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ABSTRACT

Representations learned by deep neural networks are the foundation that enables
their tremendous success and consequently a lot of work has been invested into
understanding their properties. Most of this work, however, focuses on the re-
lationships between representations and features in the input without explicitly
characterizing their nature, i.e. whether they are invariances or equivariances.
In this work, we concretely define and disentangle these relationships and show
with carefully controlled experiments that, in fact, invariance is of central impor-
tance in achieving high generalization on downstream tasks, often more so than
equivariance. To this end, we investigate the properties and performance of image
classification models on synthetic datasets that we introduce and which allow us
to precisely control factors of variation in the models’ training and test data. With
this method we explore a) the role of invariance in enabling high performance
when transferring to target tasks and b) the factors that influence which invari-
ances a model learns. We highlight the importance of representational invariance
by showing that the representations learned by classification models transfer well
to new classes but perform poorly when the required invariances change, and that
learning the wrong invariances can be harmful. Additionally, we find that the
invariances learned by models are primarily determined by the relationship of fea-
tures in the training data with the training objective and that there are inductive
biases that make certain invariances more difficult to learn than others.

1 INTRODUCTION

Deep Learning has achieved remarkable success, in large part due to the ability of deep neural
networks to learn representations of inputs that enable high downstream performance. As a result, a
large amount of work has been invested into studying the properties of representations (Bengio et al.,
2013; Engstrom et al., 2019; Hermann & Lampinen, 2020). The majority of these efforts investigate
the relationship between features of inputs and the representations learned by models (Kim et al.,
2018; Zeiler & Fergus, 2013; Lundberg & Lee, 2017).

The two most interesting types of feature-representation relationships are invariances and equivari-
ances. Intuitively, an invariance in a model’s representations means that for certain changes to its
inputs, its representations remain constant. An equivariance on the other hand is a consistent change
in the representations in response to changes in the input. In this work, we are primarily interested in
a) the effects that invariance has on the transfer performance of representations, b) how invariance is
related to equivariance and c) the factors that influence which invariances a model’s representations
develop.

A number of prior works have investigated the role of representational invariance in domains such
as robustness, generalization and transfer-learning (Azulay & Weiss, 2018; Zhou et al., 2022) and
self-supervised learning (SSL). Some of this work, however, is merely interested in invariance as a
means to a specific end, for instance the robustness literature is concerned with invariance in order
to safeguard model performance against adversarial perturbations (Szegedy et al., 2013; Papernot
et al., 2016) or natural image corruptions (Geirhos et al., 2018; Hendrycks & Dietterich, 2019; Taori
et al., 2020), and SSL methods train models to be invariant to certain data transformations in order
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to obtain pseudo labels (Doersch et al., 2015; Zhang et al., 2016) or to introduce contrast between
similar and dissimilar inputs (Chen et al., 2020; Grill et al., 2020; Kim et al., 2020).

The field of generalization studies invariance in representations more generally, however, compre-
hensively and precisely understanding invariance is hard, especially when using real-world data.
To understand invariance at a fine-grained level, it is necessary to know the different ways in which
inputs to a model differ, in order to determine how those differences relate to changes in its represen-
tations. This, however, is not possible with commonly used real-world datasets such as CIFAR-10
(Krizhevsky et al., 2009), ImageNet (Russakovsky et al., 2015) or VTAB (Zhai et al., 2020), since
the only information present in addition to the raw inputs are class labels which only allow for very
coarse difference and similarity judgements.

Therefore, to study invariance carefully, we introduce a synthetic dataset, Transforms-2D, that al-
lows us to precisely control the differences and similarities between inputs in a models training and
test sets. Using this dataset, we explore the importance of invariance in achieving high downstream
performance, as well as the factors that influence representation learning. Concretely, we make the
following contributions:

• We evaluate how learning of certain invariances aids transfer to downstream tasks by intro-
ducing a synthetic dataset called Transforms-2D, which allows us to carefully control the
differences and similarities in the inputs to models. By using this dataset, we are able to
train models to exhibit specific invariances and equivariances in their representations and
to evaluate the link between the invariance and performance of representations.

• We investigate the connection of invariance to downstream performance and find that it is
more important than equivariance, by showing that models trained with the same transfor-
mations but different features as a target task perform better than models trained with the
same features but different transformations. We further find that invariance to a surplus
of required transformations is not a problem but that undesirable invariances can severely
undermine downstream performance.

• We investigate the factors that play a role in determining which invariances a model learns
and show that the relevance and availability of of features plays a crucial role, that there is
a high degree of invariance transfer between classes and that there are inductive biases that
make acquiring certain invariances easier than others.

2 SETTING AND METHODOLOGY

We begin by introducing terminology for the setting that underpins our investigation.

2.1 TERMINOLOGY

Notation. We operate in the standard supervised learning setting and denote by D = {(xi, yi)
N
i=1} a

dataset consisting of N examples x ∈ X = Rd and associated labels y ∈ Y = {1, . . . ,K}. The task
is to find a function g : X 7→ Y such that g minimizes the empirical risk on D. We find such a g by
minimizing the categorical cross-entropy loss over its predictions. For our purpose it is convenient
to write g as g = gcls(grep(.)) where grep : X 7→ Z maps inputs x to representations z ∈ Z = Rl

and gcls : Z 7→ Y maps representations to predictions ŷ. In the following, we will refer to grep
simply as g if the meaning is clear from the context.

Features and transformations. The term feature is commonly used in the Machine Learning lit-
erature to refer to properties of model inputs (Bengio et al., 2013). In the strictest sense, these
properties are the numerical values of the dimensions of datapoints x. Here, we use a slightly wider
interpretation of the term and also refer to semantic properties such as the presence or position of an
object as features. Note that we use the term feature here to refer to properties of model inputs x,
not of its representations z.

In addition to features, we are interested in transformations t : X 7→ X that change the values
of one or more features of inputs x. Additionally, we also need to be able to refer to changes in
the representation space. Therefore, we define an effect u : Z 7→ Z as a transformation acting on
representations z.
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Invariance and equivariance. In this work, we are primarily concerned with the relationships
between transformations t acting on inputs x and their corresponding effects u on representations z.
In particular, we want to know whether these relationships constitute invariances or equivariances.
We say that the representations of model g are invariant to transformation t if g(t(x)) = g(x)∀x ∈
X . Further, we say that the representations of model g are equivariant to transformation t if for
some non-constant effect u, g(t(x)) = u(g(x))∀x ∈ X . In the remainder of the paper we will use
these definitions to investigate the importance, sources and effects of in- and equivariance.

2.2 CONTROLLING DATA TRANSFORMATIONS VIA SYNTHETIC DATA

To properly study invariance, it is important to know which transformations are present in a dataset
and how specific datapoints are transformed, relative to others. For instance, to determine whether
the representations of a model are invariant to a particular transformation, it is necessary to probe it
with inputs that only differ by this transformation. This is very difficult to achieve with commonly
used real-world datasets since there are many different transformations by which different samples
differ, such as changes in object position, pose, size, texture, illumination, etc. about which no
information is known.

Move

Rotation

Color Jitter

Figure 1: [Transforms-2D examples.] The
synthetic dataset images with controlled
transformations used to train and evaluate
the invariances and equivariances of repre-
sentations.

Therefore, in order to properly study invariance and
equivariance in representations, we introduce a synthetic
dataset that allows us to precisely control the features
present in the inputs as well as the transformations act-
ing on them. We call our dataset the Transforms-2D
dataset. Samples are constructed by pasting transformed
versions of images of foreground objects (with alpha-
mask) onto randomly chosen background images, such
that each class consists of exactly one foreground image
(its prototype) and class samples are obtained by apply-
ing transformations from 8 different categories to the pro-
totypes (translation/movement, rotation, scale, horizontal
and vertical flips, blurring, sharpening and color jitter) as
well as sampling random backgrounds. Note that for each
category there are many different transformations, for ex-
ample there are many different ways in which an object
can be moved. The foreground and background images
are based on the SI-score dataset (Djolonga et al., 2021).
We use all the background images from this dataset but
only keep one image per foreground category. Additional
information on how the dataset is constructed as well as
additional examples can be found in Appendix A.

Examples images drawn from the dataset are shown in
Figure 1. All images have a size of 32 x 32 pixels and if
not stated differently, we use 50,000 train, 10,000 valida-
tion and 10,000 test samples to train models, mimicking the size of the CIFAR-10 dataset.

3 HOW IMPORTANT IS INVARIANCE IN REPRESENTATIONS?

With our synthetic dataset at hand, we now turn to investigating the importance of invariance in
the representations of DNNs. We are interested in understanding how important invariances are for
downstream applications, i.e. when transferring representations with certain invariances to different
tasks, and what their relative importance is compared to equivariance.

3.1 INVARIANCE IS MORE IMPORTANT FOR TRANSFER PERFORMANCE THAN EQUIVARIANCE

We want to understand, whether it is more important that a model’s representations change based
on features that should separate classes in a classification task (equivariance) or whether it is more
important that they do not change based on changes to features that should not separate them (in-
variance).
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To answer this question, we train a model g on a datasets Dtrain based on the Transforms-2D dataset
that contains foreground objects o ∈ O1 which are transformed by a set of transformations t ∈ T1.
Additionally, we create evaluation datasets that differ in the properties that they share with Dtrain:
Dall = Dtrain uses the same set of object O1 and transformations T1 as Dtrain, Dtransforms

uses the same T1 but a different set of objects O2, O1 ∩ O2 = ∅, Dobjects uses the same set of
objects O1 but a different set of transformations T2, T1 ∩ T2 = ∅ and Dnone uses both different
objects O2 and different transformations T2. For example, O1 might consist of prototype images of
dogs, ships and barbells whereas O2 might consist of cars, pizzas and bananas. T1 might contain
translations and blurring transformations whereas T1 might consist of rotations and color changes.
In our experiments we choose |O1| = |O2| = 30 and |T1| = |T2| = 3 (i.e. there are 3 different types
of concatenated transformations in T1 and T2, not 3 total transformations) and sample prototype
objects and transformations randomly.

To perform well at classification on Dtrain, g’s representations must become equivariant to the ob-
jects in O1 and invariant to the transformations in T1, i.e. training g on Dtrain allows us to control
which invariances and equivariances its representations exhibit. To understand the relative impor-
tance of invariance compared to equivariance, we evaluate how well g transfers to Dtransforms and
Dobjects, with which it shares either the transformations or the objects in its training dataset, respec-
tively, and which therefore either require the same invariances but different equivariances or the same
equivariances but different invariances. Dall and Dnone serve as reference. We evaluate g’s trans-
fer performance by freezing its weights up to the penultimate layer, keeping its representations the
same, fine-tune the last linear layer on the target dataset and then compute its accuracy. Additional
details on the training and evaluation setup can be found in Appendix B. Depending on whether g
performs better on Dtransforms or on Dobjects after fine-tuning, invariance or equivariance is the
more important property in determining transfer performance.
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Figure 2: [Invariance is more important for transfer
than equivariance] Transfer performance of different
architectures trained on the Transforms-2D dataset on
tasks with which their pre-training dataset shares both
transformations and objects, only transformations, only
objects or none of these properties. Models trained to
be invariant to the same transformations as the target
task perform better than models trained to recognize
the same objects, but with different transformations, in-
dicating that invariance to the right transformations is a
more important property for representations than equiv-
ariance to the right features. All numbers reportedt in
the paper are aggregated over 10 runs.

In Figure 2 we show the transfer performance
of models on the different evaluation datasets.
The results show that models trained on data
with the same transformations as the target
task perform better on it, compared to models
trained with the same objects but with differ-
ent transformations. In fact, the performance
when transferring to datasets with the same
transformations is close to that on the training
dataset, whereas when the target dataset dif-
fers from the training dataset in its transfor-
mations and therefore its required invariances,
transfer performance is similarly low both with
and without training objects. This relation-
ship clearly indicates that the absence or pres-
ence of shared transformations with the train-
ing data is the determining factor for transfer
performance, whereas the degree of shared ob-
jects has little impact. This means that, indeed,
learning the right invariances is more important
for downstream performance than learning the
right equivariances.

These results have interesting implications in
the context of generalization and robustness to
distribution shift (Koh et al., 2021; Taori et al.,
2020). They show that models can generalize
and adapt well as long as the set of transformations that they need to be invariant to remains the
same, but they will perform poorly if different invariances are required.

In Appendix C.1 we show that learning more than the necessary invariances (as long as they should
not be equivariances) is not a problem for transfer performance. Models trained on a superset of
transformations of the target task perform well on it, whereas the performance of models that only
saw a subset of the target transformations deteriorates significantly. We also find that the order in
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which transformations are applied has only a small effect on model performance, which is unsur-
prising as most (but not all) transformations used in the Transforms-2D dataset commute.

3.2 THERE IS SUCH A THING AS TOO MUCH INVARIANCE
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Figure 3: [The impact of irrelevant fea-
tures on downstream performance.] Mod-
els trained with access to features that are
irrelevant for their target task (objects for
X = C + O, Y = C and CIFAR back-
grounds for X = C + O, Y = O) gener-
alize worse to tasks where those features are
important than their counterparts that did not
have access to those features.

The previous results highlight the importance of represen-
tations having the right invariances. However, this impor-
tance cuts both ways. While section 3.1 shows that a lack
of desired invariance in representations can be harmful
for downstream performance, we now show that a surplus
of undesirable invariance can be just as bad.

To understand the effect of undesirable invariance, we
augment the training set of a classification task by adding
information to the inputs that is irrelevant for classify-
ing them correctly. Then, we evaluate how well a model
trained on this augmented dataset can predict the irrele-
vant information by fine-tuning its last layer to predict it.
We compare its performance to another model that has
been trained on the unmodified dataset.

Concretely, we augment the CIFAR-10 dataset
(Krizhevsky et al., 2009) by pasting small versions
of the foreground objects from the Transforms-2D
dataset described in section 2.2 onto the images in a
completely random manner, i.e. uncorrelated with the
CIFAR-10 labels. In total, we use four datasets which
differ in their combinations of features X and labels Y :
the standard CIFAR-10 dataset (X = C, Y = C) the
CIFAR-10 dataset with random objects pasted on it with

the task of predicting CIFAR-10 classes (X = C + O, Y = C), the same augmented CIFAR-10
dataset with the task of predicting the category of the pasted objects (X = C + O, Y = O) and
a dataset with only objects pasted on a black background, with the task of predicting the object
category (X = O, Y = O). We use 10 object prototypes that are scaled down and pasted in the
upper right corner. Examples of images and additional information about the dataset can be found
in Appendix A.1. We train models on each of the datasets and then fine-tune and evaluate each
model’s last layer on each of the other datasets.

Figure 3 shows the results of this process. Interestingly, both models trained on the augmented CI-
FAR images (X = C+O) perform quite poorly on the same augmented dataset when the prediction
task Y changes, in fact considerably worse than their counterparts that were trained to predict the
same Y , but not on the augmented CIFAR images. In other words, seeing a certain feature (pasted
objects or CIFAR backgrounds) during the training while not being relevant makes a model perform
worse at predicting it than another model trained for the same task but without access to the feature.

The takeaway from these results is that invariances are a very important property of representa-
tions, to the extend that when representations exhibit an invariance to a feature that is needed in a
downstream task, it severely hampers their utility for that task. Therefore, care must be taken when
training models, particularly when the goal is to use them as feature extractors for downstream tasks,
to ensure they do not pick up undesirable invariances.

4 HOW DO MODELS LEARN INVARIANCES?

So far, we have shown that invariances are important properties of representations. In this section,
we study the process by which models acquire invariances, which factors control what invariances
are learned and whether models have inductive biases towards acquiring certain types of invariances.
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Figure 4: [The effect of feature relevance on learned invariances] Transfer accuracy on the X = C + O
dataset for models trained with different correlation strengths of pasted object categories with CIFAR labels. As
the correlation resp. relevance of the pasted objects for the target task increases, models become increasingly
better at predicting them and their representations become more sensitive to their presence.

4.1 WHICH FEATURES DO MODELS BECOME EQUI- AND INVARIANT TO?

To understand which factors determine invariances in representations, we revisit the observations
made in Section 3.2. There are two crucial takeaways from the experiment there. First, the two
models trained on CIFAR-10 images with objects pasted on them (X = C + O) perform very
differently after fine-tuning at predicting CIFAR-10 classes (Y = C) and object categories (Y = O)
respectively, depending on whether they were pre-trained to predict the CIFAR-10 classes or object
categories, even though they saw exactly the same input data. This result shows that the relevance
of a feature for a target task is a key driver in determining which input features a model becomes
equi- and invariant to.

Second, the models trained on only CIFAR-10 images to predict CIFAR-10 classes (X = C, Y = C)
and on only object images to predict object categories (X = O, Y = O) show better transfer
performance on the respective other task than their counterparts that were trained on CIFAR-10
images with pasted objects. These two models did not have access to the object- and CIFAR-features
respectively and could therefore not develop invariances towards them, as did the models that saw
them during training. This means that another important property in determining the invariances
learned by a model is the availability of features during training. Next, we investigate the effects of
relevance and availability more carefully.

Relevance. To understand how the invariance to features changes with their relevance for the target
task, we train models on the dataset described in Section 3.2. However, we now introduce correlation
of different strengths between the objects and the CIFAR labels. In particular, we train models gα on
datasets Dα, where α ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.85, 0.9, 0.95, 1.0} is the correlation strength between
CIFAR labels and object categories. Input images in Dα are constructed by pasting one specific
object per CIFAR-10 class (out of a set of 10 total objects) on the CIFAR-10 training images α-
fraction of the time and pasting a random object otherwise. Then, we fine-tune the gαs’ last layer
and evaluate them on the augmented CIFAR-10 images, both for predicting the CIFAR-10 class
(X = C +O, Y = C) as well as the object category (X = C +O, Y = O).

Availability. To investigate the effect of availability, we train models on datasets Dβ , β ∈
{0, 0.2, 0.4, 0.6, 0.8, 1.0} that are equivalent to the X = C + O, Y = C dataset, i.e. objects
are pasted randomly onto CIFAR backgrounds, but with the difference that objects are only pasted
β-fraction of the time for dataset Dβ . We again fine-tune and evaluate the last layer of the models
trained on the Dβs on the same datasets as for the relevance analysis.

Figure 4a and Figure 4b show the transfer accuracies of models trained to predict CIFAR-10
classes and object categories, respectively. The blue curve correspond to the models pretrained
on X = C + O datasets where the objects were pasted with different correlations with the CIFAR
labels. Dashed lines show the performance of reference models. As the correlation of the pasted
object categories with the CIFAR-10 classes increases, CIFAR-10 transfer accuracy mostly remains
constant, whereas object category accuracy increases steadily. Only when pasted objects and CIFAR
labels become perfectly correlated, CIFAR-10 accuracy drops and object detection accuracy reaches

6



Under review as a conference paper at ICLR 2023

100%. This trend shows that as the pasted objects become more relevant for the target task, the
models’ representations gradually become less invariant to them and allow for increasingly better
prediction of the object category. CIFAR-10 accuracy on the other hand remains constant, up to the
point where the pasted object can reliably replace the CIFAR background.

The CIFAR performance does not depend on the availability of the pasted objects, i.e. whether or
not an irrelevant object is present in the training data has no impact on it. Object category prediction
performance on the other hand quickly drops as soon as the model has access to the irrelevant object
features, showing that it immediately develops an invariance towards the objects. In summary,
relevance and availability both play a role in determining which invariances a model learns, but
relevance seems to be the more important property.

4.2 DOES INVARIANCE TRANSFER BETWEEN CLASSES?
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Figure 5: [Invariance transfer performance] Models
are trained on datasets with only some of the transfor-
mations, different transformations for different classes
and a concatenation of all transformations and they can
generalize invariance from one set of classes to another.

Another question concerning the mechanisms
by which models learn invariances is whether
invariances learned for a set of classes or ob-
jects transfer to other classes. For instance if a
model is trained on a dataset with two classes,
each consisting of one object prototype that is
transformed by a different set of transforma-
tions from the other class, will the model trans-
fer the invariances corresponding to each class
to the other one? For example, if one class
consists of a car prototype that is rotated and
the other class consists of a bird whose color
is changed, will the model be rotation-invariant
on the bird class and color change-invariant on
the car class as well?

To test whether this is the case, we sample sets
of objects O1, O2, O1 ∩ O2 = ∅ and transfor-

mations T1, T2, T1 ∩T2 = ∅ and use them to construct three datasets DT1 with objects O1 ∪O2 that
are all transformed by transformations from T1, DT2 with objects O1 ∪ O2 that are all transformed
by transformations from T2, DT1⊕T2

consisting of objects from O1 transformed by transformations
from T1 and objects from O2 transformed by transformations from T2. For reference, we also in-
clude a dataset DT1◦T2

where both sets of objects O1 ∪ O2 are transformed by the concatenations
of transformations from T1 and T2. On each of the datasets we train a model and then fine-tune
and evaluate its last linear layer on each of the other datasets. We choose |O1| = |O2| = 15 and
|T1| = |T2| = 3.

Figure 5 shows how models transfer to the different datasets. Both models trained on DT1
and DT2

perform well on their respective datasets, but perform poorly on all other datasets. This is to be
expected from the results in Section 3.1. The model trained on DT1⊕T2

, however, performs well on
both DT1

and DT2
, which shows that it is able to generalize its learned invariances from each set

of objects O1 and O2 to the other. Generalization is not perfect, however, and the model achieves
slightly lower accuracy than the “native” models on DT1

and DT2
. On the other hand, all models

other than the one trained on DT1◦T2
achieve poor accuracy on that dataset, especially also the one

trained on DT1⊕T2 , which shows that while it can generalize invariance to either transformations
from T1 or from T2 this does not lead to invariance to the concatenations of transformations from
both of these sets.

4.3 WHAT IS THE RELATIONSHIP BETWEEN DIFFERENT INVARIANCES?

Finally, we are also interested in understanding whether models have inductive biases towards ac-
quiring invariances to certain transformations and what the relationship between invariances are, i.e.
whether learning an invariance to one type of transformation automatically leads to invariance for
another one.
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We pre-train models on datasets with 30 object prototypes that are each modified by transformations
of a single category. Then, to understand how invariance to different types of transformations is
related, we fine-tune and evaluate each model on the datasets corresponding to every other type of
transformations.
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Figure 6: [Relationships between different transformations] a) Models pretrained on single transformation
datasets perform well on most other single transformation datasets, with the exception of movement, rotation
and color jitter transformations, indicating that these transformations are harder to transfer to. b) The ratios
of l2-distances between penultimate layer representations of the same classes and between representations of
objects from different classes correspond to the transfer difficulty of different transformations. Scale trans-
formations are easy to transfer to and also consistently have a high l2-ratio, whereas l2-ratios for movement
and color jitter transformations, which are harder to generalize to, are only high for models trained for these
transformations.

Results are shown in Figure 6a. We find that in general, all models transfer quite well to most of the
transformations. There are three prominent outliers, however, to which other types of invariances do
not seem to transfer well — color jitter, movement/translation and rotation — indicating that trans-
ferring to certain transformations is inherently harder than to others. Interestingly, we observe that
within these “difficult” transformations, movement and rotation are qualitatively similar and transfer
better to each other, but do not transfer as well to color jitter, and vice versa. The difficulty of ac-
quiring movement invariance is also discussed in recent work (Zhang, 2019; Azulay & Weiss, 2019)
which shows that, somewhat counterintuitively, the representations of many CNN architectures are
often not shift-invariant. Note that, in contrast to the previous results, the transfer performances
here are high in general because there is only one transformation per dataset acting on the object
prototypes instead of a concatenation of multiple transformations.

To understand how learning invariance to these transformations helps the models achieve higher ac-
curacies and why we see differences in transformation difficulty, we investigate the models’ penul-
timate layer representations. To do this, for each transformation dataset and model, we compute
pairwise l2-distances between penultimate layer representations of samples from the same class (i.e.
between inputs with the same prototype object that differ via the respective transformation and have
different backgrounds) and between representations of samples from different classes. Then, we
compute the between-within class ratios that show how much larger the l2-distances between sam-
ples of different classes are compared to samples from the same class 1. Intuitively, a high l2-ratio
means that the distances between the representations of different classes are higher than the distances
between representations of the same class, which makes it easier to linearly separate them.

Figure 6b shows the results of this analysis for the movement, scale and color jitter transformations
for the respective models as well as an untrained model and a model trained to classify objects with-
out any transformations applied to them (“none”). The scale transformation is one that all models
consistently transfer well to and correspondingly, its l2-ratio is quite high for every model. The
movement and color jitter transformations on the other hand are harder to transfer to and conse-

1We also tried using representation similarity metrics, in particular CKA (Kornblith et al., 2019), however,
it is only meant to be applied for different representations of the same input, not representations of different
inputs and therefore produces very low values for this analysis.
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quently, their l2 ratios are only high for the models specifically trained for them. In general, the
value of the l2-ratios corresponds well to the transfer performance of a model to the respective task.

5 RELATED WORK

A number of prior studies have investigated the relationship between invariance and generalization
performance (Azulay & Weiss, 2018; Zhou et al., 2022; Ortiz-Jimenez et al., 2020; Lyle et al.,
2020). They differ from our work in that they only use partially synthetic data in the form of
transformations being applied to examples from real-world datasets, which limits the breath and
precision of control that is possible over the transformations in the data and therefore makes it
difficult to cleanly evaluate invariance to them. For instance, both Azulay & Weiss (2018) and Zhou
et al. (2022) find that invariance does not generalize well outside the training distribution, however,
it might be that this lack of generalization is due to the addition of other transformations, which as
we show has a significant impact, and which is hard to assess with non-synthetic data where not all
degrees of variation can be controlled for.

There have been a few proposals for fully synthetic datasets that allow for a more careful study of
the properties of representations (Hermann & Lampinen, 2020; Matthey et al., 2017), but they are
aimed at understanding other properties such as equivariance and disentanglement.

There also has been a body of work proposing measures for the amount of invariance in the repre-
sentations of DNNs (Goodfellow et al., 2009; Fawzi & Frossard, 2015; Gopinath et al., 2019; Nanda
et al., 2022). This work, however, is aimed at determining whether models trained on real-world
data exhibit certain invariances, whereas we create models models that have specific invariances by
design by using synthetic data.

Invariance has been widely studied in the robustness literature (Szegedy et al., 2013; Papernot et al.,
2016; Recht et al., 2019; Geirhos et al., 2018; Hendrycks & Dietterich, 2019; Taori et al., 2020).
There, the focus is on the degradation effects that specific types of transformations such as adver-
sarial changes to or corruptions of real-world data have on model performance, whereas we are
interested in invariance as a more fundamental property of representations. It is worth pointing out
though, that the findings made in the robustness literature align well with our observations in the
sense that changes in a model’s input data to which its representations are not invariant can severely
impact its performance.

Finally, data transformations and — to a lesser extend — invariances have been studied as tools to
improve model performance via data augmentation (Perez & Wang, 2017; Shorten & Khoshgoftaar,
2019) or to enable training models in a self-supervised manner (Chen et al., 2020; Grill et al., 2020).
However, this work is not so much interested in using transformations to specifically achieve certain
representational invariances or in understanding their impact on representations, but rather leverages
them as a tool for creating representations that achieve high downstream performance.

6 CONCLUSION

We study the importance of invariance in representation learning by using synthetic data that allows
us to precisely control differences and similarities between input points. By leveraging this method,
we are able to show that invariance is critically important for downstream performance, often more
so than equivariance, because both missing required invariances as well as possessing harmful in-
variances significantly decreases the usefulness of representations. We further investigate factors
that play a role in determining which feature transformations a model becomes invariant to and find
that the relevance and availability of features plays an important role. Additionally, we show that
models largely transfer invariance between classes and that they possess inductive biases that in-
fluence the acquisition of certain invariances. In summary, our work reveals the often overlooked
importance of invariance in representation learning and highlights to need to take invariance into
account when studying transfer and generalization of representations.
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A SYNTHETIC DATASETS

We create the Transforms-2D dataset based on the foreground and background images provided by
the SI-score dataset (Djolonga et al., 2021). There are 61 foreground categories containing images
of objects with an alpha-mask from which we randomly sample one of the images to use it as class-
prototype. Additionally, there are 882 background images which we randomly sample for each
input from the dataset. We resize all images to a size of 32x32 pixels and use 50,000 training,
10,000 validation and 10,000 test images, to resemble the properties of the CIFAR-10 dataset.

The foreground objects are transformed by transformations from 8 different categories:

• Blurring
• Color jitter
• Horizontal flips
• Vertical flips
• Translations/movement
• Rotations
• Scaling
• Sharpening

Transformations are implemented via the standard PyTorch data augmentations.

A.1 ADDITIONAL INFORMATION ABOUT THE IRRELEVANT FEATURES DATASET

Figure 7: [Examples of test images in the irrelevant feature analysis]. From top to bottom: CIFAR-10 only
(X = C), CIFAR-10 with pasted objects (X = C +O), objects only (X = O)

Figure 7 shows example images for the augmented CIFAR-10 images that we use in the analysis in
section 3.2 to investigate the effects of irrelevant transformations on learned invariances.

B ADDITIONAL DETAILS ON THE EVALUATION SETUP

In the paper, we evaluate models based on the ResNet-18, VGG-11 and DenseNet-121 architec-
tures. We use PyTorch and architectures adapted for the CIFAR-10 dataset that can be found here:
https://github.com/kuangliu/pytorch-cifar

We train models on the synthetic datasets for 50 training epochs and on the augmented CIFAR-10
datasets for 200 training epochs. Fine-tuning of the last linear layer is done for 25 epochs. Model
parameters are optimized using Adam.

C ADDITIONAL RESULTS ON THE IMPORTANCE OF INVARIANCE FOR
DOWNSTREAM PERFORMANCE

C.1 LEARNING MORE THAN THE NECESSARY INVARIANCES DOES NOT HURT PERFORMANCE
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Figure 8: Impact of varying the number of
training transformations on transfer per-
formance Models are evaluated on datasets
with subsets or supersets of their training
transformations. Models trained on a super-
set of transformations of the target task per-
form well on it, whereas the performance of
models that only saw a subset of the target
transformations deteriorates significantly.

We have shown that models need to acquire at least the
invariances corresponding to irrelevant transformations in
the target domain in order to perform well on it. A natu-
ral question is whether acquiring more than the necessary
invariances is detrimental for performance.

To investigate this question, we create four datasets
D1, . . . ,Dn with the same set of randomly sampled ob-
jects O and sets of randomly sampled, concatenated trans-
formations T1, . . . , Tn with |Ti| = i such that Ti ⊂ Ti+1.
We train models g1, . . . , gn on D1, . . . ,Dn respectively,
then fine-tune each models’ last linear layer and evaluate
it on each of the datasets, with n = 8.

Figure 8 shows the result of this analysis. Models trained
on data with the same set or a superset of transformations
as the target dataset consistently achieve 100% accuracy
The model trained on all 8 transformations for instance
achieves close to 100% accuracy on all datasets. How-
ever, models trained with only a subset of the transforma-

tions show considerably lower performance that decreases the smaller the subset of training trans-
formations is compared to the target task. This shows that being invariant to more than the necessary
transformations does not negatively impact performance, but if any required invariances are missing
in the representations, a models’ performance quickly takes a hit.
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