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Abstract

We consider robust variants of the standard optimal transport, named robust optimal
transport, where marginal constraints are relaxed via Kullback-Leibler divergence.
We show that Sinkhorn-based algorithms can approximate the optimal cost of
robust optimal transport in Õ(n

2

ε ) time, in which n is the number of supports of
the probability distributions and ε is the desired error. Furthermore, we investigate
a fixed-support robust barycenter problem between m discrete probability distribu-
tions with at most n number of supports and develop an approximating algorithm
based on iterative Bregman projections (IBP). For the specific case m = 2, we
show that this algorithm can approximate the optimal barycenter value in Õ(mn

2

ε )

time, thus being better than the previous complexity Õ(mn
2

ε2 ) of the IBP algorithm
for approximating the Wasserstein barycenter.

1 Introduction

The recent advance in computation with optimal transport (OT) problem [12, 3, 13, 7, 22, 26, 20] has
led to a surge of interest in using that tool in various domains of machine learning and statistics. The
range of its applications is broad, including deep generative models [4, 16, 36], scalable Bayes [33, 34],
mixture and hierarchical models [24], and other applications [32, 29, 10, 17, 37, 35, 8].

The goal of optimal transport is to find a minimal cost of moving masses between (supports of)
probability distributions. It is known that the estimation of transport cost is not robust when there
are outliers. To deal with this issue, [38] proposed a trimmed version of optimal transport. In
particular, they search for truncated probability distributions such that the transport cost between
them is minimized. However, their trimmed optimal transport is non-trivial to compute, which
hinders its usage in practical applications. Another line of works proposed using unbalanced optimal
transport (UOT) to solve the sensitivity of optimal transport to outliers [5, 31]. More specifically,
their idea is to assign as small as possible masses to outliers by relaxing the marginal constraints
of OT through a penalty function such as the Kullback-Leibler (KL) divergence. This direction
of robust optimal transport has been shown to have good performance in generative models and
domain adaptation [5]. Although this approach achieved considerable success, the full picture of its
computational complexity has remained missing.

? Khang Le and Huy Nguyen contributed equally to this work.
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Our Contribution: In the paper, we provide a comprehensive study of the computational complexity
of robust optimal transport and its corresponding barycenter problem when the probability distribu-
tions are discrete and have at most n components. Our contribution is twofold and can be summarized
as follows:

(1) On robust optimal transport, we consider two versions corresponding to two ways of relaxing
marginal constraints in the standard optimal transport problem via the KL divergence. We show
that two scaling algorithms computing these robust formulations have the complexities Õ(n2/ε),
where ε denotes the desired error for the computed cost. These complexities are lower than
the complexity of the Sinkhorn algorithm for solving the optimal transport problem, which
is Õ(n2/ε2) [13], and match the complexity of the Sinkhorn algorithm that solves the UOT
problem [27]. Furthermore, we show how the above complexity can be improved by utilizing the
low-rank approximation method to speed up the matrix-vector computations in the loop similar to
[2], and obtain the improved computing time of Õ(nr2 + nr

ε ), where r is the approximated rank.

(2) On robust barycenter problem, where the goal is to determine a probability measure that
minimizes its robust optimal cost to a given set of m ≥ 2 probability measures, we propose
ROBUSTIBP algorithm for solving the robust barycenter problem, which is inspired by the
iterative Bregman projection (IBP) algorithm for solving the traditional barycenter problem [6].
We show that whenm = 2, the complexity of ROBUSTIBP algorithm is at the order of Õ(mn2/ε),
better than that of the IBP algorithm for solving the traditional barycenter problem [19], which is
Õ(mn2/ε2). To the best of our knowledge, the ROBUSTIBP is also the first practical algorithm
obtaining the near-optimal complexity Õ(mn2/ε) for solving the barycenter problem even under
only the setting m = 2.

Organization: The paper is organized as follows. In Section 2, we provide the background on
the optimal transport problem and some of its variants that have robust effects. In Section 3, we
discuss in-depth the variant where only one marginal constraint is relaxed, study the computational
complexity of a Sinkhorn-based algorithm that solves it, and then briefly introduce the fully-relaxed
formulation. We also establish the complexities of these algorithms after applying Nyström method.
Subsequently, we present our study of the robust barycenter problem in Section 4. In Section 5,
we carry out empirical studies to illustrate the theories before concluding with a few discussions in
Section 6. The proofs of our theoretical results are in the supplementary material.

Notation: We let [n] stand for the set {1, 2, . . . , n} while Rn+ indicates the set of all vectors with non-
negative entries. For a vector x ∈ Rn and p ∈ [1,∞), we denote ‖x‖p as its `p-norm and diag(x) as
the diagonal matrix with x on the diagonal. The natural logarithm of a vector a = (a1, ..., an) ∈ Rn+
is denoted by log a = (log a1, ..., log an), 1n stands for a vector of length n that all of its entries
equal to 1, and ∂xf refers to the partial differentiation of function f with respect to x. For any
given space X ⊂ Rd, we denote by P(X ) the space of all probability measures on X . Given an
integer n > 0 and a real number ε > 0, the notation a = O (b(n, ε)) means that a ≤ C · b(n, ε)
where C is independent of n and ε. Meanwhile, the notation a = Õ(b(n, ε)) indicates the previous
inequality may depend on a logarithmic function of n and ε. For any two probability measures
x = (x1, . . . , xn) and y = (y1, . . . , yn) with the same supports, the generalized Kullback-Leibler
divergence is defined as KL(x‖y) =

∑n
i=1

[
xi log

(
xi

yi

)
− xi + yi

]
. Finally, the entropy of a matrix

X is given by H(X) =
∑n
i,j=1−Xij(logXij − 1).

2 Background on Optimal Transport

In this section, we review optimal transport and its unbalanced formulation, then from that deriving
formulations for robust optimal transport. For any P and Q in P(X ) for a space X , the OT distance
between P and Q takes the following form

OT(P,Q) := min
π∈Π(P,Q)

∫
c(x, y)dπ(x, y), (1)

where Π(P,Q) is the set of joint probability distributions in X × X such that their marginal distribu-
tions are P and Q, and c : X × X → [0,∞) is a cost function.
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Unbalanced Optimal Transport: When P or Q is not a probability distribution, the OT formulation
between P and Q in equation (1) is no longer valid. One solution to this issue is using the unbalanced
optimal transport (UOT) [9], which is given by:

UOT(P,Q) := min
π∈M+(X×X )

∫
c(x, y)dπ(x, y) + τ1KL(π1‖P ) + τ2KL(π2‖Q), (2)

whereM+(X × X ) denotes the set of joint non-negative measures on the space X × X ; π1, π2 are
the marginal distributions of π and respectively correspond to P and Q; τ1, τ2 are regularized positive
parameters. Note that, we can replace the KL divergence in equation (2) by any Csiszár-divergence
[11]. However, we only consider the case of KL divergence in this work.

Robust Optimal Transport: Optimal transport is well-known for not being robust in the present of
outliers. A way to deal with this issue is using the approach of unbalanced optimal transport (UOT),
which has demonstrated favorable practical performance in generative models and domain adaptation
[5]. More specifically, when P and Q are probability distributions in X , the Robust Unconstrained
Optimal Transport (ROT) admits the following form

ROT(P,Q) := inf
P1,Q1∈P(X )

min
π∈Π(P1,Q1)

∫
c(x, y)dπ(x, y) + τ1KL(P1‖P ) + τ2KL(Q1‖Q), (3)

where τ1, τ2 > 0 are some given regularized parameters. The reason to name it robust unconstrained
optimal transport is that instead of looking for an optimal transport plan moving masses from P
to Q, we seek another plan that optimally transports masses between their approximations, which
are probability measures P1 and Q1, under the KL divergence. This formulation is closely related
to the ones studied in [5] and [23]: the former used χ2-divergence for the relaxation and the latter
used total variation distance (note that those three divergences all together belong to the family of
f -divergence).

By relaxing only one marginal constraint regarding (presumably) on P , we have another version of
ROT, named Robust Semi-constrained Optimal Transport (RSOT), which is given by

RSOT(P,Q) := inf
P1∈P(X )

min
π∈Π(P1,Q)

∫
c(x, y)dπ(x, y) + τKL(P1‖P ), (4)

where τ > 0 is a regularized parameter. We could also define RSOT(Q,P ) similarly with a remark
that although RSOT(P,Q) can be different from RSOT(Q,P ), the techniques for obtaining the
computational complexity of both are similar.

UOT vs ROT/RSOT: Though the formulations ROT/RSOT and UOT seem to be similar, they serve
different purposes. The goal of UOT is to deal with unbalanced measures, thus there is no condition
on the “transport plan”. Hence, the meaning of the optimal plan π of UOT problem is dependent
on the interpreter. For example, in applications such as [30], the UOT is used to figure out the
developmental trajectory of cells. Meanwhile, ROT/RSOT aim to seek an accurate transport plan
between two possibly corrupted probability distributions. The toy example in Figure 1 illustrates
this difference. In particular, the marginals of the “transport plan" obtained by the latter (see plots
(b), (d)) are very different from the two original probability measures a,b. On the other hand, the
solution of the former leads to good approximations of a and b (see plots (a), (c)) while removing
some bumps in both tails which are presumably outliers.

3 Discrete Robust Optimal Transport and its Computational Complexity

When P and Q are discrete measures, the KL penalties in equations (3) and (4) suggest that the prob-
ability distributions P1 and Q1 need to share the same set of supports as that of P and Q, respectively.
Therefore, throughout this section, we implicitly require this condition in our formulations of RSOT
and ROT and we denote the masses of P and Q by a and b, respectively.

3.1 Robust Semi-constrained Optimal Transport

Assume that the marginal constraint associating with Q is kept and that of P is relaxed and P1 and P
share the same set of supports, the formulation of RSOT in equation (4) can be rewritten as follows

min
X∈Rn×n

+ ,X>1n=b
frsot(X) := 〈C,X〉+ τKL(X1n||a), (5)
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Figure 1: Comparison on two marginals induced by ROT/RSOT solutions and UOT solutions. Here a,b
are two (possibly corrupted) 1-D Gaussian distributions on which we compute the optimal transport, and
a[problem], b[problem] represent two marginals (with respect to a and b respectively) of the optimal solution for
the corresponding [problem]. In plots (a), (b), we compare ROT and UOT where both a and b contain (10%)
outliers from other Gaussians, while in plots (c), (d) we investigate RSOT and UOT where only a is corrupted.

Algorithm 1: ROBUST-SEMISINKHORN

Input: C,a,b, η, τ, niter
Initialization: u0 = v0 = 0, k = 0
while k < niter do
ak ← B(uk, vk)1n, bk ←

(
B(uk, vk)

)>
1n

if k is even then
uk+1 ← ητ

η+τ

[
uk

η + log(a)− log(ak)
]

vk+1 ← vk

else
uk+1 ← uk

vk+1 ← η
[
vk

η + log(b)− log(bk)
]

end if
k ← k + 1

end while
return B(uk, vk)

where a,b are the masses of P and Q respectively, and C is the cost matrix whose entries are
distances between the supports of these distributions. Solving directly problem (5) by traditional
linear programming solvers can be expensive and not scalable in terms of n. Therefore, we utilize the
entropic regularization approach proposed by [12] to the objective function of RSOT, leading to

min
X∈Rn×n

+ ,X>1n=b
grsot(X) := frsot(X)− ηH(X). (6)

Here, η > 0 is a given regularization parameter, and we refer the problem (6) to as entropic RSOT.
The dual problem of entropic RSOT is

min
u,v∈Rn

hrsot(u, v) := η‖B(u, v)‖1 + τ
〈
e−u/τ ,a

〉
−
〈
v,b

〉
, (7)

where B(u, v) is defined as a matrix of size n × n with entries [B(u, v)]ij := e(ui+vj−Cij)/η.
Since equation (7) is an unconstrained convex optimization problem, we can perform alternating
minimization for u and v by setting ∂h(u, v)/∂u = 0 and ∂h(u, v)/∂v = 0, resulting in closed-form
updates of a Sinkhorn-like procedure (see [12]) in Algorithm 1. This procedure is known to converge
to the optimal solution (u∗, v∗) := arg minhrsot(u, v). As strong duality holds for the convex
optimization problem (6), the optimal transport plan of the entropic RSOT is exactly B(u∗, v∗).

Since no assumptions are made on the cost matrix, except its entries are non-negative, closed-form
solutions of OT and UOT generally do not exist. Therefore, we introduce the definition of an
ε-approximation solution of an optimization problem, which will be used for all the subsequent
complexity analyses.

Definition 1 (ε-approximation). For any ε > 0, a transportation plan X is called an ε-
approximation of the minimizer X̂ of some objective function f if f(X) ≤ f(X̂) + ε.
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Based on this concept, we then state our main theorem on the runtime complexity of Algorithm 1 in
solving the RSOT problem (5).
Theorem 1. For Ursot := max{3 log(n), ε/τ} and η = ε/Ursot, Algorithm 1 returns an ε-
approximation of the optimal solution X̂rsot of the problem (5) in time

O
(
τn2

ε
log(n)

[
log

(
τ‖C‖∞
ε

)
+ log(log(n))

])
.

Proof Sketch. The full proof of Theorem 1 is in Appendix B. Note that, this result is not achieved by
directly applying Theorem 2 in [27] with τ2 →∞ as the nature of the dual function changes in that
limit, invalidating many previous results. Let Xk

rsot be the output of Algorithm 1 at the k-th step while
X̂rsot and X∗rsot denotes the minimizers of equations (5) and (6), respectively. The goal is to find k
that guarantees frsot(X

k
rsot)− frsot(X̂rsot) ≤ ε = ηUrsot. We start by decomposing

frsot(X
k
rsot)︸ ︷︷ ︸

grsot(Xk
rsot)+ηH(Xk

rsot)

− frsot(X̂rsot)︸ ︷︷ ︸
grsot(X̂rsot)+ηH(X̂rsot)

≤
[
grsot(X

k
rsot)− grsot(X

∗
rsot)
]

+ η
[
H(Xk

rsot)−H(X̂rsot)
]
,

and try to bound each term by a linear function of η. Dealing with the entropy term is simple as the η
factor is already presented, and the entropy difference can be bounded by a constant due to the fact
that 1 ≤ H(X) ≤ 2 log(n) + 1 for all X ∈ Rn×n+ , ‖X‖1 = 1. The non-trivial part is bounding the
difference between grsot values, which hinges upon two results. The first one is the value of grsot at
optimality:

grsot(X
∗
rsot) = −η − τ(1− α) + 〈v∗rsot, b

∗
rsot〉. (8)

The second result is the geometric convergence rate of the updates on u and v (Lemma 6 in Ap-
pendix B):

max
{
‖uk+1 − u∗‖∞, ‖vk+1 − v∗‖∞

}
≤ (const)

( τ

τ + η

)k/2
=: ∆k.

The final step is using equation (8) to tailor the grsot difference to be bounded by a linear function of
∆k, which is an exponential function of k, then solving for the minimum k at which this exponential
function is small enough compared to η. The main technical difficulty here is to deal with the unknown
term 〈v∗rsot, b

∗
rsot〉 in equation (8), which causes the deviation from the previous techniques.

Remark 1. The result of Theorem 1 indicates that the complexity of ROBUST-SEMISINKHORN

algorithm for computing RSOT is at the order of Õ(n
2

ε ). This complexity is near-optimal and
faster than the complexity of the standard Sinkhorn algorithm for computing the optimal transport
problem [13, 22], which is at the order of Õ(n

2

ε2 ).

3.2 Robust Unconstrained Optimal Transport

In this section, we briefly present another version of robust optimal transport, abbreviated by ROT,
when two distributions are contaminated. We first show that the approach of using the duality of the
objective function of ROT problem with entropic regularizer does not produce a Sinkhorn algorithm
as in the cases of RSOT and UOT. However, a second thought of the problem finds an interesting link
between the optimal solutions of ROT and UOT, which results in a nice algorithm for the ROT. We
also discuss some technical difficulties when analysing the complexity for the ROT problem. At the
end of this section, we show that the result could be extended to the case of low-rank cost matrix,
which will significantly reduce the computation.

Recall that the masses of P and Q are a and b, respectively, the ROT problem (3) becomes

min
X∈Rn×n

+ ,‖X‖1=1
frot(X) := 〈C,X〉+ τKL(X1n||a) + τKL(X>1n||b). (9)

Here we set τ1 = τ2 = τ for the sake of simplicity, since there are no more technical difficulties to
work with finite τ1 6= τ2. As noted in Section 2, the formulation (9) bears some resemblance to the
unbalanced optimal transport problem studied in [27], except the additional norm condition forcing
X to be a transportation plan (i.e., a joint probability distribution), which shows the different nature
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of two problems. Following the approach of using the Sinkhorn algorithm of UOT, the duality of
formulation (9) has the form

η log ‖B(u, v)‖1 + τ
{
〈eu/τ ,a〉+ 〈ev/τ ,b〉

}
.

By taking derivatives of the above function with respect to u and v and set the derivatives to be zero,
we obtain

B(u, v)1n
‖B(u, v)‖1

= e−u/τ � a,
B(u, v)>1n
‖B(u, v)‖1

= e−v/τ � b,

where � denotes element-wise multiplication. Unfortunately, the above equations do not have closed-
form solutions to produce update as the Sinkhorn algorithms do because of the term ‖B(u, v)‖1 in
the denominator. However, the objective function of UOT is not homogeneous with respect to X ,
but could be written as a linear function of ROT and another function of ‖X‖1 due to some special
properties of the KL divergence. This observation leads to the interesting result summarized in the
below lemma.

Lemma 1 (Connections with UOT). The optimal solution of problem (9), denoted X∗rot, is the
normalized version of X∗uot which is the minimizer of UOT in entropic formulation. More specifically,
we have X∗rot =

X∗uot
‖X∗uot‖1

.

The proof of Lemma 1 is in Appendix D. Based on this result, we can utilize the Sinkhorn algorithm
that solves UOT (see [27]) with a normalizing step at the end to produce a solution for the ROT.
Although the normalizing step is convenient in finding ROT’s solution, it introduces new challenge in
the proof compared to that of UOT since the normalizing constant does not have a lower bound. Even
so, we are still able to obtain an ε-approximation solution for the ROT in Õ(n2/ε) time without any
additional constraints on the setting. For more technical details, please refer to Appendix D.

Further Improving Complexities by Low-Rank Approximation: As a consequence of our com-
plexity analysis, we can show that by using low-rank approximation method studied in [2] to the
kernel matrix K := exp(−C/η), we could further reduce the complexities of both robust semi/un-
constrained optimal transport problem to Õ(nr2 + nr/ε) time, given the same ε-approximation and
the approximated-rank r. This result is essentially different from the complexity studied in [2], where
the ε-approximation is considered regarding the optimal value of the entropic-regularized problem,
not the original one in our analysis. For a more detailed discussion, please refer to Appendix E.

4 The Robust Barycenter Problem

In this section, we consider the problem of computing the barycenter of a set of possibly corrupted
probability measures. The semi-constrained formulation arises as a natural candidate for this goal,
when potential outliers only appear in the given probability measures and the desired barycenter is
the barycenter of the uncontaminated probability measures. In particular, assume that we have m ≥ 2
discrete probability measures P1, . . . , Pm: each has at most n fixed support points and the associated
positive weights are given by ω1, . . . , ωm (

∑m
i=1 ωi = 1). The barycenter problem then aims to

find the probability measure that minimizes
∑m
i=1 ωiRSOT(Pi, P ), which is a linear combination

of RSOT divergence from the barycenter to all given probability measures. We refer it as Robust
Semi-constrained Barycenter Problem (RSBP). In this work, we consider the fixed-support settings
where all the probability measures Pi share the same set of support points. This setting had been
widely used in the previous works to study the computational complexity of Wasserstein barycenter
problem [19, 21]. Let pi be the mass of probability measure Pi for i ∈ [m], the discrete RSBP reads

min
p∈Rn

+,‖p‖1=1

m∑
i=1

ωi

[
min

Xi∈Rn×n
+ ,X>i 1n=p

〈Ci, Xi〉+ τKL(Xi1n‖pi)
]
,

which is equivalent to

min
X∈D1(X)

frsbp(X) :=

m∑
i=1

ωi
[
〈Ci, Xi〉+ τKL(Xi1n‖pi)

]
, (10)
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Algorithm 2: ROBUSTIBP
Input: {Ci}mi=1, {pi}mi=1, τ, η, niter
Initialization: u0

i = v0
i = 0n for i ∈ [m], k = 0

while k < niter do
aki ← B(uki , v

k
i ;Ci)1n; bki ←

(
B(uki , v

k
i ;Ci)

)>
1n ∀i ∈ [m]

if k is even then
uk+1
i ← ητ

η+τ

[uk
i

η + log(pi)− log(aki )
]
∀i ∈ [m]

vk+1
i ← vki ∀i ∈ [m]

else
uk+1
i ← uki ∀i ∈ [m]

vk+1
i ← η

[
vki
η − log(bki )−

∑m
t=1 ωt(

vkt
η − log(bkt ))

]
∀i ∈ [m]

end if
k ← k + 1

end while
Xk
i ← B(uki , v

k
i ;Ci) ∀i ∈ [m]

return (Xk
1 , . . . , X

k
m) for equation (14) or

( Xk
1

‖Xk
1 ‖1

, . . . ,
Xk

m

‖Xk
m‖1

)
for equation (11).

where D1(X) :=
{

(X1, . . . , Xm) : Xi ∈ Rn×n+ and ‖Xi‖1 = 1 ∀i ∈ [m]; X>i 1n = X>i+11n ∀i ∈
[m− 1]

}
. Note that the objective function of RSBP is different from that of Wasserstein barycenter

[19]: here we relax the marginal constraints Xi1n = pi by using the KL divergence to deal with
the contaminated Pi. Finally, the constraints X>i 1n = X>i+11n = p are to guarantee that the
transportation plans Xi have one common marginal which turns out to be a feasible barycenter p.
Similar to RSOT, we consider an entropic-regularized formulation of (10), named entropic RSBP:

min
X∈D1(X)

grsbp(X) :=

m∑
i=1

ωigrsot(Xi; pi, Ci). (11)

Since some functions like grsot(X), depends on some parameters like Ci and pi, we sometimes
abuse the notation by including these parameters next to variables, e.g., grsot(Xi;Ci,pi). A general
approach to deal with (11) is to consider its dual function, which admits the following form:

min
u=(u1,...,um),v=(v1,...,vm)∑m

i=1 ωivi=0

hrsbp(u,v) :=

m∑
i=1

ωi
[
η log ‖B(ui, vi;Ci)‖1 + τ

〈
e−ui/τ ,pi

〉]
. (12)

We could use the alternating minimization method to find the minimizer of (12). In particular, starting
at an initialization u0 and v0, we update them alternatively as follows:

uk+1 = arg min
u

hrsbp(u,vk), vk+1 = arg min
v:

∑m
i=1 ωivi=0

hrsbp(uk+1,v). (13)

In some problems (e.g., RSOT), closed-form updates can be acquired if the system of equations
∂hrsbp(u,vk)/∂u = 0 and ∂hrsbp(uk,v)/∂v = 0 could be solved exactly by some simple formulas.
However, this is not the case with the formulation of hrsbp in equation (12) because the logarithmic
term leads to an intractable system of equations of the partial derivative of hrsbp. Instead, we propose
to solve the optimization problem (11) via another objective function, whose dual form can be solved
effectively by alternating minimization.

4.1 ROBUSTIBP Algorithm

We consider a similar problem to the entropic RSBP in (11), with its feasible set D(X) :=
{(X1, . . . , Xm) : Xi ∈ Rn×n+ ,∀i ∈ [m];X>i 1n = X>i+11n∀i ∈ [m− 1]} which does not have the
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norm constraint. The primal objective function and its dual are as follows:

Primal: min
X∈D(X)

grsbp(X) :=

m∑
i=1

ωigrsot(Xi; pi, Ci), (14)

Dual: min
u,v:

∑m
i=1 ωivi=0

h̄rsbp(u,v) :=

m∑
i=1

ωi
[
η‖B(ui, vi;Ci)‖1 + τ

〈
e−ui/τ ,pi

〉]
. (15)

The dual formulation (15) has a closed form updates for u and v. Based on these, we develop
Algorithm 2, namely ROBUSTIBP, since this procedure resembles the iterative Bregman projections
studied in [6] and [19]. The updates of u and v are known to converge to the optimal solution (u∗,v∗)
of the problem (15), and strong duality suggests that X∗ = (B(u∗i , v

∗
i ;Ci))

m
i=1 is the optimal solution

of the problem (14). Furthermore, there is an intriguing relation between the optimal solution of the
problem (14) to that of the problem (11), presented in the following lemma.
Lemma 2. Let X̄∗ = (X̄∗1 , . . . , X̄

∗
m) and X∗ = (X∗1 , . . . , X

∗
n) be the optimizers of grsbp with the

feasible set D(X) and with the feasible set D1(X), respectively. Then, X∗i =
X̄∗i
‖X̄∗i ‖1

for all i ∈ [m].

The proof of Lemma 2 is in Appendix C. This result indicates that we can approximate the solution
of equation (11) by the solution of equation (14), using the same Algorithm 2 with an additional
normalizing step at the end.

4.2 Complexity Analysis

In this section, we provide the analysis of ROBUSTIBP algorithm for obtaining an ε-approximation
of the robust semi-constrained barycenter problem (11) when m = 2. We also discuss the challenges
of extending the current proof technique to m ≥ 3 at the end of this section. First, we present the
complexity of the ROBUSTIBP algorithm in the following theorem.

Theorem 2. For m = 2 and η = εU−1
rsbp where Ursbp := max{2 + 2 log(n), 2ε, 3ε log(n)/τ}, the

ROBUSTIBP algorithm returns an ε-approximation of the optimal solution (X̂1, . . . , X̂m) of the

RSBP (10) in time O
(τn2

ε
log(n)

[
log
(
τ

m∑
i=1

‖Ci‖∞
)

+ log
( log(n)

ε

)])
.

Remark 2. The complexity Õ(n2/ε) of ROBUSTIBP algorithm is near-optimal and better than that
of IBP algorithm for solving the Wasserstein barycenter problem, which is Õ(n2/ε2) when m = 2 in
[19]. It is also better than the complexity of FASTIBP algorithm in [21], which is Õ(n7/3/ε4/3).
To the best of our knowledge, the ROBUSTIBP is also the first practical algorithm obtaining the
near-optimal complexity Õ(n2/ε) for solving the barycenter problem under the setting m = 2.

The main ingredient in the proof of Theorem 2 is the convergence rate of vectors u and v of the
problem (15), which is captured as follows:

max
{ m∑
i=1

‖∆uk+1
i ‖∞,

m∑
i=1

‖∆vk+1
i ‖∞

}
≤ (constant)

( τ

τ + η

)k/2
, (16)

where ∆uki := uk+1
i − u∗i and ∆vki := vk+1

i − v∗i . The result can be achieved by alternatively
applying two following inequalities.

For the first inequality, with even k, from the update of uk+1 in the Algorithm 2, we obtain
‖∆uk+1

i ‖∞ ≤ τ
τ+η‖∆v

k
i ‖∞.

The second inequality is obtained from the update of vk in Algorithm 2 as follows:
m∑
i=1

‖∆vki ‖∞ ≤
m∑
i=1

((m− 2)ωi + 1)‖∆uk−1
i ‖∞.

Thus, when m = 2, we can achieve inequality (16), though this approach is inapplicable for the case
m > 2. For a formal statement regarding the above convergence rate, please refer to Lemma 12 in
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Figure 2: On the convergence rate of RSBP dual variables when m ∈ {2, 3, 10}. Lines with different colors
present different runs (with the same values of τ = 0.1 and η = 0.01). Other parameters are set as follows:
n = 10, Ci ∼ U [0.01, 1]n×n.

Appendix C. Note that for m ≥ 3, the result of Theorem 2 still holds if uk and vk converge at the
rate of the order ( τ

τ+η )k/2. So next we will take a closer look at this case to see whether the rate
remains geometric.

On m ≥ 3: In Figure 2, we plot the values of two ratios: Ruv :=
∑m

i=1 ‖∆u
k+1
i ‖∞∑m

i=1 ‖∆vki ‖∞
and Ruu :=∑m

i=1 ‖∆u
k+1
i ‖∞∑m

i=1 ‖∆u
k−1
i ‖∞

. When k is even, we have that Ruu ≤ τ
τ+η for all m, while the inequality Ruv ≤

τ
τ+η was only proved for the case m = 2. From this figure, both these bounds are true in all
considered cases. However, while the bound on Ruv (which is theoretically true for all m) is only
tight when m = 2 and seems to be loose in several trials with larger values of m, the bound Ruu
(which is only showed for the case m = 2) appears to be tight in all reported scenarios. Thus, we
conjecture that the geometric convergence rate at equation (16) may still hold for m greater than 2.
We leave the case m ≥ 3 for the future work.

Figure 3: Runtime demonstration for (a) ROBUST-SEMISINKHORN and (b), (c) ROBUST-IBP algorithms. Top
The log value of the number of iterations computed in our theorems (dashed lines with circle marker) and the
true number of iterations at which the algorithms achieve ε-approximations (solid lines with square marker).
Bottom: The ratio between two values of the upper figures. Both the number of iterations (on the left) and ε are
plotted in the log domain, while the ratios (on the right) are computed with the original values.
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5 Experiments

In this section, we provide numerical evidences regarding our presented complexities for ROBUST-
SEMISINKHORN and ROBUST-IBP algorithms. We put additional experiments (including the runtime
comparison of ROT/RSOT on synthetic and real datasets, as well as some applications for the studied
robust formulations) in Appendix F. All the optimal solutions for convex problems in the following
part are computed using the cvxpy library [1]. All the experiments are conducted on a server with 32
GB RAM, 8 cores Intel(R) Core(TM) i7-9700K and 1 GeForce RTX 2080 GPU.

Runtime Demonstration: For each algorithm, we investigate the number of iterations required to
obtain an ε-approximation. We compare the theoretical values in Theorems 1 and 2 with the empirical
values computed by running the corresponding algorithms to obtain the first iterations from where
the algorithm always returns an ε-approximation.

For RSOT, we let n = 100, τ = 1, generate entries of C uniformly from the interval [1, 50] and
draw entries a, b uniformly from [0.1, 1] then normalizing them to form probability vectors. η is set
according to Theorem 1. For each ε varying from 5× 10−2 to 5× 10−5, we calculate the number of
theoretical and empirical iterations described above, as well as their ratio. This experiment is run 10
times and we report their mean and standard deviation values in Figure 3 (a). We also carry out a
similar experiment on MNIST data, which is reported in the Appendix F.

For RSBP, we run the ROBUSTIBP algorithm with the following setup: n = 10; τ = 1; p1, . . . , pm,
[ω1, . . . , ωm] are randomly-initialized probability vectors; {Ci}mi=1 is a set of n× n matrices whose
entries drawn uniformly in [0.01, 0.1]; five chosen values of ε vary from 10−3 to 10−5 (which are
relatively small compared to the optimal cost frsbp(X∗) is about 0.019± 0.001 when m = 2 and is
about 0.021± 0.001 when m = 3); and the corresponding values of η are set according to Theorem
2. The results are shown in Figure 3 (b) and (c). Note that the complexity for the case m ≥ 3 is still
an open problem, and we use the formula in Theorem 2 to compute the (hypothetical) theoretical
number of iterations in that case.

In all three experiments, it is noticeable that the ratios between theoretical and empirical values
decrease as ε→ 0, indicating the our complexity bounds get tighter.

6 Conclusion

In the paper, we study the complexity of Sinkhorn-based algorithms for approximately solving robust
versions of optimal transport between two discrete probability measures with at most n components,
and show that they return ε-approximated solutions in Õ(n2/ε) time. Low-rank approximation
technique is also analysed to further reduce the dependency of these complexities on n, resulting
in Õ(nr2 + nr/ε) complexities. Finally, we investigate a robust barycenter problem between
m probability measures and develop the IBP-based algorithm for solving it. When m = 2, the
complexity of the ROBUSTIBP algorithm is proved to be at the order of Õ(mn2/ε), while in the
case m ≥ 3 we believe that a novel proof technique needs to be developed to establish the geometric
convergence of the updates from the algorithm. We leave this direction for the future work.
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