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Abstract

Model merging seeks to integrate task-specific
expert models into a unified architecture while
preserving multi-task generalization capabilities,
yet parameter interference between constituent
models frequently induces performance degrada-
tion. Although prior work has explored many
merging strategies, resolving interference without
additional data for retraining or test-time com-
putation remains challenging. In this paper, we
theoretically demonstrate that the task vectors of
the linear layer constitute an approximate linear
subspace for its corresponding input. Therefore,
we can minimize interference under the guidance
of task vectors. Based on this insight, we pro-
pose WUDI-Merging (Whoever started the in-
terference shoUld enD It), a simple yet effective
model merging method that eliminates interfer-
ence without any additional data or rescaling co-
efficients. Comprehensive empirical evaluations
across vision and language benchmarks demon-
strate our method’s superiority, achieving state-
of-the-art performance in data-free model merg-
ing scenarios (average 10.9% improvement ver-
sus baseline methods) while even outperforming
mainstream test-time adaptation approaches by
3.3%, and only very few computing resources are
required. The source code and implementation de-
tails are available at https://github.com/
nathanielyvo/WUDI-Merging.
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1. Introduction
With the widespread adoption of the pre-training and fine-
tuning paradigm, a large number of pre-trained and fine-
tuned checkpoints have been released in open-source com-
munities. However, directly applying multiple individual
models for multi-task problems incurs significant storage
costs. While multi-task learning has been employed to ad-
dress this issue, it typically requires costly training and
poses potential privacy risks. Recently, model merging has
emerged as a solution, enabling the integration of multiple
expert models into a single unified multi-task model without
the need for expensive retraining on multi-task datasets.

However, due to interference among the expert models, the
merged model exhibits a performance gap when compared
to its corresponding expert models on specific tasks. Nu-
merous model merging approaches have been proposed to
address this issue. Test-time adaptation model merging
methods, such as AdaMerging (Yang et al., 2024b) and
Surgery (Yang et al., 2024a), leverage unlabeled test data to
resolve interference through reweighting or model editing.
MoE-like (Mixture-of-Experts) model merging methods, ex-
emplified by EMR-Merging (Huang et al., 2024), retain
additional task-specific parameters, such as task-specific
masks, to prevent interference when integrating diverse ex-
pert models into a unified model. While these approaches ef-
fectively mitigate the interference, they require extra storage
or access to test data. Conversely, data-free model merging
methods, like Task Arithmetic (Ilharco et al., 2023), enable
model merging without additional data or storage require-
ments, which is particularly advantageous when data privacy
or availability is a concern. However, due to the absence
of data, current data-free model merging techniques still
exhibit a performance gap compared to the aforementioned
methods and multi-task learning.

In this paper, we revisit the update process of fine-tuning
phase. Consider a linear layer whose parameters are updated
through gradient descent: each neuron’s weight adjustment
derives from the product of the learning rate, the gradient
of its output, and the corresponding input vector. Crucially,
since the learning rate and total optimization steps always
remain constrained during standard fine-tuning procedures,
the corresponding inputs for individual samples remain con-
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Figure 1: The task vector constitude an approximate linear
subspace of its corresponding input.

sistent across successive update iterations. The temporal
consistency indicated that the cumulative update to each
neuron can be approximated as a weighted summation of
fixed input vectors, with coefficients determined by the prod-
uct of learning rates and corresponding gradient magnitudes.
This implies that the task vectors of a linear layer constitute
an approximate linear subspace of the input, allowing us to
implicitly utilize training data information solely through
the task vectors. In this context, the task vectors are com-
puted by calculating the difference between the weights of
the expert models and those of the pre-trained model.

Based on this insight, we propose WUDI-Merging
(Whoever started the interference shoUd enD It), a simple
yet effective data-free model merging method. We evaluate
our method on both vision and natural language processing
tasks, where our method significantly surpasses recent data-
free model merging techniques and outperforms mainstream
test-time adaptation model merging methods. In Summary,
our contributions are summarized as follows:

• Through detailed theoretical analysis, we have demon-
strated that the task vectors within the linear layer ap-
proximately form a linear subspace of the input space.

• We propose WUDI-Merging, a simple yet effective
data-free model merging method that minimizes inter-
ference to the task vector without requiring any addi-
tional data, extra storage, or rescaling coefficients.

• Extensive evaluations have demonstrated that WUDI-
Merging achieves state-of-the-art performance in data-
free model merging, surpassing mainstream test-time
adaptation model merging methods.

2. Related Work
Current research primarily falls into three categories: Data-
free, Test-time adaption, and MoE-like methods.

Data-Free Model Merging: Data-free model merging aims
to combine different expert models without any additional
data for retraining. Wortsman et al. (2022) proposed Simple
Averaging, which constructs the merged model by averaging
the parameters across all models. Matena & Raffel (2022)

introduced Fisher Merging, performing weighted model
merging by utilizing the Fisher information matrix to as-
sess the importance coefficient of expert models. Jin et al.
(2023) addressed model merging by minimizing prediction
differences between the merged model and the expert mod-
els. Recently, Ilharco et al. (2023) demonstrated that we
can effectively edit models by simply applying arithmetic
operations to task vectors. However, the interference among
expert models remains a significant challenge. Yadav et al.
(2023) proposed Ties-Merging to resolve this challenge by
three novel steps. Yu et al. (2024) introduced DARE, which
resolves the merging interference by dropping parameters
and unscaling operations. Wang et al. (2024) introduced
Consensus Merging, which enhanced the overall perfor-
mance of existing model merging methods by removing
the selfish and catastrophic weights. Furthermore, Xiong
et al. (2024); Wei et al. (2025) proposed to align the loss be-
tween the merged model and expert models. Although these
methods alleviate interference between experts to some ex-
tent, a gap still exists between data-free model merging and
test-time adaptation model merging methods.

Test-time adaptation Model Merging: Test-time adapta-
tion model merging leverages a portion of unlabeled test
data to resolve interference among expert models. Yang et al.
(2024b) proposed AdaMerging, which utilized entropy min-
imization on unlabeled test samples as a heuristic objective
function to learn the merging coefficients. In addition, Yang
et al. (2024a) introduced Representation Surgery, which
reduces representation bias by minimizing the distance be-
tween the representations of the merged model and those of
individual models. Despite these methods are promising, a
critical limitation of these methods lies in their reliance on
access to test data, which may not be feasible in practice.

MoE-like Model Merging: MoE-like model merging has
emerged as a promising paradigm for leveraging multiple
specialized models while storing task-specific knowledge in
multi-task learning scenarios. Huang et al. (2024) proposed
EMR-Merging, which elect a unified model and uses task-
specific masks for multi-task learning problems. Lu et al.
(2024) introduced Twin-Merging, incorporating a router to
dynamically merge shared and exclusive knowledge based
on the test inputs. While these methods effectively mitigate
interference issues in model merging, they present certain
practical limitations. The requirement for storing multiple
task-specific components increases memory overhead.

Although test-time adaptation and MoE-like methods have
achieved remarkable results in resolving interference among
expert models, their practical applicability is limited. This
limitation arises from challenges such as data privacy con-
cerns, the need for extra storage, and the lack of parallelism
in unified models. Therefore, in this paper, we primarily
focus on the data-free model merging.
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Figure 2: The input consistency between the pretrained model and the fine-tuned model for ViT-B/32

3. Methodology
3.1. Preliminary of Model Merging

Notation. Formally, let θ denote the parameters of the
pretrained model, and let θi represent the parameters of the
expert model for task i, fine-tuned from θ. Following Task
Arithmetic (Ilharco et al., 2023), we define the task vector
τ i for task i as the difference between the expert model and
the pretrained model:

τ i = θi − θ (1)

We then define the merged task vector as τm, and the final
parameters of the merged model as θm = θ + τm

The impact of the Linear Layer’s Task Vector. As demon-
strated by Jin et al. (2023); Xiong et al. (2024), the task
vector in the linear layer encapsulates most of the capa-
bilities of the expert models. As shown in Figure A.3, an
expert model utilizing only the task vector of the linear layer
achieves performance comparable to that of the full expert
model. Therefore, we primarily focus on the linear layers
of the model.

Interference Vector. Empirical observation (Ilharco et al.,
2023) reveals that task vectors for a certain pretrained model
and task exhibit consistent directional characteristics within
the parameter manifold. This directional consistency sug-
gests that task vectors converge to local optima. Therefore,
for task i, we defined the rest of the weight in τm as inter-
ference vector δi, which is formulated as:

δi = τm − τ i (2)

Interference of the Linear Layer. Let θi,l,θm,l denote the
parameters for the linear layer l of expert model for task i
and merged model, respectively. Similarly, let τ i,l and τm,l

represent the corresponding task vectors associated with θi,l

and θm,l. Additionally, we define corresponding input as
xi,l. Then, we can formally define the interference of the
l-th linear linear for task i as follows (Jin et al., 2023; Fang
et al., 2024; Zeng et al., 2019):

Ji(τm,l) = Exi,l∼p(xi,l)∥θm,lxi,l − θi,lxi,l∥22 (3)

= Exi,l∼p(xi,l)∥τm,lxi,l − τ i,lxi,l∥22 (4)

= Exi,l∼p(xi,l)∥δi,lxi,l∥22 (5)

3.2. Towards Understanding the Task Vector

In practical fine-tuning scenarios, the process typically em-
ploys a small learning rate and is executed over a limited
number of iterations and we assume the model is Lipschitz
continuous (Kim et al., 2021; Latorre et al., 2020; Fazlyab
et al., 2019). Based on these, we propose Lemma 1 to
analyze the consistency of the input for the linear layer l.

Lemma 1 (Input consistency). Let xp
l ,x

q
l denote the input

of the linear layer l after p and q (p > q) iterations during
fine-tuning, respectively. Denote ηi as the learning rate
of iteration i. Assume that the model before layer l is Cl-
Lipschitz continuous, and the gradient of loss is bounded in
ℓ2-norm by Gl, then:

∥xp
l − xq

l ∥2 ≤ ClGl(
∑p

i=q+1 ηi) (6)

The proof is in Appendix A.1.1.
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According to Lemma 1, the input of a individual sample
to linear layer l remain highly consistent across different
iterations when both the learning rate and the number of
iterations are small. We further validate this conclusion
through an experimental study. Specifically, we compute
the input consistency between the pre-trained model and the
fine-tuned model, where the input of the pre-trained model
can be seen as x0

l and the input of the expert model can be
seen as the xT

l .

∆Direction = 1− cos(xexpert,xpretrain) (7)

∆Magnitude =
|∥xexpert∥2 − ∥xpretrain∥2|

∥xpretrain∥2
(8)

Where the xexpert and xpretrain represent the input of the ex-
pert model and the pretrained model, respectively. The result
is shown in Fig. 2. Most layers exhibit high consistency,
with direction changes less than 0.4, indicating that the in-
puts remains highly consistency between the pretrained and
fine-tuned models. With this observation, we reconsider the
update process of the task vector, which can be formulated
as follows:

τ k
l =

∑T
t=1 −ηt · ∂L(θt−1)

∂θt−1
l,k

(9)

=
∑T

t=1 −ηt
∑N

n=1
∂L(θt−1)

∂(θt−1
l,k xt−1

n,l )
· ∂(θt−1

l,k xt−1
n,l )

∂θt−1
l,k

(10)

=
∑T

t=1 −ηt
∑N

n=1
∂L(θt−1)

∂(θt−1
l,k xt−1

n,l )︸ ︷︷ ︸
coefficient

·(xt−1
n,l )

⊤ (11)

where τ k
l denote the task vector of neuron k in linear layer l,

and θt−1
l,k denote the parameters of neuron k in linear layer

l at time t. According to Eq. 11, each neuron in the linear
layer can be interpreted as a weighted sum of the inputs
across different iterations. Given that the inputs remain
highly consistent across iterations, as previously established,
we propose Proposition 1:

Proposition 1 (Approximate Linear Combination). Let τ k
l

denote the task vector of neuron k in linear layer l. Con-
sider N input samples {xn}Nn=1,and let xt

n,l denote the
corresponding input to layer l after t iteration for sample
xn during fine-tuning. Assume the gradient of the loss with
respect to the product τ k

l x
t
n,l is bounded by Γl. Then, the

following inequality holds:∥∥∥τ k
l −

∑N
n=1 β

k
n,l(x

T
n,l)

⊤
∥∥∥
2
≤ Φl · (

∑T
t=1

∑T
i=t ηtηi).

(12)
where Φl = N ·Cl ·Gl ·Γl and βk

n,l =
∑T

t=1 −ηt
∂L(θt)

∂(θt−1
l,k xt

n,l)
.

The proof is in Appendix A.1.2.

Consequently, each neuron in the linear layer can be approx-
imated as a weighted sum of its corresponding inputs. That
is to say, for linear layer l, the task vector τ i,l constitutes

an approximate linear subspace of its associated inputs. By
leveraging this property, we can exploit the training data
information solely through the task vectors.

3.3. Methodology

In this section, we introduce WUDI-Merging (Whoever
started the interference shoUd enD It), a simple yet effective
Data-Free Model Merging method that operates without
the need for any additional data or rescaling coefficients.
Building upon the insights from Section 3.2, we observe that
the task vector constitutes an approximate linear subspace
for its corresponding inputs. This property motivated us to
reconstruct the inputs by the task vectors:

xi,l =
∑K

k=1 α
k
i,l(xi,l)(τ

k
i,l)

⊤ + ε(xi,l), xi,l ∈ Di,l

(13)

Where αk
i,l(xi,l) are the reconstruction coefficients of xi,l,

and ε(xi,l) represents the reconstruction error. Then, we can
reformulate the interference of the linear layer l as follows:

Ji(τm,l) = Exi,l
∥δi,l(

∑K
k=1 α

k
i,l(xi,l)(τ

k
i,l)

⊤

+ ε(xi,l))∥22 (14)

Based on these discussions, we propose Theorem 1:

Theorem 1 (Upper bound of interference). Denote xi,l

as the linear layer l’s input of task i, δi,l and τ i,l as the
linear layer l’s interference vector and task vector of task i,
respectively, then:

Exi,l∼p(xi,l)∥δi,lxi,l∥22 ≤ ω1
i,l ·
∥∥δi,l(τ i,l)

⊤∥∥2
F

+ ω2
i,l · ∥δi,l∥

2
F (15)

Where ω1
i,l and ω2

i,l is the reconstruction constant. The proof
is in Appendix A.1.3.

According to Theorem 1, we can minimize the upper bound
of interference for task i by:

min
δi,l

ω1
i,l ·
∥∥δi,l(τ i,l)

⊤∥∥2
F
+ ω2

i,l · ∥δi,l∥
2
F (16)

⇔ min
δi,l

∥∥δi,l(τ i,l)
⊤∥∥2

F
+

ω2
i,l

ω1
i,l

· ∥δi,l∥2F (17)

However, the reconstruction constant is related to the actual
input, which is inaccessible. As a substitute, we can use
an empirical coefficient ω. Consequently, we consider the
following optimization objective:

min
δi,l

∥∥δi,l(τ i,l)
⊤∥∥2

F
+ ω · ∥δi,l∥2F (18)

Given that task vectors of different scales can tolerate vary-
ing degrees of deviation, we adjust our optimization accord-
ingly. Specifically, we weight the loss of each task based
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on the scale of its task vector. By weighting each loss with
the square of the F-norm, we balance the interference of
different tasks. Therefore, the final objective function can
be formulated as:

min
{δi,l}

∑
i

1
∥τ i,l∥2

F

(
∥∥δi,l(τ i,l)

⊤
∥∥2
F
+ ω · ∥δi,l∥2F )

⇔ min
τm,l

∑
i

1
∥τ i,l∥2

F

(
∥∥(τm,l − τ i,l)(τ i,l)

⊤
∥∥2
F

+ ω · ∥τm,l − τ i,l∥2F ) (19)

Then, we can get the close-form solution for Eq. 19,

τm,l = Matmul(
∑

i
1

∥τ i,l∥2
F

τ i,l(τ
⊤
i,lτ i,l + ωI),

(
∑

i
1

∥τ i,l∥2
F

(τ⊤
i,lτ i,l + ωI))−1) (20)

The detailed derivation is in Appendix A.1.4. However,
selecting a general regularization coefficient ω suitable for
different tasks is challenging. To address this issue, we
propose an alternative approach. Revisiting Eq.18, which
can be seen as a form of ridge regression, and motivated
by prior work (Smith et al., 2021; Wang et al., 2022; Zou
et al., 2021) which have demonstrated that gradient descent
methods such as SGD and Adam induce implicit regulariza-
tion and shown better generalization in such problems, we
propose to solve the problem by using the gradient descent.
Therefore, we can eliminate the regularization term, which
allows us to avoid the need to search for an appropriate co-
efficient. Accordingly, the loss function for gradient descent
is formulated as follows:

Ll =
∑

i
1

∥τ i,l∥2
F

∥∥(τm,l − τ i,l)(τ i,l)
⊤
∥∥2
F

(21)

Since the optimization of each linear layer is independent,
we can sequentially solve the problem layer by layer, thereby
avoiding significant computational overhead. The algorith-
mic flow is detailed in Algorithm 1.

4. Experiment
4.1. Experimental Settings

Datasets. For vision tasks, following (Yang et al., 2024b;
Wang et al., 2024), we investigate multi-task model merging
across eight image classification datasets. For discriminative
language tasks, we employ the GLUE (Wang et al., 2018) to
assess our method. For generative language tasks, follow-
ing Yu et al. (2024), we evaluate our method on instruction-
following, mathematical reasoning and code-generation.

Models. For vision tasks, we employ the ViTs (Dosovit-
skiy et al., 2020) derived from CLIP (Radford et al., 2021),
including ViT-B/32, ViT-B/16 and ViT-L/14. For discrimi-
native language tasks, we employ the RoBERTa-Base (Liu
et al., 2019) and RoBERTa-Large for evaluation. For gener-
ative language tasks, we employ the Llama2 (Touvron et al.,
2023) for evaluation.

Algorithm 1 WUDI-Merging

1: Input: pretrained model parameters θ; task vectors
T = {τ i,l}Pi=1; solution steps N ; learning rate ζ.

2: Output: merged multi-task model parameters θm.
3: ▷ Initialize merged task vector: τ 0

m,l =
∑

i τ i,l.
4: for linear layer l ∈ {1, · · · ,Ψ} do
5: for n ∈ {1, · · · ,N} do
6: ▷ Calculate loss by merged task vector and task

vectors:
7: Ll =

∑
i

1
∥τ i,l∥2

F

∥∥(τm,l − τ i,l)(τ i,l)
⊤
∥∥2
F

8: ▷ Update the merged task vector τn
m,l:

9: τn
m,l = τn−1

m,l − ζ · ∇τn−1
m,l

Ll

(
τn−1
m,l ; T

)
10: end for
11: end for
12: ▷ Assemble the merged task vectors from all linear

layers:
13: τm = {τN

m,l}Ψl=1

14: ▷ Calculate the Merged multi-task model parameters:
15: θm = θ + τm

Baselines: We primarily compared WUDI-Merging with
recent data-free model merging methods, including Weight
Averaging (Wortsman et al., 2022), Fisher Merging (Matena
& Raffel, 2022), RegMean (Jin et al., 2023), Task Arith-
metic (Ilharco et al., 2023), Ties-Merging (Yadav et al.,
2023), Consensus Merging (Wang et al., 2024), and
PCB Merging (Du et al., 2024). Additionally, we com-
pared WUDI-Merging with mainstream test-time adapta-
tion methods, namely Adamerging (Yang et al., 2024b) and
Surgery (Yang et al., 2024a).

Experiment Details. Our method only uses two hyperpa-
rameters. In practice, we used Adam optimizer and set the
learning rate to 1e-5. The number of iterations is set to 300.
Following (Jin et al., 2023; Xiong et al., 2024), we only
applied our method to the linear layer in the model. We
provide more details in A.8

4.2. Main Results

Results of Visual Tasks. The main experimental results
of vision tasks are presented in Tables 1, 2, and 10. These
findings illustrate that a performance gap generally persists
between Test-Time Adaptation (TTA) methods and current
data-free methods. Compared to the aforementioned ap-
proaches, our proposed method notably outperforms all
existing methods without utilizing additional data or re-
quiring extra storage. Specifically, on the ViT-B/32 model,
WUDI-Merging achieves 8.9% performance improvement
over the sota data-free method PCB-Merging and surpasses
the leading TTA method AdaMerging++ by 4.1%. For the
ViT-L/14 model, WUDI-Merging exceeds PCB-Merging by
5.1% and outperforms AdaMerging++ by 1.6%. Notably,
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Table 1: Multi-task performance when merging ViT-B/32 models on 8-task vision benchmark.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc

Non-merging Methods
Pretrained 62.3 59.7 60.7 45.5 31.4 32.6 48.5 43.8 48.0
Individual 79.2 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.8
Traditional MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9

Test-time Adaptation Methods
AdaMerging 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
AdaMerging++ 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1
Representation Surgery 63.8 59.9 83.3 97.9 87.0 87.0 98.6 69.4 80.9

Data-free Methods
Weight Averaging 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 65.8
Fisher Merging 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3
RegMean 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8
Task Arithmetic 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1
Ties-Merging 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2 72.4
Consensus Merging 65.7 63.6 76.5 77.2 81.7 70.3 97.0 57.1 73.6
PCB Merging 66.7 65.5 78.5 79.3 86.4 77.1 98.2 59.1 76.3
WUDI-Merging (Ours) 71.1 71.0 85.7 95.6 94.2 94.7 99.5 69.7 85.2△8.9

Table 2: Multi-task performance when merging ViT-L/14 models on 8-task vision benchmark.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc

Non-merging Methods
Pretrained 66.8 77.7 71.0 59.9 58.4 50.5 76.3 55.3 64.5
Individual 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1 94.2
Traditional MTL 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 93.5

Test-time Adaptation Methods
AdaMerging 79.0 90.3 90.8 96.2 93.4 98.0 99.0 79.9 90.8
AdaMerging++ 79.4 90.3 91.6 97.4 93.4 97.5 99.0 79.2 91.0
Representation Surgery 75.7 84.4 93.1 98.8 91.3 93.4 99.1 76.1 89.0

Date-free Methods
Weight Averaging 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8 79.6
Fisher Merging 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70.0 82.2
RegMean 73.3 81.8 86.1 97.0 88.0 84.2 98.5 60.8 83.7
Task Arithmetic 73.9 82.1 86.6 94.1 87.9 86.7 98.9 65.6 84.5
Ties-Merging 76.5 85.0 89.3 95.7 90.3 83.3 99.0 68.8 86.0
Consensus Merging 75.0 84.3 89.4 95.6 88.3 82.4 98.9 68.0 85.2
PCB Merging 76.8 86.2 89.4 96.5 88.3 91.0 98.6 73.6 87.5
WUDI-Merging (Ours) 81.0 91.0 94.2 99.2 96.3 98.1 99.6 81.2 92.6△5.1

our method lags behind supervised multi-task learning by
only 4.7% and 0.9% on the ViT-B/32 and ViT-L/14 models.
Results of Language Tasks. Table 5 summarizes the results
for discriminative language tasks. In comparison to prior
studies, WUDI-Merging demonstrates substantial perfor-
mance improvements. Specifically, when evaluated against
the advanced data-free approach Ties-Merging, WUDI-
Merging achieved 19.7% improvement on the RoBERTa-
Base model and 16.0% improvement on the RoBERTa-
Large model. These findings strongly indicate the robust
generalization capabilities of WUDI-Merging in language
tasks. Table 3 presents the results for generative language
tasks. We observed 4.3% improvement over Ties-Merging

(with DARE). However, regarding the results for code
tasks, our performance remained at an average level without
achieving a significant advantage. Our analysis suggests
that this may be attributed to substantial conflicts between
the math and code tasks, leading to a considerable decline in
one task’s performance when the other task excelled. This
phenomenon is also reflected in the results from alternative
methods. Nevertheless, our overall average score remains
significantly ahead of the current state-of-the-art.

Results of Merging LoRA Fine-tuned Models. To further
demonstrate the generalizability of our method on LoRA
fine-tuned models, we supplemented the experiments on
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Table 3: Performance of merging decoder-based WizardLM-13B (LM), WizardMath-13B (Math), and llama-2-13b-
codealpaca (Code) on all the datasets, we reported average normalized score.

Method AlpacaEval GSM8K MATH HumanEval MBPP Avg.

FT 100.0 100.0 100.0 100.0 100.0 100.0
Task Arithmetic 102.7 91.0 70.5 50.0 87.7 80.4
TIES-Merging 98.1 97.4 68.1 60.0 89.4 82.6
Task Arithmetic (w/ DARE) 103.1 88.0 72.5 63.3 92.9 84.0
TIES-Merging (w/ DARE) 107.9 90.3 65.6 80.0 92.4 87.2
WUDI-Merging (Ours) 105.5 105.9 103.3 58.3 84.7 91.5△4.3

Table 4: Experimental results of merging Flan-T5-base (LoRA fine-tuned) models on all eight tasks.

Method CoLA MNLI MRPC QNLI QQP RTE SST2 STSB Avg.

Individual 69.1 82.7 85.5 90.9 84.0 84.4 92.9 87.4 84.6
Ties-Merging 68.3 56.3 79.4 89.8 83.7 79.4 91.6 71.2 77.5
AdaMerging++ 69.1 60.3 78.4 90.0 83.6 79.1 91.6 74.1 78.3
WUDI-Merging (Ours) 68.6 79.0 77.7 87.2 83.1 75.8 93.2 85.0 81.2△2.9

Table 5: Multi-task performance when merging RoBERTa
models on 8-task GLUE benchmark. Following Lu et al.
(2024), we reported average normalized score.

Method RoBERTa-Base RoBERTa-Large

Pretrained 41.7 38.2
Individual 100.0 100.0

Weight Averaging 52.6 53.3
Task Arithmetic 67.8 70.9
Ties-Merging 64.7 72.4
Task Arithmetic (w/ DARE) 63.7 70.9
Ties-Merging (w/ DARE) 65.6 72.8
WUDI-Merging (Ours) 85.3△19.7 88.8△16.0

Table 6: Experimental results of merging Qwen-14B (LoRA
fine-tuned) models on all four tasks.

Method MMLU TruthfulQA BBQ CNN Avg.

Individual 68.35 53.34 93.53 19.46 58.67
Task Arithmetic 67.56 52.33 78.38 20.54 54.70
Ties-Merging (w/ DARE) 69.38 52.03 81.06 15.91 54.62
WUDI-Merging (Ours) 69.17 55.71 80.56 17.33 55.69△0.99

Flan-T5-base and Qwen-14. For merging LoRA, We first re-
store LoRA matrix back into the task vector (τ i = BiAi) ,
then apply WUDI-Merging directly to τ i to obtain τm, and
merging it into θ. The experimental results obtained from
merging Flan-T5-base (LoRA fine-tuned) models and Qwen-
14B (LoRA fine-tuned) are shown in the Table 4 and Table 6.
We observed 0.99% improvement over Ties-Merging (with
DARE) in Qwen-14B models, and 2.99% improvement over
AdaMerging++ in Flan-T5 models. Experimental results
indicate that WUDI does not yield as large an improvement
as observed in conventional settings. We hypothesize that

this arises from the random initialization of LoRA, which
causes the task vector to accumulate gradients from nonzero
and thereby introduces a small amount of noise. This noise
degrades the task vector’s ability to reconstruct the corre-
sponding input, leading to the observed performance gap.
Nevertheless, when evaluated under the LoRA-finetuned
model, WUDI still attains SOTA performance.

4.3. Ablation Study

Balanced Weight. In Eq. 19, we introduce a dynamic
weighting mechanism designed to balance the loss contri-
butions across multiple experts. The experimental results
presented in Table 7 demonstrate that the application of bal-
anced weights significantly enhances generalization perfor-
mance. This improvement further suggests that task vectors
with larger magnitudes exhibit greater resilience to higher
levels of interference.

Stabilization Analysis on Solution Steps. As shown in
Fig. 4, we evaluate our method across a range of solution
steps. The experimental results indicate a consistent in-
crease in accuracy across all datasets and models over it-
erations, with convergence typically achieved within 100
to 200 iterations. These results underscore the generaliza-
tion ability of our method and further highlight that only
a limited number of steps are required to reach a solution,
thereby demonstrating the efficiency of our approach.

Stabilization Analysis on Task Numbers. To further in-
vestigate the impact of task number on the performance
of WUDI-Merging, we conducted experiments by varying
the number of tasks. Following the methodology outlined
in (Xiong et al., 2024; Wei et al., 2025), we sampled eight
random subsets from the complete task set and calculated
the average accuracy of the merged model across these sub-
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Figure 3: The interference of Task Arithmetic and WUDI-Merging for different layers.

Table 7: The impact of applying balanced weighting to the
loss function. We report the performance when merging
RoBERTa models on 8-task GLUE benchmark.

Method RoBERTa-Base RoBERTa-Large

Task Arithmetic 67.8 70.9
Ours (w/o Balance) 77.4 82.4
Ours (w/ Balance) 85.3 88.8

sets. As shown in Fig. 4, all methods exhibit a decline in
average accuracy as the number of tasks increases, indi-
cating heightened conflicts and interference among expert
models. Baseline methods such as Task Arithmetic and
Ties-Merging experience more pronounced performance
drops, while WUDI-Merging consistently maintains higher
accuracy as the number of tasks increases. This finding
highlights the exceptional robustness of WUDI-Merging
and its effective mitigation of task interference in multi-task
learning scenarios.

4.4. Further Analysis

Comparison between Adam Optimization and Closed-
Form Solution. While WUDI-Merging requires very few
GPU resources for optimization, we also present a closed-
form solution for scenarios where GPU resources are not
available. Specifically, beginning from Eq. 19, we derive
the closed-form expression outlined in Eq. 20, which we re-
fer to as WUDI-Merging-CFS. Furthermore, we investigate
the influence of the regularization term on the closed-form
solution. As shown in Fig. 5, WUDI-Merging demonstrates
greater stability by utilizing implicit optimization through
the Adam optimizer. In contrast, WUDI-Merging-CFS is
sensitive to the choice of regularization coefficient; more-
over, its overall performance is typically inferior to that
achieved with the Adam optimizer. Therefore, we suggest
that employing gradient descent via Adam optimization is a
more effective strategy for solving Eq. 19. This assertion is
further corroborated by previous studies (Smith et al., 2021;
Wang et al., 2022; Zou et al., 2021).

Analysis on Rescaling Coefficient. In this section, we

(a) (b)
Figure 4: Figure (a) presents the results obtained at different
stages of the solution process; Figure (b) presents the result
of varying the number of tasks.

(a) (b)
Figure 5: Figure (a) displays the results obtained using
the closed-form solution with varying regularization coef-
ficients; Figure (b) shows the results for different merging
coefficients applied during the merging process.

evaluated WUDI-Merging’s performance across a range of
scaling coefficients to analyze the effect of the rescaling
coefficient on WUDI-Merging. The rescaling coefficient is
defined as θm = θ + ϵ · τm.

Where ϵ is the rescaling coefficient. As shown in Fig. 5,
WUDI-Merging achieves optimal performance for the mod-
els ViT-B/32, ViT-B/16, and ViT-L/14 when ϵ is approx-
imately 1. The results suggest that our method did not
necessitate the tuning of the rescaling coefficient. In other
words, WUDI-Merging is rescaling-free.

The Interference of Each Layer. The evaluation of layer-
wise interference is presented in Fig. 3. The results indicate
that interference accumulates progressively as the depth of
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Figure 6: Performance comparison when utilizing a subset of task vectors or random vectors for optimizing the loss function.

Table 8: Computational time and gpu memory requirements.

Model Solving steps Solving Time GPU Memory

ViT-B/32 300 1min54s 3.03GB
ViT-L/14 300 8min23s 4.02GB

Table 9: Comparison of different merging methods in terms
of accuracy, time, and GPU memory usage under the setting
of ViT-B/32.

Method Accuracy Time GPU Memory

Ties Merging 72.4 4s 0GB
Adamerging 81.1 127min 17.1GB
WUDI-Merging-CFS (CPU) 84.4 5s 0GB
WUDI-Merging-CFS (GPU) 84.4 2s 1.8GB
WUDI-Merging 85.2 1min54s 4.0GB

the network increases. Specifically, task arithmetic intro-
duces a relative error of nearly 50% in the final output. In
contrast, our proposed method significantly mitigates this in-
terference compared to task arithmetic and effectively slows
the rate of interference accumulation.

Selection of Linear Subspace. Reconsidering Eq. 13, we
investigate whether the entire task vector linear subspace is
optimal for reconstruction in a data-free scenario. To verify
this point, we employed both random vectors and a subset of
the task vectors to optimize the loss. For the random vectors,
we sample them from a Gaussian distribution where the
mean and standard deviation are computed from the original
task vectors:

τ random
i ∼ N (µi, σ

2
i ) (22)

where µi = mean(τ i), σi = std(τ i). The loss is given by:

Lrandom =
∑ 1

∥τ i∥2F
(τm − τ i)

(
τ random
i

)⊤
(23)

For the subset of task vectors, we sample a random subvector
from the original task vector as follows:

τ sub
i = τ i[rand index, :] (24)

The corresponding loss is computed as:

Lsub =

n∑
i=1

1

∥τ i∥2F
(τm − τ i)

(
τ sub
i

)⊤
(25)

The experimental results are presented in Fig. 6. The find-
ings indicate that the random linear subspace yielded poor
performance. Conversely, we observed that utilizing a more
complete task vector consistently led to improved results.
Notably, when the reconstruction was performed using the
linear subspace formed by the complete task vector, we
achieved the best performance. These results underscore the
necessity of employing the entire task vector for effective
reconstruction.

Computation Resource. To assess the computational ef-
ficiency of our method, we measured the solving time and
GPU memory usage on the ViT-B/32 and ViT-L/14 archi-
tectures. The number of solving steps was fixed at 300, and
the Adam optimizer was employed with the loss optimized
sequentially, layer by layer. As shown in Table 8, executing
our method on the ViT-B/32 architecture requires approx-
imately 2 minutes and 3 GB of GPU memory. Even for
the larger ViT-L/14 architecture model, it only necessitates
about 8 minutes and 4 GB of GPU memory. These results
indicate that our method is highly computationally efficient.

5. Conclusion
In this paper, we demonstrate that the task vectors constitute
an approximate linear subspace of the corresponding input
for the linear layer. Therefore, we can minimize the interfer-
ence among expert models guided by the task vector. Based
on the insight, we propose WUDI-Merging, a simple yet
effective model merging method that resolves interferences
without requiring any additional data or rescaling coeffi-
cients. Extensive empirical evaluations demonstrate the ef-
fectiveness of our method. We believe that this work is one
step toward a simple and general-purpose data-free model
merging technique. Further research may consider a more
detailed way to resolve the conflict based on our method,
which has the potential to reach the performance of multi-
task learning in the data-free model merging paradigm.
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A. appendix
A.1. Proof of theoretical results

A.1.1. PROOF OF LEMMA 1

Lemma (Input consistency). Let xp
l ,x

q
l denote the input of the linear layer l after p and q (p > q) iterations during

fine-tuning, respectively. Denote ηi as the learning rate of iteration i. Assume that the model before layer l is
Cl-Lipschitz continuous, and the gradient of loss is bounded in ℓ2-norm by Gl, then:

∥xp
l − xq

l ∥2 ≤ ClGl(

p∑
i=q+1

ηi) (26)

Proof. Let f∼l(x;θ∼l) denote the mapping from the input x to the input of layer l, parameterized by θ∼l, which includes
all parameters up to but not including layer l. Then,

xt
l = f∼l(x;θ

t
∼l) (27)

The parameters are updated using gradient descent:

θi+1
∼l = θi

∼l − ηi+1∇θi
∼l
L(θi), (28)

where ηi is the learning rate at iteration i, and L(θi
∼l) is the loss function evaluated at θi. From Eq. 28, the cumulative

change in parameters is:

θp
∼l = θ0

∼l −
p∑

i=1

ηi∇θi−1
∼l

L(θi−1), θq
∼l = θ0

∼l −
q∑

i=1

ηi∇θi−1
∼l

L(θi−1) (29)

The difference between xp
l and xp

l can be formulated as:

xp
l − xq

l = f∼l(x;θ
p
∼l)− f∼l(x;θ

q
∼l) (30)

To analyze the magnitude of the change, we consider the ℓ2-norm of the output difference.:

∥xp
l − xq

l ∥2 = ∥f∼l(x;θ
p
∼l)− f∼l(x;θ

q
∼l)∥2 (31)

Assume that the model before layer l is Cl-Lipschitz continuous, and the gradient of loss is bounded in ℓ2-norm by Gl then:

∥xp
l − xq

l ∥2 = ∥f∼l(x;θ
p
∼l)− f∼l(x;θ

q
∼l)∥2 (32)

≤ Cl∥θp
∼l − θq

∼l∥2 (33)

= Cl∥(θ0
∼l −

p∑
i=1

ηi∇θi−1
∼l

L(θi−1))− (θ0
∼l −

q∑
i=1

ηi∇θi−1
∼l

L(θi−1))∥2 (34)

= Cl∥
p∑

i=q+1

ηi∇θi−1
∼l

L(θi−1)∥2 (35)

= Cl
p∑

i=q+1

ηi∥∇θi−1
∼l

L(θi−1)∥2 (36)

≤ ClGl(

p∑
i=q+1

ηi) (37)

where the Eq.33 follows from the Cl-Lipschitz continuity of f∼l, and Eq. 37 uses the assumption that the gradient is bounded
in ℓ2-norm by Gl.

■
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A.1.2. PROOF OF PROPOSITION 1

Proposition (Approximate Linear Combination). Let τ k
l denote the task vector of neuron k in linear layer l.

Consider N input samples {xn}Nn=1,and let xt
n,l denote the corresponding input to layer l after t iteration for

sample xn during fine-tuning. Assume the gradient of the loss with respect to the product θt−1
l,k xt

n,l is bounded by
Γl,k. Then, the following inequality holds:∥∥∥∥∥τ k

l −
N∑

n=1

βk
n,l(x

T
n,l)

⊤

∥∥∥∥∥
2

≤ Φl,k · (
T∑

t=1

T∑
i=t

ηtηi). (38)

where Φl,k = N · Cl · Gl · Γl,k and βk
n,l =

∑T
t=1 −ηt

∂L(θt)

∂(θt−1
l,k xt

n,l)
.

Proof. The task vector is calculated as the accumulation of gradients:

τ k
l =

T∑
t=1

−ηt ·
∂L(θt−1)

∂θt−1
l,k

(39)

=

T∑
t=1

−ηt

N∑
n=1

∂L(θt−1)

∂(θt−1
l,k xt−1

n,l )
·
∂(θt−1

l,k xt−1
n,l )

∂θt−1
l,k

(40)

=

T∑
t=1

−ηt

N∑
n=1

∂L(θt−1)

∂(θt−1
l,k xt−1

n,l )
· (xt−1

n,l )
⊤ (41)

Let γt
n,l,k denote the gradient of the loss with respect to the product θt−1

l,k xt−1
n,l , that is, γt

n,l,k = ∂L(θt−1)

∂(θt−1
l,k xt−1

n,l )
, then:

τ k
l =

T∑
t=1

−ηt

N∑
n=1

γt
n,l,k · (xt−1

n,l )
⊤ (42)

=

T∑
t=1

−ηt

N∑
n=1

γt
n,l,k · ((xt−1

n,l )
⊤ − (xT

n,l)
⊤ + (xT

n,l)
⊤) (43)

Rearranging, we obtain:

τ k
l −

T∑
t=1

−ηt

N∑
n=1

γt
n,l,k · (xT

n,l)
⊤ =

T∑
t=1

−ηt

N∑
n=1

γt
n,l,k · ((xt−1

n,l )
⊤ − (xT

n,l)
⊤) (44)

Taking the ℓ2-norm of both sides, we have:∣∣∣∣∣
∣∣∣∣∣τ k

l −
T∑

t=1

−ηt

N∑
n=1

γt
n,l,k · (xT

n,l)
⊤

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣

T∑
t=1

−ηt

N∑
n=1

γt
n,l,k · ((xt−1

n,l )
⊤ − (xT

n,l)
⊤)

∣∣∣∣∣
∣∣∣∣∣
2

(45)

≤
T∑

t=1

ηt

N∑
n=1

|γt
n,l,k| ·

∣∣∣∣∣∣(xt−1
n,l )

⊤ − (xT
n,l)

⊤
∣∣∣∣∣∣
2

(46)

Assume γt
n,l,k = ∂L,(θt−1)

∂(θt−1
l,k xt−1

n,l )
is bounded by Γl,k, then:

∣∣∣∣∣
∣∣∣∣∣τ k

l −
T∑

t=1

−ηt

N∑
n=1

γt
n,l,k · (xT

n,l)
⊤

∣∣∣∣∣
∣∣∣∣∣
2

≤
T∑

t=1

ηt

N∑
n=1

Γl,k ·
∣∣∣∣∣∣(xt−1

n,l )
⊤ − (xT

n,l)
⊤
∣∣∣∣∣∣
2

(47)
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Applying Lemma.1 to Eq.47, then:∣∣∣∣∣
∣∣∣∣∣τ k

l −
T∑

t=1

−ηt

N∑
n=1

γt
n,l,k · (xT

n,l)
⊤

∣∣∣∣∣
∣∣∣∣∣
2

≤
T∑

t=1

ηt

N∑
n=1

Γl,k · ClGl(

T∑
i=t

ηi) (48)

= N · Γl,k · Cl · Gl ·
T∑

t=1

ηt(

T∑
i=t

ηi) (49)

= N · Γl,k · Cl · Gl · (
T∑

t=1

T∑
i=t

ηtηi) (50)

Denote βk
n,l =

∑T
t=1 −ηtγ

t
n,l,k and Φl,k = N · Cl · Gl · Γl,k, then we can reformulate Eq.50 as follows:∣∣∣∣∣

∣∣∣∣∣τ k
l −

N∑
n=1

βk
n,l(x

T
n,l)

⊤

∣∣∣∣∣
∣∣∣∣∣
2

≤ Φl,k · (
T∑

t=1

T∑
i=t

ηtηi) (51)

■
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A.1.3. PROOF OF THEOREM 1

Theorem (Upper bound of interference). Denote xi,l as the linear layer l’s input of task i, δi,l and τ i,l as the linear
layer l’s interference vector and task vector of task i, respectively, then:

Exi,l∼p(xi,l)∥δi,lxi,l∥22 ≤ ω1
i,l ·
∥∥δi(τ i,l)

⊤∥∥2
F
+ ω2

i,l · ∥δi∥
2
F (52)

Where ω1
i,l and ω2

i,l is the reconstruction constant.

Proof. According to Lemma 2, each neuron of the task vector associated with a linear layer can be interpreted as a weighted
sum of the corresponding input samples. Consequently, the entire task vector forms an approximate linear subspace of the
input space, which motivates us to reconstruct the input using the task vector:

xi,l =

K∑
k=1

αk
i,l(xi,l)(τ

k
i,l)

⊤ + ε(xi,l), xi,l ∈ Di,l (53)

where Di,l is the input domain of layer l for task i, αk
i,l(xi,l) are the reconstruction coefficients of xi,l, (τ k

i,l)
⊤ are k-th

neuron of task vector τ i,l, and ε(xi,l) represents the reconstruction error. The expectation of interference is formulated as
follows:

Exi,l∼p(xi,l)∥δi,lxi,l∥22 =

∫
xi,l∈Di,l

∥δi,lxi,l∥22 · p(xi,l) dxi,l. (54)

Reconstructing xi,l by Eq.53, then:

Exi,l∼p(xi,l)∥δi,lxi,l∥22 =

∫
xi,l∈Di,l

∥∥∥∥∥δi
(

K∑
k=1

αk
i,l(xi,l)(τ

k
i,l)

⊤ + ε(xi,l)

)∥∥∥∥∥
2

2

p(xi,l) dxi,l. (55)

Scaling Eq.55 by the triangle inequality, then:

Exi,l∼p(xi,l)∥δi,lxi,l∥22 =

∫
xi,l∈Di,l

∥∥∥∥∥δi
(

K∑
k=1

αk
i,l(xi,l)(τ

k
i,l)

⊤ + ε(xi,l)

)∥∥∥∥∥
2

2

p(xi,l) dxi,l. (56)

=

∫
xi,l∈Di,l

∥∥∥∥∥
K∑

k=1

αk
i,l(xi,l)δi(τ

k
i,l)

⊤ + δiε(xi,l)

∥∥∥∥∥
2

2

p(xi,l) dxi,l. (57)

=

∫
xi,l∈Di,l

(∥∥∥∥∥
K∑

k=1

αk
i,l(xi,l)δi(τ

k
i,l)

⊤ + δiε(xi,l)

∥∥∥∥∥
2

)2

p(xi,l) dxi,l. (58)

≤
∫
xi,l∈Di,l

(
K∑

k=1

∣∣αk
i,l(xi,l)

∣∣ ∥∥δi(τ k
i,l)

⊤∥∥
2
+ ∥δiε(xi,l)∥2

)2

p(xi,l) dxi,l. (59)

Applying the Cauchy-Schwarz inequality the part in brackets, then we can get:(
K∑

k=1

∣∣αk
i,l(xi,l)

∣∣ ∥∥δi(τ k
i,l)

⊤∥∥
2
+ ∥δiε(xi,l)∥2

)2

(60)

=

(
K∑

k=1

∣∣αk
i,l(xi,l)

∣∣ · ∥∥δi(τ k
i,l)

⊤∥∥
2
+ 1 · ∥δiε(xi,l)∥2

)2

(61)

≤

(
K∑

k=1

∣∣αk
i,l(xi,l)

∣∣2 + 12

)(
K∑

k=1

∥∥δi(τ k
i,l)

⊤∥∥2
2
+ ∥δiε(xi,l)∥22

)
(62)
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Applying Eq.62 to Eq.59, then:

Exi,l∼p(xi,l)∥δi,lxi,l∥22 ≤
∫
xi,l∈Di,l

(
K∑

k=1

∣∣αk
i,l(xi,l)

∣∣ ∥∥δi(τ k
i,l)

⊤∥∥
2
+ ∥δiε(xi,l)∥2

)2

p(xi,l) dxi,l. (63)

≤
∫
xi,l∈Di,l

(
K∑

k=1

∣∣αk
i,l(xi,l)

∣∣2 + 12

)(
K∑

k=1

∥∥δi(τ k
i,l)

⊤∥∥2
2
+ ∥δiε(xi,l)∥22

)
p(xi,l) dxi,l. (64)

≤
∫
xi,l∈Di,l

(
K∑

k=1

∣∣αk
i,l(xi,l)

∣∣2 + 12

)(
K∑

k=1

∥∥δi(τ k
i,l)

⊤∥∥2
2
+ ∥δi∥2F ∥ε(xi,l)∥22

)
p(xi,l) dxi,l.

(65)

Consider that
∑K

k=1

∥∥∥δi(τ k
i,l)

⊤
∥∥∥2
2
=
∥∥δi(τ i,l)

⊤
∥∥2
F

and let αi,l(xi,l) denote
(∑K

k=1

∣∣∣αk
i,l(xi,l)

∣∣∣2 + 12
)

, then we can

reformulated Eq.65 as follows:

Exi,l∼p(xi,l)∥δi,lxi,l∥22 ≤
∫
xi,l∈Di,l

αi,l(xi,l)
(∥∥δi(τ i,l)

⊤∥∥2
F
+ ∥δi∥2F ∥ε(xi,l)∥22

)
p(xi,l) dxi,l (66)

=

(∫
xi,l∈Di,l

αi,l(xi,l)p(xi,l) dxi,l

)∥∥δi(τ i,l)
⊤∥∥2

F
(67)

+

(∫
xi,l∈Di,l

αi,l(xi,l) ∥ε(xi,l)∥22 p(xi,l) dxi,l

)
∥δi∥2F (68)

=
(
Exi,l∼p(xi,l)αi,l(xi,l)

)
·
∥∥δi(τ i,l)

⊤∥∥2
F
+
(
Exi,l∼p(xi,l)αi,l(xi,l) ∥ε(xi,l)∥22

)
· ∥δi∥2F (69)

Considering that when τ i,l and xi,l are fixed, the reconstruction error and reconstruction coefficient are fixed,
therefore Exi,l∼p(xi,l)αi,l(xi,l) and Exi,l∼p(xi,l)αi,l(xi,l) ∥ε(xi,l)∥22 is a constant. Denote Exi,l∼p(xi,l)αi,l(xi,l) and
Exi,l∼p(xi,l)αi,l(xi,l) ∥ε(xi,l)∥22 as ω1

i,l and ω2
i,l respectively. Therefore we can get:

Exi,l∼p(xi,l)∥δi,lxi,l∥22 ≤ ω1
i,l ·
∥∥δi(τ i,l)

⊤∥∥2
F
+ ω2

i,l · ∥δi∥
2
F (70)

■

16



Whoever Started the Interference Should End It: Guiding Data-Free Model Merging via Task Vectors

A.1.4. THE DETAILED DERIVATION FOR THE CLOSE-FORM SOLUTION.

Considering the objective with the regularization term. The objective can be formulated as follows:

min
τm,l

obj =
∑

i
1

∥τ i,l∥2
F

(
∥∥∥(τm,l − τ i,l)τ

⊤
i,l

∥∥∥2
F
+ ω · ∥τm,l − τ i,l∥2F ) (71)

⇔ min
τm,l

∑
i

1
∥τ i,l∥2

F

(
∥∥∥τm,lτ

⊤
i,l − τ i,lτ

⊤
i,l

∥∥∥2
F
+ ω · ∥τm,l − τ i,l∥2F ) (72)

Calculate the gradient of
∥∥∥τm,lτ

⊤
i,l − τ i,lτ

⊤
i,l

∥∥∥2
F

:

∂

∂τm,l

∥∥τm,lτ
⊤
i,l − τ i,lτ

⊤
i,l

∥∥2
F
= 2(τm,lτ

⊤
i,l − τ i,lτ

⊤
i,l)τ i,l (73)

Calculate the gradient of ∥τm,l − τ i,l∥2F

∂

∂τm,l
∥τm,l − τ i,l∥2F = 2(τm,l − τ i,l) (74)

Combine the gradients:

∇τm,l
obj =

∑
i

1

∥τ i,l∥2F

(
2(τm,lτ

⊤
i,l − τ i,lτ

⊤
i,l)τ i,l + 2ω(τm,l − τ i,l)

)
(75)

To find the minimizer τm,l, set ∇τm,l
obj = 0:∑

i

1

∥τ i,l∥2F

(
(τm,lτ

⊤
i,l − τ i,lτ

⊤
i,l)τ i,l + ω(τm,l − τ i,l)

)
= 0 (76)

The equation can be written in the form:
τm,lA = B (77)

where:
A =

∑
i

1

∥τ i,l∥2F

(
τ⊤
i,lτ i,l + ωI

)
(78)

B =
∑
i

1

∥τ i,l∥2F

(
τ i,lτ

⊤
i,lτ i,l + ωτ i,l

)
(79)

Assuming A is invertible, the optimal τm,l is:
τm,l = BA−1 (80)

Substituting back A and B:

τm,l =

(∑
i

1

∥τ i,l∥2F
(τ i,lτ

⊤
i,lτ i,l + ωτ i,l)

)(∑
i

1

∥τ i,l∥2F
(τ⊤

i,lτ i,l + ωI)

)−1

(81)

=

(∑
i

1

∥τ i,l∥2F
(τ i,l(τ

⊤
i,lτ i,l + ωI))

)(∑
i

1

∥τ i,l∥2F
(τ⊤

i,lτ i,l + ωI))

)−1

(82)
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A.2. Towards understanding the conflict in Model Merging

According to 3.2, the conflict among different experts arises from the interaction between the interference vector and the
input. Moreover, this conflict may be exacerbated by the overlap of input domains. This phenomenon is further evidenced by
the results of the vision and language tasks. Specifically, the domain overlap among various visual tasks is limited, whereas
the inputs across different language tasks exhibit a larger overlap. Consequently, the current model-merging approach
allows for a high degree of recovery in vision tasks, while there remains a notable disparity between the performance of the
merged model and that of individual experts in language tasks. To address this limitation, it may be necessary to adopt a
data processing perspective aimed at reducing the overlap of input domains across different language tasks.

A.3. The impact of linear layer

Figure 7: The impact of linear layer

Motivated by (Jin et al., 2023), we only apply our method to the linear layer in the model. To further demonstrate the
effectiveness, we only apply the task vector of the linear layer to the pretrained model. The result is shown in Fig.7. The
result shows that only using the task vector of the linear keeps most of the ability of the model. This means focusing on the
linear layer is the key to the model merging problems.
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A.4. Additional Experiments

In this subsection, we provide the result of ViT-B/16 and the detailed result of discriminative language tasks in the following
table, which further demonstrates the generalization of our method.

Table 10: Multi-task performance when merging ViT-B/16 models on eight tasks.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc

Non-merging Methods
Pretrained 63.8 64.6 65.7 54.5 52.0 43.3 51.7 45.1 55.0
Individual 81.8 86.8 96.9 99.7 97.8 99.1 99.7 82.0 92.9

Test-time Adaption Methods
TW AdaMerging 64.4 64.2 75.4 86.7 86.3 86.7 97.6 46.9 76.0
LW AdaMerging 70.2 80.7 81.6 94.8 91.6 95.8 98.5 66.2 84.9
Representation Surgery 68.3 72.3 88.7 97.7 91.0 89.5 98.9 72.9 84.9

Date-free Methods
Weight Averaging 67.7 70.0 75.3 79.5 74.9 60.1 94.4 43.8 70.7
Fisher Merging 68.5 69.9 75.2 80.4 73.2 61.2 94.5 50.7 71.7
RegMean 69.1 71.6 77.6 88.8 83.7 70.2 96.9 54.6 76.6
Task Arithmetic 61.1 65.9 74.0 76.2 88.0 73.9 98.4 53.0 73.8
Ties-Merging 69.1 72.5 80.5 84.0 85.0 71.5 98.1 54.9 77.0
Consensus Merging 69.8 71.4 80.8 86.5 88.0 71.1 98.4 57.0 77.9
WUDI-Merging (ours) 75.7 82.5 90.7 98.0 95.4 96.6 99.4 74.7 89.1△11.2

Table 11: Multi-task performance when merging RoBERTa models on 8-task GLUE benchmark. We report normalized
score (Lu et al., 2024).

Method CoLA SST-2 MRPC STS-B QQP QNLI MNLI RTE Avg.

Pre-trained 0.0 53.8 85.0 4.0 37.5 53.1 37.1 71.2 41.7
Individual 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Weight Averaging 0.0 59.2 85.8 47.0 45.4 63.9 48.0 71.2 52.6
Task Arithmetic 8.4 88.3 89.6 32.8 82.0 85.4 75.5 80.4 67.8
Ties-Merging 31.8 88.9 86.2 10.9 61.1 85.9 83.0 69.6 64.7
Task Arithmetic (w/ DARE) 0.0 88.1 86.6 30.2 84.3 79.1 64.0 77.2 63.7
Ties-Merging (w/ DARE) 11.8 95.5 85.8 9.4 86.8 88.7 83.1 63.6 65.6
WUDI-Merging (ours) 81.8 98.3 78.7 60.5 92.7 90.5 93.3 86.4 85.3△19.7

Table 12: Multi-task performance when merging RoBERTa-Large models on 8-task GLUE benchmark. We report normalized
score (Lu et al., 2024).

Method CoLA SST-2 MRPC STS-B QQP QNLI MNLI RTE Avg.

Pre-trained 0.0 51.5 40.9 20.9 36.4 56.0 37.6 62.4 38.2
Individual 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Weight Averaging 7.4 55.1 84.2 46.3 56.7 73.8 35.8 66.7 53.3
Task Arithmetic 7.4 86.1 86.8 78.0 90.7 77.0 73.3 67.6 70.9
Ties-Merging 42.7 78.1 85.2 51.7 89.9 81.9 79.7 70.0 72.4
Task Arithmetic (w/ DARE) 4.1 85.2 85.8 71.6 91.3 85.6 75.2 68.1 70.9
Ties-Merging (w/ DARE) 2.9 90.4 86.8 75.4 92.4 86.4 79.0 69.1 72.8
WUDI-Merging (ours) 82.2 98.7 87.3 81.4 94.6 96.6 93.4 77.1 88.8△16.0

19



Whoever Started the Interference Should End It: Guiding Data-Free Model Merging via Task Vectors

A.5. Consistency of the input between pretrained model and fine-tuned model

In this section, we provide the input consistency between the pretrained model and the expert models, as shown in Fig.8 and
Fig.9. It can be seen that the large model shows less consistency, however the change of the direction and magnitude still
very small, where the change of the direction of the most layer is less than 0.4. Consider that he task vector is the weighted
sum of the input from the start to end during fine-tuning, the task vector has better a consistency than the consistency
between the pretrain model and the fine-tuned model.

Figure 8: The input consistency between the pretrained model and the fine-tuned model for ViT-B/16

Figure 9: The input consistency between the pretrained model and the fine-tuned model for ViT-L/14
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A.6. The detailed results of interference in different layers and tasks.

To further demonstrate our method’s capability to eliminate layer-wise interference, we use relative error for evaluation.
Specifically, for a given merged vector τm, the relative error is calculated as follows:

Relative Error =
1

N

N∑
n=1

||f(xn; θ + τm)− f(xn; θ + τ i)||
||f(xn; θ + τ i)||

(83)

Fig. 10, 11, and 12 respectively present the relative errors of different models with varying numbers of layers across different
datasets. Fig. 3 summarizes the average relative errors across these datasets for the models with different layer counts.

Figure 10: The interference for different layers and tasks for ViT-B/32.

Figure 11: The interference for different layers and tasks for ViT-B/16.
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Figure 12: The interference for different layers and tasks for ViT-L/14.

A.7. Performance comparison when using different steps for the solution process.

Fig. 13 presents performance comparison for models of various sizes, including ViT-B/32, ViT-B/16, and ViT-L/14, when
using different steps for the optimization process.

Figure 13: The results obtained at different stages of the solution process.
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A.8. Details of the experiment.

A.8.1. DATASETS

Vision tasks. Following (Ilharco et al., 2023; Yadav et al., 2023; Yang et al., 2024b), we use SUN397 (Cordts et al., 2016),
Cars (Krause et al., 2013), RESISC45 (Cheng et al., 2017), EuroSAT (Helber et al., 2019), SVHN (Netzer et al., 2011),
GTSRB (Stallkamp et al., 2012), MNIST (LeCun et al., 1998), DTD (Cimpoi et al., 2014)
NLP tasks. For discriminative language tasks, we use GLUE benchmark (Wang et al., 2018). For generative language tasks,
we use AlpacaEval (Dubois et al., 2024), GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021).

A.8.2. CALCULATE RESOURCES AND ENVIRONMENT.

All of our experiments were conducted on NVIDIA A100 40GB, Python 3.10, PyTorch 2.4.0, and the CUDA 11.8 toolkit.

A.8.3. HYPERPARAMETERS

There are only two hyperparameters in our method. In practice, we set the learning rate to 1e-5 and the number of iteration
to 300. Following (Jin et al., 2023; Xiong et al., 2024), we only applied our method to the linear layer in the model.
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