
1

Abstract 1

This study introduces a novel framework 2

for exploring the information processing 3

within NLP Transformers. We categorize 4

information into four distinct layers: 5

positional, syntactic, semantic, and 6

contextual. Challenging the conventional 7

integration of positional data into semantic 8

embeddings, we propose a more effective 9

“Linear-and-Add” method. Our analysis 10

uncovers an intrinsic separation of 11

positional elements in deeper layers, 12

revealing that these components form a 13

helix-like pattern in both encoder and 14

decoder stages. Notably, our approach 15

enables the identification of Part-of-Speech 16

(PoS) clusters within conceptual 17

dimensions. These insights offer a new 18

perspective on information processing in 19

the complex architecture of NLP 20

Transformers, potentially guiding future 21

developments in the field. 22

1 Introduction 23

Large Language Models (LLMs), such as 24

ChatGPT, have become a focal point of recent 25

research, primarily due to the Transformer 26

architecture, which is central to all modern LLMs 27

(Radford et al., 2018; Radford et al., 2019; 28

Radford et al., 2019; Brown et al., 2020; Ouyang 29

et al., 2022; OpenAI, 2023). Introduced by 30

Vaswani et al. (2017) , the Transformer employs an 31

attention mechanism to efficiently process different 32

parts of input data simultaneously. This has led to 33

superior performance over older models across 34

several NLP tasks, including machine translation 35

and question answering. While the Transformer has 36

been instrumental to advancements in AI, the 37

intricacies of its function remain complex. Our 38

work aims to demystify the Transformer's 39

operations and provide a clear framework for its 40

analysis. 41

2 Methodology 42

2.1 From Words to Concepts 43

Communication aims to transmit concepts, which 44

are nuanced by context, a term like “server” can 45

signify different entities in technology and food 46

catering. Recognizing this, Transformers shift 47

focus from words to concepts, which encapsulate 48

multiple layers of information: positional (word 49

location), syntactic (grammatical role), semantic 50

(inherent meaning), and contextual (relation to 51

surrounding words). Rather than interacting with 52

words, Transformers process “tokens”—units that 53

can represent word parts, punctuation, or specific 54

syntax—allowing for versatility transcending 55

linguistic variability. 56

2.2 The Meaning of “Meaning” 57

Dictionary definitions often contain circular 58

reasoning, explaining words using other undefined 59

words. This reveals the operational nature of 60

“meaning” - a word's meaning is simply its 61

relationships to other related words. However, 62

words can be ambiguous, having multiple 63

interconnected meanings. More universal 64

“concepts” better capture distinct meanings. While 65

a word like “server” has overloaded meanings, 66

concepts require clearer explanations using 67

multiple words and contextual understanding. As 68

another example, “project” as a noun or verb 69

carries different connotations. 70

 We can visualize concepts as “mini-galaxies” of 71

meaningful words orbiting a central point. 72

Tracking this conceptual center is more practical 73

than tracing all orbital word associations. Using 74

concepts enables language translation by mapping 75

between conceptual vector representations across 76

languages. In embedding spaces like Word2Vec 77

(Mikolov et al., 2013), concepts manifest as 78

weighted superpositions of word vectors. Words 79

The Double Helix inside the NLP Transformer

Anonymous ACL submission

2

are likewise messy superpositions of underlying 80

concepts. We can freely encode words into 81

concepts and decode concepts back into words as 82

needed. Just as neural networks have deep layers to 83

construct representations, language also converts 84

primitive concepts into richer, syntactic concepts. 85

Subunits of the neural network can process 86

dedicated conceptual subspaces, merging and 87

projecting the results to manage dimensionality. 88

This is the foundation for Transformer attention - 89

understanding words in conceptual, syntactic, and 90

contextual terms. 91

2.3 Positional Encoding 92

The Transformer algorithm marks a significant 93

advancement in how it handles the position of a 94

token in a sentence. Unlike Recurrent Neural 95

Networks (RNNs), including Long Short-Term 96

Memory machines (LSTMs), which treat positions 97

as indices, the Transformer considers them as 98

additional information. This approach enables 99

parallel processing of all tokens simultaneously. 100

A real number can be represented as either the 101

amplitude or the phase of a complex number. Given 102

that the semantic embedding space resembles a 103

hypersphere and aligns more with phase encoding, 104

applying phase encoding to positions is promising. 105

Analog clocks, using a hand's angle on a circle to 106

denote time, serve as a simple analogy for phase 107

encoding. Although a single hand could suffice, 108

multiple hands are often used in analog clocks to 109

improve resolution. In angular measurements like 110

those in clocks, we often employ modular 111

arithmetic. For instance, we measure seconds 112

within the range of 0 to 60 seconds. However, such 113

discontinuity poses challenges in neural networks, 114

which typically do not perform modular arithmetic 115

inherently. A more effective method involves using 116

the sine and cosine of an angle, providing a 117

continuous representation using two real numbers 118

rather than a single angular value. To encode a 119

word's position, a clock system can be utilized. 120

Consider the following empirical positional 121

encoding for 0 ≤ i < dmodel /2: 122

{

 PE(pos, 𝑖) = sin(

pos

10,000

2𝑖
𝑑model

),

PE (pos,
𝑑model

2
+ 𝑖) = cos(

pos

10,000

2𝑖
𝑑model

) ,

(1) 123

Here, “pos” represents the word's position in the 124

text, “I” is the dimension index, and “dmodel” is the 125

embedding space dimension, typically equal to the 126

word embedding dimension. The number 10,000, 127

chosen as a scalar, represents a typical book chapter 128

length in words. 129

This grouping of sine and cosine values differs 130

from the original even/odd convention in the 131

Transformer paper (Vaswani et al., 2017). Each 132

sine and cosine pair represents the phase of a 133

“hand” on a clock, with periods ranging from 6.28 134

for lower dimensions to 6.28×104 for larger digits 135

(𝑖~𝑑model/2). Two key aspects are noteworthy. First, 136

a sophisticated neural network should capture the 137

intricacies of the clock-like embedding system, and 138

not solely depend on Euclidean distance to measure 139

the proximity of positions. Secondly, it's 140

advantageous to consider an “effective position” 141

reflecting a range of nearby PE(pos,𝑖) values, 142

similar to the fuzzy representation of concepts by a 143

collection of tokens. This position encoding 144

scheme, integrated with neural networks and its 145

inherent multi-slice fuzziness, is expected to be 146

robust and stable, due to its built-in redundancy in 147

digits. 148

2.4 Purpose of Using Positional Encoding 149

Transformers represent a significant innovation by 150

treating tokens quasi-independently, which enables 151

parallel processing. Each token independently 152

passes through the same Transformer neural 153

network. This process is similar to using “free body 154

diagrams” in physics, where each object in a 155

complex system is analyzed separately with 156

external influences considered as forces (see 157

Fig.1). In Transformers, tokens navigate through 158

the neural network, influenced by other tokens only 159

via attention and feedforward layers, paralleling 160

the application of Newton's second law 161

𝐹𝑖 = ∑ 𝐹𝑖𝑗
𝑛
𝑗=1 = 𝑚𝑖𝑎𝑖 (2) 162

To facilitate parallel processing, positional 163

information is embedded in vectors rather than in 164

the indices of the tokens. For clarity, consider only 165

the highest two digits of positional encoding, which 166

form a circular path. Fig. 2 illustrates the 167

Transformer algorithm operations, pointing out the 168

relative dominance of positional over semantic 169

encoding. 170

 171

3

Fig. 1. Free body diagrams. 172

 173

Fig. 2. Operations diagram of the Transformer 174

algorithm. 175

The “free body diagram” analogy highlights that all 176

operations – encoding, decoding, and inference – 177

occur for each individual token. This design allows 178

parallel processing of tokens and makes the neural 179

network flexible to sentence length. The 180

algorithm’s structure remains unaffected by the 181

number of tokens, akin to the irrelevance of the 182

number of bodies in mechanical laws of physics. 183

During training, Transformers optimize for 184

efficiency by predicting the next token for each 185

output token in a training batch simultaneously. 186

However, in inference mode, the prediction is 187

instead sequential: one token at a time. Once a 188

token is predicted, it need not be predicted again. 189

This disparity between training and inference also 190

occurs in the behavior of dropout layers (Srivastava 191

et al., 2014). 192

2.5 Attention Mechanism as “Two-Body 193

Forces” 194

The key innovation of Transformers lies in treating 195

tokens quasi-independently, allowing for parallel 196

processing. Analogous to “free body diagrams” in 197

physics, where each object is analyzed 198

independently, with external influences from other 199

objects entering only as forces (as shown in Fig. 3), 200

Transformers analyze each token in a similar 201

fashion. This approach facilitates a context-202

sensitive representation, enabling a word like 203

“server” to be interpreted differently based on its 204

surrounding text. 205

 206

Fig. 3. Semantic proximity and context of word. 207

The formal formula for the naïve self-attention is: 208

attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑡

√𝑑𝑘
)𝑉 (3) 209

Here, Q, K, V are the “query vector”, “key vector 210

collection” and “value vector collection”. 211

𝑄 = 𝑤𝑖 query word's embedding (horizontal vector) 212

𝐾 = [𝑤𝑖𝑗] matrix from collection of key vectors 213

𝑉 = [𝑤𝑖𝑗] same as K in the case of simple attention 214

 𝑑𝑘: subspace dimension (for normalization) 215

In simple attention, V equals K. The output is a 216

“shift” vector, 𝑤 influence of all words (K) in the 217

paragraph, akin to the gravitational force drawing 218

objects toward a common center. Real-world 219

Transformers use a more complex form of self-220

attention to capture syntactic nuances. Syntax plays 221

a vital role in understanding words, as 222

demonstrated by different interpretations of the 223

verb “left” as an adjective or verb. To incorporate 224

syntactic information, we can project query and 225

key vectors onto syntactic subspaces. 226

Extending the physical analogy, attention can be 227

seen as a “force” shifting embedding vectors. 228

While naive self-attention is akin to gravitational or 229

electrostatic forces, more intricate forces are 230

needed to capture the diverse properties of tokens. 231

In physics, different forces act on particles based 232

on their properties, such as mass or charge. 233

Similarly, each attention mechanism can be viewed 234

as a distinct force coming from a different type of 235

subspace charge. 236

The formula for the query-key-value approach 237

for generalized attention is: 238

attention(𝑄𝑊ℎ
𝑄
, 𝐾𝑊ℎ

𝐾 , 𝑉𝑊ℎ
𝑉) =239

softmax(
𝑄𝑊ℎ

𝑄
𝑊ℎ
𝐾𝐾𝑡

√𝑑𝑘
)𝑉𝑊ℎ

𝑉 (4) 240

The projection-rotation matrices 𝑊ℎ
𝑄,𝑊ℎ

𝐾 ,𝑊ℎ
𝑉 , 241

along with the dimension 𝑑𝑘 of the subspace where 242

we perform the dot product, are used to calculate, 243

and determine the attention strengths. Using 244

multiple “heads” in multi-headed attention allows 245

for specific syntactic roles to be identified, 246

applying appropriate shifts to each query word. 247

In self-attention, Q, K, and V belong to the same 248

language, whereas in cross-attention, they belong 249

to different languages. After processing through 250

multiple attention heads and a feedforward layer, 251

the Transformer effectively translates a sequence of 252

words into concepts. This process is comparable to 253

the translation of DNA into proteins, where 254

information is distributed across multiple slices, 255

not isolated to individual tokens. 256

Overall, Transformers use a sophisticated 257

mechanism to convert word sequences into 258

4

conceptual sequences, adapting to different 259

grammatical structures of languages, much like the 260

intricate process of translating genetic information 261

into functional proteins. 262

2.6 Shift Invariance and Generalized Inner 263

Product 264

Shift invariance is a crucial concept when 265

considering the relationships between words in a 266

text. The relationship between a word A and a word 267

B should remain consistent, even if additional text 268

is prepended to the original sentence where they 269

appear. This principle, known as shift invariance, is 270

essential for nearby words unless strong contextual 271

dependencies are present. Without shift invariance, 272

the Transformer algorithm would need different 273

implementations of attention heads for different 274

positions. 275

In the standard Transformer model, the 276

positional encoding vector is added to the semantic 277

embedding vector, which seems to compromise 278

translational invariance. The embedding of shifted 279

words yields altered vectors, and the generalized 280

inner product of these vectors does not maintain 281

translational invariance: 282

〈𝑄, 𝐾〉 ≠ 〈𝑄 + 𝑃𝑄1, 𝐾 + 𝑃𝐾1〉 284

≠ 〈𝑄 + 𝑃𝑄2, 𝐾 + 𝑃𝐾2〉 (5) 283

Where 𝑃𝑄1 and 𝑃𝐾1 are the positional encoding 285

vectors of the words 𝑄 and 𝐾, and 𝑃𝑄2 and 𝑃𝐾2 are 286

their shifted versions. Despite its apparent lack of 287

explicit shift invariance, the Transformer 288

accomplishes invariance through two mechanisms. 289

Firstly, a submanifold exists in the Q, K space, 290

preserving the value of 〈𝑄, 𝐾〉 for certain 291

alignments of positional vectors. Secondly, the 292

projection matrices 𝑊𝑖
𝑄 ,𝑊𝑖

𝐾 ,𝑊𝑖
𝑉 can project onto 293

subspaces effectively orthogonal to the positional 294

encoding vectors. Additionally, the input word 295

embedding is trained alongside other neural 296

weights, aiding the Transformer in separating 297

positional and semantic dimensions. If the 298

“conceptual dimensions” represented by vectors Q 299

and K are orthogonal to the positional vectors the 300

positional vectors 𝑃𝑄1, 𝑃𝐾1, 𝑃𝑄2 and 𝑃𝐾2, we have: 301

〈𝑄 + 𝑃𝑄1, 𝐾 + 𝑃𝐾1〉 = 〈𝑄, 𝐾〉 + 〈𝑃𝑄1, 𝑃𝐾1〉 302

 〈𝑄 + 𝑃𝑄2, 𝐾 + 𝑃𝐾2〉 = 〈𝑄, 𝐾〉 + 〈𝑃𝑄2, 𝑃𝐾2〉 (6) 303

Given shift invariance in positional encoding (i.e., 304

〈𝑃𝑄1, 𝑃𝐾1〉 = 〈𝑃𝑄2, 𝑃𝐾2〉), the overall Transformer 305

algorithm can achieve shift invariance. Positional 306

encoding schemes like a multi-handed clock on a 307

hypertorus satisfy this requirement, as do helix-308

shaped encodings. The most general topology for 309

positional encoding is a hypertorus, with the helix 310

and straight line as limiting cases, making a multi-311

handed clock with sinusoidal functions a natural 312

choice. 313

The Transformer model's capacity to implement 314

shift invariance is remarkable, given the general 315

non-invariance of inner products. This seems to be 316

largely due to the training of the semantic 317

embedding layer in conjunction with other layers, 318

allowing the model to separate semantic and 319

positional dimensions. Conceptual dimensions 320

eventually become orthogonal to positional ones. 321

During encoding, the Transformer allocates certain 322

dimensions for positional encoding while reserving 323

others for semantic or conceptual encoding. This 324

automatic separation of dimensions is one of the 325

Transformer model's most notable features. 326

3 Data and Codes 327

To build the model, we used Google's Transformer 328

codes (tensorflow) as a base. We ran the model in a 329

Docker container on an NVIDIA-SMI 470.103.01 330

powered DGX server, equipped with Tesla V100-331

SXM2 GPUs and CUDA Version 11.4. 332

We employed the Portuguese-English 333

translation dataset from TensorFlow Datasets, 334

consisting of approximately 52,000 training, 1,200 335

validation, and 1,800 test instances. Each instance 336

contains a Portuguese-English sentence pair. For 337

efficiency, we tokenized the dataset and arranged it 338

into ragged batches. Our model processes 339

tokenized Portuguese and English sequence pairs 340

(pt, en) as inputs. The target labels are the 341

corresponding English sequences, offset by one 342

token, ensuring that the target label for each 343

position in the English sequence is the next token. 344

We used tf.keras.layers.Embedding layer (Gal et 345

al., 2016) to convert input Portuguese and target 346

English tokens into vectors. 347

Unlike static embeddings in Word2Vec and 348

GloVe (Mikolov et al., 2013; Gal et al., 2016; 349

Pennington et al., 2014), our Transformer model 350

generates dynamic word embeddings. It starts with 351

randomly initialized weights and refines them 352

during training. The dimensionality in word 353

embeddings, referring to the number of features, 354

was set to 128 for this project. The encoder and 355

decoder architectures are similar, each with N = 4 356

attention layers. Each layer comprises an 8-head 357

5

multi-head self-attention mechanism and a fully 358

connected feed-forward network, enabling concept 359

synthesis. The decoder includes an additional 360

multi-head cross-attention sub-layer to focus on 361

various parts of the encoder's output, utilizing the 362

conceptual information for enhanced performance 363

in the translation task. 364

4 Results 365

4.1 Questioning the Adding of Positional 366

Encoding Vector 367

In the conventional Transformer algorithm, the 368

positional encoding vector is directly added with 369

the semantic embedding vector, a process that lacks 370

justified rationale. This direct addition is 371

problematic, as these vectors originate from 372

distinct domains - akin to adding apples with 373

oranges. To elucidate this issue, we adapted 374

Google's Transformer code and replaced the direct 375

sum of the semantic embedding 𝑆 vector and 376

positional encoding vector 𝑃, 𝑆 + 𝑃, with 𝑤𝑆 + 𝑃, 377

where 𝑤 is a weight factor. We evaluated the loss 378

function across varying values of 𝑤 with results 379

depicted in Figure 5(a). Our findings revealed an 380

optimal weight of 𝑤 = 0.3 , challenging the 381

convention of a direct sum. This indicates that the 382

positional information significantly outweighs the 383

semantic information, portraying a picture of small 384

“semantic hyperspheres” situated along a broad 385

positional encoding trajectory. 386

An enhanced method involves utilizing a full 387

linear neural network instead of a simple weighted 388

sum, as demonstrated in Figure 4. By integrating a 389

dense linear layer (sans activation function) and a 390

dropout layer, a more sophisticated combination is 391

achieved. Adding back the positional encoding 392

vector post-linear layer further enhances model 393

stability and mitigates the risk of local minima 394

during training. We have termed this methodology 395

“Linear & Add,” reflecting the sequence of linear 396

layer application followed by addition. Figure 5 397

contrasts the model performance using three 398

distinct methods of combining positional encoding 399

with semantic embedding: (1) direct addition, (2) 400

weighted sum with a reduced semantic embedding 401

significance (w=0.3), and (3) the application of a 402

dense layer followed by summation. Consistent 403

with our hypothesis, the “Linear & Add” method 404

outperforms the others. 405

 406

Figure 4 “Linear & Add” method to concatenate the 407

positional encoding and the semantic embedding vectors 408

 409

(a) (b) 410

Fig. 5. (a) Model performance by weight of semantic 411

embedding. (b) Model performance comparison of three 412

different approaches for combining positional encoding 413

with semantic embedding. 414

4.2 The First Helix: Positional Information 415

After the Encoding Stage of a 416

Transformer 417

To understand the positional encoding in the 418

Transformer's input layer, we conducted Principal 419

Component Analysis (PCA). Applying PCA to the 420

linear-and-add positional encoding vectors (up to 421

the 80th position) yielded a 2D plot of the first two 422

components (Fig. 6b), a 3D plot of the first three 423

components (Fig. 6a), and a bar chart showing the 424

variance explained (Fig. 6c). The analysis revealed 425

that the positional encoding follows a 2D path 426

resembling the "Arch of St. Louis" (the Gateway 427

Arch). Notice the variance decays slowly across the 428

principal components. 429

 430

 431

(a) (b) 432

 433

 (c) 434

Fig. 6. Principal Component Analysis of positional 435

encoding. (a) 3D plot of the first three PCA components. 436

6

(b) 2D plot of the first two PCA components. (c) 437

Variance explained. 438

 439

(a) (b) 440

 441

 (c) 442

Fig. 7. Principal Component Analysis after the encoding 443

stage. (a) 3D plot of the first three PCA components. (b) 444

2D plot of the first two PCA components. (c) Variance 445

explained. 446

We repeated this analysis post-encoding stage of 447

the Transformer. By averaging the embedding 448

vectors of 1,000 randomly selected sentences at 449

identical positions, we isolated positional 450

information, effectively removing semantic, 451

contextual, and syntactic information. PCA on the 452

resulting “average sentence” showed that the 453

residual positional encoding forms a helical shape 454

(Fig. 7a and 7b). In contrast to the input positional 455

encoding that spans all 128 dimensions, the post-456

encoding positional vectors predominantly use 457

three dimensions (Fig. 7c). This dimensional 458

reduction facilitates shift invariance, allowing the 459

Transformer to capture semantic, syntactic, and 460

contextual information in the remaining 125 461

dimensions. 462

One might question the wisdom of combining 463

positional and conceptual information from the 464

outset. While separating them in the input stage is 465

valid, merging them there offers flexibility in 466

handling varying sentence lengths. This approach 467

eliminates the need for preset dimensions for 468

positional information, allowing the algorithm to 469

dynamically allocate dimensions for positional and 470

conceptual elements. This adaptability is key for 471

handling diverse text lengths and complexities, 472

effectively allowing the algorithm to “set its own 473

clock”. Nevertheless, exploring alternative 474

methods for merging information remains a vital 475

area of research (Wang et al., 2020). 476

4.3 The Second Helix: Positional 477

Information Deep Inside the Decoder 478

Stage of a Transformer 479

In exploring the decoding stage of the transformer 480

algorithm, we aimed to identify a helical pattern 481

akin to what was observed in the encoding stage. 482

Surprisingly, we found such a helix, but not where 483

we initially expected. In the decoding stage, as 484

tokens are generated to form English sentences, the 485

positional information resembles the original 486

positional encoding, tracing a path similar to the 487

“Arch of St. Louis.” A more detailed examination 488

of the four layers of decoder-attention in Google's 489

transformer algorithm revealed a distinct 3D helix 490

in the second layer, as depicted in Figures 8a and 491

8b. Principal Component Analysis confirmed the 492

three-dimensional nature of this helix. This 493

discovery suggests that the helical pattern is a core 494

characteristic of the transformer architecture, 495

raising interesting questions about its role in the 496

algorithm's language processing and generation 497

capabilities. 498

 499

(a) (b) 500

 501

 (c) 502

Fig. 8. Principal Component Analysis in the decoder 503

stage. (a) 2D plot of the first two PCA components. (b) 504

3D plot of the first three PCA components. (c) Variance 505

explained. 506

 507

 (a) (b) 508

7

Fig. 9. (a) Google Transformer model architecture. (b) 509

Identification of two helix patterns in the transformer 510

model architecture. 511

4.4 Accidental Mingling 512

In the transformer algorithm, positional and 513

semantic embeddings are combined, which could 514

potentially result in indistinguishable embeddings 515

for different words. To illustrate, if token A and 516

token B have positional embeddings of 3 and 4, and 517

semantic embeddings of 6 and 5, respectively, their 518

combined embeddings would both sum to 9. This 519

overlap might obscure distinct meanings. 520

However, the transformer model employs 521

strategies to prevent such overlaps. 522

Renormalization in deep learning (De Mello Koch 523

et al., 2020) emphasizes slight differences between 524

embeddings. The high dimensionality of the 525

embedding space and the improbability of overlaps 526

in linguistic translation reduce the likelihood of 527

collisions. Crucially, the transformer's semantic 528

embeddings are trained to be orthogonal to 529

positional embeddings, which minimizes the risk 530

of mixing up different words, ensuring accurate 531

language processing. 532

4.5 Running Text Density of Words 533

Different languages often need varying word 534

counts to express identical ideas. For instance, 535

Spanish usually uses more words than English for 536

the same concept. This discrepancy poses a 537

question about transformers handling the “text 538

density” differences. The adaptation likely takes 539

place at the transformer's cross-attention layer, 540

which discerns text relationships and modulates the 541

output's text density to match the target language's 542

norms. 543

4.6 Part of Speech 544

Through analyzing a large sample of sentences and 545

calculating average embedding vector values, we 546

successfully identified positional information 547

vectors for each transformer stage. Isolating the 548

conceptual dimensions - syntactic, semantic, and 549

contextual information – can be achieved by 550

deducting the positional vector from the 551

embedding vector. Dimension reduction can then 552

be performed using PCA, reducing the dimensions 553

from 128 to 5. This allowed us to delve deeper into 554

the language structure, uncovering meaningful 555

relationships within the language model. 556

Our study focused on the transformer's encoder 557

side (Portuguese), examining tokens of four or 558

more characters, excluding suffixes, punctuation, 559

and sentence markers. For clustering, we employed 560

K-Means++ (sklearn.cluster.KMeans) with the 561

elbow method to determine the optimal number of 562

clusters. This has revealed distinct clusters 563

corresponding to parts of speech (PoS) attributes 564

like nouns, adjectives, and verbs, as highlighted in 565

Fig. 10. 566

 567

Fig. 10. Tokens formed distinct clusters by their part of 568

speech (PoS) attributes, such as nouns, adjectives, and 569

verbs. (Left) Pre-attention stage after semantic 570

embedding. (Right) Post-attention stage after encoding. 571

 572

Fig. 11. A second level of clustering split Verboid cluster 573

into Verb and Adjuvant clusters. (Left) Pre-attention 574

stage after semantic embedding. (Right) Post-attention 575

stage after encoding. 576

 577

Fig. 12. Word Clouds After Encoding Stage. (Top row) 578

3 clusters clustering. (Bottom row) Verbs and Adjuvants 579

clusters from sub-clustering of “Verboids” 580

 581

Fig. 13: In mid-attention encoder stage English tokens 582

formed distinct clusters by their PoS attributes, verbs, 583

nouns, adjectives, and adjuvants. 584

8

 585

Fig.14. PoS clusters visualized with t-SNE 586

Interestingly, the verb cluster included numerous 587

“functional words” such as pronouns, prepositions, 588

conjunctions, determiners, and some adverbs. We 589

termed these “adjuvants” - a term derived from 590

Latin, meaning “to help” - due to their supportive 591

role in sentence construction. Applying a second 592

layer of K-Means++ clustering to this “verboid” 593

cluster distinguished the adjuvants as a separate 594

group, as shown in Fig. 11. Fig. 12 displays word 595

clouds post-encoding, showing meaningful 596

grouping. Our findings also indicated that the self-597

attention layers enhance cluster delineation. This 598

underscores the self-attention mechanism's 599

effectiveness in capturing token relationships and 600

their PoS functions. We observed that points 601

fluctuated between (-6.0, 6.0) in the original 602

semantic layer, narrowing to (-1.0, 1.0) post-603

encoding, reflecting a “renormalization” process 604

akin to the “renormalization group” in physics (De 605

Mello Koch et al., 2020). Analysis of the decoder 606

side (English) revealed challenges in forming well-607

defined clusters due to the decoder's dual role in 608

concept formation/translation as well as decoding 609

to tokens. Optimal PoS clustering was achieved in 610

the mid-attention stage (Fig. 13) using PCA and 611

two-step K-means++ clustering. Additionally, we 612

explored t-distributed stochastic neighbor 613

embedding (t-SNE) (Maaten et al., 2008) for 614

visualizing PoS clusters without PCA reduction. 615

Applied directly to 128-dimensional embeddings, 616

distinct PoS clusters emerged after over 10,000 617

iterations, as illustrated in Fig. 14. Lastly, for post-618

attention stage analysis, K-Means++ alone was 619

insufficient for clear PoS clustering. However, 620

applying the technique to di-grams of current and 621

next tokens yielded discernible PoS clusters. 622

4.7 Additional Syntactical, Semantic, and 623

Contextual Information 624

We observed that removing positional information 625

from vectors reveals “conceptual” information, 626

with single-delta vectors indicating some PoS 627

cluster structure. For tokens appearing multiple 628

times, we calculated their “semantic vector” by 629

averaging their single-delta vectors. Subtracting 630

the “semantic vector” from the single-delta 631

embedding yields a residual “double-delta vector”, 632

likely representing the syntactic and contextual 633

dimensions of each token. However, 634

comprehending the full extent of syntactical 635

information requires examining token sequences, 636

not just individual tokens. It's possible that single-637

delta or double-delta vectors contain additional 638

syntactical information, but confirming this 639

necessitates analysis of multiple consecutive 640

tokens. We leave this detailed examination for 641

future research. 642

5 Conclusions 643

The Transformer architecture has significantly 644

advanced natural language processing with its 645

innovative design and exceptional performance. 646

Central to its function is the encoding of input 647

words into “concepts”, facilitating efficient 648

sequence-to-sequence translation. A key feature of 649

the Transformer is positional encoding, which not 650

only allows for processing of variable-length 651

sequences but also supports parallel processing on 652

modern hardware, akin to the use of free-body 653

diagrams in physics. Remarkably, the 654

Transformer's principles can be applied to diverse 655

data types, such as images (Dosovitskiy et al., 656

2020) and protein folding (Jumper et al., 2021), 657

demonstrating its versatility and adaptability in 658

various deep learning applications. 659

This paper has provided an in-depth analysis of 660

the Transformer, examining its handling of 661

positional, syntactic, semantic, and contextual 662

information. We highlighted the unique positional 663

information mapping in the encoding and decoding 664

stages, drawing parallels to the double-helix 665

structure of DNA. The significance of the semantic 666

embedding layer in token clustering by parts of 667

speech was also emphasized. These insights 668

demystify the transformer algorithm, presenting it 669

as a comprehensible tool for AI practitioners. Our 670

goal is to equip professionals with a thorough 671

understanding of the transformer's mechanisms, 672

enabling them to leverage its potential and spur 673

innovation in natural language processing. 674

 675

 676

 677

9

References 678

Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, 679

Dhariwal P, et al. 2020. Language models are few-680

shot learners. Advances in neural information 681

processing systems. 33:1877-901. 682

arXiv:2005.14165 683

Ellen De Mello Koch, Robert De Mello Koch and Ling 684

Cheng. 2020. Is Deep Learning a Renormalization 685

Group Flow?. IEEE Access, vol. 8, pp. 106487-686

106505, doi: 10.1109/ACCESS.2020.3000901.. 687

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. 688

Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, 689

M. Minderer, G. Heigold, S. Gelly, et al. 2020. An 690

image is worth 16x16 words: Transformers for 691

image recognition at scale. arXiv:2010.11929. 692

Yarin Gal and Zoubin Ghahramani. 2016. A 693

Theoretically Grounded Application of Dropout in 694

Recurrent Neural Networks. Advances in Neural 695

Information Processing Systems. arXiv:1512.05287 696

Jumper, J., Evans, R., Pritzel, A. et al. 2021. Highly 697

accurate protein structure prediction with 698

AlphaFold. Nature 596, 583–589. 699

Laurens van der Maaten, L.J.P.; Hinton, G.E. 2008. 700

Visualizing High-Dimensional Data Using t-SNE. 701

Journal of Machine Learning Research 9:2579-702

2605. 703

Mikolov, T., Chen, K., Corrado, G., and Dean, J. 2013. 704

Efficient estimation of word representations in 705

vector space. arXiv:1301.3781. 706

OpenAI. 2023. GPT-4 Technical Report. 707

arXiv:2303.08774 708

Ouyang L, Wu J, Jiang X, Almeida D, Wainwright CL, 709

Mishkin P, et al. 2022. Training language models to 710

follow instructions with human feedback. 711

arXiv:220302155. 712

Pennington, J., Socher, R., & Manning, C. D. 2014. 713

GloVe: Global Vectors for Word Representation. In 714

Proceedings of the 2014 Conference on Empirical 715

Methods in Natural Language Processing (EMNLP) 716

pp. 1532-1543 717

Radford A, Narasimhan K, Salimans T, Sutskever I, et 718

al. 2018. Improving language understanding by 719

generative pre-training, OpenAI. 720

Radford A, Wu J, Child R, Luan D, Amodei D, 721

Sutskever I, et al. 2019. Language models are 722

unsupervised multitask learners. OpenAI blog. 723

1(8):9. 724

Radford A, Wu J, Amodei D, Amodei D, Clark J, 725

Brundage M, et al. 2019. Better language models 726

and their implications. OpenAI Blog https://openai 727

com/blog/better-language-models.1(2). 728

Srivastava N, Hinton G, Krizhevsky A, Sutskever I and 729

Salakhutdinov R. 2014. Dropout: a simple way to 730

prevent neural networks from overfitting. The 731

Journal of Machine Learning Research. 732

1;15(1):1929-58. 733

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 734

Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 735

Kaiser and Illia Polosukhin. 2017. Attention Is All 736

You Need. Advances in Neural Information 737

Processing Systems. 738

Wang, Yu-An, and Yun-Nung Chen. 2020. What do 739

position embeddings learn? an empirical study of 740

pre-trained language model positional encoding. 741

Proceedings of the 2020 Conference on Empirical 742

Methods in Natural Language Processing (EMNLP) 743

https://www.tensorflow.org/text/tutorials/transformer 744

 745

 746

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://ieeexplore.ieee.org/document/9110872
https://ieeexplore.ieee.org/document/9110872
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1512.05287
https://arxiv.org/abs/1512.05287
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://aclanthology.org/D14-1162/
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://openai.com/research/better-language-models
https://openai.com/research/better-language-models
https://dl.acm.org/doi/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.emnlp-main.555.pdf
https://aclanthology.org/2020.emnlp-main.555.pdf
https://aclanthology.org/2020.emnlp-main.555.pdf
https://www.tensorflow.org/text/tutorials/transformer

