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ABSTRACT

Measuring the human alignment of trained models is gaining traction because it is
not clear to which extent artificial image representations are proper models of the
visual brain. Employing the CLIP model and some of its variants as a case study,
we showcase the importance of using different abstraction levels in the experi-
ments, because when measuring image distances, the differences between them
can have lower or higher abstraction. This allows us to extract richer conclusions
about the models while showing some interesting phenomena arising when ana-
lyzing the models in a depth-wise fashion. The conclusions extracted from our
analysis identify the size of the patches in which the image is divided as the most
important factor in achieving a high human alignment for all the abstraction levels.
We found that the method used to compute the model distances is crucial to avoid
alignment drops. Moreover, replacing the usual softmax activation with a sigmoid
also increases the human alignment at all the abstractions especially in the last
model layers. Surprisingly, training the model with Chinese captions or medical
data gives more human-aligned models but only on low abstraction levels.

1 INTRODUCTION

Measuring the alignment of the human brain and artificial networks can lead to models with better
generalization abilities, more robust to adversarial attacks, better cross-domain learning (Nanda
et al., 2021; Aho et al., 2022; Fel et al., 2022; Sucholutsky & Griffiths, 2023; Muttenthaler et al.,
2023), and it can help neuroscientists to study the underlying principles of human behaviour (Brette,
2019; Martinez-Garcia et al., 2019; Allen et al., 2022; Conwell et al., 2022; Caucheteux & King,
2022; Hernández-Cámara et al., 2023). The alignment with human behaviour can be analyzed at
different complexities or abstraction levels. For example, when measuring the alignment with the
way humans measure the distance between images, the distances can have very different scales
because of the complexity of the images and/or the distortions. It is not the same measuring the
distances between an image and the same image with a small quantity of noise than between images
from different classes as shown in Figure 1. Measuring alignment at only one level of abstraction
and only in the model deepest layer may miss interesting behaviours that occur at other abstraction
levels and/or in other model layers.

Figure 1: Example of the different abstractions when measuring image distances. Low abstraction:
measuring distances between pairs of images where one is the reference and the other is a distorted
version with a small noise (TID2013). Middle abstraction: triplet preferences between images of
the same class but with semantic differences, such as the number of objects (NIGHTS perceptual).
High abstraction: triplet preferences between objects of different classes (odd-one-out THINGS).
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Table 1: Our method: we isolated each factor to analyze it independently. Within the big conceptual
categories, model design and training procedure, each column shows the different factors that we
varied in our study and each row shows the different options explored.

MODEL DESIGN TRAINING PROCEDURE
Architecture Last activation funct. Languages Data type
base-patch16

Softmax English Natural imagesbase-patch32
large-patch14

large-patch14-336

base-patch16 Softmax English Natural imagesSigmoid

base-patch16 Softmax English Natural imagesChinese

base-patch16 Softmax English Natural images
Medical images

Although there have been some works studying the human alignment of multimodal models, espe-
cially CLIP (Geirhos et al., 2021; Muttenthaler et al., 2022; 2023), here we propose to analyze in
detail the way some training procedures and model design details affect its human alignment. Inter-
estingly, we do not only measure the alignment in a single abstraction level as the majority of works
do, but we measure at different abstraction levels: from measuring distances between images with
small noise distortions to intra-class distances between images with different semantic meanings and
finishing with inter-class image distances. Moreover, we also analyze how the alignment changes
depending on the layer depth and training/architecture factors.

2 METHODS

Following Sucholutsky et al. (2023), we measure the alignment between the human brain and dif-
ferent neural networks, using behavioural data about image distances. We consider not only a single
dataset but three different data sources of different abstraction levels. We measure how human align-
ment at these three abstraction levels changes layer by layer depending on different model design
choices or training procedures. To do that, we successively isolate the different factors, fixing all but
one, as shown in Table 1. Each row describes one experiment, and each column lists the explored
options. Analyzing all the possible combinations is not possible because they are not available.

2.1 DATA: ABSTRACTION LEVELS IN DISTANCE MEASUREMENTS

We use behavioural data about image similarity consisting of human-assessed distances between
pairs of images, or human preference in the triplets scenario. We use data from three different
abstraction levels of distortion, where the differences between the original image and the distorted
versions span from lower to higher abstraction. We call the different levels: low, middle, and high.
Figure 1 shows an example from each of the abstraction levels considered.

For the low abstraction, we use a perceptual quality database, TID-2013 (Ponomarenko et al., 2015).
It consists of pairs of images where one is a reference image and the other is a noisy version of
it, and the mean opinion score regarding how much humans see the difference between the two
images. In the middle abstraction, we use the NIGHTS perceptual data (Fu et al., 2023). It consists
of intra-class synthetic image triplets where the differences between the images cover a wide range
of variations that include semantic differences, such as object layouts, poses or quantities. We use
the THINGS similarity dataset (Hebart et al., 2020) for the high abstraction. It is a subset of the
whole THINGS dataset, comprising 4.70 million triplet odd-one-out similarity judgments for more
than 1800 classes. It consists of triplets of inter-class images and therefore the differences are much
more abstract. Appendix A shows more details and examples of the different datasets.

2.2 MODELS

We restrict ourselves to models trained by third-party institutions to avoid dependences on training
procedures. We focus on evaluating CLIP Radford et al. (2021) model, trained to predict corre-
spondences between images and their captions, and analyze how some model design variations or
training procedures affect its human alignment at the three different abstractions. For the different
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model architectures, we analyze the base-patch16, base-patch32, large-patch14, and large-patch14-
336 versions. We compare the effect of the final activation function comparing CLIP and SigLIP
(Zhai et al., 2023), which replaces the usual softmax activation function with a sigmoid. We analyze
if the language used in the training has some effect on the alignment by comparing CLIP (trained in
English) with Chinese-CLIP (Yang et al., 2022) (trained in Chinese). Finally, we analyze the effect
of the training data by comparing CLIP (trained with natural images) with BiomedCLIP (Zhang
et al., 2023) (trained with medical images and texts). Appendix B shows more details of the models.

As a baseline, we used some low abstraction image quality assessment (IQA) models: the classical
SSIM (Wang et al., 2004), and more recent models based on neural networks such as LPIPS (Zhang
et al., 2018) and PerceptNet (Hepburn et al., 2020), which has biological inspiration.

3 EXPERIMENTS AND RESULTS

Following the methodology stated in table 1, we fixed all the factors but one in each experiment.
We represent models that appear in more than one experiment always with the same color for easier
comparison. All the measures have been done in a depth-wise fashion to facilitate the analysis in a
more granular way, so all the figures show the model’s depth at the x-axis. As some models have
a different number of layers, to plot them all together the x-axis represents the percentage of the
network (0% being the image space and 100% being the deepest layer - projection). We compute
distances between images using the Euclidean metric normalizing the differences so that all features
have unit mean (see appendix C for more details about the distance measurement procedure and its
crucial relevance). Regarding the alignment measurement, the y-axis shows Spearman correlation
between model distances and mean opinion score in the low-abstract level and accuracy between
model distance-based preference and human triplet preference in the mid/high-abstract levels.

3.1 DIFFERENT ARCHITECTURE

First, we analyze how the alignment changes depending on the CLIP model architecture: number
of layers (base vs large), patch size (base-patch16 vs base-patch32) and number of patches (large-
patch14 vs large-patch14-336). Figure 2 shows that the base-patch32 variant gets the best result in
the three abstraction levels but especially in the low abstract data. This shows that the patch size is
the most important factor to consider to attain high human alignment.

Although the differences between the other three model sizes are small, the large model with more
patches large-patch14-336 achieves worse results across the three abstraction levels. Also, the more
aligned model, base-patch32, shows the maximum human alignment around the 70% of the model
depth for the mid and high abstract datasets showing an alignment decrease in the final layers before
an increase in the projection. It shows a much more flat relation with layer depth in the TID2013
dataset before a final drop in the projection. Note that all the models consistently outperform all
IQA baselines in the high abstract data and their middle layers also in the middle abstract. They are
expected to perform worse than PerceptNet on TID-2013 because it was trained specifically on that
abstraction level.

3.2 DIFFERENT ACTIVATION FUNCTION

Second, we analyze how the alignment changes depending on the CLIP last activation function.
Figure 3 shows that the SigLIP model gets higher human alignment than CLIP in the low-abstract
TID2013 although their projections get closer. In the mid-abstraction level, the CLIP model is more

Figure 2: Human alignment with TID2013 (left), NIGHTS (center) and THINGS (right) analyzed
layer-by-layer depending on the model size.
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Figure 3: Human alignment with TID2013 (left), NIGHTS (center) and THINGS (right) analyzed
layer-by-layer depending on the activation function.

aligned in the early layers but less in the deeper layers. In the high-abstract data, both models
perform similarly until the deepest layers, where the CLIP model surpasses the SigLIP. Moreover,
it is interesting to notice that the SigLIP model shows a decrease of alignment in its first layer
(embeddings) especially in the middle-level data but it does not happen in the low-level data, where
it shows a big alignment increase. Both models outperform IQA baselines in the three abstract data,
except for PerceptNet in the low-abstract scenario.

3.3 DIFFERENT LANGUAGE

Third, we analyze how the alignment changes depending on the text caption language. Surpris-
ingly, Figure 4 shows that there are differences in the models when checked at the lowest abstrac-
tion, especially at early layers where CLIP with Chinese captions results in a more human-aligned
model. However, these differences completely disappear when the models are tested at mid or
high-abstraction levels. As before, it is interesting to note that both models outperform the SSIM
and LPIPS across the three abstraction levels especially when measuring at their intermediate/final
layers but not at the beginning of the model in the mid-abstract level.

Figure 4: Human alignment with TID2013 (left), NIGHTS (center), and THINGS (right) analyzed
layer-by-layer depending on the language used in the training.

3.4 DIFFERENT TRAINING DATA

Finally, we analyze how human alignment changes depending on the training data type. In Figure 5
we found that the CLIP model trained with medical data (med-CLIP) is much more human-aligned
than the CLIP trained with natural data (nat-CLIP) in the low abstraction level scenario. This dif-
ference in alignment is reduced when tested in more abstract data. However, in the mid and high
abstractions, nat-CLIP is more aligned than med-CLIP in the early layers, but in the final layers,
med-CLIP again surpasses the model trained with natural data. When comparing against the base-
lines, med-CLIP performs better than both SSIM and LPIPS at the lower and higher levels, but both
models are closely matched to LPIPS at the mid and high abstraction levels.

Figure 5: Human alignment with TID2013 (left), NIGHTS (center) and THINGS (right) analyzed
layer-by-layer depending on the data used in the training.
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4 DISCUSSION & CONCLUSSION

Here we hypothesize some possible causes for the results described above. First, we found that the
relative size of the image and the patches used in its analysis is critical for the alignment between
humans and machines. For fixed-size images, bigger patches are better (blue curve is the best in
Fig.2), while for fixed-size patches, smaller images are better (green curve is better than purple
curve in Fig. 2). Both effects are consistent: when the scene is partitioned in too-small regions the
machine-human alignment is worse. We hypothesize there are optimal scales for scene analysis (see
Appendix D Lowe (2004); Lazebnik et al. (2006)): when using the wrong scale spatial relations
between regions are harder to describe and hence the behavior of the model maybe less human.

Another interesting result appears when no-normalization of the features over the datasets is con-
sidered before distance computation (Fig. 9 in Appendix C): there is a systematic alignment drop at
mid-depth in all the models. This may make qualitative sense: the meaning of the visual features
along the architecture should be close to low-level visual primitives in early layers, and be more
abstract (closer to a conceptual description) in late layers where training considers the distance with
the textual representation. Given this evolution, distances at different layers would be aligned with
human (visual) opinion early in depth, but the relation may be obscured later in the architecture
leading to a drop in the alignment. Preliminary inspection of the responses suggests that this be-
havior comes from the fact that a single feature takes most of the energy of the signal from around
50% depth. That singularity was the reason to propose difference normalization over the datasets in
our experiments. This normalization-over-images has two interesting consequences: (1) the drop in
alignment disappears, and, (2) the increase in alignment happens in later layers for higher abstrac-
tions for almost all the models. As shown in Fig 2, for low-abstraction (left) a substantial increase
in alignment happens as early as at 10% depth. However, for middle abstraction (center), the sub-
stantial increase happens about 30% depth, and for high abstraction (right) alignment remains small
up to 50% depth. This is consistent with previously observed behaviour going from low-level to
higher-level problems both in CNN and tranformers (Zeiler & Fergus, 2014; Ghiasi et al., 2022).

Regarding the activation function, a hypothesis for SigLIP’s superior alignment over base CLIP in
Fig. 3 is that the CLIP softmax enforces high output values to highlight the correct answer. Whereas,
in the SigLIP sigmoid high values would saturate the non-linearity, thus the model will enforce
outputs in the sigmoid range. Having a wide output range is problematic with out-of-distribution
data due to a more unpredictable output scale. Additionally, SigLIP’s authors state that the sigmoid
stabilizes the training (Zhai et al., 2023), which could lead to a better performance model, making it
harder to directly relate the difference only to the different activation functions.

The differences in human alignment between the CLIP models trained in different languages could
be the result of language differences, however it could also be due to the different datasets, training
procedures, pretraining, or tokenizers between the models. As opposed to the experiments on re-
gion sizes where we compare models with uniform training procedures from the same organization
(OpenAI), this experiment uses models from different organizations. Therefore it is difficult to make
conclusions on the effect of the language. That is a clear limitation of this experiment.

Finally, regarding the nature of the training data, we found more differences in the low abstrac-
tion case. We hypothesize that medical images contain finer details (high-frequency) than natural
images. Thus a model trained on medical images is more aligned with TID2013 where the distor-
tions are different types of small-amplitude noises. Many medical models have historically used
high-frequency noise textures to classify images (Castellano et al., 2004; Jaén-Lorites et al., 2022).

In conclusion, analyzing CLIP’s human alignment for different abstraction level problems and at
different model depths we found (1) a global drop in machine-human similarity for higher abstrac-
tion problems, and (2) after response normalization, the layer with biggest similarity shifts towards
higher depths for higher abstraction levels. This highlights the relevance of a depth-wise analysis,
suggest that deeper layers indeed correspond to higher abstraction, but also reveal the progressive
departure between human and CLIP representations. (3) We found that for all the abstractions, the
right balance between image and patch size is much more important than having more layers or more
patches. Finally, we found that training the model with medical images instead of natural images
leads to a much more human-aligned model in the low abstract scenario but, as happened with the
language, it does not have clear effect at higher abstractions. Moreover, we showed that many of the
analyzed models outperform state-of-the-art image quality models, such as SSIM or LPIPS.
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A DATASETS

We used three datasets of different abstraction levels. More particularly, we used TID-2013,
NIGHTS perceptual and odd-one-out THINGS for the low, middle and high abstraction levels.

First, the TID-2013 database consists of 3000 image pairs plus the Mean Opinion Score (MOS),
which is a continuous value that indicates how much humans see the difference between a given
pair. By definition, the MOS increases as humans see less the differences. Each pair is composed
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of an original image and a distorted version of it by a small noise (distortion) as some examples
show in Figure 6. To compute the human alignment at this abstraction level we pass each original
and distorted image through the model. Then we compute a model distance between each database
pair and finally, we calculate the Spearman correlation between model distances and MOS to get an
alignment value.

MOS = 2.8MOS = 3.4MOS = 6.2

Figure 6: Example of three different TID-2013 pairs. For each pair, the left image is the original
one and the right image is the distorted version and they include the corresponding Mean Opinion
Score.
Second, the NIGHTS perceptual is a database of human similarity judgments over image pairs that
are alike in diverse ways such as object poses, layouts and numbers. It is composed of 20019 image
triplets with human scores of perceptual similarity. Each triplet consists of a reference image and
two distortions plus the human reference that indicates which distorted version humans found closer
to the original one, as shown in Figure 7.

Figure 7: Example of three different NIGHTS triplets. Each triplet has the original image in the
middle and two distorted versions A and B. In the three triplets, human preference is left, meaning
that humans found B distorted closer to the original one than A closer to the original.

Finally, the odd-one-out THINGS dataset consists of more than 4.7 million inter-class similarity
triplets from more than 1800 classes. For each of the triplets, humans indicate which of the images
is the most dissimilar to the other two, so that they have to choose between three options, as shown
in Figure 8.

a a ab b bc cc

Figure 8: Example of three different THINGS odd-one-out triplets. Each triplet has three different
images (a, b and c) from different classes. In the three triplets, human preference is c, meaning that
humans found the c image to be the odd-one-out.

B MODELS

As stated in the text, we restricted ourselves to open models trained by third-party institutions to
avoid dependence on training procedures. Therefore, not all the model factor combinations are
available for its study. We focus on analyzing CLIP model (Radford et al., 2021) and different train-
ing procedures and architecture design variations. Table 2 shows the names and specific versions of
the different analyzed models. We took all the models from Hugging Face Model Zoo1.

To compare different CLIP architectures we used four versions: base-16, base-32, large-14 and
large-14-336. The base/large indicates if the model has 13 or 25 layers. The number after base/large
indicates the pixel size of the patches in which the image is divided when used as input to the model.
Therefore, base-16 indicates that the image is divided into 16× 16 pixel patches and that the model
has 13 layers. In general, all the models resize the images to 224 × 224 pixels before dividing it
into patches except for the last model large-14-336, which resize the image to 336× 336 pixels and
therefore has more patches than large-14.

1https://huggingface.co/models
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Table 2: Details of the different analyzed multimodal models. All of them were used from Hugging-
Face: https://huggingface.co/models.

MODEL HuggingFace name
CLIP openai/clip-vit-base-patch16
CLIP openai/clip-vit-base-patch32
CLIP openai/clip-vit-large-patch14
CLIP openai/clip-vit-large-patch14-336

SigLIP google/siglip-base-patch16-224
Chinese-CLIP OFA-Sys/chinese-clip-vit-base-patch16
BiomedCLIP microsoft/BiomedCLIP-PubMedBERT 256-vit base patch16 224

To compare the different final activation functions, we used CLIP and SigLIP models. The only
difference between them is that the SigLIP model replaces its final softmax activation function with
a sigmoid function. To compare the training language we compare between CLIP and Chinese-
CLIP, trained with Chinese captions instead of English ones. Finally, to compare the type of data we
compare CLIP and BiomedCLIP, trained on public medial data instead of natural images. For these
three experiments, we used the base-16 versions, so that they have 13 layers, resize the images to
224× 224 pixels and divide them into 16× 16 pixel patches.

C DISTANCE MEASUREMENT

As stated in the text, we used a normalized Euclidean metric to measure distances between image
model outputs: we normalize the difference in each feature so that all features have unit mean over a
wide class of scenes. However, that is not the only option to compute the distances. Figure 9 shows
how alignment depends on the different explored options to compute distances/similarities between
images for the CLIP-base-16. More particularly, we compare between three distance measurements:

• Euclidean: ||a− b||
• Normalized Euclidean: ||norm(a− b)||
• Cosine distance: 1− a·b

||a||·||b||

Naive use of plain Euclidean distance leads to a drop in the alignment for 50% depth of the mod-
els. We obtained that measuring Euclidean with the normalized differences is needed to avoid an
alignment drop that if not happens at the middle layers. We found that this drop happens in all the
CLIP model sizes except for the base-32, the one with the biggest patch size. We did not find differ-
ences between using the Euclidean distances or the usual cosine similarity (inner product between
vectorized outputs over the norm of the outputs).

Figure 9: Human alignment with TID2013 (left), NIGHTS (center) and THINGS (right) analyzed
layer-by-layer depending on how the distance/similarity between images are computed.

D CONJECTURES ABOUT THE BEHAVIOR

Figure 10 illustrates the qualitative reasons for the main findings of the work: (i) the drop of the
alignment with human vision at mid-depth when using plain Euclidean metrics and (ii) the relevance
of the balance between the sizes of the image and the patches to analyze the image.

These effects may come from: (i) the evolution of the meaning of the features (Fig. 10.A) from
low-level visual primitives in early layers to (less-visual) descriptions more suitable to be compared
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with textual representations in later layers. When the representation starts to be less-visual it is not
surprising that plain Euclidean distance fails to reproduce human behavior. (ii) the balance between
the spatial struture of the image and the proper scale to analyze it (Fig. 10.B). Classical hand-crafted
methods to extract image descriptors for successful classification used to operate at different scales,
and there is a scale-hierarchy that depends on the spatial structure of the image Lowe (2004); Fei-
Fei & Perona (2005); Lazebnik et al. (2006). For instance, faces such as the one in Fig. 10.B have
certain objects of certain scale (eyes, nose, mouth) in specific spatial relations. At high resolution
(analysis regions of small size) objects are hard to identify and spatial relations are hard to establish.
This effect may be happening to the transformers in CLIP too. This may explain the critical effect
of the patch size in relation to image size.

Figure 10: (a) Expected abstraction along the representation: in the image channel low-level image
primitives are expected in the embedding and early layers, while more conceptual abstract represen-
tations are expected at late layers. (b) The scale of the image regions considered by the models is
key in order to properly describe the spatial structure in the images Lowe (2004); Lazebnik et al.
(2006).
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