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Abstract

Online Learning (OL) algorithms have originally been developed to guarantee good perfor-
mances when comparing their output to the best fixed strategy. The question of performance
with respect to dynamic strategies remains an active research topic. We develop in this work
dynamic adaptations of classical OL algorithms based on the use of experts’ advice and the
notion of optimism. We also propose a constructivist method to generate those advices and
eventually provide both theoretical and experimental guarantees for our procedures.

1 Introduction

Online learning (OL) is a paradigm in which data is processed sequentially, either because the practitionner
does not collect all data prior to analysis or because the dataset dyamically evolves through time, or simply
because handling batch of data is numerically too demanding. From the seminal work of Zinkevich (2003),
which proposed an online version of the celebrated gradient descent algorithm, OL has been at the core of
many contributions (we refer to Hazan et al., 2007; Duchi et al., 2011; Rakhlin and Sridharan, 2013a for
an overview). The classical performance criterion of an online learning algorithm is the static regret. Given
a sequence of loss functions (¢; : X — R);>1, the static regret compares the efficiency of a sequence of
predictors ft = (fi)1>1 to the best fixed strategy. Its definition is, for any horizon T' > 0

T T
S-Regrety (i) = > () = inf > ti(po).
t=1 0= =1

Classical upper bounds on static regret involve a sub-linear rate. For instance, Zinkevich (2003) proposed a

O(+v/T) bound for Online Gradient Descent (OGD) which is valid for convex losses. Hazan et al. (2007) proved
a O(dlog(T)) rate for the Online Newton Step (ONS) algorithm with exp-concave losses when K C R

Dynamic Regret. Static regret may not be sufficient to assert the efficiency of an online algorithm as the
class of static strategies is limited compared to all possible strategies. Hence the notion of dynamic regret
introduced by Zinkevich (2003) and further developed by Hall and Willett (2013). For any sequence [i of
predictors and any sequence p of dynamic strategies, the dynamic regret is given by

T T
D-Regretp(fi, 1) = Y Ge(fue) = > Lepe).-
t=1

t=1

Dynamic regret has attracteed many studies recently, especially when the comparator sequence is p = p* :=
(inf,ex €e(1))e>1 (worst-case dynamic regret, as in Besbes et al., 2015; Jadbabaie et al., 2015; Yang et al.,
2016; Zhang et al., 2017; 2018b; Zhao and Zhang, 2021) but also for any comparator sequence (universal
dynamic regret, as in Zhao et al., 2020). Those works have established various upper bounds which depend
on measures of the cumulative distance between successive optima. Historically, Zinkevich (2003) introduced
the path length to measure this discrepancy: for all T', for any sequence p = (u¢)>0,

T-—1
Pr(p) =Y llpmr — puell-
t=0



Under review as submission to TMLR

Zhang et al. (2017) introduced the squared path length: for all T', for any sequence p = (f1¢)¢>0,

T—

Sr(p) =D llpsr — el

t=0

-

The function variation has been introduced by Besbes et al. (2015): for all T, and any sequence of losses
(£1)¢>0 (these are provided by the environment),

Vi) = 3 sup [es1() — 60

t=0 HEX

When using the path length! Pj := Pr(u*) of the minimisers u* = (u})¢>0, dynamic regret of OGD is
at most O(y/T(1+ P5)) for convex functions (Zinkevich, 2003; Yang et al., 2016). We similarly define
Sp 1= Sz ().

For strongly convex and smooth functions, Mokhtari et al. (2016) established that the dynamic regret is
O(Pj). Zhang et al. (2017) introduced the Online Multiple Gradient Descent (OMGD) and the Online
Multiple Newton Update (OMNU) which achieved a O(min(Pj, S%) dynamic regret. Yang et al. (2016)
showed that the O(P}) rate is also reached for convex and smooth functions under the assumption that all
minimisers lie onto the interior of a convex set of interest. Besbes et al. (2015) proved a O(T?/3(V;)'/3)
dynamic regret for OGD with a restarting strategy. Finally, Baby and Wang (2019) improved the rate to
O(TY3(V;)?/3) for 1-dimensional square loss with filtering techniques. Note that all the aforementioned
results assume implicitly access to Py, ST, V. We note that a notion of universal dynamic regret has been
studied by Zhang et al. (2018a); Zhao et al. (2020; 2022) to compete with any Pr(u), St(p), Vr(u) rather
than Py, St, V7.

Optimistic online learning. This refers to a subfield of online learning which exploits, at each time
step, a (possibly) history-dependent additional information provided by an expert. Being optimistic in this
context is relying on the fact that the experts’ advice is relevant and can be exploited within an optimisation
procedure. Optimistic online learning can be traced back to Hazan and Kale (2010); Chiang et al. (2012) and
has been further developed by Rakhlin and Sridharan (2013a;b) which introduced the celebrated Optimistic
Mirror Descent (OMD). Those works involved static regret bound exploiting explicitly the experts’ advice.
Jadbabaie et al. (2015) bridged the gap between dynamic regret and optimistic online learning by providing
an adaptive version of OMD alllowing to obtain dynamic regret bounds for bounded convex functions.

1.1 Contributions and outline

Our work is in line with the framework of Jadbabaie et al. (2015). We propose new optimistic algorithms
for strongly convex functions, with their associated dynamic worst-case regret bounds. Our performance is
compared to the best possible predictors p*. First, we establish a procedure named ADJUST (see Sec. 2)
which takes as input a candidate predictor (for instance the one generated by classical OGD) and we adjust
its trajectory with regards to an experts’ advice. Second, we propose an algorithm to construct a sequence
of experts’ advice (CONSTRUCT) which takes inspiration from the OMGD algorithm of Zhang et al. (2017).

Using ADJUST, we provide updated versions of three classical online algorithms: the Online Gradient Descent
(OGD, Zinkevich, 2003), the Online Newton Step (ONS, Hazan et al., 2007) and AdaGrad (Duchi et al.,
2011). Those updated versions allow to adapt S-Regret proofs of Hazan (2019) to D-Regret proofs. This
leads to D-Regret worst-case guarantees that hold for strongly convex losses: in particular the losses are not
necessarily smooth. This focus on non-smooth losses is a new setting of interest in the dynamic regret field
and has been recently studied by Baby and Wang (2022). Note that our guarantees hold for any expert
advices satisfying technical conditions (notably satisfied by CONSTRUCT).

Isimilar definitions hold for the squared path length and the function variation.
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More precisely, we present fully empirical D-Regret bounds for a specific choice of computable experts v
(detailed in Sec. 3) which depend on Pr(v), St(v). The fact that it does not depend on Pr(u*), St(u*) is
remarkable as we do not need to know the true minimisers to reach an empirical upper bound. Our D-Regret
bounds have the following form:

D-Regretr (i, n*) < f (Pr(v), Sr(v)) + g(T).

Our main results are gathered in Thms. 3.1, 3.3 and 3.5. A key takeaway message is that we decorrelate
the impact of the time horizon T' from the impact of the path lengths Pr, Sp. Our bounds feature a sum
of two terms: a function ¢g(7T') and a function f(Pr;St) combining the different paths. Those results differ
from the (optimal) state-of-the-art bound for convex functions of Zhang et al. (2018a, Theorem 4) which
is in O(\/T(1 + Pr)). Such a decoupling allows to pin down more precisely what is costful in the learning
process, be it the optimisation phase or the complexity of the problem.

Additionally to classical D-Regret bounds on the sequence of losses (¢;);>1, our updated OGD, ONS and
AdaGrad provably satisfy dynamic regret bounds on the sequence of (E;—1[¢;])i>1 = E[¢; | Fi—1] with (F;)i>1
a filtration adapted to the environment and E;_1[¢;] being the risk at time ¢. This ensures that our predictors
are robust to the randomness of the environment. Thus, we define the Dynamic Cumulative Risk (D-C-Risk)
as follows: for any predictable? sequence fi of predictors (i.e.,, ji; is F;_; measurable) and sequence u of
dynamic strategies, we denote L; = E;_1[¢;],

T T
D-C-Riskp (i, 1) = Y Le(fu) = Y Le(pte)-
t=1

t=1

We then obtain for our updated OGD, ONS and AdaGrad, dynamic cumulative risks of the following form:
for any predictable sequences ji and pu, any experts’ advice v, with probability at least 1 — 6,

D-C-Riskr(f1, u) < f(Pr(v), St(v)) + g(T',6).

Those results, are universal in the sense that our comparators can be any predictable sequence (and not the
true minimisers) and pessimistic as the bound does not involves those comparators. They are gathered in
Thms. 3.2, 3.4 and 3.6.

We perform experiments (Sec. 4) to assess our algorithms efficiency. In particular, we test one of our methods
(Dynamic OGD) on several real-life datasets to compare its performance to OGD or OMGD. The comparison
with OMGD is particularly relevant since our theoretical results, while slightly weaker than Zhang et al.
(2017, Corollary 4), have a broader range of application, and require weaker assumptions. Finally, we propose
a toy experiment which illustrates the interest of dynamic cumulative risks as performance criterion for noisy
learning problems, and we show that the true minimisers are not always the good objective to target when
focusing on the D-C-Risk.

We close the paper with some additional technical background (Appendix A), further details on motivation
(Appendix B), and we defer to Appendices C and D the proofs of the results of Sec. 3.

2 A new optimistic auxiliary procedure

Framework. In this work (unless precised explicitly), we use the following mathematical objects and their
associated assumptions:

e The set of predictors X C R? is a closed convex set with finite diameter D.

2in the sense that predictors only depend on the past.
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o Our loss functions (¢;);>1 are A-strongly convex:
Vi, o, o € N* 5 K2, 0 (1) — i (po) < (Ve(p), 10— pro) — Allp — po|*.

o All gradients are bounded by some constant G: Vt > 1, u € K, ||Vl (p)|] < G.

2.1 The Adjust algorithm

We introduce an optimistic procedure (namely ADJUST, Algorithm 1) which adjusts optimistically a candi-
date predictor (e.g., obtained through classical OGD) with respect to an experts’ advice. In what follows,
we consider this experts’ advice as an additional knowledge which has to be incorporated into the algorithm
of interest. Incorporating such knowledge is not a new idea and has been used for instance by Rakhlin and
Sridharan (2013a;b). We choose to exploit our additional knowledge through the notion of performance.

Definition 2.1. We use the notation (z,y)y = x* Hy to design the inner product associated to a positive
definite matriz H. For a sequence of additional knowledge v = (v4)i>0, a sequence fitemp = (fitemp,t)t>1) €
KN (the output of a classical online procedure) and for any positive definite matriv H, one defines the
performance at time t of ji with regards to v, H as follows: we set m; := "t%'w’ and

Perf(t, H, i, v) == (fe41 — My Vi1 — Vi) gy -

For more information about why this notion of performance emerged, we refer to Appendix B.

Remark 2.2. At time t, the performance exploits the additional knowledge v through two terms: m; and
Viy1 — V. The first term is new to the best of our knowledge while the second is similar to the experts’
advice of Rakhlin and Sridharan (2013a). Indeed, the experts’ advice of Rakhlin and Sridharan (2013a) is
an information on the gradient space, i.e., a hint on the dynamic of the learning problem. Here, v411 — 1
plays a similar role. This point is also highlighted in Jadbabaie et al. (2015) as their path Dy focuses on the
distance between the experts’ advice and the gradient of their predictor.

We now state the algorithm ADJUST (Algorithm 1) which takes as input fizemp, v, H,t as defined in defi-
nition 2.1 and outputs an updated predictor fi;41. We precise that IIx 3¢ denotes the projection over the
closed convex set K with respect to the distance induced by (.,.) .

Algorithm 1: The ADpJUST algorithm

Parameters : Time ¢, positive definite matrix H, additional knowledge v, candidate fitemp,t+1
Vg1t

1 Set up my =
2 If Perf(t, H, fitemp, v) < 0, then:

Set ﬂt+1 = arg min Hth - ﬂtemp,t+1 - M”?—I = HfK,H(th - ﬂtemp,tJrl)

neX
Else:
. TN 2 N
Set fig41 = argmin || firemp,t+1 — MHH = o, 7 (fitemp,t+1)
neX

Return f = (fit)i—o.7

We illustrate in Fig. 1 what ADJUST concretely performs when H = I, and X = R2.

When Perf(t, I, fitemp, ) < 0, it means that in the referential centered in my, fizemp,+1 does not point in the
same direction than the dynamic v411 — v;. Thus ADJUST corrects this trajectory by taking the symmetric
2my — fitemp,t+1 Of figemp: this inverts the sign of its performance. Thus, ADJUST outputs fi;+1 such that
the distance between fi;+1 and v;41 is smaller than the one between fitemp,¢t+1 and v¢4q. This is further
developed in Lemma 2.3.

Lemma 2.3. For allt > 0, any definite positive H, any fitemp t+1, Vi+1, V¢ defined as in ADJUST (algo-
rithm 1): we denote by |.||3; the norm associated to the scalar product {.,.)p,

~ 2 ~
st — vesillz < llfitempi+1 — vellir
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fie1 = 2mt — fltemp,t i1

Figure 1: Action of ADJUST when performance is negative

Proof of Lemma 2.5. First, if Perf(t + 1, H, fitemp, v) < 0, then fi;41 = g g (2m¢ — feemp,t+1) and one has:

e+ — veri sy = 1Tac i (2me — feempir1) — Vel < 1200 — Brempr1 — vert |l
= |lftemp.+1 — vill%-

The last line holding thanks to the definition of m;. Second, if Perf(t, H, fitemyp, v) > 0, we use:

Lemma 2.4. We have ¥t > 0, ||fitemp t+1 — Vt+1||?{ = || fitemp,t+1 — l/tHiI — 2Perf(t, H, fitemp, V)-

Proof of Lemma 2.4. Recall that m; = W%M We have:

- 2 N 2
| ftempt+1 — Vet |3y = |fitemp,te1 — me +me — vea |3
2
N N Ve — U,
= llfitemp+1 — mel 3y — Pexf(t, H, fieemp, v) + W
2
And Hﬂtemp,ﬂ»l - VtHiI = ||ﬂtemp,t+1 - mt”?—] + Perf(t, H7 ﬂtEmp; V) + \th+14 Vt”H-
Thus,
Hﬂtemp,t-i—l - Vt+1H§{ = ||ﬂt6mp,t+1 - Vt”fq - 2Perf(t, H, ﬂtempa V)-
O
Finally,
N 2 A 2 N 2
1 — vea Iy = Mloc 1 (Btemp,t+1) — Vel < fitemp,t+1 — Vel
= || fitemp,t+1 — ve||3 — 2Perf(t, H, ftemp, V) (by Lemma 2.4)
< itemp, i1 — villr-
The last line holding because our performance is positive in this case. This concludes the proof. O

2.2 Choice of the additionnal knowledge

We propose in this section a data-driven procedure to obtain additional knowledge. We take inspiration
from the OMGD algorithm (Zhang et al., 2017). We name this procedure CONSTRUCT and detail it in
algorithm 2. It consists in applying K > 0 steps of the classical gradient descent algorithm to obtain a good
aproximation of the last observed minimum.

We recall in Lemma 2.5 a convergence property of the gradient descent algorithm.

Lemma 2.5. Assume the considered steps (77§) verify for all j, rzi’ -2 < . Then for any t we have,
J

1
51
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Algorithm 2: The CONSTRUCT algorithm.

Parameters : The number K of iterations, step-sizes (né) J=1.K
Current loss function ¢, current point fi;

Initialisation: Set x( := [is

1 For j in 0..K — 1:

Update

xj+1 = Hx ( - T]]V&(X]))

K
Return vy == & dim1 Xy

G K
li(verr) — be(py) < fz

Remark that it is essential to consider strongly convex functions to obtain the rate of Lemma 2.5. To satisfy

the technical condition on the step sizes, we can consider the step sequence ( )\ta) ) for any o € [0, 1].

Proof. Let t > 0. Recall that vy is defined as the Polyak averaging v;y1 := % Zj{zl x;. First, we remark
that by convexity of ¢;:

K K
C(vigr) — Gpg) = Z — Le(py) Z (%) = Le(pi)-

Because CONSTRUCT is a gradient descent with steps (né) j=1..k on the A-strongly convex function ¢, one
has for any j, the classical route of proof for static regret bound for strongly convex functions described in
(Hazan, 2019, Theorem 3.3). One then has the following, which concludes the proof:

K K
(Cr(x;) = o)) < G* 3.

J=0

3 Main results

Outline. We present in this section three variations of OGD, ONS and AdaGrad followed by theoretical
garantees for D-Regret and D-C-Risk. Our theoretical result assume the CONSTRUCT algorithm but also
work for any additional knowledge satisfying technical assumptions (translating here that the experts’ advice
at time ¢ is a good approximation of the minimum at time ¢ — 1).

Proof technique. Concerning our proof techniques, we have two strategies. On the one hand our proofs
concerning the dynamic regret of our methods (resp. Thms. 3.1, 3.3 and 3.5 ) are gathered in Appendix C
and consists in an adaptation of the static proofs of OGD,0ONS,AdaGrad all lying in Hazan (2019). We
adapt those proofs using Lemmas 2.3 and 2.5. On the other hand hand, proofs on the dynamic cumulative
risk (resp. Thms. 3.2, 3.4 and 3.6) lie in Appendix D and use the same kind of argument incorporated within
the SOCO framework of Wintenberger (2021) described in Appendix D.1.

3.1 Dynamic Online Gradient Descent

Our variation of the OGD, called Dynamic OGD (D-OGD), is presented in algorithm 3, it exploits an
additional information (14); at each time step. Its associated theoretical guarantee for D-Regret is stated in
Thm. 3.1.
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Algorithm 3: Dynamic Projected OGD onto a closed convex space XK.

Parameters : Epoch T, step-sizes ()
Initialisation: Initial point p; € X, additional information (v4) € X
For ¢t in {1,...,T}:
Update fitemp,t+1 = for — 0: VL (fit)
Observe 441,
frv1 = ADIUST(t, Lg, v, firemp,t+1)
Return i = (fit)i=o0..7

Theorem 3.1. Denote by p; = argmin,cq li(p). We assume that our predictors [i are obtained using
D-OGD (Algorithm 3 ) with steps n = (Giﬂ)t:(l..T)- We also assume our additional knowledge v to be the
output of CONSTRUCT (Algorithm 2) used at time t with steps n' = ()\ij)j=(1__K) and K = [VT]. Then,
dynamic regret of D-OGD with regards to p* = (uf)t=o..7 the true minimisers satisfy :

T
Z gt(/lt
t=1

) < GPr(v) — ASt(v) + gGD\/T + %2(1 +log(1+T)VT.

HMH

Furthermore, this result remains for any additional knowlege v such that for any t, (vi41) — Ce(uf) =

O(log(t)/ V).

Thm. 3.1 provides a worst-case guarantee for the dynamic regret of D-OGD. An interesting point is that
our bound decoupled the influence of the paths lengths from the horizon T, which is not usual in the
literature ( Zinkevich, 2003 proposed a bound of O(v/T(1 4+ Pr)) later improved in Zhang et al. (2018a) in
a O(/T(1+ Pr)).

Note that here K = [v/T] is determined with respect to a fixed horizon 7. When we do not know in
advance the stopping time of D-OGD, we can apply CONSTRUCT at each time t with the evolutive number
of iterations K; = [v/t]. This leads to a D-Regret bound with the same order of magnitude. We did not
detail this point in Thm. 3.1 for the sake of clarity.

The price to pay for a good additional knowledge is the time dedicated to CONSTRUCT (f\/T | iterations
at each time step). This is not new as a similar time complexity arose in the OMGD algorithm of Zhang
et al. (2017), when one chooses the step-size n = 1/y/T. Furthermore, notice that our convergence rate is
lower than the O(min(Pr, St)) rate provided in Zhang et al. (2017), but we only assumed our function to
be strongly convex while Zhang et al. (2017) added a smoothness assumption on the losses.

Theorem 3.2. We assume that our predictors i are obtained using D-OGD(Algorithm 3) with steps n =
(%)t:(l.‘T)) We also assume our additional knowledge v to be the output of CONSTRUCT (Algorithm 2)
used at time t with steps n' = (%j)j:(Ll() and K = [VT]. Then, dynamic cumulative risk satisfies with
probability 1 — 39, for any T > 1,for any sequence (ug)i=1.7 such that p; is Fy_1-measurable:

ZLt fit)

where the O hides a log factor. Furthermore, this result remains for any additional knowlege v such that for

any t, Ly(veg1) — G(pg) = O(log(t) /V/1).

First of all, Thm. 3.2 hold for any predictable sequence of comparators p which are not involved on the
upper bound. This choice has been made to maintain a fully empirical upper bound: indeed, predictable
sequences are often unknown as they may depend on the conditional distribution of the data (unknown in
practice). This bound ensures us that D-OGD allow us to nearly maintain the same convergence rate than
Thm. 3.1 when the controlled quantity is now a conditioned risk E;_;[¢] instead of an empirical loss ¢. This
shift alllows our guarantees to ensure a good generalisation ability of our predictors. An interesting point is

Le(pe) < GPr(v) = ASr(v) + O(VT)

HMH
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that our upper bound is empirical while the left hand side is theoretical: we have a computable guarantee
about how robust are our predictors to the intrinsic randomness of the considered problem. Note that our
result holds for any sequence p such that p; is F;_i-measurable. We present in Sec. 4.2 a toy experiment
which exploits this additional flexibility by showing it may not be relevant to compare ourselves to the true
minimisers p*.

3.2 Dynamic Online Newton Step

Algorithm 4 details the D-ONS algorithm, which is an updated version of the ONS (Hazan et al., 2007) and
we present in Thm. 3.3 its associated D-Regret bound.

Algorithm 4: Dynamic ONS onto a closed convex space XK.

Parameters : Epoch T, step v, > 0.
Initialisation: convex set K, initial point y; € X C R additional information v, € K,Ag = el
For ¢t in {1,...,T}:

Update A; = A;_; + V;V,/

Set fliremp,t+1 = flg — %At_lvt

Observe vy

fit+1 = ADJUST(t, A¢, v, fbtemp,i+1)
Return i = (fit)i=o.. 7

Theorem 3.3. Denote by py = argmin,cq €4(11). We assume that our predictors i are obtained using D-
ONS (Algorithm 4 ) with v = %min {%,a}, €= ﬁ.. We also assume our additional knowledge v to
be the output of CONSTRUCT (Algorithm 2) used at time t with steps ' = ()\ij)j:(l__K) and K =T. Then,
dynamic regret of D-ONS with regards to pu* = (1} )i=o.. 7 the true minimisers satisfy :

2

D i) = lpi) < GPr(v) — ASp(v) +2 (Ci(d +1)+ dGD) (14 log(T)).

t=

Furthermore, this result remains for any additional knowlege v such that for any t, & (veip1)—€:(pf) = O(1/t).

Thm. 3.3 can be compared to the Online Multiple Newton Update (OMNU) of Zhang et al. (2017) which
proposed a competitive rate of O(min(Pr, St)) for OMNU. While our rate is weaker than theirs, our results
hold with the single assumption of strong convexity. Indeed, Zhang et al. (2017, Thm 11.) holds for strongly
convex and smooth functions with the additional technical assumptions Zhang et al. (2017, Assumption
10) and holding for problems having small variations of their successive minimas. Our result requires less
asumptions and comes at the cost of K = T iterations of ADJUST at each time step. Finally, taking K; =t
at each time step allow us to not knowing in advance the stopping time of D-ONS and recovers a slighlty
deteriorated rate of O(dlog(T)?).

Theorem 3.4. We assume that our predictors i are obtained using D-ONS(Algorithm 4) with v =
%min{%, %}, €= Wg—lm. We also assume our additional knowledge v to be the output of CONSTRUCT
(Algorithm 2) used at time t with steps n' = (ﬁ\/j)j:(l..K) and K =T. Then, the dynamic cumulative risk

satisfies with probability 1 — 25, for any T > 1,for any sequence (ut)i=1. 7 such that p; is Fr_1-measurable:

D Liliie) = > Li(pe) < GPr(v) +2G*Sr(v) + O(dlog(T) + log(1/5)),
t=1 t=1

where Ly = Ey_1[6;]. Furthermore, this result remains for any additional knowlege v such that for any t,
C(vesr) — Le(pg) = O(1/1).
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3.3 Dynamic AdaGrad

Algorithm 5 details the D-AdaGrad algorithm, which is an updated version of AdaGrad (Duchi et al., 2011)
and we present in Thm. 3.5 its associated D-Regret bound. We use the notation A ¢ B to denote the
element-wise multipication between the matrices A and B.

Algorithm 5: Dynamic AdaGrad onto a closed convex space XK.

Parameters : Epoch T, step 1, parameter ¢.
Initialisation: Initial point u; € K,additional information (11) € X, Gy = lg, Hy = G(l)/2
For t in {1,...,T}:

Update Gy = G471 + VtV;r

Update H; = argmin {G, e H~! + Tr(H)} = Gi/g

H=0

Set ,atemp,t—&-l = ,at - 'rlHt_lvt

Observe 441

/jt+1 = AADJUST(t7 Ht, v, ﬁtemp,t+1)
Return i = (fit)i=o0..7

Theorem 3.5. Denote by py = argmin,cq €4(11). We assume that our predictors i are obtained using D-

AdaGrad (Algorithm 5 ) with with ¢ = %,n = %. We also assume our additional knowledge v to be the

output of CONSTRUCT (Algorithm 2) used at time t with steps ' = (A%j)j:(l--K) and K =T. Then, dynamic
regret of D-AdaGrad with regards to p* = (u})i—o..7 the true minimisers satisfy :

T T
GQ
A~ * . *2
;&(ut) - ;mm < GPr(v) = ASr(v) + V2D 1+,/gggcztjllvtllH + (1 + log(T)).

Furthermore, this result remains for any additional knowlege v such that for any t, € (vep1)—€:(pf) = O(1/t).

Thm. 3.5 nearly recovers the convergence rate of AdaGrad for static regret at the cost of an extra path
length and O(log(T')) factor. Note that, as in Thm. 3.3, the evolutive iteration number K; = ¢ can be chosen
instead of K = T to make the procedure valid for any horizon T' (not necessarily fixed in advance) at the
cost of an extra log factor.

Furthermore, Thm. 3.5 goes beyond the scope of Zhang et al. (2017), as methods proposed in this paper
do not deal with AdaGrad. Note that our approach is not the first to propose a dynamic regret bound for
AdaGrad (see the recent work of Nazari and Khorram, 2022) but we point that our approach is general
enough to provide bounds simultaneaously for variants of OGD, ONS, AdaGrad. However our approach is,
to our knowledge, the first whih also proposes dynamic guarantees for the cumulative risk (i.e., regret with
losses E;_1[¢:]) as stated below.

Theorem 3.6. We assume that our predictors fi are obtained using D-AdaGrad (Algorithm 5 ) with with

€= %, n= %. We also assume our additional knowledge v to be the output of CONSTRUCT (Algorithm 2)
used at time t with steps n' = (%j)j:(l_K) and K = T. Then, dynamic cumulative risk satisfies with

probability 1 — 25, for any T > 1, for any sequence (p¢)i=1..17 such that p; is Fi_1-measurable:

T T
Ly(fne) — L <GP 1
; (jie) Z:: () < GPr(v) + ‘/mmvatnw og5

Note that this result stll holds for any additional knowlege v such that for any t, ly(ver1) — €e(pf) = O(1/t).
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4 Experiments

Experiments. We propose two sets of experiments. The first one gathers 4 classical dataset two regression
and two classification problems. Its goal is to assess our algorithm’s efficiency by plotting the averaged
cumulative losses 22:1 £(h;,z;) /t at any time ¢t. The second experiment is a toy example designed to show
that D-C-Risk is a relevant tool to handle learning processes on noisy problems. For those two experiments
we compute three algorithms: the celebrated Online Gradient Descent (Zinkevich, 2003, Alg. 1), the D-OGD
algorithm (Algorithm 3) and a variant of the Online Multiple Gradient Descent (OMGD) algorithm with
decreasing steps (Zhang et al., 2017, Alg. 1).

The reason we computed OMGD is that CoNSTRUCT (Algorithm 2) is following the same idea as OMGD
(i.e., performing a gradient descent at each time step for more accurate predictors). An interesting question
is whether D-OGD provides similar or better results than OMGD? We address this below. Furthermore,
we would expect that using the output of CONSTRUCT as additional knowledge instead of predictor would
provide us an additional flexibility in our learning process, is it the case in practice?

4.1 Experiments on real-life datasets

We conduct experiments on a few real-life datasets, in classification and regression. Our objective is twofold:
check the convergence of our learning methods and compare their efficiencies with classical algorithms.

Binary Classification. At each round t the learner receives a data point z; € R? and predicts its label
yr € {—1,+1} using (x4, hy), with h; being the predictor given by the online algorithm of interest. The
adversary reveals the true value y;, then the learner suffers the loss £(hy, 2;) = (1 - ythtTa:t) N with z; = (¢, y¢)
and a; = a if @ > 0 and a; = 0 otherwise.

Linear Regression. At each round ¢, the learner receives a set of features z; € R? and predicts y; € R
using (x4, hy) with h; being the predictor given by the online algorithm of interest. Then the adversary

reveals the true value y; and the learner suffers the loss ¢(hy, z;) = (yt - h?mt)Q with z; = (x¢, yt)-

Datasets. We consider four real world dataset: two for classification (Breast Cancer and Pima Indians),
and two for regression (Boston Housing and California Housing). All datasets except the Pima Indians have
been directly extracted from sklearn (Pedregosa et al., 2011). Breast Cancer dataset (Street et al., 1993)
is available here and comes from the UCI ML repository as well as the Boston Housing dataset (Belsley
et al., 2005) which can be obtained here. California Housing dataset (Pace and Barry, 1997) comes from
the StatLib repository and is available here. Finally, Pima Indians dataset (Smith et al., 1988) has been
recovered from this Kaggle repository. Note that we randomly permuted the observations to avoid to learn
irrelevant human ordering of data (such that date or label).

Parameter settings. We ran our experiments on a 2021 MacBookPro with an M1 chip and 16 Gb RAM.
For OGD, the initialisation point is Oga and the values of the learning rates are set to n = 1/2/m. where
m is the size of the considered dataset. For OMGD, we ran the procedure while, at time ¢, performing a
gradient descent with K = 100 iterations. This auxiliary gradient descent has been performed with steps
(A/2v/7)j=1..k- A ,being an empirical stabiliser set to 0.1/y/m. For D-OGD, we ran the procedure with a
constant step = 0.1/y/m. We ran CONSTRUCT to generate our additional knowledge with the iteration
number K = 100 and steps (ng-)jzl__K = (M2v/7)j=1..k, A ,being an empirical stabiliser set to 0.1/y/m.

Quantity of interest. For each dataset, we plot the evolution of the averaged cumulative loss
22:1 £(h;, z;) /t as a function of the step ¢ = 1,...,m, where m is the dataset size and h; is the decision
made by the learner h; at step i. The results are gathered in Fig. 2.

Empirical findings. On those datasets, OMGD with adaptive steps and D-OGD seems to perform rather
equivalently, except on the PIMA Indians dataset where D-OGD outperforms OMGD. On two datasets
(Breast Cancer and California Housing), D-OGD performs better than OGD, otherwise both methods per-
forms similarly. A reason that could explain the efficiency of our method compared to OMGD in the PIMA
Indians dataset is that because this problem is difficult (7.e., noisy), the technical condition stated in (Zhang
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Figure 2: Averaged cumulative losses for all four considered datasets. The x-axis is the time.

et al., 2017, Corollary 4) may not be statisfied. This would impeach OMGD to attain competitive results.
Furthermore, note that in any case, D-OGD is at least as good as OGD or OMGD.

4.2 A toy experiment: the Online Quadratic Problem

Theoretical framework. Our problem is set as follows: at each time step ¢, a random variable 6, is drawn.
For all ¢, 6, is such that
= L(0; | F1—1) = N(moy,, o7).

We assume that there exists D,,, D, positive values such that for all ¢, (moy,, 0;) € [—=Dy,/2, Dy, /2] X [0; Dy ].
Finally, we consider at time ¢, the loss ¢;(6) = (0; — 0)2. We refer to this framework as the Online Quadratic
Problem.

Quantity of interest. We study the D-C-Risk w.r.t. the sequence y; = moy,. We cannot compare ourselves
to the true minimiser p; = 6; because this quantity is not F;_; measurable. However, we show below that
there exists another meaningful comparator. Indeed, in our setup, we precised that moy, was assumed to be
F;—1-measurable so let us see what gives the dynamic cumulative risk for any sequence of predictors (fi;);>o0:

T T
Li(moy,) = Z E;_1[(0; — Ht Z E;—1[(0: — moyt Z iy — moyt
— t=1

f,

b

T
> Lilfw) -

The last line holding thanks to a bias-variance tradeoff. This basic calculation shows that for this learning
problem, using (moy,); as comparators instead of the true minimisers leads to a meaningful regret. Yet, we
can derive from the general notion of dynamic regret a comparison between our prediction and the true mean
of the data. One will see in the experiments that D-OGD can approximate the means better than classical
OGD at high times.

Parameter settings. All our algorithms are using a projection on the ball centered in 0 of diameter D = 10.
For OGD, the initialisation point is Oz« and the values of the learning rates are set to n; = 1/2v/t. For
OMGD, we ran the procedure while, at time ¢, performing a gradient descent with K = 100 iterations. This
auxiliary gradient descent has been performed at time ¢ with steps (A\;/2v/7);=1..k, A being an empirical
stabiliser set to 1/2v/t. For D-OGD, we ran two variants: the first uses CONSTRUCT to generate our additional
knowledge. We run algorithm 3 with steps 7; = 1/2v/t at time t. We run CONSTRUCT with, at each time
t, the iteration number K = 100 and steps ('r]';-)jzluK = (M\e/2V/J)j=1..K, A+ being an empirical stabiliser set

11
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to 1/2v/t. The second does not use CONSTRUCT and instead defines at each time ¢ v; 11 ~ N(fit, 0%) with
o1 = 0.4. Similarly, we run algorithm 3 with steps n; = 1/2\/1? at time t.

Experimental framework. We take for any ¢, moy, = sin (%) with w = 200, yet the means are a
deterministic sequence fixed before our study. Then our #; are drawn independently. We also fix for any
t, o = 0 = 4. We chose K (the number of iterations to acquire our additional knowledge) equal to 100.

Results are gathered in Fig. 3.

1e4 Online Quadratic Problem-Risks Online Quadratic Problem-Paths

— 0GD  —— DOGD Gauss —— OMGD
—— DOGD 10° 3
8
104 4 /—//

— DOGD sq_path —— upper path |
o4 path

05 10 15 20 25 3.0 35 40 05 1.0 15 20 25 3.0 35 4.0
le5 1le5

Figure 3: On the left, cumulative risks of D-OGD (purple,blue), OMGD (red), OGD (green). On the right,
plot of D-OGD and its associated paths. The z-axis s the time. sq_path is S¢(v), path is P;(v), upper_path
is GPt(V) - )\St(l/)

Empirical findings. First, OGD fails on this example as the problem is too noisy: OGD fails to detect
any statistical pattern between the successive points. Second, OMGD performs better than OGD but
is significantly worse than D-OGD (the difference of the dynamic cumulative risks is of magnitude 10%).
This shows that our method, which only uses the output of the auxiliary gradient descent as addtional
knowledge (and not as predictors as in OMGD) provides an additional flexibility which translates onto a
greater performance for extremely noisy problems. A reason that could explain the efficiency of our method
compared to OMGD is again that the intrinsic noise is so high that the technical condition stated in (Zhang
et al., 2017, Cor. 4) may not be statisfied, which impeachs OMGD to attain a competitive dynamic regret
in O(min(Pj, S5)). Finally, note that interestingly, our variant of D-OGD (the curve 'D-OGD Gauss’ which
uses an alternative source of additional information) provides better results here while we have no theoretical
guarantee of its efficiency. This opens the way to a broader reflexion to the choice of the additional knowledge
within D-OGD.

5 Conclusion

We provided dynamic adaptations of classical online methods. Those adaptations involved optimism through
the ADJUST algorithm. We required our additional knowledge at time i + 1 to be a good approximation
of the minimium at time 7 to obtain good regret guarantees. A novelty of our approach is to propose a
way (the CONSTRUCT algorithm) to craft this addtional information, providing a ready-to-use version of our
algorithms. However, even though CONSTRUCT appeared naturally in our study as we considered OMGD
of Zhang et al. (2017), it is not the only possible choice. For instance, we could use the classical Newton
algorithm instead. This may be a more suited choice when the problem dimension is not too big as Newton
methods are known to converge quickly (at the cost of the calculus of an inverse matrix at each time step):
this would be faster than CONSTRUCT then. This instance exhibit an experimental tradeoff between accuracy
and time complexity involving the dimension as hyperparameter of the problem.

However, our discussions about the choice of additional knowledge v are driven by a narrowed vision of our
additionnal knowledge: in this work, it only focuses on being a good approximation of the minimas while our
bounds suggest us a deeper vision. Indeed, our bounds involve a broader tradeoff on v: on the one’s hand,
we make appear path lengths which invite us to consider that the sequence v is not evolving too fast (i.e.,
only small shifts from the additionnal knowledge through time are recommended) and on the other hand,
we still require v to be a good approximation of the past minimisers. Finding a v optimising this tradeoff
appears to be a promising route of study for future works.
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A Technical background

A.1 Azuma-Hoeffding’s inequality

One recalls the celebrated Azuma- Hoeffding inequality

Proposition A.1. Let {Xy, X1,---} be a martingale with respect to filtration {Fo,F1,---}. Assume there
are predictable processes {Ag, A1, -+ } and {Bo, B1, ...} with respect to {Fo,F1,--- }, i.e. for allt, Ay, By are
Fi_1-measurable, and constants 0 < c1,ca,- -+ < 0o such that

A <Xy — X1 < By and B;— A <c¢

almost surely. Then for all € > 0,

2¢2
P(|Xn—X()| ZE)SQEXP _W
t=1"t

In this work we use Azuma-Hoeffding’s bound in the particular case where A;, B; are constants almost surely.
B Inspiration for our notion of performance

Let n = (n¢)4=1..7) be a positive step sequence.

We denote by f[i;,t > 1 the sequence of predictors defined by the classical projected OGD:

fie+1 = Hoc (fie — V(1))
Theorem B.1. Dynamic regret of projected OGD on a closed convexr K for convex losses with steps n =
(1)e=1..1) with regards to p = (pt)i=0.7 € X" satisfies :

T T T
D ll) = i) < AV (), fu — )
=1 =1 =1
Perf(t, i, p)
s
27) Zm ; e

Proof. First, convexity of the losses gives us :

T T T
> b)) = b () <Y AV (fu) s e — poe)
t=1 t=1 t=1

We use the following lemma:

We then have: ) )
e — pell™ < Mlfee — eV (1) — pue|

A~ 2 ~ A~ ~ 2
= llAe — el = 20 (Ve (f1e) , fre — pue) + 7 [V () |
Hence:
~ 2 ~ 2 N N
e = peeall” < Mfe = pell” = 206 (Ve (Ae) , fie — pae) + 17 G = 2Perf (¢, i, o)

So:

~ 2 ~ 2 2 ~
— — — G Perf(t, i,
) < |t — pael |41 — paa | + Mt _ (t, fi, 1)

(Ve (fur) , fre — o, 5 ”

Summing on ¢ gives us the final result
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One can also have a stronger result for A-strongly convex functions with the following additional assumption:

We assume that our steps n; are such that:

1o

Nt MNt—1
Theorem B.2. Dynamic regret of projected OGD on a closed convex X with steps n = (1;)i=1..7) with
regards to p = (fit)t=0..T € KT satisfies :

N
S
x
HMH
T
IA
m‘%
M=
>
=
=
=
=

Proof. The proof is roughly the same than our first bound. We remark that thanks to strong convexity, one
now has :

gl
=

T
Z (Ve (1) i) = Al e = pue]|?
=1

T
RADE
=1

So the arguments of the previous proof provide us:

Tt

d o L1 2 Nesr — e |

. . +1 — flit
E Ce(fie) — E Le(pe) < (m - A) i — pe]]” — —————
=1 1

e[|V 24 (ﬂt)”z _ Perf(t, i1, p)
1 2 "t

_|_
MH o | =

~
Il

IN

T . 2 ya S
}Z A — pell”  NAess — frega |
2 — Nt—1 s

_

T 2 .
e |V () ||”  Perf(t, o1, 1)
Jr —
; U

A telescopic argument and bound over the gradients provides us the final result.

Remark B.3. We focus in three specific cases where performance can be linked to classical quantities:
o First is just a remark : we totally recover the classical OGD bound for static regret when one has
pi+1 = pt for any t.
o Second, if our OGD predicts well the minimiser pu* after a certain time, i.e. fort > to, fliy1 =~ pi .

Then one has
S Pert(t, ) o — L 3 M w1,
er Yy ) = — o s — .
=1 2 "It mo

so our result ensures that in this case, OGD has been able to tame the geometry induced by the l;s
to generate a momentum greater than Sk /m

o Finally let us consider the overfitting case i.e, for each t, fis41 ~ puy. Then:

= 1= gy — 11
S Pent(, ) 5 30 Wi I
t=1 t=1 Mt

nr

16



Under review as submission to TMLR

So overfitting will penalise our OGD with at most a factor 8t /nr
However, even if our bounds gives us an intuition on how is the OGD interacting with its environment. One

cannot control it directly. If we assume having additional information at each time steps, this notion of
performance can help us to enhance OGD.

C Proofs of deterministic results
In this section we use the shortcut V; := VI (f;).

C.1 A general route of proof

We exhibit in Eq. (1) a general pattern of proof we use several times in this work to bound the dynamic
regret. This pattern also structures this document.

T T T T T T T T
Sob() =Y ) = b)) =Y )+ Y ) =Y i)+ () = > 4ui). (1)
=(A) =(B) =(0)

Those terms are dealt as follows.

o (A) is controlled by the effect of ADJUST on OGD,0ONS,Adagrad. It allows to transform the static
guarantees of those algorithms (as stated in Hazan, 2019) into dynamic ones.

o (B) is controlled by the convexity assumptions made on the ¢;s and involve terms like Pr, St.

o (C) is handled by the way we designed v.
Our proofs in the rest of this section are based on this general scheme.

C.2 Proof of Thm 3.1

Proposition C.1. The sequence of predictors (fi;);>o0 obtained through DOGD on a closed convexr K with
steps 1 = (0t )1=1..7) with regards to the additional informations v = (v¢)i=o..7 € KT satisfies :

t=1 t=1 t=1
Proof. We fix t > 0. For the sake of clarity, we rename fiemp := fliemp,t+1 = e — e V(A1) (Where firemp 141
is defined in algorithm 3).

Thanks to convexity of the losses, one has:

Dol =D ) <Y (V). fur — 1)
t=1

t=1 t=1

To control this last sum, our intermediary goal is now to control ||fis11 — v¢41]|? in function of ||y — 14|
To do so, we first exploit Lemma 2.3 which stipulates that ||fi;11 — v441]? < | fetemp — v¢||?. Then we control

<V5t (ﬂt) s e — Vt>-
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One has:
i1 — vesrl]® < || ftemp — vel|?
= [|fre — 1V (f1r) — Vt”2
N 2 PN N
= llfe — vell” = 20 (Ve (fie) , frr — ve) + 7 (Ve (f1e) |
Hence:
N 2 N 2 AN A
He+1 — V41 X Mt — V]| — &M t \Mt) 5 bt — Vi un .
| = < 7 = 2m (VE (1) )+ 0 G?
So:

A e = vl = Nfuess — veal® G2
(Ve (fue) , 1 — ) < 20 + 5
t

Summing on ¢, gives

S i) - 3t < 3 u2<1 ! )ﬂGZ
t t) — t t) > t — Vit .
P 20t 20e— 2

t=1 t=1
D2 2 &
<2 4= .
~ 2nr * 2 = 1

Hence the final result.

Now we are able to prove our result:
Proof of Thm. 3.1
Proof. We control the terms presented in Eq. (1). proposition C.1 ensures us that:
D?  G?
A< — 4+ —
(4) < o0 5 ;m

< gGD\/T,

The last line holding thanks to the definition of n and that Zthl % < 2VT.

We now have to deal with (B) and (C) of Eq. (1).
(B) is handled using the strong convexity of ¢; for any ¢ :

C(vr) = b (vir) < Vew) T (v = vigr) = Mveps — vl ?
<NIVLOvers — vel] = M|vers — vel)? Cauchy-Schwarz

< Glvepr = wil| = Mes — vl P
Summing over all ¢ gives us :

(B) < GPr(v) — ASr(v).
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To deal with (C), we exploit Lemma 2.5. Indeed, our choice of steps ensure us that at each step j: & — A =

m;
AG-1DH<AG-1)= . We have at each time ¢:

G (Vi) — b(py) KZ )\KZ*

LG (1 + log(K))
= NK

Finally:

G*(1 + log(K)

© =T K
< G;ﬁa +log(1+1T))

The last line holding because K = [v/T1.
Combining the bounds of (A),(B),(C) concludes the proof.

C.3 Proof of Thm 3.3

We need first to introduce on exp-concave funtion.

Definition C.2. A function f : R™ — R is o exp-concave over a conver X if the function g = exp(—af) is
concave on K.

One also recalls the following lemma coming from (Hazan, 2019, Lemma 4.3)

Lemma C.3. Let f: KX — R be an a-exp-concave function, and D, G denote the diameter of X and a bound
on the (sub)gradients of f respectively. The following holds for all v < %min {w%,a} and all x,y € K :

Tx—y) VIV (x—y).

F) = )+ V) (x=y) + 5

One now states a key preliminary result of this section (proposition C.4) whoch exploits the exp-concavity
property.

Proposition C.4. We assume our loss functions €y to be a exp-concave. Let {fi:} being the output of D-ONS

(algorithm 4) with v = %min {G%, a} , €= ﬁ. We then have, for T > 4 and any additional knowledge

v:

T
PRAAEIAAES: (; + GD) dlog(T).

t=1

Proof. The proof is similar to the one of (Hazan, 2019, Thm 4.5) which holds for static regret. We prove
Lemma C.5 which is an adaptation of (Hazan, 2019, Lemma 4.6).

Lemma C.5. Let {ji;} being the output of algorithm J with v = %min {G%,a} , €= 72—1[)2, We then have,
for T > 4 and any additional knowledge v:

T
Zét Mt —ft Vt ( —|—GD> <1+thAt_1vtT> .
t=1
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Proof. We fix t > 1 and we first apply Lemma C.3:
C(fu) = bi(v) <V (e — 1) — %(ﬂt — ) ViV (e — 1)

Recalling the definition of fitemp,t+1, substracting by 14 and multiplying by A; gives us
N . 1 5
Htemp,t+1 — Vt = Ut — Vi — ;Af Vi

and:
N R 1
Ay (Ntemp,t+1 - Vt) = A (Mt - Vt) - ;Vt (3)

Multiplying the transpose of Eq. (2) by Eq. (3) gives us:
. T 4 (A . T 4 (n 207 - [
(Mtemp,t+1 - Vt) Ay (Mtemp,t+1 - l/t) = (Mt - Vt) Ay (Mt - Vt) - ;Vt (Mt - Vt) + ?Vt At V. (4)

Our goal is to lower bound the term on left hand-side of this equality. To do so, we first remark

N T N N
(Mtemp,t+1 - Vt) Ay (Mtemp,t+1 - Vt) = ||Mtemp,t+1 - Vt||,24t
>

Because A; is a positive definite matrix, Lemma 2.3 holds, which allows us to say that ||fitemp t+1 — Vt||12th

| fe+1 — ves |, - Thus:

N T N N
(Ntemp,t+1 - Vt) Ay (Mtemp,t+1 - Vt) > ||Mt+1 - Vt+1||2At
= (fle+1 — Vt+1)T Ay (fr1 — Viy1)

This fact together with Eq. (4) gives:

. 1 , . .
vV, (i — ) < EV:At v, + % (fur — Vt)T Ay (fe — 1)
- % (fre+1 — Vt+1)T At (ft1 — Veg1) -

Now, summing up over t = 1 to T we get that

T T
. 1 _ Y
;:1 Vi (e —w) < 2 ;:1 VAV + 5 (1= )" A1 (- 1)

T
Z (fre — Vt)T (Ar — A1) (fir — 1)
t=2

(firs1 — vra1) " Az (Arg1 — vrsn)
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In the last inequality we use the fact that A, — A;_1 = VtV;r , and the fact that the matrix Ar is PSD to
bound the last term before the inequality by 0. Thus,

T T
1 _
;@(ﬂt) — U () < % ;V;At 'V, + % (p1 — VI)T (A - V1V1T) (p1 —v1)

Using that A; — V1V1T =cl,, €= ﬁ and that I has a finite diameter D gives us :

T T
) 1 _
> talfi) = bi(e) < 5= VI ATV S D%
t=1 v t=1 2
1 & 1
< =Y VAWV, + —
2y t=Z1 L v 2y

Since v = %min {%, a}, we have % <2 (é + GD). This gives the lemma.

The rest of the proof now follows the exact same route than (Hazan, 2019, Thm 4.5).

Proof of proposition C.4 First we show that the term Zle vjA;lvt is upper bounded by a telescoping
sum. Notice that

VATV, = A7 eV, V] = A7 e (A — A y)
where for matrices A, B € R"*" we denote by Ae B=3"" | Z?:l AijBi; = Tr (ABT), which is equivalent

to the inner product of these matrices as vectors in R,

For real numbers a,b € R, the first order Taylor expansion of the logarithm of b at a implies a=*(a — b) <

log ¢. An analogous fact holds for positive semidefinite matrices, i.e., A~' @ (A — B) < log %, where |A]

denotes the determinant of the matrix A (this is proved in Hazan, 2019, Lemma 4.7). Using this fact we
have

t=1
T
At |Ar|
< log = log
; | A1 | Ao
Since Ap = Zthl V.V, +¢el, and |V, < G, the largest eigenvalue of Az is at most TG? + e. Hence

the determinant of Ar can be bounded by |Ar| < (TG2 + E)d. Hence recalling that & = W21DQ and v =
%min{c%,a}, for T > 4

T
> VATV, <log

<TG2 +e
=1 €

d
) < dlog (TG*v*D* +1) < dlogT
Plugging into Lemma C.5 we obtain

a 1
E &([Lt) — Et(yt) S (a + GD> (legT + 1)
t=1

which implies the theorem for d > 1,T > 4.

We now can prove Thm. 3.3.
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Proof of Thm. 3.3.

Proof. We control the terms presented in Eq. (1). To deal with (A), we exploit proposition C.4 knowing
that a A-strongly convex function with its gradient bounded by G is A\/G? exp-concave:

(A) <2 (Cf + GD> d(1 +log(T))

We now have to deal with (B) and (C) of Eq. (1).
(B) is handled using the strong convexity of ¢; for any ¢ :

C(ve) = G(ver) < V() T (v — vig1) = Mlvegr — el ?
<|IVL O verr = vel] = M|verr — vel)? Cauchy-Schwarz

< Glver = ]l = Mver — il
Summing over all ¢ gives us :

(B) S GPT(Z/) - )\ST(Z/)

To deal with (C), we exploit Lemma 2.5. Indeed, our choice of steps ensure us that at each step j: ni’ —A=
AJ-D<AG-1) =

n,l .. We have at each time ¢:
-1

b (V1) — Ce(pg) S K Z KZ*

< G? (1 + 1og(K)).
- MK

Finally:

G?*(1 + log(K)
AK
2

= S0+ 1og(1)

o)<r

The last line holding because K =T.
Combining the bounds on (A),(B),(C) concludes the proof.

C.4 Proof of Thm 3.5
We first start with a key result for our study of dynamic Adagrad.

Proposition C.6. We assume our loss functions £y to be convex. Let {fis} being the output of D-Adagrad

(algorithm 5) with e = %,n = %. We then have, for any additional knowledge v:

th fie) — be(vy) < V2D | 1+ /manHVtH
t=1
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where H == {X € R™" | Tr(X) <1,X = 0} and for a fived H, ||p||3? = u" H= 'y where H™1 refers to the
Moore-Penrose pseudoinverse.

Proof. The proof follows the route of (Hazan, 2019, Thm 5.12) for the full-matrix version of Adagrad. As for
dynamic ONS, our only work consists in modifying a lemma of Hazan’s proof (Hazan, 2019, Lemma 5.13),
the rest holding similarly.

For the sake of completeness, we state all the lemma of interest in this proof, most of them are directly
extracted from (Hazan, 2019, Sec.5.6). We start with (Hazan, 2019, Lemma 11).

Lemma C.7. For Hp the last output of Adagrad, we have

. *2
/ — Tr(H
}rlnel%zt:”thH (Hr)

We present now our lemma of interest (Hazan, 2019, Lemma 5.13)

Lemma C.8.

T T

3 - 1 S (v N
Et(,&t) - ét(Vt) S 2D + g (GT LJ HTI + TI‘(HT)) + % (‘ut — l/t)T (Ht — Ht—l) (,ut - l/t) .

t=1 t=1

Proof. First, recall that Zthl (i) — () < ZtT:1 VI (i — ).
By the definition of fitemp t+1 :

fltemp,t+1 — V¢ = [t — Vg — UHflvt (5)
and multipying by H; gives:
Hy (fitemp,t+1 — v¢) = Hy (fiu — ) — V4. (6)
Multiplying the transpose of Eq. (5) by Eq. (6) we get

(ﬂtemp,t+1 - Vt)T H, (ﬂtemp,t-i-l - Vt)
= (i —ve) Hy (e —vg) — 20V, (e — ve) +°V] H; 'V, (7)

Focusing on the left-hand side of the equality, one remarks that:

(fitemp,t+1 — Vt)T Hy (fttemp,t+1 — ve) = || fbtemp,i+1 — VtH?{t

Since H; is a PD matrix, one can apply Lemma 2.3 to obtain that ||fi;+1 — Vet ||%{t < || ftemp,t+1 — Vt||%[t.

Applying this result gives:

N T N N
(fitempyt+1 — ve)  Hy (fuemp,t+1 — V) 2 || fie1 — Vt+1||§lt

This fact together with Eq. (7) gives
A n — 1 A 2 N 2
Vi (u—w) < §V;Ht 'V + 2 (||Mt — Vel — e — Vt+1||Ht)
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Now, summing up over t = 1 to T" we get that

T
> Vi (A=) <
t=1

U

2

T T
_ 1 2 1 N 2 N 2 1. 2
ZV:Ht 'V + % 1 — vl + o Z (||Nt — vellay, — e — Vt||H,,_1) “ o lftr1 — vera g,
t=1 P
<2 T THflthr\/iD‘Fi T (fie — i) " (Hy — Hy—y) (B — 1)
2 — 2n

t=1
In the last inequality we used the fact that ¢ = 2> and bounded || 1 — 11| by D? .
We now prove that Zthl VIH; 'V, < (GreHy"' + Tr(Hr)). To this end, define the functions

U (H)=V,V] « H ' Uy(H) = Tr(H).

By definition, Hy is the minimizer of Zf:o W, over H which can be related to a FTL strategy. Thus, using
(Hazan, 2019, Lemma 5.4), we have that

T
> VIH 'V, = Z U, (Hy)
t=1 =

¢ (Hr) + Yo (Hr) — Yo (Ho)

\M’ﬂ

= GT [ ] HT + Tr (HT)
This concludes the proof O

Lemma C.8 gives us two terms to be bounded. To do so, we use (Hazan, 2019, Lemmas 5.14,5.15) to conclude
the proof. Those lemmas are gathered below.

Lemma C.9. For algorithm 5, the following holds
Gre Hy' <Tr(Hr).

Lejrpma C.10. Recall that D the Fuclidean diameter of X. Then the following bound holds,
D=1 ”Xt—X*HHt Hy < D*Tr(Hr).

Now combining Lemma C.8 with the above two lemmas, and using n = % appropriately, we obtain the
theorem.

O

We now can prove Thm. 3.5.
Proof of Thm. 3.5.

Proof. We control the terms presented in Eq. (1). To deal with (A), we exploit proposition C.6:

< . *2
(A)<V2D |1+ A /I%%zt:ﬂvt”H
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We now have to deal with (B) and (C) of Eq. (1).
(B) is handled using the strong convexity of ¢; for any ¢ :

C(vr) = b(vir) < Ve(w) T (v = vigr) = Mveps — wil?
< IVl (W) Ve — vel| = M|vess — vl |? Cauchy-Schwarz

< Gl = vl = Mvepr — vl .
Summing over all ¢ gives us :

(B) < GPr(v) — ASr(v).

To deal with (C), we exploit Lemma 2.5. Indeed, our choice of steps ensure us that at each step j: & — \ =

;
AG-1DH<AG-1)= ?7]’1_1 .. We have at each time ¢:

14 ™ <G2 N G 1
t(Ves1) — t(ﬂt)f?;%—ﬁgg

 G2(1+log(K))
=T K

Finally:

G*(1 + log(K)
(@) < TT

(1 +log(T))

2
A
The last line holding because K =T

Combining the bounds on (A),(B),(C) concludes the proof.

O
D Proofs of probabilistic results
D.1 The SOCO framework
In what follows, for a certain filtration (¥;)¢>1, we denote by E,_1[.] := E[. | F,_1]. SOCO’s framework has

been introduced in Wintenberger (2021). It focuses on a more general notion of regret presented below.

Definition D.1. For loss function ¢, we denote by (F¢); a filtration s.t. ¢y is Fy-measurable. For some
predictors (fit)i=1..7 € X we define the dynamic averaged regret with regards to (pt)i=1.7 € XT as follows:

T T
D-Av-Regrety := ZEtfl[gt(/jt)] - ZEtfl[gt (11t)]-

t=1

We use SOCO here with the two following assumptions:

(H1) The diameter of X is D < oo so that [lz —y|| < D,z,y € KX, and the functions /; are continuously
differentiable over X a.s. and the gradients are bounded by G < 00 : sup,cq ||Vl (2)|| < G as.t > 1
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(H2) The random loss functions (¢;) are stochastically exp-concave i.e. it exists a > 0 such that, for any
B, p2 € X:

Ei1[le(p2)] < B [e(pn)] + Bi1 [V (n2)" (2 — )] — %Et—l [(Wt(m)T(m - Ml)ﬂ , myeX.

Remark D.2. A A-strongly convex function with its gradients bounded by G in absolute value is a stochas-
tically exp-concave with o = \/G?

Note that Prop 3 of SOCO is valid for dynamic regret:

Lemma D.3 ((Wintenberger 2021, Proposition 3)). For any decision sequence (fiz); € KT, (us) € (XT)2,
under (H1) and (H2), with probability 1 — 6, it holds for any 8 >0 and any T > 1

ZEt 1[0 ()] ZEt 1[€e(pee) <ZV& Mt )

T ) 21 »
EZ::(V@ fit) Mt)) +B og (671)

Q

{(Vﬁt (fu)" (fue — Mt))T

D.2 Proof of Thm. 3.2

Our goal is now to combine this property with our dynamic OGD. To do so, we want to control the quadratic
terms in Lemma D.3. This is the goal of proposition D.4.

Proposition D.4. For any decision sequence (fi):, any sequence (u;)¢ such that for any t; (fig, pe) is Fr_1-
measurable, with probability 1 — 26, it holds for any T > 1

T
G2
ZEt 1[0 (1 Z]Et 1[0 ()] < Z ()" (R — ) + (2(GD)2 + 6/\> log (671)

Proof. We define o = A/G? and Y; = V; ()" (fi — 1) remark that |Y;] < GD a.s, we then exploit a
corollary of a Poissonian inequality stated in (Wintenberger, 2021, Eq. (7)). With probability 1 — ¢ we have:

ZY2<2ZEt 1[Y2] 4+ 2(GD)? log(1/6)

Thus, taking an union bound to make hold this inequality simultaneously with the one of Lemma D.3 and
taking g such that 35 — a = 0 gives us with probability 1 — 24:

T
G2
ZEt 1[0 (4. Z]Et 1[le(pe)] < Z (fut) — ) + (Q(GD)Z + 6)\> log (671)

This concludes the proof. O
We are now able to prove Thm. 3.2:
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Proof of Thm. 3.2.

Proof. We first state that for any (i, ft):

T

ZEt 1 gt ,Ut ZEt 1 Et Mt ZEt 1 Et(ﬂt) _gt(ﬂt)]

IA
Mﬂ:
&

—1 [le(fe) = Ce(puf)] with i = argmin, cqc €(p)
t=1
T T

= ZEt—l [Ce(fue) — Le(ve)] + ZEt—l [Ce(ve) — Le(vesn)]

t=1 t=1

=5 =852

T
+ Z By 1 [l (V1) — Le(py)]

t=1

:=S3

The sum S is controlled by applying proposition D.4. Then the sum 23:1 V(1) T (fis — v¢) is handled by
proposition C.1. We then obtain with our specific choice of steps:

S < gGD\/T + (2(GD)2 + 66;2) log (671) = O(VT).

To control the two last sums, we reuse the arguments provided in Thm. 3.1 to claim that for any ¢ > 0:
() — (i) < Gl — il = My — il ?

and

GD(1 + log(K))

_ * <
Ci(vey1) — G(pg) < K

Then, applying our conditional expectations, recalling that K = [\/T | and summing over ¢ gives us.

T
So <Y Bt [Gllvers = viell = Allvers — vl ]
t=1

S3 < GTD\/T(I +1log(14T)) = O(VT).

To conclude the proof, one remarks that if one defines

T
My =Y iy [Gllvis1 — vl = Mlves — vel*] = (GPr(v) — ASp(v))

t=1

Then:

T
S2 <3 Eroq [Gllveir — vill = Mlvrgr — will’] = Mr + GPr(v) — ASr(v)
t=1
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(M;)¢>0 is a martingale and furthermore for any ¢ > 0, —AD? < G||vg11 — vi]| — M|verr — v]|? < GD.

=Mi—M¢_1
Thus, applying Azuma-Hoeffding’s inequality gives us, with probability 1 — ¢ that My < O(v/T)
So with probability 1 — &, one has Sy < GPr(v) — ASr(v) + O(VT).
Applying an union bound on the bounds of S7,.S; and summing the bound of S7, S5, S3 concludes the proof.

O
D.3 Proof of Thm. 3.4
Proof. We first state that for any (f, pt):
ZEt 1[G (i Z]Et 1[€e ()] ZEt 1 [Ce(fie) = £e(pe))
. t=1
Z L[ () = L)) with gy = argmingcac ()
- T T
Z V(i) = G(vep )]+ B [e(veg) — G()]
t=1 t=1
=51 =52

The sum S is controlled by applying Lemma D.3. We then obtain with Y; = (Vy, fis — v¢11) with probability
1-94:

+ 2 1og(1/5).

Et Y2+ 3

T ﬂ T
SZYt+§Z
t=1 t=1

The first sum is controlled by an intermediary result given in Lemma C.5, the second by Cauchy-Schwarz,
we then have:

ZYt = Z<ﬂt — Vi, 0) +(Ve, 0y — v 41)

T
1
< =Y VATV +

l\D\Q

T
1
Z e =) ViV (e — ) + 5 +GPr()

Recall that, because y = 3 min(g5,a/4), % <2 (£ +GD), one has ZtT:1 V] AV, <2 (2 + GD) dlog(T).
Finally, one has:

T
8 «
< -
; 1 Y, <2 (1 + — 4+ GD) dlog(T 16 tE=1 — ) + GPr(v)

Plus, remarking that:

. 2 . 2
(V) (e — 1)) = (V] (fu — veg1) + V| (Vg1 — Vt)) <2Y2 4+ 2(V] (ves1 — 1))
< 2V + 2G%||vpqr — wa?
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Summing on ¢ and reorganising the previous bounds finally gives:

T
512 GPr(v) +26%00) + TS vz 20 2+ 2 10g(1/6) + O(atog(T))

Finally, because |Y;| < GD a.s, we exploit a corollary of a Poissonian inequality stated in (Wintenberger,
2021, Eq. (7)). With probability 1 — 6 we have:

T T
Y VP <2 B Y] +2(GD) log(1/0) (8)

t=1 t=1

Thus, taking an union bound and § such that 38 — a/2 = 0 gives us with probability 1 — 24:

S; < O(dlog(T)) + GPr(v) + G*Sr(v) + (15 + 107OZ(GD) ) log(1/94)

Finally, to control S, we reuse the arguments provided in Thm. 3.3 to claim that for any ¢ > 0:

G*(1 +log(K))

_ * <
(V1) — b(py) < K

Then, because K = T, applying our conditional expectations and summing over ¢ gives us.

5 < S (1 +108(T)) = O(log(7))

Summing S7 and S5 concludes the proof.

D.4 Proof of Thm. 3.6

Proof. We first state that for any (i, fut):

ZEt 1 ft Z]Et 1 Et /Jt Z]Et 1 Et(ﬂt) —ft(,ut)]

t=1

1[G (fe) — Le(py)] with py = argming, g € (1)

uMﬂ

Z 118 (fe) — Le(vegq) ]+Z]Et 1 [Ce(vern) — e(pg)]

t=1

::Sl 2232

The sum S is controlled by applying Lemma D.3. We then obtain with Y; = (V4, fis — v¢41) with probability
1-6:

a 8w 8
SZK:'FgZY;:Q-F
t=1 t=1

_ 2
. R, [Y2] + 5 log(1/5).
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The first sum is controlled by an intermediary result given in proposition C.6, the second by Cauchy-Schwarz,
we then have:

T T

ZYI-S = Z<ﬂt — Vt,ﬁt> + <vta ﬁt - Vt+1>

t=1 t=1

. *2
<V2D |1+ /Iggg{zt:llthH +GPr(v)

Reorganising the previous bounds finally gives:

T
Sy <GPr(v) + ZYtz + b aEt—ﬂYf] + 2 log(1/6) + O(dlog(T))
t=1

2 B

Finally, because |Y;| < GD a.s, we exploit a corollary of a Poissonian inequality stated in (Wintenberger,
2021, Eq. (7)). With probability 1 — § we have:

D VP <2 B[V +2(GD)? log(1/6) (9)

t=1 t=1

Thus, taking an union bound and 5 such that 38 — a = 0 gives us with probability 1 — 24:

2 2«
< . *2 “~ b 2
S, <V2D 1+ /Ir}g% §t Vel | + GPr(v) + (a + 5 (GD) >log(1/5)

Finally, to control S, we reuse the arguments provided in Thm. 3.3 to claim that for any ¢ > 0:

G2(1 + log(K))

— ) <
Ci(vigr) — b(py) < K

Then, because K = T', applying our conditional expectations and summing over ¢ gives us.

52 < (14 105(T)) = O(log(1)).

Summing S7 and S5 concludes the proof.
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