
The Implicit Bias of Adam on Separable Data

Chenyang Zhang
Department of Statistics and Actuarial Science

School of Computing and Data Science
The University of Hong Kong
chyzhang@connect.hku.hk

Difan Zou
Department of Computer Science

School of Computing and Data Science
& Institute of Data Science

The University of Hong Kong
dzou@cs.hku.hk

Yuan Cao
Department of Statistics and Actuarial Science

School of Computing and Data Science
& Department of Mathematics
The University of Hong Kong

yuancao@hku.hk

Abstract

Adam has become one of the most favored optimizers in deep learning problems.
Despite its success in practice, numerous mysteries persist regarding its theoretical
understanding. In this paper, we study the implicit bias of Adam in linear logistic
regression. Specifically, we show that when the training data are linearly separable,
the iterates of Adam converge towards a linear classifier that achieves the maximum
ℓ∞-margin in direction. Notably, for a general class of diminishing learning rates,
this convergence occurs within polynomial time. Our result shed light on the
difference between Adam and (stochastic) gradient descent from a theoretical
perspective.

1 Introduction

Adam [25] is one of the most widely used optimization algorithms in deep learning. By entry-wisely
adjusting the learning rate based on the magnitude of historical gradients, Adam has proven to be
highly efficient in solving optimization tasks in machine learning. However, despite the remarkable
empirical success of Adam, current theoretical understandings of Adam cannot fully explain its
fundamental difference compared with other optimization algorithms.

It has been recently pointed out that the implicit bias [32, 40, 21] of an optimization algorithm is es-
sential in understanding the performance of the algorithm in machine learning. In over-parameterized
learning tasks where the training objective function may have infinitely many solutions, the implicit
bias of an optimization algorithm characterizes how the algorithm prioritizes converging towards a
specific optimum with particular structures and properties. Several recent works studied the implicit
bias of Adam and other adaptive gradient methods. Specifically, [35] studied the implicit bias
of AdaGrad, and showed that AdaGrad converges to a direction that can be characterized as the
solution of a quadratic optimization problem related to the limit of preconditioners. However, their
results cannot be extended to Adam. [45] showed that gradient descent with momentum (GDM)
and its adaptive variants have the same implicit bias with gradient descent. This result is extended
to the setting of training homogeneous models in [44]. However, the results in [45, 44] reply on a
nonnegligible stability constant – when the gradient entries are minimized below the stability constant
(which is by default 10−8 in Adam), adaptive gradient methods will essentially behave like gradient
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descent. Therefore, it remains an open question how Adam will behave under the more practical
regime where stability constant is negligible.

We note that there exist several recent works studying variants of Adam without the stability constant.
First of all, sign gradient descent, which can be regarded as Adam without momentum or stability
constant, is usually considered a proxy of Adam in theoretical studies due to its ease of analysis. [14]
studied the implicit bias of steepest descent with respect to different potentials and norms covering
a variant of sign gradient descent, and demonstrated that sign gradient descent converges to the
maximum ℓ∞-margin solution. However, this result for sign gradient descent cannot cover Adam, as
the momentum terms in the update of Adam are crucial. Besides, a more recent work [50] studied
the implicit bias of AdamW without considering the stability constant. They showed that, if the
iterates of AdamW converge, then the limiting point must be a KKT point of an optimization problem
with ℓ∞ constraints. However, the analysis of AdamW in [50] relies on a non-zero regularization
parameter, and therefore cannot be extended to the study of Adam.

In this paper, we investigate the implicit bias of Adam. Specifically, let {(xi, yi)}ni=1 ⊂ Rd × {±1}
be a training data set of a binary classification problem. We consider using Adam to train a linear
model to minimize the empirical logistic loss (or exponential loss). Then our main results can be
summarized as the following informal theorem:
Theorem 1.1 (Simplified version of Theorem 4.5). Let {ηt}∞t=0, {wt}∞t=0 be the sequence of learning
rates and iterates of Adam respectively. Suppose that the data set {(xi, yi)}ni=1 is linearly separable,
and that limt→ ηt = 0,

∑∞
t=0 ηt = ∞. Then under certain conditions, it holds that∣∣∣∣min

i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣ ≤ O

(∑t−1
τ=0 η

3
2
τ +

∑t−1
τ=0 ητe

− γ
4

∑τ−1

τ′=0
ητ′∑t−1

τ=0 ητ

)
, (for logistic loss)

∣∣∣∣min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣ ≤ O

(∑t−1
τ=0 η

3
2
τ∑t−1

τ=0 ητ

)
, (for exponential loss)

where γ := max∥w∥∞≤1 mini∈[n]⟨w, yi · xi⟩ is the maximum ℓ∞-margin on the training data set.

Theorem 1.1 shows that, for a general class of learning rate schedules, Adam will eventually achieve
the maximum ℓ∞-margin on the training data set.

• We demonstrate the implicit bias of Adam for solving linear logistic regression with linearly
separable data. Specifically, we prove that Adam has an implicit bias towards a maximum ℓ∞-
margin solution when solving linear classification problems. Our result distinguishes Adam from
(stochastic) gradient descent with/without momentum, whose implicit bias is towards the maximum
ℓ2-margin solution.

• Our analysis of Adam covers a broad range of diminishing learning rate schedules. For ηt = Θ(t−a)
with a ∈ (0, 1], our result demonstrates the following convergence rate:

∣∣∣∣min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣ ≤

O
(
t−a/2

)
, if a < 2/3;

O
(
t−1/3 log t

)
, if a = 2/3;

O
(
t1−a

)
, if 2/3 < a < 1;

O
(
1/ log t

)
, if a = 1.

Notably, when a < 1, the above rates indicate that the convergence towards the maximum ℓ∞-
margin occurs in polynomial time. This further differentiates Adam from (stochastic) gradient
descent with/without momentum in terms of the convergence speed.

• Our result focuses on a particularly challenging setting where we ignore the “stability constant ϵ”
in the Adam algorithm. In practice, the stability constant is by default set as ϵ = 10−8, which is
almost negligible throughout the optimization process. Therefore, by covering the setting without
the stability constant, our theory matches the practical setting better. We demonstrate by simulation
that our theory can also correctly characterize the implicit bias of Adam with the stability constant.

Notation. Given two sequences {xn} and {yn}, we denote xn = O(yn) if there exist some absolute
constant C1 > 0 and N > 0 such that |xn| ≤ C1|yn| for all n ≥ N . Similarly, we denote xn = Ω(yn)
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if there exist C2 > 0 and N > 0 such that |xn| ≥ C2|yn| for all n > N . We say xn = Θ(yn) if
xn = O(yn) and xn = Ω(yn) both holds. We use Õ(·), Ω̃(·), and Θ̃(·) to hide logarithmic factors
in these notations respectively. Moreover, we denote xn = poly(yn) if xn = O(yDn ) for some
positive constant D, and xn = polylog(yn) if xn = poly(log(yn)). For two scalars a and b, we
denote a ∨ b = max{a, b} and a ∧ b = min{a, b}. For any n ∈ N+, we use [n] to denote the set
{1, 2, · · · , n}. For any scalar c ∈ R, ⌈c⌉ denotes the smallest integer larger or equal to c and ⌊c⌋
denotes the largest integer smaller or equal to c. For a vector a ∈ Rd, a[k] denote its k-th entry.
Finally, ei ∈ Rn denotes the i-th basis vector in Rn.

2 Additional Related Work

Theoretical analyses of Adam and its variants. There has been a line of works studying the
properties of Adam and its variants from different aspects. [37] pointed out that there exists simple
convex objective functions which Adam may fail to minimize, and proposed a new variant of
Adam, the AMSGrad algorithm, which enjoys convergence guarantees in convex optimization.
[54, 10, 17, 33, 53, 18] established optimization guarantees of Adam and its variants in non-convex
optimization. [29, 19] implemented variance reduction techniques in Adam and proposed new
variants of Adam accordingly. [47, 52, 55, 56] studied the generalization performance of Adam and
compared it with GD under different learning tasks. [27, 4, 6, 3, 5] tried to explain the performance
of Adam by studying the connections between Adam and sign gradient descent. [51] explored the
optimization trajectories of Adam from the ℓ∞ geometry.

Implicit bias. Classic results [40, 21] demonstrated the iterates of GD will converge to the maximum
ℓ2-margin solution in direction on linear logistic regression with linear separable datasets. [31]
extended this result under stochastic settings. [14] explored the implicit bias of a general class of
optimization methods, containing mirror descent and steepest descent. [23] proposed a primal-dual
analysis and derived a faster convergence rate with a larger learning rate compared to [40, 21]. [48]
explored the implicit bias of gradient descent at the ’edge of stability’ regime, where the learning
rate can be an arbitrarily large constant. [30, 22] showed that q-homogeneous neural network trained
by GD will converge to a KKT point of maximum ℓ2-margin optimization problem. [8] established
an implicit bias type result for the Lion [9] algorithm in its continuous-time form. There also
exist numerous works studying the implicit bias for different problem setting, including matrix
factorization models [16, 28, 2, 36], squared loss models [38, 1, 24], weight normalization and batch
normalization [49, 7], deep linear neural networks [15, 20], two-layer neural networks [11, 34, 13,
42, 43, 26].

3 Problem Settings

We consider binary linear classification problems. Specifically, given n training data points
{(xi, yi)}ni=1 where xi ∈ Rd and yi ∈ {+1,−1}, we aim to find a coefficient vector w which
minimizes the following empirical loss

R(w) =
1

n

n∑
i=1

ℓ(⟨w, yi · xi⟩), (3.1)

where ℓ(⟨w, yi · xi⟩) is the loss function value on the data point (xi, yi). In this paper, we consider
ℓ ∈ {ℓlog, ℓexp}, where ℓlog(z) = log(1 + e−z) is the logistic loss function and ℓexp(z) = e−z is the
exponential loss function. We consider using Adam to minimize (3.1). Denoting m−1 = v−1 = 0 ∈
Rd and starting with initialization w0, Adam applies the following iterative formulas:

mt = β1mt−1 + (1− β1) · ∇R(wt), (3.2)

vt = β2vt−1 + (1− β2) · ∇R(wt)
2, (3.3)

wt+1 = wt − ηt
mt√
vt

, (3.4)

where β1, β2 ∈ [0, 1) are the hyperparameters of Adam, and the square (·)2, square root (
√
·) and

division ( ·
· ) above all denote entry-wise calculations.
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Note that in practice, it is common to consider the variant wt+1 = wt−ηt
mt√
vt+ϵ , where an additional

term ϵ ≈ 10−8 is added in (3.4) to improve stability. However, in our analysis, we do not consider
such a term ϵ. This is because in practice, one seldom run Adam until vt is around the same level as
ϵ. However, by the nature of implicit bias, the result needs to cover infinitely many iterations, and the
additional term ϵ will eventually significantly affect the result. In fact, a recent work [45] showed that
when one considers such an additional ϵ term, Adam will be asymptotically equivalent to gradient
descent. In comparison, in this paper, we will show that when ignoring ϵ, Adam has a unique implicit
bias that is different from gradient descent.

4 Main Results

In this section, we present our main result on the implicit bias of Adam in linear classification
problems. We first introduce several assumptions.
Assumption 4.1. There exists w ∈ Rd such that ⟨w, yi · xi⟩ > 0 for all i ∈ [n].

Assumption 4.1 is a standard assumption in the study of implicit bias of linear models [40, 14, 31, 21,
23, 45, 48]. It can be easily satisfied in the over-parameterized setting where d ≥ n. With the linear
separability assumption, we can further define the maximum ℓ∞-margin:

γ = max
∥w∥∞≤1

min
i∈[n]

⟨w, yi · xi⟩. (4.1)

We also make the following assumption on the initialization w0.
Assumption 4.2. The initialization w0 of Adam satisfies that for all k ∈ [d], ∇R(w0)[k]

2 ≥ ρ.

Assumption 4.2 ensures that at every finite iteration, the entries of vt are strictly positive. We
remark that this is a mild assumption: if xi, i ∈ [n] are generated from a continuous, non-degenerate
distribution, then regardless of the choice of w0, ∇R(w0)[k] ̸= 0 with probability 1. Moreover, ρ
will only appear in our results in the form of log(1/ρ), and therefore, even if ρ is small, it will not
significantly hurt the convergence rates. A similar assumption has also been considered in [50].
Assumption 4.3. {ηt}∞t=1 are decreasing in t, and satisfy

∑∞
t=0 ηt = ∞, limt→∞ ηt = 0.

Assumption 4.3 is a mild and standard assumption of the learning rates {ηt}∞t=0 that is commonly
considered in the general optimization literature. It has also been considered in recent studies of
Adam and its variants [12, 19, 50].
Assumption 4.4. For all β ∈ (0, 1) and c1 > 0, there exist t1 ∈ N+ and c2 > 0 that only depend on
β, c1, such that

∑t
τ=0 β

τ
(
ec1

∑τ
τ′=1

ηt−τ′ − 1
)
≤ c2ηt for all t ≥ t1.

Although Assumption 4.4 seems non-trivial, we claim it is a fairly mild assumption. In fact, for
both small fixed learning rate ηt = η, and decay learning rate ηt = (t + 2)−a with a ∈ (0, 1],
Assumption 4.4 always hold. We formally prove this result in Lemma C.1 in the appendix.

Now, we state our main theorem about the implicit bias about Adam as follows.
Theorem 4.5. Let {wt}∞t=0 be the iterates of Adam in (3.2)-(3.4) with β1 ≤ β2. In addition, let γ
be defined in (4.1) and B := maxi∈[n] ∥xi∥1. Then under Assumptions 4.1, 4.2, 4.3 and 4.4, there
exists t0 = t0(n, d, β1, β2, γ, B, ρ,w0) such that

• If ℓ = ℓexp, then for all t ≥ t0,

R(wt) ≤
log 2

n
· e−

γ
2

∑t−1
τ=t0

ητ , and
∣∣∣∣min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣ ≤ O

(∑t0−1
τ=0 ητ + d

∑t−1
τ=t0

η
3
2
τ∑t−1

τ=0 ητ

)
.

• If ℓ = ℓlog, then for all t ≥ t0,

R(wt) ≤
log 2

n
· e−

γ
4

∑t−1
τ=t0

ητ ,

and ∣∣∣∣min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣ ≤ O

(∑t0−1
τ=0 ητ + d

∑t−1
τ=t0

η
3
2
τ +

∑t−1
τ=t0

ητe
− γ

4

∑τ−1

τ′=t0
ητ′∑t−1

τ=0 ητ

)
,
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where we use O(·) to omit factors that only depend on β1, β2, γ, B.

Theorem 4.5 implies that Adam can minimize the loss function to zero, and that the normalized
ℓ∞-margin achieved by Adam will eventually converge to the maximum ℓ∞-margin of the training
data set. To address general learning rate schedules, we do not specify a particular convergence
rate for either the loss or the margin, nor do we provide an exact formula for t0. However, it can
be easily verified that R(wt) ≤ O

(
e−γt1−a/4(1−a)

)
when ηt = (t + 2)−a with a < 1. This loss

convergence rate of Adam is much faster than that of (stochastic) gradient descent (with momentum)
given a fixed small learning rate, which is of order O(1/t) [40, 31, 45]. In addition, we have
t0 = poly[n, d, (1−β1)

−1, (1−β2)
−1, γ−1, B, log(1/ρ),R(w0)] when ηt = (t+2)−a with a < 1,

and we defer the derivation details to Appendix B.2. Regarding margin convergence, we will give a
set of detailed convergence rate results for different learning rate schedules in Corollary 4.7.

According to Theorem 4.5, the nature of Adam is vastly different from (stochastic) gradient descent
from the perspective of implicit bias: Adam maximizes the ℓ∞-margin, while existing works have
demonstrated that (stochastic) gradient descent maximizes the ℓ2-margin [40, 31, 21]. Compared with
existing works on the implicit bias of adaptive gradient methods [35, 45, 50], our result demonstrates
a novel type of implicit bias with accurate convergence rates, which can not been covered in the
previous results. Notably, [45] showed that, if a stability constant ϵ is added, i.e., (3.4) is replaced
by wt+1 = wt − ηt

mt√
vt+ϵ , then Adam will eventually be equivalent to gradient descent and will

converge to the maximum ℓ2-margin solution. However, the analysis in [45] relies on a positive ϵ:
their proof is based the fact that after a large number of iterations, the entries of vt will eventually be
much smaller than ϵ, and the update of Adam will be similar to gradient descent with momentum. In
our analysis, we are able to cover the setting where ϵ = 0, and our result demonstrates that studying
the setting without ϵ is essential, as the implicit bias is completely different. In Section 5, we will
demonstrate by experiments that our setting matches the practical observations better.

As we have discussed, Theorem 4.5 implies the convergence of the normalized ℓ∞-margin of Adam
iterates towards the maximum ℓ∞-margin. Since the results cover very general learning rates, the
convergence rates are presented in rather complicated formats. However, based on the assumption
that

∑∞
t=0 ηt = ∞, limt→∞ ηt = 0, we can immediately conclude the following simplified result by

the Stolz–Cesàro theorem (see Theorem C.8 in the appendix).
Corollary 4.6. Under the same conditions in Theorem 4.5, it holds that

lim
t→∞

min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

= max
∥w∥∞≤1

min
i∈[n]

⟨w, yi · xi⟩.

If there exists a unique maximum ℓ∞-margin solution w∗ = argmax∥w∥∞≤1 mini∈[n]⟨w,xi⟩, then
we have limt→∞

wt

∥wt∥∞
= w∗.

We can also investigate the convergence rates of the ℓ∞-margin with specific learning rates. The
results are summarized in the following Corollary.

Corollary 4.7. Consider ηt = (t + 2)−a with a ∈ (0, 1]. Denote by wexp
t and wlog

t the iterates
of Adam for ℓ = ℓexp and ℓ = ℓlog respectively. Suppose that β1 ≤ β2 and Adam starts with
initialization w0. Let B := maxi∈[n] ∥xi∥1. Then under Assumptions 4.1 and 4.2, there exists
t0 = t0(n, d, β1, β2, γ, B, ρ,w0) such that for all t ≥ t0, the following results hold:

• If a < 2
3 , ∣∣∣∣∣min

i∈[n]

⟨wexp
t , yi · xi⟩
∥wexp

t ∥∞
− γ

∣∣∣∣∣,
∣∣∣∣∣min
i∈[n]

⟨wlog
t , yi · xi⟩
∥wlog

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d

ta/2

)
.

• If a = 2
3 ,∣∣∣∣∣min
i∈[n]

⟨wexp
t , yi · xi⟩
∥wexp

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d · log t+ log n+ logR(w0) + [log(1/ρ)]1/3

t1/3

)
,∣∣∣∣∣min

i∈[n]

⟨wlog
t , yi · xi⟩
∥wlog

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d · log t+ nd+ nR(w0) + [log(1/ρ)]1/3

t1/3

)
.
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• If 2
3 < a < 1,∣∣∣∣∣min

i∈[n]

⟨wexp
t , yi · xi⟩
∥wexp

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d+ log n+ logR(w0) + [log(1/ρ)]1−a

t1−a

)
,∣∣∣∣∣min

i∈[n]

⟨wlog
t , yi · xi⟩
∥wlog

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d+ nd

2(1−a)
a + nR(w0) + [log(1/ρ)]1−a

t1−a

)
.

• If a = 1, ∣∣∣∣∣min
i∈[n]

⟨wexp
t , yi · xi⟩
∥wexp

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d+ log n+ logR(w0) + log log(1/ρ)

log t

)
,∣∣∣∣∣min

i∈[n]

⟨wlog
t , yi · xi⟩
∥wlog

t ∥∞
− γ

∣∣∣∣∣ ≤ O

(
d+ n log d+ nR(w0) + log log(1/ρ)

log t

)
.

Corollary 4.7 comprehensively presents the convergence rate of the ℓ∞-margin for different learning
rates. It also indicates that the margin convergence rates for ℓexp and ℓlog are of the same order
of t. Notably, for a < 1, the normalized ℓ∞-margin converges in polynomial time. This clearly
distinguishes Adam from (stochastic) gradient descent with/without momentum, for which the
normalized ℓ2-margin converges at a speed O(1/ log t) [40, 20, 45]. We note that a recent work [46]
proposed a novel algorithm named progressive rescaling gradient descent that can maximize the
margin at an exponential rate. Here our focus is different from [46]: our purpose is not to propose
new algorithms to achieve better convergence rates, but is to theoretically study the properties of
the classic Adam algorithm. We would also like to remark that, although Corollary 4.7 seemingly
indicates that ηt = (t+ 2)−2/3 is the learning rate schedule with the fastest convergence rate, it does
not mean that ηt = (t+ 2)−2/3 always converge faster than the other learning rate schedules in all
learning tasks. The bounds in Corollary 4.7 are derived under the worst cases, and in practice, we can
frequently observe that the margins all converge faster than the bounds in the corollary.

5 Experiments

In this section, we conduct numerical experiments to verify our theoretical conclusions. We set the
sample size n = 50, and dimension d = 50. Then the data set {(xi, yi)} are generated as follows:

1. xi, i ∈ [n] are independently generated from N(0, I).

2. yi, i ∈ [n] are independently generated from as +1 or −1 with equal probability.

Note that for data sets generated following the procedure above, Assumption 4.1 almost surely holds.
We can also apply standard convex optimization to calculate the maximum ℓ∞-margin γ. In order to
make a clearer comparison between Adam and GD, we generate 10 independent sets of data, and we
select the dataset with the most significant difference in the directions of the maximum ℓ2-margin
solution and maximum ℓ∞-margin solution. We then run the experiments on this selected data set.
Throughout our experiments, for gradient descent with momentum, we set the momentum parameter
as β1 = 0.9, and for Adam, we set β1 = 0.9, β2 = 0.99. All these hyper-parameter setups are
common in practice. All optimization algorithms are initialized with standard Gaussian distribution,
and are run for 106 iterations.

We first run GD, GDM, Adam without the stability constant, and Adam with stability constant
ϵ = 10−8 to train a linear model minimizing the logistic loss, and compare their normalized ℓ∞-
margin and normalized ℓ2-margin. The results are given in Figure 1. We can see that the normalized
ℓ∞-margins of Adam, both with and without ϵ, converge to the maximum ℓ∞-margin, whereas the
normalized ℓ∞-margins of GD and GDM do not. In contrast, the normalized ℓ2-margins of GD and
GDM converge to the maximum ℓ2-margin, while the ℓ2-margins of Adam, both with and without
ϵ, do not. By comparing the curves of Adam with and without ϵ, we find that they behave similarly
and their convergence remains highly stable. This justifies our theoretical setting where we ignore
the stability constant in Adam, and demonstrate that our maximum ℓ∞-margin implicit bias result
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derived without ϵ characterizes the practical behaviour of Adam more accurately compared with the
maximum ℓ2-margin result for Adam with ϵ in [45].

We also run a set of experiments to demonstrate the polynomial time convergence rate of the ℓ∞-
margin. We run experiments on Adam with learning rates ηt = Θ(t−a) for a ∈ {0.3, 0.5, 0.7, 1},
and report the log-log plots in Figure 2, where we perform the experiments for Adam with/without
the stability constant separately. In the log-log plot, we observe that after a certain number of
iterations, curves for a < 1 almost appear as straight lines, suggesting that the normalized ℓ∞-margin
converges in polynomial time for a < 1, while the curve for a = 1 exhibits logarithmic behavior,
indicating the normalized ℓ∞-margin converges logarithmically in t for a = 1. Similarly to the
previous observations, there is still no significant distinction between Adam with and without ϵ,
further demonstrating that our theoretical setting, which disregards ϵ, is reasonable. We also note that
in Figure 2, the margin achieved by Adam with ηt = Θ(t−0.3) converges the fastest. However, as we
have commented in Section 4, different learning rate schedules may perform differently on different
data sets, and it is not necessarily true that ηt = Θ(t−0.3) is always the best learning rate schedule.

(a) normalized ℓ∞-margin (b) normalized ℓ2-margin

Figure 1: Normalized ℓ∞-margins and ℓ2-margins achieved by GD, GDM, and Adam with/without
the stability constant ϵ during training. (a) gives the results of normalized ℓ∞-margins, while (b)
shows the results of normalized ℓ2-margins.

(a) normalized ℓ∞-margin gap with ϵ (b) normalized ℓ∞-margin gap without ϵ

Figure 2: Log-log plots of the normalized ℓ∞-margin gaps |mini∈[n]⟨wt, yi ·xi⟩/∥wt∥∞−γ| versus
training iterations. (a) presents the results for Adam with the stability constant ϵ, and (b) presents the
results for Adam without the stability constant ϵ.

6 Proof Sketch for Theorem 4.5

In this section, we explain how we establish the convergence of the ℓ∞-margin of linear models
trained by Adam, and provide the sketch proof of Theorem 4.5. For simplicity, here we focus on the
case ℓ = ℓexp. The proof for ℓ = ℓlog is almost the same.
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We first introduce several notations. Define

G(w) = − 1

n

n∑
i=1

ℓ′(⟨w, yi · xi⟩).

Then for ℓ ∈ {ℓexp, ℓlog}, it is clear that G(w) > 0 for all w ∈ Rd. In the following, we will show
that G(w) plays a key role in the convergence and implicit bias analysis.

Step 1. Accurate characterizations of the first and second moments. Adam algorithm is defined
based on the first and second moments mt and vt, which are calculated as exponential moving
averages of the historical gradients and squared gradients respectively. A key challenge in studying
Adam is to accurately characterize each entry of mt and vt throughout training. We present the
following lemma.
Lemma 6.1. Under the same condition in Theorem 4.5, there exists t1 = t1(β1, β2, B) such that∣∣mt[k]− (1− βt+1

1 ) · ∇R(wt)[k]
∣∣ ≤ cmηtG(wt),∣∣∣√vt[k]−

√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣∣∣∣ ≤ cv
√
ηtG(wt)

for all t > t1 and k ∈ [d], where cm and cv are constants that only depend on β1, β2 and B.

Since ηt, βt+1
1 and βt+1

2 all decrease to zero as t increases, Lemma 6.1 implies that after a sufficient
number of iterations, the entries of mt and vt will be close to the corresponding entries of ∇R(wt)
and |∇R(wt)| respectively. Notably, the term G(wt) also appears in the bounds. In fact, deriving
such bounds with the factor G(wt) is essential to enable our implicit bias analysis: when the algorithm
converges, by definition, G(wt) will also decrease to zero, which implies that the bounds with the
factor G(wt) are strictly tighter than the bounds without G(wt). Lemma 6.1 is one of our key
technical contributions.

Step 2. R(wt) starts to decrease after a fixed number of iterations. Based on Lemma 6.1, we can
analyze the convergence of R(wt). Specifically, we can show that, after a fixed number of iterations,
the training loss function will start to decrease. This result is summarized in the following lemma.
Lemma 6.2. Under the same condition in Theorem 4.5, there exist t1 = t1(β1, β2, B) such that for
all t > t1, it holds that

R(wt+1) ≤ R(wt)− ηtγ ·
(
1− C1β

t/2
1 − C2d ·

(
η

1
2
t + ηt

))
· G(wt),

where C1, C2 only depend on β1, β2, B.

Note that by definition, G(w) > 0 for all w ∈ Rd. Therefore, Lemma 6.2 implies that R(wt) starts
to decrease after a fixed number of iterations, and gives a bound on the decreasing speed. We remark
that the proof of Lemma 6.2 is highly non-trivial. Although we have related mt and vt to the loss
gradient ∇R(wt) in Lemma 6.1, the fact that wt+1 is updated according to the entry-wise ratio
mt/

√
vt still introduces challenges: under our problem setting, it is entirely possible that at a certain

iteration, a certain entry of ∇R(wt) will exactly equal zero. In this case, the results in Lemma 6.1
can not directly lead to any conclusions about the ratio mt/

√
vt. In our proof, we implement a

careful inequality that also takes the historical values of ∇R(wt) into consideration.

Step 3. Lower bound for un-normalized margin. The proof of the implicit bias towards maximum
ℓ∞-margin also relies on a tight analysis on the un-normalized margin mini∈[n]⟨wt, yi · xi⟩ during
training. We have the following lemma providing a lower bound on the un-normalized margin.

Lemma 6.3. Under the same condition in Theorem 4.5, if there exists t0 such that R(wt) ≤ log 2
n for

all t ≥ t0, then it holds that

min
i∈[n]

⟨wt, yi · xi⟩ ≥ γ

t−1∑
τ=t0

ητ · G(wτ )

R(wτ )
− C3d

(
t−1∑
τ=t0

η
3
2
τ +

t−1∑
τ=t0

η2τ

)
− C4

for all t ≥ t0, where C3, C4 only depend on β1, β2, B.

Note that this lower bound contains a negative term −C3d
(∑t−1

τ=t0
η
3/2
τ +

∑t−1
τ=t0

η2τ
)
. Under

our (mild) assumptions on the learning rates, it is entirely possible that
∑∞

τ=t0
η
3/2
τ ,

∑∞
τ=t0

η2τ =
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+∞ and thus the negative term in the lower bound may go to −∞. However, we can show that
limt→∞ G(wt)/R(wt) = 1 (in fact, for exponential loss, it is obvious that G(wt)/R(wt) = 1).
Therefore, after a fixed number of iterations, the positive term in the lower bound will dominate, and
Lemma 6.3 gives a non-trivial bound. The strength of this lemma lies in its applicability to very
general learning rates {ηt}∞t=1.

Step 4. An upper bound of ∥wt∥∞.

In Lemma 6.3, we have obtained a lower bound of the un-normalized margin. However, to show the
convergence of the ℓ∞-normalized margin, we also need to establish a tight upper bound of ∥wt∥∞.
We present this result in the following lemma, which is inspired by Lemma 4.2 in [50].
Lemma 6.4. Suppose that the same conditions in Theorem 4.5 hold. There exist C5, C6 that only
depend on β1, β2, B, such that the following result hold: if there exists t0 > log(1/ρ) such that
R(wt) ≤ 1√

B2+C5η0

for all t ≥ t0, then ∥wt∥∞ ≤
∑t−1

τ=t0
ητ + C6

∑t0−1
τ=0 ητ for all t > t0.

Lemma 6.4 gives an upper bound of ∥wt∥∞ which mainly depends on
∑t−1

τ=t0
ητ . Note that

Lemma 6.3 also gives a lower bound of the un-normalized margin which mainly depends on∑t−1
τ=t0

ητG(wτ )/R(wτ ). These two lemmas will be combined to derive the convergence of the
normalized margin.

Step 5. Finalizing the proof. Finally, based on the lemmas established in the previous steps, we can
prove Theorem 4.5. We also need the following utility lemma provided by [56].
Lemma 6.5 (Lemma A.2 in [56]). For Adam iterations defined in (3.2)-(3.4) with β1 ≤ β2 and let
α =

√
β2(1−β1)2

(1−β2)(β2−β2
1)

, then mt[k] ≤ α ·
√
vt[k] for all k ∈ [d].

We are now ready to prove Theorem 4.5 for the case ℓ = ℓexp.

Proof of Theorem 4.5. By Lemma 6.2, there exists t2 = t2(d, β1, β2, γ, B) such that

R(wt+1) ≤ R(wt)−
γηt
2

G(wt) (6.1)

for all t ≥ t2. Note that for ℓ = ℓexp, by definition we have G(wt) =
1
n

∑n
i=1 exp(−⟨wt, yi ·xi⟩) =

R(wt). Therefore, for all t > t2, (6.1) can be re-written as

R(wt+1) ≤
(
1− γηt

2

)
· R(wt) ≤ R(wt) · e−

γηt
2 ≤ R(wt2) · e−

γ
∑t

τ=t2
ητ

2 .

Although ℓexp is not Lipschitz continuous over R, we have R(wt2) ≤ R(w0) · eαB
∑t2−1

τ=0 ητ

by Lemma 6.5 and triangle inequality. Letting R0 = min{ log 2
n , 1√

B2+C5η0

} and

t0 = t0(n, d, β1, β2, γ, B, ρ,w0) be the first time such that
∑t0−1

τ=t2
ητ ≥ 2αB

γ

∑t2−1
τ=0 ητ +

2 logR(w0)−2 logR0

γ and t0 ≥ − log ρ. By such definition of t0, we can derive that for all t ≥ t0,

R(wt) ≤ R(wt2) · e−
γ

∑t
τ=t0

ητ

2 · e−
γ

∑t0−1
τ=t2

ητ

2 ≤ R0 · e−
γ

∑t
τ=t0

ητ

2 ,

which proves the bound on R(wt). Since t0 satisfies all the conditions in Lemmas 6.3 and 6.4, by
Lemmas 6.3, 6.4 and the fact that G(wτ ) = R(wτ ) for exponential loss, we have

⟨wt, yi · xi⟩
∥wt∥∞

≥
γ
∑t−1

τ=t0
ητ − C3d

(∑t−1
τ=t0

η
3
2
τ +

∑t−1
τ=t0

η2τ
)
− C4∑t−1

τ=t0
ητ + C6

∑t0−1
τ=0 ητ

for all i ∈ [n], where C3, C4 and C6 are constants solely depending on β1, β2 and B. Now by
definition, we have γ ≥ mini∈[n]⟨wt, yi · xi⟩/∥wt∥∞. Therefore, we have∣∣∣∣∣min

i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣∣ ≤ γC6

∑t0−1
τ=0 ητ + C3d

(∑t−1
τ=t0

η
3
2
τ +

∑t−1
τ=t0

η2τ

)
+ C4∑t−1

τ=t0
ητ + C6

∑t0−1
τ=0 ητ

≤ O

(∑t0−1
τ=0 ητ + d

∑t−1
τ=t0

η
3
2
τ∑t−1

τ=0 ητ

)
,

where the second inequality follows by the assumption that ηt → 0. This finishes the proof.
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7 Conclusion and Future Work

In this paper, we study the implicit bias of Adam under a challenging but insightful setting where the
"stability constant ϵ" is negligible and set to zero. We demonstrate that Adam has an implicit bias
converging towards the maximum ℓ∞-margin solution, and such convergence occurs in polynomials
of time for a general class of learning rates. This result further helps to understand the distinctions
between Adam and (stochastic) gradient descent with/without momentum, whose iterates will
eventually converge to the maximum ℓ2-margin solution with an O(1/ log t) convergence rate. This
finding aligns with the implicit bias of Adam observed in experiments, for both cases the stability
constant ϵ is zero and 10−8. We predict that similar result can be extended to homogeneous neural
networks, and we believe that this is a good future work direction. Moreover, since this paper focuses
on full-batch Adam, another feasible future work is to investigate the implicit bias of stochastic
Adam based on our results. In addition, establishing matching lower bounds for the loss and margin
convergence rates for Adam is also an interesting future work direction.
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A Proof in Section 6

A.1 Preliminary Lemma

It can be figured out that only the product yi ·xi is concerned in (3.1). Therefore, we define zi = yi ·xi,
then (3.1) could be re-written as

R(w) =
1

n

n∑
i=1

ℓ(⟨w, zi⟩).

We also define Z = [z1, z2, · · · , zn]⊤ ∈ Rn×d to denote our sample with i−th row is
z⊤i , and we will use Z ∈ Rn×d to denote the data sample instead of {(xi, yi)}ni=1 in the
following paragraphs. Then G(w) = 1

n

∑n
i=1 −ℓ′(⟨w, zi⟩), and we introduce L′(w) =

[− 1
nℓ

′(⟨w, z1⟩),− 1
nℓ

′(⟨w, z2⟩), · · · ,− 1
nℓ

′(⟨w, zn⟩)]⊤, which means G(w) = ∥L′(w)∥1. The fol-
lowing lemma reveals the relationship between the maximum margin γ and ∇R(wt) by duality.

Lemma A.1. For data sample Z under Assumption 4.1 and maximum ℓ∞-margin γ as defined in
(4.1), then

γ ≤ min
r∈∆n

∥Z⊤r∥1,

where ∆n = {r|r ∈ Rn,
∑n

i=1 ri = 1, ri ≥ 0} is the n dimensional simplex.

Remark A.2. Since L′(wt)
G(wt)

∈ ∆n, and ∇R(wt) = Z⊤L′(wt), we always have γG(wt) ≤
∥∇R(wt)∥1, which is the essence for proving the convergence direction of gradient-based algorithms.
This result was also proposed in [39, 41, 14, 21, 23].

Proof of Lemma A.1. Firstly, we introduce a definition of indicator function ι(·) as

ιE(z) =

{
0, if z ∈ E;

+∞, if z /∈ E,

where E is any set. Let f(r) = ι∆n
(r) and g(z) = ∥z∥1, then we could derive that f∗(r∗) =

maxi∈[n]⟨ei, r∗⟩ is the dual function of f(r) and g∗(z∗) = ι∥z∗∥∞≤1 is the dual function of g(z).
Then by Fenchel-Young inequality, we have

min
r∈∆n

∥Z⊤r∥1 = min
r∈Rn

[
f(r) + g(Z⊤r)

]
≥ max

w∈Rd

[
− f∗(Zw)− g∗(−w)

]
= max

w∈Rd

[
−max

i∈[n]
e⊤i Zw − ι∥w∥∞≤1

]
= max

∥w∥∞≤1
min
i∈[n]

e⊤i Zw = γ.

A.2 Proof of Lemma 6.5

We first introduce the proof of Lemma 6.5 since it will be used for further proof of other lemmas.

Proof of Lemma 6.5. By Cauchy-Schwartz inequality, we could derive an upper bound for mt[k] as

∣∣mt[k]
∣∣ = ∣∣β1mt−1[k] + (1− β1) · ∇R(wt)[k]

∣∣ ≤ t∑
τ=0

βτ
1 (1− β1) ·

∣∣∇R(wt−τ )[k]
∣∣

=

t∑
τ=0

√
βτ
2 (1− β2)

βτ
1 (1− β1)√
βτ
2 (1− β2)

·
∣∣∇R(wt−τ )[k]

∣∣
≤
( t∑

τ=0

βτ
2 (1− β2) · ∇R(wt−τ )[k]

2
) 1

2
( t∑

τ=0

β2τ
1 (1− β1)

2

βτ
2 (1− β2)

) 1
2

≤ α
√
vt[k].

14



The last inequality is from

vt[k] =

t∑
τ=0

βτ
2 (1− β2) · ∇R(wt−τ )[k]

2,

and
t∑

τ=0

β2τ
1 (1− β1)

2

βτ
2 (1− β2)

≤ (1− β1)
2

1− β2

∞∑
τ=0

(β2
1

β2

)τ
=

β2(1− β1)
2

(1− β2)(β2 − β2
1)

= α2.

This finishes the proof.

A.3 Proof of Lemma 6.1

Proof of Lemma 6.1. Let α =
√

β2(1−β1)2

(1−β2)(β2−β2
1)

be defined in Lemma 6.5. For mt[k], it could be
rewritten as

mt[k] =
t∑

τ=0

βτ
1 (1− β1) · ∇R(wt−τ )[k]

= (1− βt+1
1 ) · ∇R(wt)[k] +

t∑
τ=0

(1− β1)β
τ
1 ·
(
∇R(wt−τ )[k]−∇R(wt)[k]

)
.

Therefore the difference between mt[k] and (1− βt+1
1 ) · ∇R(wt)[k] can be bounded as∣∣∣∣mt[k]− (1− βt+1

1 ) · ∇R(wt)[k]

∣∣∣∣ = ∣∣∣∣ t∑
τ=0

(1− β1)β
τ
1 ·
(
∇R(wt−τ )[k]−∇R(wt)[k]

)∣∣∣∣
=

∣∣∣∣ t∑
τ=0

(1− β1)β
τ
1

( 1
n

n∑
i=1

[
ℓ′(⟨wt−τ , zi⟩)− ℓ′(⟨wt, zi⟩)

]
· zi[k]

)∣∣∣∣
≤

t∑
τ=0

(1− β1)β
τ
1

( 1
n

n∑
i=1

∣∣ℓ′(⟨wt, zi⟩)
∣∣∣∣∣∣ℓ′(⟨wt−τ , zi⟩)

ℓ′(⟨wt, zi⟩)
− 1

∣∣∣∣∣∣zi[k]∣∣)
≤ (1− β1)B

t∑
τ=0

βτ
1

( 1
n

n∑
i=1

∣∣ℓ′(⟨wt, zi⟩)
∣∣)(eαB∑τ

τ′=1
ηt−τ′ − 1

)
≤ (1− β1)Bc2ηt · G(wt) = cmηt · G(wt).

The second inequality holds since |zi[k]| ≤ ∥zi∥1 ≤ B, and for both ℓ ∈ {ℓexp, ℓlog}, we have∣∣∣∣ℓ′(⟨wt−τ , zi⟩)
ℓ′(⟨wt, zi⟩)

− 1

∣∣∣∣ ≤ e|⟨wt−wt−τ ,zi⟩| − 1 ≤ e∥wt−wt−τ∥∞∥zi∥1 − 1 ≤ eαB
∑τ

τ′=1
ηt−τ′ − 1,

by Lemma 6.5 and Lemma C.5. The last inequality holds since
∑t

τ=0 β
τ
1

(
eαB

∑τ
τ′=1

ηt−τ′ − 1
)
≤

c2ηt by our Assumption 4.4. Similarly for vt[k], we also have∣∣∣∣vt[k]− (1− βt+1
2 ) · ∇R(wt)[k]

2

∣∣∣∣
=

∣∣∣∣ t∑
τ=0

(1− β2)β
τ
2 ·
(
∇R(wt−τ )[k]

2 −∇R(wt)[k]
2
)∣∣∣∣

=

∣∣∣∣ t∑
τ=0

(1− β2)β
τ
2

( 1

n2

n∑
i,j=1

[
ℓ′(⟨wt−τ , zi⟩)ℓ′(⟨wt−τ , zj⟩)− ℓ′(⟨wt, zi⟩)ℓ′(⟨wt, zj⟩)

]
· zi[k]zj [k]

)∣∣∣∣
≤
∣∣∣∣ t∑
τ=0

(1− β2)β
τ
2

( 1

n2

n∑
i,j=1

∣∣ℓ′(⟨wt, zi⟩)
∣∣∣∣ℓ′(⟨wt, zj⟩)

∣∣∣∣∣∣ℓ′(⟨wt−τ , zi⟩)ℓ′(⟨wt−τ , zj⟩)
ℓ′(⟨wt, zi⟩)ℓ′(⟨wt, zj⟩)

− 1

∣∣∣∣∣∣zi[k]∣∣∣∣zj [k]∣∣)
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≤ 3(1− β2)B
2

t∑
τ=0

βτ
2

( 1

n2

n∑
i,j=1

∣∣ℓ′(⟨wt, zi⟩)
∣∣∣∣ℓ′(⟨wt, zj⟩)

∣∣)(e2αB∑τ
τ′=1

ηt−τ′ − 1
)

≤ 3(1− β2)B
2c2ηt · G(wt)

2 = c2vηt · G(wt)
2.

Similarly, the second inequality holds since |zi[k]||zj [k]| ≤ ∥zi∥1∥zj∥1 ≤ B2, and for both ℓ ∈
{ℓexp, ℓlog}, we have∣∣∣∣ℓ′(⟨wt−τ , zi⟩)ℓ′(⟨wt−τ , zj⟩)

ℓ′(⟨wt, zi⟩)ℓ′(⟨wt, zj⟩)
− 1

∣∣∣∣
≤
(
e|⟨wt−wt−τ ,zi⟩| − 1

)
+
(
e|⟨wt−wt−τ ,zj⟩| − 1

)
+
(
e|⟨wt−wt−τ ,zi+zj⟩| − 1

)
≤
(
e∥wt−wt−τ∥∞∥zi∥1 − 1

)
+
(
e∥wt−wt−τ∥∞∥zj∥1 − 1

)
+
(
e∥wt−wt−τ∥∞∥zi+zj∥1 − 1

)
≤ 3
(
e2αB

∑τ
τ′=1

ηt−τ′ − 1
)

by Lemma 6.5 and Lemma C.6. The last inequality holds since
∑t

τ=0 β
τ
2

(
e2αB

∑τ
τ′=1

ηt−τ′ − 1
)
≤

c2ηt by our Assumption 4.4. Now, it remains to show the upper bound for |
√
vt[k]−

√
1− βt+1

2 ·∣∣∇R(wt)[k]
∣∣. Notice that both vt[k] and (1− βt+1

2 ) · ∇R(wt)[k]
2 are positive and for two positive

numbers a and b, |a2 − b2| = |a− b||a+ b| ≥ |a− b|2, therefore we finally conclude that,∣∣∣√vt[k]−
√

1− βt+1
2 ·

∣∣∇R(wt)[k]
∣∣∣∣∣ ≤ cv

√
ηt · G(wt).

This finishes the proof.

A.4 Proof of Lemma 6.2

Before we prove Lemma 6.2, we first introduce and prove Lemma A.3, which will be used for proving
Lemma 6.2.
Lemma A.3. Under the same condition in Theorem 4.5, there exists t1 = t1(β1, β2, γ), such that
when t > t1, we have∣∣∣∣〈∇R(wt),

mt√
vt

〉
−
∥∥∥∇R(wt)

∥∥∥
1

∣∣∣∣ ≤ 4

√
βt+1
1

1− βt+1
2

·
∥∥∥∇R(wt)

∥∥∥
1

+
d√

1− β2

( 6cv√
1− βt+1

2

√
ηt + 3cmηt

)
· G(wt), (A.1)

where cm and cv are both constants which only depend on β1, β2 and B.

Proof of Lemma A.3. By Lemma 6.1, we could re-write mt[k] and
√

vt[k] as

mt[k] = (1− βt+1
1 ) · ∇R(wt)[k] + cmηt · G(wt) · ϵt,m,k,

and √
vt[k] =

√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣+ cv
√
ηt · G(wt) · ϵt,v,k > 0,

where ϵt,m,k and ϵt,v,k are just some error terms with |ϵt,m,k|, |ϵt,v,k| ≤ 1. Then we can calculate the
inner-product ⟨∇R(wt),

mt√
vt
⟩ for each iteration as

〈
∇R(wt),

mt√
vt

〉
=
∥∥∥∇R(wt)

∥∥∥
1
+

d∑
k=1

∇R(wt)[k] ·
(

mt[k]√
vt[k]

− ∇R(wt)[k]

|∇R(wt)[k]|

)
︸ ︷︷ ︸

(∗)

.
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Moreover, we let

ξt,k = ∇R(wt)[k] ·
(

mt[k]√
vt[k]

− ∇R(wt)[k]

|∇R(wt)[k]|

)
= ∇R(wt)[k] ·

(
(1− βt+1

1 ) · ∇R(wt)[k] + cmηt · G(wt) · ϵt,m,k√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣+ cv
√
ηt · G(wt) · ϵt,v,k

− ∇R(wt)[k]

|∇R(wt)[k]|

)
,

and consider to separate ξt,k into two complementary parts. The first part is ξt,k1At,k
, where

At,k =
{√

1− βt+1
2 ·

∣∣∇R(wt)[k]
∣∣ ≥ 2cv

√
ηt · G(wt) · |ϵt,v,k|

}
. While another part is ξt,k1Ac

t,k
,

where Ac
t,k =

{√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣ < 2cv
√
ηt · G(wt) · |ϵt,v,k|

}
. By such separation, we

have ∣∣(∗)∣∣ = ∣∣∣∣ d∑
k=1

ξt,k1At,k
+ ξt,k1Ac

t,k

∣∣∣∣ ≤ ∣∣∣∣ d∑
k=1

ξt,k1At,k

∣∣∣∣+ ∣∣∣∣ d∑
k=1

ξt,k1Ac
t,k

∣∣∣∣
We calculate it part by part. For the first part

∣∣∑d
k=1 ξt,k1At,k

∣∣, we have

∣∣∣∣ d∑
k=1

ξt,k1At,k

∣∣∣∣ ≤ d∑
k=1

∣∣∣1− βt+1 −
√
1− βt+1

2

∣∣∣ · ∣∣∇R(wt)[k]
∣∣3 + (cmηt + cv

√
ηt

)
· G(wt) ·

∣∣∇R(wt)[k]
∣∣2(√

1− βt+1
2 ·

∣∣∇R(wt)[k]
∣∣+ cv

√
ηt · G(wt) · ϵt,v,k

)
·
∣∣∇R(wt)[k]

∣∣ 1At,k

≤
d∑

k=1

∣∣∣1− βt+1 −
√
1− βt+1

2

∣∣∣ · ∣∣∇R(wt)[k]
∣∣3 + (cmηt + cv

√
ηt

)
· G(wt) ·

∣∣∇R(wt)[k]
∣∣2

1
2

√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣2
≤ 4

√
βt+1
1

1− βt+1
2

·
∥∥∥∇R(wt)

∥∥∥
1
+

2d√
1− βt+1

2

(
cmηt + cv

√
ηt

)
· G(wt). (A.2)

The first inequality is derived by triangle inequality and |ϵt,m,k|, |ϵt,v,k| ≤ 1. The second inequality

holds since
√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣+ cv
√
ηt · G(wt) · ϵt,v,k > 1

2

√
1− βt+1

2 ·
∣∣∇R(wt)[k]

∣∣ when
1At,k

= 1. And the last inequality is simply due to an arithmetic result that∣∣∣1− βt+1
1 −

√
1− βt+1

2

∣∣∣ ≤ ∣∣∣1−√1− βt+1
2

∣∣∣+ βt+1
1 ≤

√
1− 1 + βt+1

2 + βt+1
1 ≤ 2β

t+1
2

1 .

Then for another part
∣∣∑d

k=1 ξt,k1Ac
t,k

∣∣, we use the property
√

vt[k] ≥
√
1− β2 ·

∣∣∇R(wt)[k]
∣∣ to

derive an upper bound as∣∣∣∣ d∑
k=1

ξt,k1Ac
t,k

∣∣∣∣ ≤ d∑
k=1

∣∣∇R(wt)[k]
∣∣ · (∣∣∇R(wt)[k]

∣∣+ cmηt · G(wt)√
1− β2 ·

∣∣∇R(wt)[k]
∣∣ + 1

)
1Ac

t,k

≤ d√
1− β2

( 4cv√
1− βt+1

2

√
ηt + cmηt

)
· R(wt). (A.3)

The first inequality is derived by triangle inequality and |ϵt,m,k| ≤ 1. The second inequality holds
since

∣∣∇R(wt)[k]
∣∣ ≤ 2cv√

1−βt+1
2

√
ηt · G(wt) when 1Ac

t,k
= 1. Combining the results of (A.2),(A.3)

and Lemma C.2, we finally prove finish the proof.

Now, we are ready to prove Lemma 6.2.

Proof of Lemma 6.2. We upper bound R(wt+1) for t > t1 by second-order Taylor expansion as

R(wt+1) = R(wt) +
〈
∇R(wt),wt+1 −wt

〉
+

1

2

(
wt+1 −wt

)⊤∇2R
(
wt + ζ(wt+1 −wt)

)(
wt+1 −wt

)
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= R(wt)−
〈
∇R(wt), ηt

mt√
vt

〉
+

1

2

(
ηt

mt√
vt

)⊤
∇2R

(
wt + ζ(wt+1 −wt)

)(
ηt

mt√
vt

)
≤ R(wt)− ηt

(
1− 4

√
βt+1
1

1− βt+1
2

)
·
∥∥∥∇R(wt)

∥∥∥
1

+ ηt
d√

1− β2

( 6cv√
1− βt+1

2

√
ηt + 3cmηt

)
· G(wt) +

η2tα
2B2

2
·max

{
G(wt),G(wt+1)

}

≤ R(wt)− ηtγ

(
1− 4

√
βt+1
1

1− βt+1
2

)
· G(wt) + η

3
2
t

6cvd√
(1− β2)(1− βt+1

2 )
· G(wt)

+ η2t

(α2B2eαBη0

2
+

3cmd√
1− β2

)
· G(wt).

The first inequality is from Lemma A.3, and for the vector mt√
vt

,

( mt√
vt

)⊤
∇2R(w)

( mt√
vt

)
≤ 1

n

n∑
i=1

ℓ′′
(
⟨w, zi⟩

)∥∥∥ mt√
vt

∥∥∥2
∞

∥∥zi∥∥21 ≤ α2B2 · G(w)

by Lemma C.2 and Lemma 6.5, and G
(
wt + ζ(wt+1 − wt)

)
≤ max

{
G(wt),G(wt+1)

}
from

convexity of G(w). The last inequality is from G(wt+1)
G(wt)

≤ eαBηt ≤ eαBη0 by Lemma C.5 and
γG(wt) ≤ ∥∇R(wt)∥1 by Lemma A.1.

A.5 Proof of Lemma 6.3

Proof of Lemma 6.3. By Lemma 6.2 and Lemma C.2 , we have

R(wt+1) ≤ R(wt) ·
(
1− γηt ·

G(wt)

R(wt)
+
(
C1γηtβ

t/2
1 + η

3
2
t C2d+ η2tC2d

)
· G(wt)

R(wt)

)
≤ R(wt) · exp

(
−γηt ·

G(wt)

R(wt)
+ C1γηtβ

t/2
1 + C2d · (η

3
2
t + η2t )

)
≤ log 2

n
· exp

(
−γ

t∑
τ=t0

ητ · G(wτ )

R(wτ )
+ C2d

( t∑
τ=t0

η
3
2
τ +

t∑
τ=t0

η2τ

)
+

C1γηt0β
t0+1

2
1

1−
√
β1

)
.

(A.4)

for all t ≥ t0. By Lemma C.4, we can derive that ⟨wt, zi⟩ ≥ 0 for all i ∈ [n] and t ≥ t0. Then
we have e−mini∈[n]⟨wt,zi⟩ ≤ 1

log 2 maxi∈[n] ℓ(⟨wt, zi⟩) ≤ n
log 2R(wt) by Lemma C.3. Plugging this

result into (A.4) and taking log on both sides, we finish the proof for Lemma 6.3.

A.6 Proof of Lemma 6.4

Before we prove Lemma 6.4, we first present and prove Lemma A.4 which will be used for proving
Lemma 6.4.

Lemma A.4. For Adam iterations defined in (3.2)-(3.4) with β1 ≤ β2, for any t0 ∈ N+, t > t0, and
all k ∈ [d],

∣∣wt[k]−wt0 [k]
∣∣ ≤ ( t−1∑

τ=t0

ητ

)
·

(
1 +

β2 − β1

1− β2

∑t−1
τ=t0

βτ−t0
1 ητ∑t−1

τ=t0
ητ

+
(β2 − β1)(1− β1)

1− β2

t−1∑
τ=t0

ητ
1−β

τ−t0
1

1−β1
−
∑t−τ−1

τ ′=1 ητ+τ ′βτ ′−1
1∑t−1

τ=t0
ητ

log(vτ [k])

) 1
2

.

(A.5)
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Proof of Lemma A.4. If we consider implementing the Cauchy-Schwartz inequality on the sum of
the iterations, we can get,∣∣wt[k]−wt0 [k]

∣∣ = ∣∣∣∣ t−1∑
τ=t0

ητ
mτ [k]√
vτ [k]

∣∣∣∣
=

∣∣∣∣ t−1∑
τ=t0

ητ√
vτ [k]

(
βτ−t0+1
1 mt0−1[k] +

τ−t0∑
τ ′=0

βτ ′

1 (1− β1) · ∇R(wτ−τ ′)[k]
)∣∣∣∣

≤
[ t−1∑
τ=t0

ητ
vτ [k]

(
βτ−t0+1
1 mt0−1[k]

2 +

τ−t0∑
τ ′=0

βτ ′

1 (1− β1) · ∇R(wτ−τ ′)[k]2
)] 1

2

·
[ t−1∑
τ=t0

ητ

(
βτ−t0+1
1 +

τ−t0∑
τ ′=0

βτ ′

1 (1− β1)
)] 1

2

=

[ t−1∑
τ=t0

( ητ
vτ [k]

βτ−t0+1
1 mt0−1[k]

2 +

τ−t0∑
τ ′=0

ητβ
τ ′

1

1− β1

1− β2

vτ−τ ′ [k]− β2vτ−τ ′−1[k]

vτ [k]

)
︸ ︷︷ ︸

(∗)

] 1
2
( t−1∑

τ=t0

ητ

) 1
2

.

(A.6)

The inequality is by Cauchy-Schwartz inequality and the second equality is from

(1− β2) · ∇R(wτ−τ ′)[k]2 = vτ−τ ′ [k]− β2vτ−τ ′−1[k],

and
t−1∑
τ=t0

ητ

(
βτ−t0+1
1 +

τ−t0∑
τ ′=0

βτ ′

1 (1− β1)
)
=

t−1∑
τ=t0

ητ

(
βτ−t0+1
1 + 1− βτ−t0+1

1

)
=

t−1∑
τ=t0

ητ .

For the first part (∗) defined in (A.6), we could re-arrange it as,

(∗) =
t−1∑
τ=t0

ητ
vτ [k]

βτ−t0+1
1 mt0−1[k]

2

+

t−1∑
τ=t0

ητ (1− β1)
vτ [k]− β2β

τ−t0
1 vt0−1[k] + (β1 − β2)

∑τ−t0
τ ′=1 β

τ ′−1
1 vτ−τ ′ [k]

(1− β2)vτ [k]

≤
t−1∑
τ=t0

ητ
vτ [k]

βτ−t0
1

(
β1α

2 − β2(1− β1)

1− β2

)
vt0−1[k] +

1− β1

1− β2

t−1∑
τ=t0

ητ

+
(1− β1)(β1 − β2)

1− β2

t−1∑
τ=t0

τ−t0∑
τ ′=1

ητβ
τ ′−1
1

vτ−τ ′ [k]

vτ [k]

≤ 1− β1

1− β2

t−1∑
τ=t0

ητ +
(1− β1)(β1 − β2)

1− β2

t−1∑
τ=t0

τ−t0∑
τ ′=1

ητβ
τ ′−1
1

vτ−τ ′ [k]

vτ [k]

=

t−1∑
τ=t0

ητ +
β2 − β1

1− β2

t−1∑
τ=t0

ητ − (1− β1)(β2 − β1)

1− β2

t−1∑
τ=t0

τ−t0∑
τ ′=1

ητβ
τ ′−1
1

vτ−τ ′ [k]

vτ [k]

=

t−1∑
τ=t0

ητ +
β2 − β1

1− β2

t−1∑
τ=t0

ητ

(
1− (1− β1)

τ−t0∑
τ ′=1

βτ ′−1
1

vτ−τ ′ [k]

vτ [k]

)

=

t−1∑
τ=t0

ητ +
β2 − β1

1− β2

t−1∑
τ=t0

ητ

(
βτ−t0
1 + (1− β1)

τ−t0∑
τ ′=1

βτ ′−1
1 − (1− β1)

τ−t0∑
τ ′=1

βτ ′−1
1

vτ−τ ′ [k]

vτ [k]

)

=

t−1∑
τ=t0

ητ +
β2 − β1

1− β2

t−1∑
τ=t0

ητ

(
βτ−t0
1 + (1− β1)

τ−t0∑
τ ′=1

βτ ′−1
1

(
1− vτ−τ ′ [k]

vτ [k]

))
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≤
t−1∑
τ=t0

ητ +
β2 − β1

1− β2

t−1∑
τ=t0

ητ

(
βτ−t0
1 + (1− β1)

τ−t0∑
τ ′=1

βτ ′−1
1 log

( vτ [k]

vτ−τ ′ [k]

))

=

t−1∑
τ=t0

ητ +
β2 − β1

1− β2

t−1∑
τ=t0

ητβ
τ−t0
1 +

(β2 − β1)(1− β1)

1− β2

t−1∑
τ=t0

ητ

τ−t0∑
τ ′=1

βτ ′−1
1

[
log(vτ [k])− log(vτ−τ ′ [k])

]
=

t−1∑
τ=t0

ητ +
β2 − β1

1− β2

t−1∑
τ=t0

ητβ
τ−t0
1

+
(β2 − β1)(1− β1)

1− β2

( t−1∑
τ=t0

ητ
1− βτ−t0

1

1− β1
log(vτ [k])−

t−1∑
τ=t0

ητ

τ−t0∑
τ ′=1

βτ ′−1
1 log(vτ−τ ′ [k])

)
τ∗=τ−τ ′

=======

t−1∑
τ=t0

ητ +
β2 − β1

1− β2

t−1∑
τ=t0

ητβ
τ−t0
1

+
(β2 − β1)(1− β1)

1− β2

( t−1∑
τ=t0

ητ
1− βτ−t0

1

1− β1
log(vτ [k])−

t−1∑
τ=t0

ητ

τ−1∑
τ∗=t0

βτ−τ∗−1
1 log(vτ∗ [k])

)

=

t−1∑
τ=t0

ητ +
β2 − β1

1− β2

t−1∑
τ=t0

ητβ
τ−t0
1

+
(β2 − β1)(1− β1)

1− β2

( t−1∑
τ=t0

ητ
1− βτ−t0

1

1− β1
log(vτ [k])−

t−1∑
τ∗=t0

log(vτ∗ [k])

t−1∑
τ=τ∗+1

ητβ
τ−τ∗−1
1

)

=

t−1∑
τ=t0

ητ +
β2 − β1

1− β2

t−1∑
τ=t0

ητβ
τ−t0
1

+
(β2 − β1)(1− β1)

1− β2

t−1∑
τ=t0

(
ητ

1− βτ−t0
1

1− β1
−

t−τ−1∑
τ ′=1

ητ+τ ′βτ ′−1
1

)
log(vτ [k]). (A.7)

Plugging (A.7) into (A.6), then we derive the result of (A.5).

Now we are ready to prove Lemma 6.4.

Proof of Lemma 6.4. Considering the last two terms on the RHS of (A.7), for the second term, we
can upper-bound it as,

β2 − β1

1− β2

t−1∑
τ=t0

ητβ
τ−t0
1 ≤ ηt0(β2 − β1)

(1− β1)(1− β2)
,

since ηt is decreasing. Let C5 = c2v in statement of Lemma A.4. Then for the third term, by
Lemma 6.1 and our condition R(wt) ≤ 1√

B2+C5η0

, we have

vt[k] ≤ ∇R(wt)[k]
2 + c2vηt · G(wt)

2 ≤ (B2 + C5η0) · R(wt)
2 ≤ 1

for all k ∈ [d], which implies that log(vt[k]) < 0 for all t > t0. On the other hand,

log(vt[k]) ≥ log(βt
2(1− β2)∇R(w0)[k]

2) ≥ t log β2 + log(1− β2) + log ρ,

and

ητ
1− βτ−t0

1

1− β1
−

t−τ−1∑
τ ′=1

ητ+τ ′βτ ′−1
1 ≥ ητ

(1− βτ−t0
1

1− β1
−

t−τ−1∑
τ ′=1

βτ ′−1
1

)
≥ −ητ

βτ−t0
1

1− β1
.

Combining these results, we can upper-bound the third term as,

(β2 − β1)(1− β1)

1− β2

t−1∑
τ=t0

(
ητ

1− βτ−t0
1

1− β1
−

t−τ−1∑
τ ′=1

ητ+τ ′βτ ′−1
1

)
log(vτ [k])
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≤ β2 − β1

1− β2

t−1∑
τ=t0

ητβ
τ−t0
1

(
− τ log β2 − log(1− β2)− log ρ

)
≤ ηt0(β2 − β1)

(1− β1)(1− β2)

[(
t0 +

1

1− β1

)
(− log β2)− log(1− β2)− log ρ

]
.

Plugging these results into (A.5) with Bernoulli inequality, we have,

|wt[k]| ≤ |wt0 [k]|+
t−1∑
τ=t0

ητ +
ηt0(β2 − β1)

2(1− β1)(1− β2)

[(
t0 +

1

1− β1

)
(− log β2)− log(1− β2)− log ρ+ 1

]

≤
t−1∑
τ=t0

ητ + α

t0−1∑
τ=0

ητ +
ηt0(β2 − β1)

2(1− β1)(1− β2)

[(
t0 +

1

1− β1

)
(− log β2)− log(1− β2)− log ρ+ 1

]

≤
t−1∑
τ=t0

ητ + α

t0−1∑
τ=0

ητ + C ′
6η0t0 ≤

t−1∑
τ=t0

ητ + C6

t0−1∑
τ=0

ητ ,

where C6 and C ′
6 are constants only depending on β1, β2 and B. The second inequality is from

triangle inequality of |wt0 [k]| and Lemma 6.5. The third inequality is from our condition t0 > − log ρ
and the last inequality is because ηt is decreasing. Since the preceding result holds for all k ∈ [d], it
also holds for ∥wt∥∞, which finishes the proof.

B Complete Proof for Theorem 4.5 and Calculation Details for Corollary 4.7

B.1 Complete Proof for Theorem 4.5

Proof of Theorem 4.5. For C1, C2 defined in Lemma 6.2, it’s trivial that when t is large we
have the following inequalities hold:(i).βt/2

1 ≤ 1
6C1

; (ii).ηt ≤ min
{

γ2

36C2
2d

2 ,
γ

6C2d

}
. We use

t2 = t2(d, β1, β2, γ, B) to denote the first time that all the preceding inequalities hold after
t1 = t1(β1, β2, B) in Assumption 4.4. Plugging all aforementioned inequality conditions into
Lemma 6.2, we can derive that for all t ≥ t2,

R(wt+1) ≤ R(wt)−
ηtγ

2
G(wt). (B.1)

Therefore we prove that R(wt+1) < R(wt) for all t ≥ t2. For further proof, we separately consider
ℓ = ℓexp and ℓ = ℓlog.

When ℓ = ℓexp, by definition we have G(wt) = R(wt). Therefore, for all t ≥ t2, (B.1) can be
re-written as

R(wt+1) ≤
(
1− γηt

2

)
· R(wt) ≤ R(wt) · e−

γηt
2 ≤ R(wt2) · e−

γ
∑t

τ=t2
ητ

2 .

Although ℓexp is not Lipschitz continuous over R, we have

R(wt2) ≤ R(w0) · exp
( 1
n

n∑
i=1

∥xi∥1∥wt2 −w0∥∞
)
≤ R(w0) · exp

(
αB

t2−1∑
τ=0

ητ

)
by Lemma 6.5 and triangle inequality. Letting R0 = min{ log 2

n , 1√
B2+c2vη0

} and t0 =

t0(n, d, β1, β2, γ, B, t1,w0) be the first time be the first time such that
∑t0−1

τ=t2
ητ ≥ 2αB

γ

∑t2−1
τ=0 ητ +

2 logR(w0)−2 logR0

γ and t0 ≥ − log ρ. By such definition of t0, we can derive that for all t ≥ t0,

R(wt) ≤ R(wt2) · e−
γ

∑t
τ=t0

ητ

2 · e−
γ

∑t0−1
τ=t2

ητ

2 ≤ R0 · e−
γ

∑t
τ=t0

ητ

2 .

Since t0 satisfies all the requirements in Lemma 6.3 and Lemma 6.4, we can finally derive that∣∣∣∣min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣ ≤ γC6

∑t0−1
τ=0 ητ + C3d

(∑t−1
τ=t0

η
3
2
τ +

∑t−1
τ=t0

η2τ

)
+ C4∑t−1

τ=t0
ητ + C6

∑t0−1
τ=0 ητ
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≤ O

(∑t0−1
τ=0 ητ + d

∑t−1
τ=t0

η
3
2
τ∑t−1

τ=0 ητ

)
,

since the decay learning rate ηt → 0 by Assumption 4.3, and C3, C4 and C6 are constants solely
depending on β1, β2 and B.

When ℓ = ℓlog, by taking a telescoping sum on the result of (B.1), we obtain γ
∑t

τ=t2
ητG(wt) ≤

2R(wt2) for any t ≥ t2. Since ℓlog is 1-Lipschitz continuous, we can derive that R(wt1) ≤ R(w0)+

αB
∑t2−1

τ=0 ητ . Letting R0 = min{ log 2
n , 1√

B2+c2vη0

} and t0 = t0(n, d, β1, β2, γ, B, t1,w0) be the

first time such that
∑t0−1

τ=t2
ητ ≥ 4R(w0)+4αB

∑t2−1
τ=0 ητ

γR0
and t0 ≥ − log ρ, then we can conclude that

min
τ∈[t2,t0]

G(wτ ) ≤
2R(wt2)

γ
∑t0−1

τ=t2
ητ

≤
2R(w0) + 2αB

∑t2−1
τ=0 ητ

γ
∑t0−1

τ=t2
ητ

≤ R0

2
.

Let τ ′ = argminτ∈[t2,t0] G(wτ ), then we obtain that ⟨zi,wτ ′⟩ ≥ 0 for all i ∈ [n] by Lemma C.4.
Moreover, by Lemma C.3 and the monotonicity of R(wt) derived in (B.1), we can conclude that
R(wt) < R(wτ ′) ≤ 2G(wτ ′) ≤ R0 for all t > t0. Similarly, the inequality R(wt) < R0 also
implies ⟨zi,wt⟩ ≥ 0 for all t > t0 by Lemma C.4, and correspondingly R(wt) ≤ 2G(wt) by
Lemma C.3. Then for all t ≥ t0, we can re-write (B.1) as

R(wt) ≤ R(wt−1)−
γηt−1

2
· G(wt) ≤

(
1− γηt−1

4

)
· R(wt−1)

≤ R(wt−1) · e−
γηt−1

4 ≤ R(wt0) · e
− γ

4

∑t−1
τ=t0

ητ ≤ R0 · e−
γ
4

∑t−1
τ=t0

ητ .

By this result and Lemma C.7, we have

G(wt)

R(wt)
≥ 1− nR(wt)

2
≥ 1− nR0 · e−

γ
4

∑t−1
τ=t0

ητ

2
≥ 1− e−

γ
4

∑t−1
τ=t0

ητ . (B.2)

Since t0 satisfies all the requirements in Lemma 6.3 and Lemma 6.4, we can combine Lemma 6.3,
Lemma 6.4 and (B.2) and finally derive that

∣∣∣∣min
i∈[n]

⟨wt, yi · xi⟩
∥wt∥∞

− γ

∣∣∣∣ ≤ γC6

∑t0−1
τ=0 ητ + C3d

(∑t−1
τ=t0

η
3
2
τ +

∑t−1
τ=t0

η2τ

)
+ C4 +

∑t−1
τ=t0

ητe
− γ

4

∑τ−1

τ′=t0
η′
τ∑t−1

τ=t0
ητ + C6

∑t0−1
τ=0 ητ

≤ O

(∑t0−1
τ=0 ητ + d

∑t−1
τ=t0

η
3
2
τ +

∑t−1
τ=t0

ητe
− γ

4

∑τ−1

τ′=t0
η′
τ∑t−1

τ=0 ητ

)
,

since the decay learning rate ηt → 0 by Assumption 4.3, and C3, C4 and C6 are constants solely
depending on β1, β2 and B.

B.2 Calculation Details for Corollary 4.7

In this section, we use the notation C1, C2, C3, . . . to denote constants solely depending on β1, β2, γ
and B. While it may seem an abuse of notation as these symbols could be different from Section 6 or
denote distinct constants across different formulas, we assert that their exact values are immaterial for
our analysis. Therefore, we opt for this shorthand notation for the sake of brevity and clarity, without
concern for the precise numerical values of these constants in each instance.

For given ηt = (t+ 2)−a with a ∈ (0, 1], recall the definition of t2 in Appendix B.1 to be the first
time such that (i).βt/2

1 ≤ 1
6C1

; (ii).ηt ≤ min
{

γ2

36C2
2d

2 ,
γ

6C2d

}
. We can derive that

t2 = max

{
− 2 log 6 + 2 logC1

log β1
,
(36C2

2d
2

γ2

) 1
a

,
(6C2d

γ

) 1
a

}
= C3d

2
a .

We consider the following four cases,
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• If ℓ = ℓexp and a ∈ (0, 1), recall in Appendix B.1, the definition for t0 when ℓ = ℓexp is the
first time such that

∑t0−1
τ=t2

ητ ≥ 2αB
γ

∑t2−1
τ=0 ητ +

2 logR(w0)−2 logR0

γ and t0 ≥ − log ρ, by simple
approximation from integral of t−a, we can derive that,

t0 ≤ C1d
2
a + C2[log n]

1
1−a + C3[logR(w0)]

1
1−a + C4 log(1/ρ).

Similarly, we can also derive

t0−1∑
τ=0

ητ ≤ C1t
1−a
0 ≤ C2d

2(1−a)
a + C3 log n+ C4 logR(w0) + C5[log(1/ρ)]

1−a.

When a > 2
3 ,
∑∞

τ=t0
η

3
2
τ is bounded by some constant,

∑t−1
τ=0 ητ = O(t1−a) and 2(1−a)

a < 1,
therefore we conclude that,∣∣∣∣min

i∈[n]

⟨wexp
t , zi⟩

∥wexp
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d+ log n+ logR(w0) + [log(1/ρ)]1−a

t1−a

)
.

When a = 2
3 , similarly we have

∑t−1
τ=t0

η
3
2
τ = O(log t) and

∑t−1
τ=0 ητ = O(t1/3), then we conclude

that ∣∣∣∣min
i∈[n]

⟨wexp
t , zi⟩

∥wexp
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d · log t+ log n+ logR(w0) + [log(1/ρ)]1/3

t1/3

)
.

When a < 2
3 , similarly we have

∑t−1
τ=t0

η
3
2
τ = O(t1−

3a
2 ) and

∑t−1
τ=0 ητ = O(t1−a). Under this

sub-case, we could always find a new t′0 ≥ t0 such that besides the preceding condition for t0, we
also have d · t′1−3a/2

0 > max{d
2(1−a)

a , log n, logR(w0), [log(1− ρ)]1−a}. Letting this new t′0 to
be the t0 in our statement of Corollary 4.7, then we conclude that,∣∣∣∣min
i∈[n]

⟨wexp
t , zi⟩

∥wexp
t ∥∞

− γ

∣∣∣∣ ≤O

(
d · t1− 3a

2 + d
2(1−a)

a + log n+ logR(w0) + [log(1/ρ)]1−a

t1−a

)
≤ O

(
d

ta/2

)
.

• If ℓ = ℓexp and a = 1, then by the definition of t0 and integral of t−1, we obtain that,

log t0 ≤ C1 log d+ C2 log n+ C3 logR(w0) + C4 log log(1/ρ).

Similarly, we can also derive

t0−1∑
τ=0

ητ ≤ C1 log d+ C2 log n+ C3 logR(w0) + C4 log log(1/ρ).

Since
∑t−1

τ=0 ητ = O(log t) and
∑t−1

τ=t0
η

3
2
τ is bounded, we obtain that,∣∣∣∣min

i∈[n]

⟨wexp
t , zi⟩

∥wexp
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d+ log n+ logR(w0) + log log(1/ρ)

log t

)
.

• If ℓ = ℓlog and a ∈ (0, 1), firstly we upper bound the last term
∑t

τ=t0
ητe

− γ
4

∑τ−1

τ′=t0
ητ′ as

t−1∑
τ=t0

ητe
− γ

4

∑τ−1

τ′=t0
ητ′ ≤ e

γ(t0+1)1−a

4(1−a)

∞∑
τ=t0

1

(τ + 2)a
e−

γ(τ+1)1−a

4(1−a) ≤ 4

γ
e

γ
4(1−a) .

Therefore,
∑t

τ=t0
ητe

− γ
4

∑τ−1

τ′=t0
ητ′ is always bounded by a constant. The only difference between

ℓlog and ℓexp is how to determine the value of t0. For ℓlog, the formula for t0 is the first time such

that
∑t0−1

τ=t2
ητ ≥ 4R(w0)+4αB

∑t2−1
τ=0 ητ

γR0
and t ≥ log(1/ρ). Similar to the preceding process, we

could derive that

t0 ≤ C1n
1

1−a d
2
a + C2n

1
1−a [R(w0)]

1
1−a + C3 log(1/ρ).
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and
t0−1∑
τ=0

ητ ≤ C1nd
2(1−a)

a + C2nR(w0) + C3[log(1/ρ)]
1−a.

When a > 2
3 ,
∑∞

τ=t0
η

3
2
τ is bounded by some constant,

∑t−1
τ=0 ητ = O(t1−a) and 2(1−a)

a ≤ 1,
therefore we conclude that∣∣∣∣min

i∈[n]

⟨wlog
t , zi⟩

∥wlog
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d+ nd

2(1−a)
a + nR(w0) + [log(1/ρ)]1−a

t1−a

)
.

When a = 2
3 , similarly we have

∑t−1
τ=t0

η
3
2
τ = O(log t) and

∑t−1
τ=0 ητ = O(t1/3), then we conclude

that ∣∣∣∣min
i∈[n]

⟨wlog
t , zi⟩

∥wlog
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d · log t+ nd+ nR(w0) + [log(1/ρ)]1/3

t1/3

)
.

When a < 2
3 , similarly we have

∑t−1
τ=t0

η
3
2
τ = O(t1−

3a
2 ) and

∑t−1
τ=0 ητ = O(t1−a). Under this

setting, we could always find a new t′0 ≥ t0 such that besides the preceding condition for t0, we
also have d · t′1−3a/2

0 > max{nd
2(1−a)

a , n logR(w0), [log(1− ρ)]1−a}. Letting this new t′0 to be
the t0 in our statement of Corollary 4.7, then we conclude that,∣∣∣∣min

i∈[n]

⟨wlog
t , zi⟩

∥wlog
t ∥∞

− γ

∣∣∣∣ ≤O

(
d · t1− 3a

2 + nd
2(1−a)

a + nR(w0) + [log(1/ρ)]1−a

t1−a

)
≤ O

(
d

ta/2

)
.

• If ℓ = ℓlog and a = 1, firstly we upper bound the last term
∑t

τ=t0
ητe

− γ
4

∑τ−1

τ′=t0
ητ′ as

t−1∑
τ=t0

ητe
− γ

4

∑τ−1

τ′=t0
ητ′ ≤ (t0 + 1)γ/4

∞∑
τ=t0

1

(τ + 1)1+γ/4
≤ γ

4
2γ/4,

which implies
∑t

τ=t0
ητe

− γ
4

∑τ−1

τ′=t0
ητ′ is also a constant. Then by the definition of t0 and integral

of t−1, we obtain that

log t0 ≤ C1n log d+ C2nR(w0) + C3 log log(1/ρ).

and similarly
t0−1∑
τ=0

≤ C1n log d+ C2nR(w0) + C3 log log(1/ρ).

Since
∑t−1

τ=0 ητ = O(log t) and
∑t−1

τ=t0
η

3
2
τ is bounded, we obtain that∣∣∣∣min

i∈[n]

⟨wlog
t , zi⟩

∥wlog
t ∥∞

− γ

∣∣∣∣ ≤ O

(
d+ n log d+ nR(w0) + log log(1/ρ)

log t

)
.

C Technical Lemmas

C.1 Lemma for Assumption 4.4

Lemma C.1. Assumption 4.4 holds for both small fixed learning rate ηt = η ≤ 1−β
2c1

, and decay
learning rate ηt = (t+ 2)−a with a ∈ (0, 1].

Proof of Lemma C.1. Firstly, we prove it for learning rate ηt = η ≤ 1−β
2c1

, which is a small fixed
constant, then we have,

t∑
τ=0

βτ
(
ec1

∑τ
τ′=1

ηt−τ′ − 1
)
=

t∑
τ=0

βτ
(
ec1ητ − 1

)
=

t∑
τ=0

βτ
∞∑
k=1

(c1ητ)
k

k!
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≤
∞∑
τ=0

βτ
∞∑
k=1

(c1ητ)
k

k!
=

∞∑
k=1

(c1η)
k

k!

∞∑
τ=0

βττk

≤ 1

1− β

∞∑
k=1

( c1η

1− β

)k
≤ 2c1

(1− β)2
η

The penultimate inequality holds because
∑∞

τ=0 β
ττk ≤

∫∞
0

βττkdτ = k!
[− log(β)]k+1 ≤ k!

(1−β)k+1 .

Therefore, we prove that Assumption 4.4 holds for t ∈ N+ when ηt = η ≤ 1−β
2c1

. Next, we consider
the case where decay learning rate ηt =

1
(t+2)a with a ∈ (0, 1), and similarly, we have,

τ∑
τ ′=1

ηt−τ ′ =

τ∑
τ ′=1

1

(t− τ ′ + 2)a
≤
∫ τ+1

1

1

(t− τ ′ + 2)a
dτ ′

=
1

1− a

(
(t+ 1)1−a − (t− τ + 1)1−a

)
=

1

1− a

τ + (t+ 1)1−a(t− τ + 1)a − (t+ 1)a(t− τ + 1)1−a

(t+ 1)a + (t− τ + 1)a

≤ 2

(1− a)

τ

(t+ 1)a

By this result, we can similarly obtain that for t ≥
(

4c1
(1−β)2(1−a)

) 1
a

.

t∑
τ=0

βτ
(
ec1

∑τ
τ′=1

ηt−τ′ − 1
)
≤

t∑
τ=0

βτ
(
e

2c1τ

(1−a)(t+1)a − 1
)
=

t∑
τ=0

βτ
∞∑
k=1

( 2c1τ

(1− a)(t+ 1)a

)k 1

k!

≤
∞∑
τ=0

βτ
∞∑
k=1

( 2c1τ

(1− a)(t+ 1)a

)k 1

k!
=

∞∑
k=1

( 2c1
(1− a)(t+ 1)a

)k 1

k!

∞∑
τ=0

βττk

≤ 1

1− β

∞∑
k=1

( 2c1
(1− β)(1− a)(t+ 1)a

)k
≤ 4c1

(1− β)2(1− a)
· 1

(t+ 1)a
<

8c1
(1− β)2(1− a)

· ηt.

Therefore, we prove that Assumption 4.4 holds for t ≥
(

4c1
(1−β)2(1−a)

) 1
a

when ηt =
1

(t+2)a . Finally

we consider the case where the decay learning rate ηt =
1

t+2 , and similarly, we have
∑τ

τ ′=1 ηt−τ ′ =∑τ
τ ′=1

1
t−τ ′+2 ≤

∫ τ+1

1
1

t−τ ′+2dτ
′ = log(1 + τ

t−τ+1 ). By this result, we obtain that

t∑
τ=0

βτ
(
ec1

∑τ
τ′=1

ηt−τ′ − 1
)
≤

t∑
τ=0

βτ

((
1 +

τ

t− τ + 1

)⌈c1⌉
− 1

)

=

t∑
τ=0

βτ

⌈c1⌉∑
k=1

(
⌈c1⌉
k

)( τ

t− τ + 1

)k
. (C.1)

Because ⌈c1⌉ and
(⌈c1⌉

k

)
are both absolute constant, it suffices to show that

∑t
τ=0 β

τ
(

τ
t−τ+1

)k
≤

c2
t+2 for all t > t1 and k ≥ 1 where t1, c2 are both constants. Actually, we could split the summation
of τ into two parts as

t∑
τ=0

βτ
( τ

t− τ + 1

)k
=

⌊ t
2 ⌋∑

τ=0

βτ
( τ

t− τ + 1

)k
+

t∑
τ=⌊ t

2 ⌋+1

βτ
( τ

t− τ + 1

)k
.
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For the first part, we have

⌊ t
2 ⌋∑

τ=0

βτ
( τ

t− τ + 1

)k
≤
(2
t

)k ⌊ t
2 ⌋∑

τ=0

βττk ≤ 2kk!

(1− β)k+1
· 1
t
.

For the second part, we could find a constant t1 = t1(c1, β) such that t⌈c1⌉+2 ≤
(

1
β

) t
2

for all t ≥ t1

since 1
β > 1. Then for all t ≥ t1, we can derive that

t∑
τ=⌊ t

2 ⌋+1

βτ
( τ

t− τ + 1

)k
≤ β

t
2

t∑
τ=⌊ t

2 ⌋+1

τk ≤ β
t
2 tk+1 ≤ 1

t
.

The last inequality is by our condition t ≥ t1 and k ≤ ⌈c1⌉. Combining these two results and
plugging it into (C.1), we finally get

t∑
τ=0

βτ
(
ec1

∑τ
τ′=1

ηt−τ′ − 1
)
≤ ⌈c1⌉ · max

k∈[⌈c1⌉]

(
⌈c1⌉
k

)
·
(

2⌈c1⌉⌈c1⌉!
(1− β)⌈c1⌉+1

+ 1

)
· 1
t

≤ 2⌈c1⌉ · max
k∈[⌈c1⌉]

(
⌈c1⌉
k

)
·
(

2⌈c1⌉⌈c1⌉!
(1− β)⌈c1⌉+1

+ 1

)
· ηt

for all t ≥ t1, which completes the proof.

C.2 Properties for Logistic and Exponential Loss Function

Lemma C.2. For ℓ ∈ {ℓexp, ℓlog} and any z ∈ R, ℓ′′(z) ≤ |ℓ′(z)| ≤ ℓ(z). For any z ≥ 0,
ℓlog(z) ≤ 2|ℓ′log(z)|.

Proof of Lemma C.2. For ℓ = ℓexp, |ℓ′exp(z)| = ℓ′′exp(z) = ℓexp(z) = e−z . For ℓ = ℓlog, we
calculate the derivatives as ℓ′log(z) = − 1

1+ez and ℓ′′log(z) =
ez

(1+ez)2 . Notice that

lim
z→+∞

ℓlog(z) = lim
z→+∞

|ℓ′log(z)| = 0,

and

ℓ′log(z) = − 1

1 + ez
≤ − 1

2 + ez + e−z
= −ℓ′′log(z) =

(
|ℓ′log(z)|

)′
.

Therefore we derive that ℓ′′log(z) ≤ |ℓ′log(z)| ≤ ℓlog(z).

Lemma C.3. For any z ≥ 0,
|ℓ′log(z)|
ℓlog(z)

,
|ℓ′log(z)|
ℓexp(z)

≥ 1
2 and ℓlog(z)

ℓexp(z)
≥ log 2.

Proof of Lemma C.3. For z ≥ 0, it holds that

ℓlog(z) ≤ ℓexp(z) =
2

2ez
≤ 2

1 + ez
= 2|ℓ′log(z)|.

The second result holds because ℓlog(z)
ℓexp(z)

= log(1+e−z)
e−z is an decreasing function for e−z and e−z ∈

(0, 1] for z ≥ 0.

Lemma C.4. For ℓ ∈ {ℓexp, ℓlog}, either G(w) ≤ 1
2n or R(w) ≤ log 2

n implies ⟨w, zi⟩ ≥ 0 for all
i ∈ [n].

Proof of Lemma C.4. If G(w) ≤ 1
2n , we have

∣∣ℓ′(⟨w, zi⟩)
∣∣ ≤ nG(w) ≤ 1

2 . Then by monotonicity of
|ℓ′(·)| we have ⟨w, zi⟩ ≥ 0. Similarly if R(w) ≤ log 2

n , we also have ℓ(⟨w, zi⟩) ≤ nR(w) ≤ log 2.
Then by monotonicity of ℓ(·) we have ⟨w, zi⟩ ≥ 0.

Lemma C.5. For ℓ ∈ {ℓexp, ℓlog} and any z1, z2 ∈ R, we have∣∣∣∣ℓ′(z1)ℓ′(z2)
− 1

∣∣∣∣ ≤ e|z1−z2| − 1 (C.2)
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Proof of Lemma C.5. For ℓ = ℓexp,∣∣∣∣ℓ′exp(z1)ℓ′exp(z2)
− 1

∣∣∣∣ = ∣∣∣ez2−z1 − 1
∣∣∣ ≤ e|z2−z1| − 1

the inequality is from |ex − 1| ≤ e|x| − 1. For ℓ = ℓlog,∣∣∣∣ℓ′log(z1)ℓ′log(z2)
− 1

∣∣∣∣ = ∣∣∣1 + ez2

1 + ez1
− 1
∣∣∣ = ∣∣∣ez2 − ez1

1 + ez1

∣∣∣ ≤ ∣∣∣ez2 − ez1

ez1

∣∣∣ ≤ e|z2−z1| − 1

Lemma C.6. For ℓ ∈ {ℓexp, ℓlog} and any z1, z2, z3, z4 ∈ R, we have∣∣∣∣ℓ′(z1)ℓ′(z3)ℓ′(z2)ℓ′(z4)
− 1

∣∣∣∣ ≤ (e|z1−z2| − 1
)
+
(
e|z3−z4| − 1

)
+
(
e|z1+z3−z2−z4| − 1

)
(C.3)

Proof of Lemma C.6. For ℓ = ℓexp,∣∣∣∣ℓ′exp(z1)ℓ′exp(z3)ℓ′exp(z2)ℓ
′
exp(z4)

− 1

∣∣∣∣ = ∣∣∣ez2+z4−z1−z3 − 1
∣∣∣ ≤ (e|z1+z3−z2−z4| − 1

)
the inequality is from |ex − 1| ≤ e|x| − 1. For ℓ = ℓlog,∣∣∣∣ℓ′log(z1)ℓ′log(z3)ℓ′log(z2)ℓ

′
log(z4)

− 1

∣∣∣∣ = ∣∣∣∣ (1 + ez2)(1 + ez4)

(1 + ez1)(1 + ez3)
− 1

∣∣∣∣ = ∣∣∣∣ez2 + ez4 + ez2+z4 − ez1 − ez3 − ez1+z3

1 + ez1 + ez3 + ez1+z3

∣∣∣∣
≤
∣∣∣∣ez2 − ez1

ez1

∣∣∣∣+ ∣∣∣∣ez4 − ez3

ez3

∣∣∣∣+ ∣∣∣∣ez2+z4 − ez1+z3

ez1+z3

∣∣∣∣
≤
(
e|z1−z2| − 1

)
+
(
e|z3−z4| − 1

)
+
(
e|z1+z3−z2−z4| − 1

)
Lemma C.7. For ℓ = ℓlog, and any w ∈ Rd, we have

G(wt)

R(w)
≥ 1− nR(w)

2

Proof of Lemma C.7. Let ri = ℓlog(⟨w, zi⟩) = log(1 + e−⟨w,zi⟩) and f(z) = 1 − e−z , then
|ℓ′log(⟨w, zi⟩)| = e−⟨w,zi⟩

1+e−⟨w,zi⟩
= eri−1

eri = f(zi). Therefore for any given R(w), finding minG(wt)

equals to the following optimization problem,

min
1

n

n∑
i=1

f(ri) s.t.
n∑

i=1

ri = nR(w), ri ≥ 0 for all i ∈ [n]

Since f(z) is an increasing function and the increasing rate would be slow as z increase since
f ′′(z) < 0, we can easily derive that the aforementioned optimization problem will take the minimum
at ri = nR(w) for some i ∈ [n] and rj = 0 for all j ̸= i. Therefore, we can derive that,

G(wt)

R(w)
≥ 1− e−nR(w)

nR(w)
≥ 1− nR(w)

2

by Taylor’s expansion.

C.3 Auxiliary Results

The following result is the classic Stolz–Cesàro theorem.
Theorem C.8 (Stolz–Cesàro theorem). Let {an}n≥1, {bn}n≥1 be two sequences of real numbers.
Assume that {bn}n≥1 is a strictly monotone and divergent sequence (i.e. strictly increasing and
approaching +∞, or strictly decreasing and approaching −∞) and the following limit exists:

lim
n→∞

an+1 − an
bn+1 − bn

= l.

Then it holds that
lim
n→∞

an
bn

= l.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the primary results and contribu-
tions of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitation of this work in the conclusion and future
work section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: In Section 4, we have clearly stated all the assumptions that are necessary for
our theorem results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the complete configuration of the experiments. Since the
experiments are all on synthetic data, the configuration is simple to explain.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: This paper focuses on theoretical analysis of the standard optimization al-
gorithm Adam. While we include some simulation results, they are very simple and are
irrelevant to the key theoretical contributions of this paper.

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided all the experiment details. The experiments are on synthetic
data and the setup is simple.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper studies optimization problems and there is no statistical significance
results to report.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We only present very simple simulation results and computational resources
are not the focus.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research results align with the ethical principles outlined in the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper is a theoretical work that has no direct social impact. We would
like to emphasize that, although the topic is related to “implicit bias”, it is a pure theoretical
terminology and has nothing to do with social bias.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the asshts?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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