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Abstract

Humans learn quickly even in tasks that contain complex visual information. This
is due in part to the efficient formation of compressed representations of visual
information, allowing for better generalization and robustness. However, com-
pressed representations alone are insufficient for explaining the high speed of
human learning. Reinforcement learning (RL) models that seek to replicate this
impressive efficiency may do so through the use of factored representations of tasks.
These informationally simplistic representations of tasks are similarly motivated
as the use of compressed representations of visual information. Recent studies
have connected biological visual perception to disentangled and compressed repre-
sentations. This raises the question of how humans learn to efficiently represent
visual information in a manner useful for learning tasks. In this paper we present
a model of human factored representation learning based on an altered form of
a (-Variational Auto-encoder used in a visual learning task. Modelling results
demonstrate a trade-off in the informational complexity of model latent dimension
spaces, between the speed of learning and the accuracy of reconstructions.

1 Introduction

Deep Reinforcement Learning (DRL) has achieved super-human performance on a variety of tasks
by leveraging large neural networks trained on long timescales [[10]. However, much of the research
in applying RL onto cognitive modelling of human learning has been limited to domains with small
state and action sizes [11]], due to the low sample efficiency of traditional DRL methods [2]].

Recent methods have applied DRL onto predicting human learning by modifying [3-Variational
Auto-Encoders (5-VAE) to additionally predict utility in a supervised fashion [9]. Disentangled
representations have also been applied into improving zero-shot transfer learning in the DRL setting
by using latent representations as input to a policy network [[6]. The model presented in this work
differs from these previous approaches by applying a hypothesis generation and evaluation method
onto latent representations, in the context of a factored task representation.

Factored representations of state transition and reward functions can be used by RL methods to
improve generalization and robustness in tasks with a causal structure that corresponds to the factored
Markov Decision Process problem specification [7]. This could be a useful source of higher sample
efficiency required to predict human learning using deep learning methods.
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The model presented in this work seeks to leverage the disentangled representations learned by
5-VAE models onto learning the factored representation of a task. This is achieved by generating
a set of hypotheses that predict future rewards and states based on the latent features of visual
information. This hypothesis space is used to explain the causal structure of a given task, and is
repeatedly re-evaluated and re-generated based on the experience of the agent.

2 Beta Variational Autoencoders

The (-Variational Autoencoder model consists of a deep neural network ¢,(z|z) that learns
information-constrained representations of visual information x. These representations take the
form of a vector of means p, and variances o, that define a multi-variate Gaussian N'(u,, o). This
distribution is sampled from to produce a vector of values z that is then fed through the subsequent
network layers py(x|z) to produce a reconstruction, the entire model being trained to minimize the
difference between the input and reconstruction by maximizing the objective function [3]:
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The [ parameter allows for additional control over the information bottleneck of the model by adding
a weight to the informational complexity of the latent representations defining the multi-variate
Gaussian distribution. The result is that the entire model is trained to balance reconstruction accuracy
and latent representation complexity in an adjustable fashion.

3 Reinforcement Learning for Factored MDPs

Reinforcement Learning (RL) for Factored MDPs seeks to solve the problem specification described
by the Factored Markov Decision Process (FMDP). The FMDP setting is a special case of MDP
formed by relating it to a dynamic Bayesian network defined by a directed acyclic graph G
with nodes { X7, X, ..., X,,} and scopes S, ..., S, [7]. A scope S; of this network describes the
dependencies of future state features or rewards based on previous features and actions, with z[S;]
signifying the features of state = corresponding to the scope S;. This allows for a definition of the
factored transition function P(2’|x, a) and reward function R(z) as follows [12]:
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These factored representations can be leveraged to significantly improve sample efficiency when the
causal structure is provided [4]]. However, it can be difficult to learn these factored representations
from scratch, especially in environments with complex information such as visual domains. In the
following section we describe how the proposed model leverages disentangled latent representations
with a given hypothesis generation method to produce useful factored representations.

4 Proposed Model

The proposed RLS-VAE model (see Figure[3)) begins with a slight alteration to the 5-VAE, in order
to additionally make predictions of the reward associated with a stimuli and action pair. The resulting
network is trained with the following objective:
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where v is an additional parameter that weighs the importance of the accuracy of reward predictions
and the reward R(z|a) is defined in terms of the factored reward of the latent representation Z, and
the discounted value of the subsequent latent representation ' observed after performing action a:
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Figure 1: Example of the RL3-VAE model forming a reconstruction and predicted reward.
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Where vV (Z') is the discounted value of the subsequent latent representation Z’, here calculated
using the factored transition function from Eq. This model uses unsupervised pre-training
using a reward of 0 to calculate the training loss. After pre-training, the model can leverage the
learned disentangled representations to predict a factored reward structure that allows for improved
generalization and robustness, resulting in higher sample efficiency.

To transition from disentangled latent features to a factored representation requires the generation
and evaluation of a set of hypotheses that correspond to potential scopes S, ..., Sy, . The method of
hypothesis generation and evaluation used here has been previously applied onto abstract inductive
reasoning [[13]]. The steps of this process consist of 1) sampling a reduced hypothesis space H* C H
from a probability distribution ¢(H*) and 2) evaluating the hypotheses in the reduced space through
some metric for how well the hypothesis matches experience [1]]. For an example of the factored
hypothesis generation and evaluation method see the appendix.

For the learning task described in this paper, the generation of hypotheses can be achieved through a
simple linear fitting of the learned representations to the observed reward. The space of hypotheses
consists of all possible scopes S1, ..., Sy, that define the factored reward function. The evaluation step
ranks each hypothesis based on mean-squared error of reward prediction accuracy. Alternatives to
this approach (including Bayesian inference or TD-error update) are possible, but not required due to
the simple structure of the deterministic contextual bandit learning described in the next section.

5 Learning Task

While factored MDPs can aid in the sample efficiency of RL algorithms in many domains, in this
learning task we focus on reward factorization using a simple bandit learning environment. This
learning task consists of a contextual N-armed bandit based on two images of celebrity faces [§].

The two actions available in the 2-armed bandit setting correspond to selecting the left and right stim-
uli, meaning we can further simplify the input to the RL3-VAE model as only the face corresponding
to the action chosen. The result is two reward predictions [rjef, Trigm] which are the input to a simple
soft-max function, a method commonly used in cognitive modelling of human bandit learning [[11].

In our contextual bandit task, faces wearing glasses are worth 25 points, wearing hats are worth 50
points, wearing both are worth 75 points and wearing neither are worth 0 points. The assumption of
the hypothesis generation method used by the RL3-VAE model is that the reward can be predicted by
the sum of simple linear functions which map the latent representation values Z : {zg, 21, ..., 2 }
onto the observed reward. As noted previously, more complex hypothesis generation and evaluation
methods are possible, but unnecessary for this learning task.

Before applying the RL3-VAE models onto predicting reward they were pre-trained on 100 epochs of
the full 220K image dataset of celebrity faces [8]], with 100 test images removed. During contextual
bandit model testing, two images of celebrities are randomly chosen from a set of 100 (25 each of
hats, glasses, both, and neither) images not included in the initial model pre-training. To ensure that
one of the options always has a higher reward, the images are selected from different categories.



6 Modelling Results

The main method of assessing the speed of learning in the contextual bandit task is the probability
the model assigns to selecting the higher reward bandit arm. The results shown in the middle column
of Figure 2] demonstrate that smaller latent dimension spaces allow for faster learning of the factored
reward structure in this contextual bandit task. Notably, the models with small latent dimension sizes
are able to consistently select the option with a higher reward after only two experiences in this task.
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Figure 2: Left: Model pre-training reconstruction loss by training epoch, lower is better, color
indicates latent dimension size. Middle: Contextual bandit training for 1000 runs of model accuracy
by trail means (dots) are fit to a logarithmic function (lines). Right: Representation difference in
mean-squared error between images containing hats, glasses, and both, compared to wearing neither.

The left column of Figure 2] compares reconstruction loss by pre-training epoch. These results
demonstrate a lower end of training reconstruction accuracy from models with smaller latent spaces.
While these small latent dimensions are useful for quick hypothesis generation, they make accurate
reconstruction of stimuli more difficult due to the tight information-bottleneck imposed on the model.

This represents a trade-off between learning speed and reconstruction accuracy that has direct
implications on how the human mind forms constrained representations of visual information that is
used in learning tasks. Future research in this area can investigate the specific balance of this trade-off
made by humans engaged in learning tasks based on visual information.

In the right column of Figure[2] we compare the average latent representation difference, as measured
by mean squared error, between each of the three non-zero utility stimuli types (glasses, hats, both)
and the stimuli wearing neither glasses nor hats. Initially all representations are equally similar to
stimuli without hats or glasses. As utility is learned, representations of higher utility stimuli become
relatively more differentiated. In these results, the low utility stimuli is most similar to the zero utility
stimuli, and the highest utility stimuli is most different. This demonstrates a utility-based acquired
equivalence whereby stimuli with similar utility outcomes have similar latent representations.

7 Conclusions

The results presented in this work show the value of disentangled representations of visual information
in learning factored rewards. The learning task used in testing these models, while simple, revealed
potential explanations of how the human mind performs fast learning through hypothesis generation
in an information-compressed space that allows for better generalization and robustness. The method
of generating potential hypotheses that explain the reward observed in this contextual bandit task
was designed for the deterministic nature of the contextual bandit task, but simple adjustments are
possible to extend this application into alternative domains.

In addition to providing insight into the structure of visual information as it is being processed by the
reinforcement learning faculty of the human brain, this work is also related to the question of how best
to define disentanglement, which has been identified as an interesting open question [5]]. Specifically,
the results provided here suggest the usefulness of a behavioural definition of disentanglement, which
is achieved when representations are disentangled in a way that makes them useful for behavioural
goals such as forming hypotheses that explain experience and direct future behaviour.
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8 Appendices

8.1 Stimuli examples
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Figure 3: Examples of face images with either eyeglasses or hats from the celebA dataset [8].

8.2 Hypothesis Generation and Evaluation

As mentioned previously the steps of this process consist of 1) sampling a reduced hypothesis space
‘H* C H from a probability distribution ¢(#*) and 2) evaluating the hypotheses in the reduced space
through some metric for how well the hypothesis matches experience [1]].

In the factored MDP setting, a hypothesis is a set of scopes 1, ..., S, that correspond to the causal
structure of an environment. Figure f] shows one possible hypothesis for the causal structure of a
learning environment. In this example the first scope S; = {z1} corresponds to the relationship
between the features contained in z; for the factored state transition function and reward function
described in Eq. [2] This relationship is signified in the Dynamic Bayesian Network in the left column
of Figureby the arrow from 27 to z}. Because the first scope S; only contains the feature 21, the
first function of the factored reward ry depends only on the first latent feature z; = 123.

The full hypothesis space for the reward of a given latent representation Z of size n with k scope
elements is Z* for each of the possible scopes Sy, ..., Sy,. In the example hypothesis shown in Figure
n=>5andkis 1, 2, or 3 and the hypothetical scope is defined as S1 = {21}, Sa = {22, 23},
S3 = {22, 24, 25}, Sa = {2}, S5 = {24, 25}
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Figure 4: Example a dynamic Bayesian network defined by one hypothesized scope. An example
stimuli with latent representation and factored reward function. Note that the hypothetical DBN
describes the transition function which is not used for the contextual bandit task.

In practice when performing the contextual bandit task described in the paper, the reduced hypothesis
space is formed by selecting some limited complexity of scopes, set as £ = 1 or 2, meaning only 1 or
2 elements were contained in each scope, which significantly reduces the possible hypothesis space.

The probability function sampling the reduced space ¢(H*) was defined to deterministically select the
most likely hypothesis as evaluated by the mean-squared error of the most recent reward prediction.
This simple evaluation and hypothesis sampling approach was adequate for the deterministic reward
setting of this contextual bandit, but a more complex sampling approach is also possible.
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