general objective function of existing sequential recommender systems, we trained our
model using the following objective

Lt = −(Dt log ft(θ) + (1−Dt) log(1− ft(θ))), s.t. ft(θ) =
∑
Dt−1

ft−1(θ)f̃(η). (8)

By the Lagrangian multiplier method, we write the loss function for optimizing ft(θ) as

Lt = −(Dt log ft(θ) + (1−Dt) log(1− ft(θ))) +

∥∥∥∥∥∥ft(θ)−
∑
Dt−1

ft−1(θ)f̃(η)

∥∥∥∥∥∥
2

. (9)

In summary, we first train a pre-selected sequential recommender system on the observational dataset
and use that to estimate the quantity f̃ = P(·|St, Dt−1, Pt). Then we trained our model on interven-
tional dataset to estimate P(Dt−1|do(St−1, ..., S1), Pt) using the objective function Equation (9).

We note here that we can use any recommender system to estimate f̃ = P(·|St, Dt−1, Pt) so long
as its goal is to estimate users’ natural decision behavior. We show in Section 4 the performance of
CSRec integrated with four different sequential recommender systems.

3.5 Estimate System’s Influence Through Treatment Effect

With the decision-making process explicitly characterized as shown in Section 3, we can approxi-
mate the potential outcome for each candidate item to recommend, specifically the probability that
the recommendation will be accepted, through Treatment Effect Estimation. For example, in the
exploration and exploitation dilemma, people must predict the risk of recommending a novel item
that is out-of-the-distribution. Additionally, when a system is trying to gather information about
a new user, it is crucial to quickly understand the user without over-exploiting their trust in the
system. Quantifying the system’s influence on users can significantly enhance the development of a
personalized and trustworthy system, moving beyond merely predicting user preferences from static
data.

Treatment in causal inference refers to the action that applies (exposes, or subjects) to a unit[24].
For each unit-treatment pair, the outcome of the treatment when applied to the unit is referred as
the potential outcome. With N treatments T = {1, 2, 3, ..., N}, the potential outcome of applying
treatment Ti is denoted as Y (T = Ti). The treatment effect can be quantitatively defined as follow.

Definition 3.3 (Binary Average Treatment Effect(ATE)). Suppose we want to measure the treatment
effect of a treatment T = 1. Then the average treatment effect is defined as:

E[Y (T = 1)− Y (T = 0)] (10)

where Y (T = 1) and Y (T = 0) denote the potential treated and control outcome of the whole
population respectively.

In the recommendation scenario, we extend Equation (21) to the difference between the user’s
decision with and without the recommendation.

Definition 3.4 (Treatment Effect in Recommendation).

TERt := P(Dt|do(St, St−1, ..., S1), Pt)− P(Dt|St, St−1, ..., S1, Pt). (11)

Here St represents the item exposed to users at timestamp t. In the observational setting
(P(Dt|St, St−1, ..., S1, Pt)) the exposure is controlled by users or randomized, while in the in-
terventional settings (P(Dt|do(St, St−1, ..., S1), Pt)), it is controlled by the recommender system.

We compute the first term using our proposed model CSRec and the second term using any commonly
used recommender systems:

TERt(V ) = ft(V,Xintv; θ)− f̃(V,Xobs; η) (12)

where V denotes the set of all items, Xintv and Xobs represent interventional data and observational
data respectively.
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4 Experiment

4.1 Basic setup

4.1.1 Datasets and Baselines

Datasets. we evaluate CSRec on two datasets: a real-world Spotify Sequential Music dataset[1], and
a synthetic book dataset, GPT4-books where the dataset details can be found in Appendix D and
Appendix D.2.

Baselines. We compare CSRec with various sota baselines with different backbones: (1) RNN or
CNN-based sequential models: GRU4Rec [11] and Caser [30] and (2) transformer-based sequential
recommender systems: SASRec [13], BERT4Rec [29], FMLPRec [37], and BSARec [27]. We further
show the performance of the proposed methods when integrated with existing recommendation
models.

4.1.2 Evaluation metrics
We evaluate CSRec and the baselines models on both observational data where exposure to items does
not come from recommendations and the interventional data where recommender system controls the
exposure. On the observational data, we compare their performance in the task of forecasting the
user’s subsequent action from prior actions. Specifically, we compare CSRec and SR baselines via
widely used Top-k metrics, HR@k (Hit Rate) and NDCG@k (Normalized Discounted Cumulative
Gain) where k is set to 5, 10, and 20 [16]. While on the interventional data, we estimate the user’s
decision regarding a recommendation, and we compare the predicted purchase probability with the
ground truth decisions via an adjusted hit rate defined as follows

AHRCSRec =
1

N

∑
N

δ(dt, d̂t), d̂t = χ≥1−α(zt), (13)

where zt is the model output, α is a pre-defined threshold; δ(a, b) = 1 when a = b and zero otherwise;
χA(x) is an indicator function such that it equals to 1 when x ∈ A and zero otherwise. For more
details on the evaluation metric, see appendix D.2.1.

Table 1: Recommendation performance comparison of different models on GPT4-books dataset. Xobs
denotes the observational data and evaluated using HR@k and NDCG@k for k = 5, 10, 20. Xintv
denotes the interventional data and evaluated using AHR@α for α = 0.2, 0.5. Boldface denotes the
highest score among all models.

Type Metric GRU4Rec Caser SASRec BERT4Rec FMLPRec BSARec CSRec

Xobs

↑ HR@5 0.0492 0.0489 0.0533 0.0528 0.0496 0.0524 0.0513
↑ HR@10 0.1018 0.1001 0.1057 0.1055 0.1019 0.1035 0.1035
↑ HR@20 0.1988 0.2014 0.2017 0.2011 0.2008 0.2062 0.2070
↑ NDCG@5 0.0292 0.0285 0.0313 0.0320 0.0297 0.0316 0.0297
↑ NDCG@10 0.0460 0.0448 0.0480 0.0488 0.0460 0.0479 0.0463
↑ NDCG@20 0.0701 0.0701 0.0720 0.0726 0.0707 0.0736 0.0721

Xintv
↑ AHR@0.2 0.2431 0.2431 0.2438 0.2430 0.2435 0.2405 0.932
↑ AHR@0.5 0.4967 0.4942 0.4981 0.5068 0.5006 0.5037 0.932

4.2 Experimental results

4.2.1 [RQ1]. The proposed method outperforms baselines on interventional data.

Table 1 and Table 2 show the performance of CSRec and baseline SR models on both interventional
and observational data for datasets GPT4-books and MSSD. Here for CSRec, Table 1 shows the
result of using FMLPRec for approximating the quantity P(Dt|St, Dt−1, Pt), and in Table 2, we
used BSARec to estimate it. We used the adjusted hit rate (AHR) with two different ratios 0.2 and
0.5 as evaluation metrics. As a comparison, we also included the results for WSDM winning model
(Few-Shot) and integrated it with our framework (CS-Few-Shot) on real-world MSSD, shown in
Table 2.
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Table 2: Recommendation performance comparison of different models on MSSD dataset. Xobs
denotes the observational data and evaluated using HR@k and NDCG@k for k = 5, 10, 20. Xintv
denotes the interventional data and evaluated using AHR@α for α = 0.2, 0.5. Boldface denotes the
highest score among all models. We compare sota sequential reccomenders and also the winning
model, Few-Shot[2] of the WSDM challenge where MSSD is originally released. Few-Shot has a
specialized design that fully considers the properties of music tracks.

General SOTA Sequential Recommenders WSDM winning model
Data Metric GRU4Rec Caser SASRec BERT4Rec FMLPRec BSARec CSRec Few-Shot CS-Few-Shot

Xobs

↑ HR@5 0.1045 0.0963 0.0845 0.0219 0.1487 0.1736 0.1745 0.1865 0.1798
↑ HR@10 0.1311 0.1012 0.1082 0.0407 0.1952 0.1901 0.2007 0.2235 0.2364
↑ HR@20 0.1944 0.3031 0.2110 0.0769 0.2747 0.2878 0.2871 0.3712 0.3731
↑ NDCG@5 0.0148 0.0286 0.0429 0.0341 0.0745 0.1039 0.1041 0.1336 0.1325
↑ NDCG@10 0.0312 0.0457 0.0981 0.0771 0.1031 0.1487 0.2117 0.1674 0.1572
↑ NDCG@20 0.0773 0.0717 0.1227 0.0985 0.1592 0.2793 0.2801 0.3412 0.3435

Xintv
↑ AHR@0.2 0.1117 0.1461 0.1926 0.1468 0.1412 0.1692 0.3509 0.4127 0.6764
↑ AHR@0.5 0.2403 0.2467 0.2956 0.3401 0.3009 0.4323 0.5371 0.5061 0.7418

We observe that on both datasets, AHR for α at both 0.2 and 0.5 has been improved tremendously.
On GPT4-books dataset, SASRec has the highest score for AHR@0.2, and CSRec approximately
triples the score on GPT4-books, meaning that using α = 0.2, the accuracy for predicting users’
decisions using CSRec could be almost three times than that using baseline SR models. Even with a
more relaxed metric AHR@0.5, on GPT4-books, baseline SR models is only doing slightly better
than a random guess.

On real-world MSSD data, CSRec outperforms SOTA SR models by a factor of 1.5 using AHR@0.2,
with a higher score on AHR@0.5 as well. Furthermore, when integrated with WSDM winning model,
our framework (CS-Few-Shot) achieves the hit rate accuracy as high as 0.6764 using conversion
threshold α = 0.2. Compared to the original model, our framework is able to improve the accuracy
of modeling users’ decision by 64%.

It is because baseline SR models do not take negative decisions explicitly into consideration. There-
fore, they neglected the fact that current decision is affected by previous recommendations (either
successful or unsuccessful). This observation highlights the significance of distinguishing users’
natural selection processes and their decision making processes under recommendation.

4.2.2 [RQ2]. The proposed method does not degrade the performance on observational data.

We compared CSRec and baseline SR models on the observational data for both GPT4-books and
MSSD. Results are shown in Table 1 and Table 2 respectively.

On MSSD dataset (Table 2), we observe that compared to the general SOTA SR models, CSRec
achieves higher score for the five metrics out of six except for HR@20. Moreover, when integrating
with the winning model, our framework (CS-Few-Shot) is able to maintain its existing level of
performance. On GPT4-books dataset (Table 1), though CSRec does not improve the baseline SR
models on observational data, it also does not cause any degradation on the performance. Specifically,
on GPT4-books, CSRec achieved a slightly higher score on HR@20 than BSARec, which has the
highest score among all baselines. In general, CSRec is able to receive median scores for all metrics.

Consequently, CSRec is able to improve existing models on interventional data while maintaining
their performance on observational data. This reveals that CSRec has a wide application in practice.

5 Conclusion

In this paper, by distinguishing between user natural selection process and their decisions making
under recommendation, we propose a framework to model the causal relationship between user’s
decision and various factors including their natural preference and their previous decision towards
recommendations. We introduce CSRec, a general framework with straightforward implementation
that can easily adapted to SOTA sequential recommenders. Experimental results show that our
framework is capable of improving the accuracy of predicting users’ decision under recommendations
without causing any degradation on non-interventional setting.
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A Do-Calculus

Rule A.1 (Insertion/deletion of observations).

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )GX
(14)

Rule A.2 (Action/observation exchange).

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )GXZ
(15)

Rule A.3 (Insertion/deletion of actions).

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
XZ(W )

(16)

where GX is the graph with all incoming edges to X being removed, GW is the graph with all
outcoming edges to W being removed, and Z(W ) is the set of Z-nodes that are not ancestors of any
W -node.

Intuitively, Rule A.1 states when an observant can be omitted in estimating the interventional
distribution, Rule A.2 illustrates under what condition, the interventional distribution can be estimated
using the observational dataset, and Rule A.3 decides when we can ignore an intervention.

B Background and Preliminary

The goal of training a recommender system varies across different contexts, such as maximizing the
likelihood of a recommended item being accepted or enhancing long-term trust and user satisfaction.
At the heart of developing any recommender system is the need to understand how users make
decisions and how these decisions can be influenced.

While existing research has made significant strides in recovering users’ natural preferences from
observational data, two critical aspects are under-emphasized in sequential recommendation: (1)
System-Controlled Exposure: Unlike users’ spontaneous purchases, recommender systems control
how items are exposed to users. It is not uncommon for users’ purchase decisions to be adversely
affected by system recommendations. However, this influence is often overlooked by existing
formulations due to differences in the underlying training goals. (2) Collaborative Influence on
Decision-Making: Users’ decisions are shaped by various recommendation scenarios and design
needs, necessitating a unified and systematic approach to analyze, understand, and evaluate these
influences.

In this section, we begin by reviewing how existing methods approach recommendation. We then
reformulate the recommendation process from a causal perspective, introducing the basic concepts of
causal inference and demonstrating how to evaluate causal relationships using a causal graph. Finally,
we apply these methods to analyze and model the causal relationships within subsequent purchases,
as discussed in section 2 and section 3.

Recommendation as Sequential Prediction: The Traditional Viewpoint. Sequential recommender
systems model historical user interactions as temporally-ordered sequences to recommend potential
items that users are interested in. In the general formulation as a sequential dataset, we are given
an item set I and a user’s interaction sequence s = {i1, i2, ..., in}, i ∈ I in temporal order where
n is the length of the sequence[17]. This formulation only accounts for cases where all items in
the sequence are accepted by users. However, during the recommendation process, users may also
be recommended items in which they are not interested. In other words, if we distinguish between
exposure and acceptance, with acceptance denoted as 1 and rejection as 0, the traditional viewpoint
only models sequences composed entirely of 1s, thereby overlooking sequences that include 0s.

Recommendation from a causal perspective. Compared to the existing formulation that focuses
on uncovering users’ unbiased interests, causal inference methods offer a more general and intuitive
approach by aiming to characterize how users’ decisions are causally influenced. In this context, the
recommender system acts as an intervention on the user, specifically by controlling the exposure of
items to the user, which naturally separates the concepts of exposure and acceptance.

Causal graph through DAG. The causal relationships among variables can be represented by
a Directed Acyclic Graph (DAG). In this graph, each (potentially high-dimensional) variable is
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represented as a node, and the directed edges indicate causal relationships, always pointing from
parent nodes to child nodes. A causal graph can be estimated using do-calculus as detailed in
Appendix A.

Intervention and do-operator. Intervention is one of the fundamental concepts in causal inference.
When we intervene on a variable, we set the value of a variable and cut all incoming causal arrows
since its value is thereby determined only by the intervention [24]. The intervention is mathematically
represented by the do-operator do(·). We include the do-calculus for identifying causal effects from
a causal graph in appendix A. In the context of recommendation, we are trying to understand how the
changes in recommended items affect the user’s decision and satisfaction, which can be represented
by
Definition B.1 (Recommendation in Causal Inference). Let D and S represents the user decision
and the system recommendation respectively,

P (D|do(S = s), P ) (17)

characterizes an interventional distribution and reflects how a change of S affects the distribution of
D for users represented by the preference P .

Observational distribution and interventional distribution. Observational distributions refer
to data passively collected without any explicit manipulation, reflecting correlations influenced by
potential underlying factors. In contrast, interventional distributions are generated through controlled
interventions, where specific variables are deliberately manipulated to observe causal outcomes.
In this paper, since we are interested in exploring how system intervention affect user’s purchase
decision, we refer to historical data, where user selects what to buy, as the observational data, and
refer to the data which contains user’s reaction towards recommender system as the interventional
data.

Treatment effect estimation. Treatment effect estimation is a fundamental aspect of causal inference
that involves quantifying the impact of an intervention on an outcome. It measures the difference in
outcomes resulting from a specific treatment compared to what would have occurred in the absence
of the treatment. This method offers a rigorous approach to evaluating the influence of recommender
systems on user decisions. By assessing the variance in user decisions before and after receiving
recommendations, we can accurately quantify the system’s impact on user behavior.

C Proof for Theorem 3.1

Proof. Suppose that the user’s decision Dt follows the causal relationship in Figure 1, then we can
write

P(Dt|do(St, St−1, ..., S1), Pt) =
∑
Dt−1

P(Dt|do(St, St−1, ..., S1), Pt, Dt−1)·

P(Dt−1|do(St, St−1, ..., S1), Pt) (18)

From the figure we see that there’s no causal influence of St on the decision Dt−1, hence we can
write

P(Dt−1|do(St−1, ..., S1), Pt)

We know that Dt and St satisfies

(Dt ⊥⊥ St|St−1, ..., S1, Pt, Dt−1)GSt−1,...,S1,Pt,Dt−1
.

Hence, using Rule A.2, we can obtain

P(Dt|do(St, St−1, ..., S1), Pt, Dt−1) = P(Dt|St, do(St−1, ..., S1), Pt, Dt−1).

From the causal graph, we can also see that

(Dt ⊥⊥ {St−1, ..., S1}|S2, Dt−1)G{St−1,...,S1}(St,Dt−1)
.

Therefore, Rule A.3 leads to

P(Dt|St, do(St−1, ..., S1), Pt, Dt−1) = P(Dt|St, Pt, Dt−1)

Combining the results for the two component we proved the result for Theorem 3.1.
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D Experimental Details

D.1 Spotify: Sequential Music Streaming Challenge

MSSD is first published at the WSDM Cup 2019 Spotify Sequential Skip Prediction Challenge
[1]. It has approximately 160 million listening sessions, associated user actions, and 3.7 million
tracks with acoustic features. The task is to predict whether a particular user will skip individual
tracks encountered in a listening session. The sessions in this dataset are sampled from various
sources such as radio, personalized recommendations, users’ own collections, expertly curated
playlists, and contextual but non-personalized recommendations. Records of listening sessions from
users’ own collection approximate the observational dataset while the personalized recommendation
source serves as an ideal interventional dataset for studying the user-system dynamics from a causal
perspective: users who listen to personalized recommendations do not have direct control over what
they will hear. In other words, the exposure is exogenously determined by the RecSys, which reflects
Spotify’s belief in the users’ preferences. In the remainder of the paper, we focus on the listening
sessions collected from such a personalized recommendation setting as the interventional data, and
the user’s own collection as the observational data.

Following the causal perspective of recommendation, the treatment is considered effective if the
user does not skip it and the treatment is presented as a ranked list of the songs selected for the
users. Therefore, we define two tasks of interest on MSSD: skip prediction and track ranking. Skip
prediction measures the individual treatment effect of each track for a certain user, while we measure
the relative effectiveness among all treatments when ranking the tracks. Skip prediction is equivalent
to estimating treatment effect, and the track ranking corresponds to selecting the most effective
treatments. To preserve user privacy, Spotify randomly cut the listening sessions in MSSD from
longer sessions so that a single session contains no more than 20 songs.

Table 3: Results for CSRec integrated with baselines SASRec, BERT4Rec, FMLPRec and BSARec
on GPT4-books using AHR@0.2 and AHR@0.5. CSRec + <model> represents the performance of
CSRec integrated with baseline <model>.

Metric SASRec CSRec + SASRec BERT4Rec CSRec + BERT4Rec FMLPRec CSRec + FMLPRec BSARec CSRec + BSARec

↑ AHR@20 0.2438 0.3914 0.2430 0.3046 0.2435 0.932 0.2405 0.925
↑ AHR@50 0.4981 0.9176 0.5068 0.9153 0.5006 0.932 0.5037 0.932

D.2 GPT4-books

Given the limited access to interventional data, where the recommender system fully controls the
exposure. Previous work has explored the potential of using a large language model agent to generate
synthetic data for downstream tasks [19; 40; 41; 5; 4; 39]. To resolve the data shortage, we also created
a synthetic dataset using GPT-4 as agents to mimic users’ reactions to certain recommendations.
Specifically, we use GPT4-turbo as the agent that mimics users with various tastes of books.

Preparing the item list. We first sampled a list of book names from the Amazon Book dataset[23].
We use books as items to recommend because GPT4 has had prior information towards these items.
We then asked the GPT4 about the basic information about the books. The reason is that we want
to validate the GPT4 knows the books and is be able to serve as potential readers. Specifically we
validate that by asking the GPT about basic information and keywords about the book names that we
provided and comparing them with what we have in the Amazon Book dataset.

Synthetic users. The second step is to create synthetic users. We refer to the scale of similar datasets
used by existing baselines[11; 30; 27; 29; 37] and define 10000 users. Each user is defined by a
probability distribution of preference across different genres. For example, we describe a user as
who’s preference towards history, fiction, novels, and romance is 25%, 25%, 25%, 25% where the
probabilities are randomly generated.

Synthetic observational/interventional dataset. For each user, we asked GPT4 to generate the
synthetic purchase records of various length. Specifically, we collect the top 100 popular books for
each genre, and randomly set a length l for each user. We then asked the GPT4 to generate a sequence
of length l,which is the most possible purchase records for this user, among the list of books. For
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the interventional dataset, instead of asking GPT4 what is the most possible purchase records, we
generate random sequences of recommendations, and asked the agent whether the recommended book
will be purchased, and the probability of such a decision. Timestamp information is also provided to
GPT4.

D.2.1 Evaluation metrics
We evaluate CSRec and the baselines models on both observational data where exposure to items does
not come from recommendations and the interventional data where recommender system controls the
exposure. On the observational data, we compare their performance in the task of forecasting the
user’s subsequent action from prior actions. While on the interventional data, we estimate the user’s
decision regarding a recommendation. Given the difference in the objective that our model and other
recommender system aim to achieve, necessary adaptation is required and we provide the detailed
procedure as follows.

Observational data. On observational data, we compare CSRec and SR baselines via widely used
Top-k metrics, HR@k (Hit Rate) and NDCG@k (Normalized Discounted Cumulative Gain) where k
is set to 5, 10, and 20 [16]. HR@k measures whether the ground-truth item is in the top-k positions of
the recommendation list. NDCG on the other hand, takes the rank into considerations that it assigns
higher scores to higher positions in the recommendation list.

We would like to point out a natural adjustment we make on CSRec for evaluation on observa-
tional data here. Even though CSRec is configured to model P(Dt|do(St, ..., S1), Pt) under the
interventional setting, on historical data, we can safely assume that all previous purchased items were
recommended and accepted. The output probabilities are then ranked and evaluated using HR@k and
NDCG@k.

Interventional data: On interventional data, the dataset contains two sequences: recommended
items and users’ corresponding decisions ∈ {0, 1} indexed with time. We aim to examine how well
models estimate user’s decision when being recommended on interventional data.

For CSRec, the model outputs the predicted users’ purchase probability for the next recommended
items. We then compare this resulting probability with the ground truth decisions via an adjusted hit
rate defined as follows

AHRCSRec =
1

N

∑
N

δ(dt, d̂t), d̂t = χ≥1−α(zt), (19)

where zt is the model output, α is a pre-defined threshold; δ(a, b) = 1 when a = b and zero otherwise;
χA(x) is an indicator function such that it equals to 1 when x ∈ A and zero otherwise.

Concretely, for a recommended item and ground truth decision dt ∈ {0, 1}, CSRec outputs a predicted
probability zt ∈ [0, 1]. Then for a pre-defined α, we considered the predicted decision d̂t as 1 if
zt ≥ 1− α and 0 otherwise. Then the accuracy is computed by counting the ratio of the succeeded
prediction after this conversion.

For baseline models, we convert the model output into users’ decisions based on the ranking of
the recommended items. Notice that the baseline SR models do not take previous decisions as
explicit input. Hence we filtered the interventional data sequence such that only recommended items
with positive decisions are preserved. This strategy is similar to the post-processing procedure for
FMLPRec [37] and BSARec [27].

To convert the ranking of the recommended items to users’ purchasing decisions, we consider the
users’ decision to be 1 whenever the predicted score for recommended items are in the top-α-percent
Aα. We then compute the binary cross entropy and adjusted hit rate by comparing the converted
decisions with the ground truth decision. Mathematically, AHR for baselins are defined as follows:

AHRbaselines =
1

N

∑
N

δ(dt, d̂t), d̂t = χAα(z̃t). (20)

Remark D.1. We computed AHR@α for both CSRec and baseline SR models through the discrepancy
of their predicted decision after conversion and the ground truth decision. The difference lies in the
conversion due to the difference of the objective of CSRec and baseline SR models. Specifically,
results for CSRec are mapped to {0, 1} according to the absolute value of the output because we
model the probability; results for baseline SR models are mapped to {0, 1} depending on the ranking
for the inquired item.
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D.3 Generalization of the causal graph used in this paper.

In this paper, we propose a novel approach to model the recommendation process from a causal
perspective. We begin by constructing a causal graph that represents the recommendation scenario of
interest. This graph allows us to identify how a user’s decisions are influenced by various factors
within the system. Rather than considering the sequential recommendation as a next-item prediction
task, our approach focuses on understanding how a user’s decisions can be positively influenced by
specific factors.

As illustrated in fig. 1, the recommender system is conceptualized as an intervention that impacts the
user’s decision-making process. This causal graph is versatile and applicable to both intervention-
based and observational scenarios. In the former, the recommender system acts as the direct inter-
vention, while in the latter, the user’s decisions are assumed to be influenced by unobserved sources.
Thus, our model provides a framework for understanding the effects of both observed and unobserved
interventions on user behavior.

D.4 Additional Results.

Table 4: Improvement of CSRec integrated with baselines SASRec, BERT4Rec, FMLPRec and
BSARec on GPT4-books using AHR@0.2 and AHR@0.5. Each column δmodel represents the
improvement in scores after applying CSRec on each model with the percentage change in the
parenthesis.

Metric δSASRec δBERT4Rec δFMLPRec δBSARec

↑ AHR@0.2 0.1476 (60.5%) 0.0616 (25.5%) 0.6885 (283%) 0.6845 (285%)
↑ AHR@0.5 0.4195 (84.0%) 0.4085 (80.6%) 0.4314 (86.2%) 0.4283 (85.2%)

See Table 4

E Estimate System’s Influence Through Treatment Effect

With the decision-making process explicitly characterized as shown in Section 3, we can approximate
the potential outcome for each candidate item to recommend, specifically the probability that the
recommendation will be accepted.

Beyond approximating the user’s decision process, it is also essential to isolate and quantify the
system’s influence on its users. For example, in the exploration and exploitation dilemma, people
must predict the risk of recommending a novel item that is out-of-the-distribution. Additionally, when
a system is trying to gather information about a new user, it is crucial to quickly understand the user
without over-exploiting their trust in the system. Quantifying the system’s influence on users can
significantly enhance the development of a personalized and trustworthy system, moving beyond
merely predicting user preferences from static data. Estimating how one variable affects another is
addressed by measuring the treatment effect in causal inference.

E.1 Treatment effect in recommendation

Treatment in causal inference refers to the action that applies (exposes, or subjects) to a unit[24].
For each unit-treatment pair, the outcome of the treatment when applied to the unit is referred as
the potential outcome. With N treatments T = {1, 2, 3, ..., N}, the potential outcome of applying
treatment Ti is denoted as Y (T = Ti). The treatment effect can be quantitatively defined as follow.
Definition E.1 (Binary Average Treatment Effect(ATE)). Suppose we want to measure the treatment
effect of a treatment T = 1. Then the average treatment effect is defined as:

E[Y (T = 1)− Y (T = 0)] (21)
where Y (T = 1) and Y (T = 0) denote the potential treated and control outcome of the whole
population respectively.

In the recommendation scenario, we extend Equation (21) to the difference between the user’s
decision with and without the recommendation.
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Definition E.2 (Treatment Effect in Recommendation).

TERt := P(Dt|do(St, St−1, ..., S1), Pt)− P(Dt|St, St−1, ..., S1, Pt). (22)

Here St represents the item exposed to users at timestamp t. In the observational setting
(P(Dt|St, St−1, ..., S1, Pt)) the exposure is controlled by users or randomized, while in the in-
terventional settings (P(Dt|do(St, St−1, ..., S1), Pt)), it is controlled by the recommender system.

We compute the first term using our proposed model CSRec and the second term using any commonly
used recommender systems:

TERt(V ) = ft(V,Xintv; θ)− f̃(V,Xobs; η) (23)

where V denotes the set of all items, Xintv and Xobs represent interventional data and observational
data respectively.

We then demonstrate two cases where the quantified system’s influence on users effectively broadens
the perspective of building a recommendation system.

Evaluating Recommender System Quantifying the system’s influence in a causal perspective could
provide more insight into the effectiveness of the recommender system. It allows for understanding
how recommendations change and shape users’ decisions over time, beyond the single accuracy
metrics. Moreover, by inspecting the treatment effect over different users (heterogeneous treatment
effect), we can probe the mechanism of the recommender system and increase the interpretability.

Exploration and Exploitation The quantified system’s influence on each timestamp could also
contribute to building a balanced recommender system between exploration and exploitation. The
system could more precisely identify which time to give the suggestions based on the existing
knowledge (exploitation) and when to test the new items (exploration). This dynamic strategy
accommodates the overall user experience and allows the discovery of new content.

F Related Work

Sequential Recommender Systems Sequential recommender systems (SRSs) learn the user-item
interactions (e.g., view or purchase items on an online shopping platform) by modelling the depen-
dencies in a sequence. Contrary to the traditional recommender systems which focus more on static
learning through content-based and collaborative filtering[31], SRSs treat the interaction in a more
dynamic way and hope to capture the inherent logic between the current and recent preference of
a user. Traditional works formulate the task of sequential prediction as a first-order or high-order
Markov Chain[10], whereas more recent works make use of the rapid development of the deep neural
networks and propose RNN-based[6] and, more recently, attention-based[14; 28] frameworks to
capture the temporal features. [25; 7] applies contrastive learning strategies to help the learning of the
sequential dependencies, [38] adjusts unreliable attention weights for a more robust generalization.
Despite the great success, there are two fundamental challenges that remain unresolved. However,
the above works equate preference to decisions. However, user preference towards the item is only a
partial reason for a purchase decision. For example, a user is highly unlikely to purchase another
refrigerator no matter how they like it. Such interactive relationship is not fully captured or even
modeled in existing works. In our work, we propose a framework that accurately characterizes
the causal relationship between the recommendation from the system, the user’s past purchasing
behaviour and the user’s preference, obtaining universally better performance.

Causal Inference in Recommendation. Causal inference methods are widely used in estimating the
causal effect[24], understanding the compound causal relationship among various factors[20; 32],
injecting external knowledge to the model[22], and isolating the causal relationship of certain
variables. Causal inference is to estimate potential outcomes when treatment is applied[35; 21]. It
originated from the scenario of prescribing medicine to patients. The recommendation is naturally
a causal inference task when treating each item as a potential treatment. The goal is to predict the
user’s preference towards these treatments(i.e., the recommended items). There is a line of works
framing recommendation as a causal inference task [8]. [26] show how estimating the quality of a
recommendation system can be approached with Inverse Propensity-reWeighting(IPW) techniques
commonly used in causal inference, and the proposed method is based on matrix factorization.[33] is
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also based on traditional matrix factorization. They make separate estimations to correct unobserved
confounders (the factor that affects both treatment assignment and potential outcome). [34] propose a
general framework for modelling causality in collaborative filtering and recommendation. [36] applies
contrastive learning to solve the counterfactual reasoning problem. [3] derives a universal strategy for
fixing various biases. Compared to traditional non-causal counterparts, causal recommender systems
obtained successes in user-item interaction prediction and de-bias observational training data. In
this paper, we propose the first causal framework for quantifying sequential recommendation and
introduce a constraint that maintains the casual relationship in subsequent purchases in the modelling.

17


	Introduction
	Sequential Recommendation Represented in Causal Graph
	Demystifying User's Decision-Making Through Causal Formulation
	Problem Setting
	Estimating the Interventional Distribution.
	Maximizing Users' Positive Decisions.
	Enforcing the constraint.
	Estimate System's Influence Through Treatment Effect

	Experiment
	Basic setup
	Datasets and Baselines
	Evaluation metrics

	Experimental results
	[RQ1]. The proposed method outperforms baselines on interventional data.
	[RQ2]. The proposed method does not degrade the performance on observational data.


	Conclusion
	Do-Calculus
	Background and Preliminary
	Proof for thm:probdist
	Experimental Details
	Spotify: Sequential Music Streaming Challenge
	GPT4-books
	Evaluation metrics

	Generalization of the causal graph used in this paper.
	Additional Results.

	Estimate System's Influence Through Treatment Effect
	Treatment effect in recommendation

	Related Work

