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Abstract 1 

This study introduces a novel framework 2 

for exploring the information processing 3 

within NLP Transformers. We categorize 4 

information into four distinct layers: 5 

positional, syntactic, semantic, and 6 

contextual. Challenging the conventional 7 

integration of positional data into semantic 8 

embeddings, we propose a more effective 9 

“Linear-and-Add” method. Our analysis 10 

uncovers an intrinsic separation of 11 

positional elements in deeper layers, 12 

revealing that these components form a 13 

helix-like pattern in both encoder and 14 

decoder stages. Notably, our approach 15 

enables the identification of Part-of-Speech 16 

(PoS) clusters within conceptual 17 

dimensions. These insights offer a new 18 

perspective on information processing in 19 

the complex architecture of NLP 20 

Transformers, potentially guiding future 21 

developments in the field. 22 

1 Introduction 23 

Large Language Models (LLMs), such as 24 

ChatGPT, have become a focal point of recent 25 

research, primarily due to the Transformer 26 

architecture, which is central to all modern LLMs 27 

(Radford et al., 2018; Radford et al., 2019; 28 

Radford et al., 2019;  Brown et al., 2020; Ouyang 29 

et al., 2022; OpenAI, 2023). Introduced by 30 

Vaswani et al. (2017) , the Transformer employs an 31 

attention mechanism to efficiently process different 32 

parts of input data simultaneously. This has led to 33 

superior performance over older models across 34 

several NLP tasks, including machine translation 35 

and question answering. While the Transformer has 36 

been instrumental to advancements in AI, the 37 

intricacies of its function remain complex. Our 38 

work aims to demystify the Transformer's 39 

operations and provide a clear framework for its 40 

analysis. 41 

2 Methodology 42 

2.1 From Words to Concepts   43 

Communication aims to transmit concepts, which 44 

are nuanced by context, a term like “server” can 45 

signify different entities in technology and food 46 

catering. Recognizing this, Transformers shift 47 

focus from words to concepts, which encapsulate 48 

multiple layers of information: positional (word 49 

location), syntactic (grammatical role), semantic 50 

(inherent meaning), and contextual (relation to 51 

surrounding words). Rather than interacting with 52 

words, Transformers process “tokens”—units that 53 

can represent word parts, punctuation, or specific 54 

syntax—allowing for versatility transcending 55 

linguistic variability. 56 

2.2 The Meaning of “Meaning” 57 

Dictionary definitions often contain circular 58 

reasoning, explaining words using other undefined 59 

words. This reveals the operational nature of 60 

“meaning” - a word's meaning is simply its 61 

relationships to other related words. However, 62 

words can be ambiguous, having multiple 63 

interconnected meanings. More universal 64 

“concepts” better capture distinct meanings. While 65 

a word like “server” has overloaded meanings, 66 

concepts require clearer explanations using 67 

multiple words and contextual understanding. As 68 

another example, “project” as a noun or verb 69 

carries different connotations. 70 

 We can visualize concepts as “mini-galaxies” of 71 

meaningful words orbiting a central point. 72 

Tracking this conceptual center is more practical 73 

than tracing all orbital word associations. Using 74 

concepts enables language translation by mapping 75 

between conceptual vector representations across 76 

languages. In embedding spaces like Word2Vec 77 

(Mikolov et al., 2013), concepts manifest as 78 

weighted superpositions of word vectors. Words 79 
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are likewise messy superpositions of underlying 80 

concepts. We can freely encode words into 81 

concepts and decode concepts back into words as 82 

needed. Just as neural networks have deep layers to 83 

construct representations, language also converts 84 

primitive concepts into richer, syntactic concepts. 85 

Subunits of the neural network can process 86 

dedicated conceptual subspaces, merging and 87 

projecting the results to manage dimensionality. 88 

This is the foundation for Transformer attention - 89 

understanding words in conceptual, syntactic, and 90 

contextual terms. 91 

2.3 Positional Encoding 92 

The Transformer algorithm marks a significant 93 

advancement in how it handles the position of a 94 

token in a sentence. Unlike Recurrent Neural 95 

Networks (RNNs), including Long Short-Term 96 

Memory machines (LSTMs), which treat positions 97 

as indices, the Transformer considers them as 98 

additional information. This approach enables 99 

parallel processing of all tokens simultaneously. 100 

A real number can be represented as either the 101 

amplitude or the phase of a complex number. Given 102 

that the semantic embedding space resembles a 103 

hypersphere and aligns more with phase encoding, 104 

applying phase encoding to positions is promising. 105 

Analog clocks, using a hand's angle on a circle to 106 

denote time, serve as a simple analogy for phase 107 

encoding. Although a single hand could suffice, 108 

multiple hands are often used in analog clocks to 109 

improve resolution. In angular measurements like 110 

those in clocks, we often employ modular 111 

arithmetic. For instance, we measure seconds 112 

within the range of 0 to 60 seconds. However, such 113 

discontinuity poses challenges in neural networks, 114 

which typically do not perform modular arithmetic 115 

inherently. A more effective method involves using 116 

the sine and cosine of an angle, providing a 117 

continuous representation using two real numbers 118 

rather than a single angular value. To encode a 119 

word's position, a clock system can be utilized. 120 

Consider the following empirical positional 121 

encoding for 0 ≤ i < dmodel /2: 122 

{
 
 

 
 PE(pos, 𝑖) = sin(

pos

10,000

2𝑖
𝑑model

),                

PE (pos,
𝑑model

2
+ 𝑖) = cos(

pos

10,000

2𝑖
𝑑model

) ,

(1)     123 

Here, “pos” represents the word's position in the 124 

text, “I” is the dimension index, and “dmodel” is the 125 

embedding space dimension, typically equal to the 126 

word embedding dimension. The number 10,000, 127 

chosen as a scalar, represents a typical book chapter 128 

length in words. 129 

This grouping of sine and cosine values differs 130 

from the original even/odd convention in the 131 

Transformer paper (Vaswani et al., 2017). Each 132 

sine and cosine pair represents the phase of a 133 

“hand” on a clock, with periods ranging from 6.28 134 

for lower dimensions to 6.28×104 for larger digits 135 

(𝑖~𝑑model/2). Two key aspects are noteworthy. First, 136 

a sophisticated neural network should capture the 137 

intricacies of the clock-like embedding system, and 138 

not solely depend on Euclidean distance to measure 139 

the proximity of positions. Secondly, it's 140 

advantageous to consider an “effective position” 141 

reflecting a range of nearby PE(pos,𝑖) values, 142 

similar to the fuzzy representation of concepts by a 143 

collection of tokens. This position encoding 144 

scheme, integrated with neural networks and its 145 

inherent multi-slice fuzziness, is expected to be 146 

robust and stable, due to its built-in redundancy in 147 

digits. 148 

2.4 Purpose of Using Positional Encoding 149 

Transformers represent a significant innovation by 150 

treating tokens quasi-independently, which enables 151 

parallel processing. Each token independently 152 

passes through the same Transformer neural 153 

network. This process is similar to using “free body 154 

diagrams” in physics, where each object in a 155 

complex system is analyzed separately with 156 

external influences considered as forces (see 157 

Fig.1). In Transformers, tokens navigate through 158 

the neural network, influenced by other tokens only 159 

via attention and feedforward layers, paralleling 160 

the application of Newton's second law  161 

𝐹𝑖 = ∑ 𝐹𝑖𝑗
𝑛
𝑗=1 = 𝑚𝑖𝑎𝑖                           (2) 162 

To facilitate parallel processing, positional 163 

information is embedded in vectors rather than in 164 

the indices of the tokens. For clarity, consider only 165 

the highest two digits of positional encoding, which 166 

form a circular path. Fig. 2 illustrates the 167 

Transformer algorithm operations, pointing out the 168 

relative dominance of positional over semantic 169 

encoding. 170 

 171 
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Fig. 1. Free body diagrams. 172 

 173 

Fig. 2. Operations diagram of the Transformer 174 

algorithm.  175 

The “free body diagram” analogy highlights that all 176 

operations – encoding, decoding, and inference – 177 

occur for each individual token. This design allows 178 

parallel processing of tokens and makes the neural 179 

network flexible to sentence length. The 180 

algorithm’s structure remains unaffected by the 181 

number of tokens, akin to the irrelevance of the 182 

number of bodies in mechanical laws of physics. 183 

During training, Transformers optimize for 184 

efficiency by predicting the next token for each 185 

output token in a training batch simultaneously. 186 

However, in inference mode, the prediction is 187 

instead sequential: one token at a time. Once a 188 

token is predicted, it need not be predicted again. 189 

This disparity between training and inference also 190 

occurs in the behavior of dropout layers (Srivastava 191 

et al., 2014). 192 

2.5 Attention Mechanism as “Two-Body 193 

Forces” 194 

The key innovation of Transformers lies in treating 195 

tokens quasi-independently, allowing for parallel 196 

processing. Analogous to “free body diagrams” in 197 

physics, where each object is analyzed 198 

independently, with external influences from other 199 

objects entering only as forces (as shown in Fig. 3), 200 

Transformers analyze each token in a similar 201 

fashion. This approach facilitates a context-202 

sensitive representation, enabling a word like 203 

“server” to be interpreted differently based on its 204 

surrounding text. 205 

 206 

Fig. 3. Semantic proximity and context of word.  207 

The formal formula for the naïve self-attention is:  208 

attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑡

√𝑑𝑘
)𝑉     (3) 209 

Here, Q, K, V are the “query vector”,  “key vector 210 

collection” and “value vector collection”.  211 

𝑄 = 𝑤𝑖  query word's embedding (horizontal vector) 212 

𝐾 = [𝑤𝑖𝑗] matrix from collection of key vectors 213 

𝑉 = [𝑤𝑖𝑗] same as K in the case of simple attention 214 

 𝑑𝑘: subspace dimension (for normalization) 215 

In simple attention, V equals K. The output is a 216 

“shift” vector, 𝑤 influence of all words (K) in the 217 

paragraph, akin to the gravitational force drawing 218 

objects toward a common center. Real-world 219 

Transformers use a more complex form of self-220 

attention to capture syntactic nuances. Syntax plays 221 

a vital role in understanding words, as 222 

demonstrated by different interpretations of the 223 

verb “left” as an adjective or verb. To incorporate 224 

syntactic information, we can project query and 225 

key vectors onto syntactic subspaces. 226 

Extending the physical analogy, attention can be 227 

seen as a “force” shifting embedding vectors. 228 

While naive self-attention is akin to gravitational or 229 

electrostatic forces, more intricate forces are 230 

needed to capture the diverse properties of tokens. 231 

In physics, different forces act on particles based 232 

on their properties, such as mass or charge. 233 

Similarly, each attention mechanism can be viewed 234 

as a distinct force coming from a different type of 235 

subspace charge.  236 

The formula for the query-key-value approach 237 

for generalized attention is:  238 

attention(𝑄𝑊ℎ
𝑄
, 𝐾𝑊ℎ

𝐾 , 𝑉𝑊ℎ
𝑉) =239 

softmax(
𝑄𝑊ℎ

𝑄
𝑊ℎ
𝐾𝐾𝑡

√𝑑𝑘
)𝑉𝑊ℎ

𝑉   (4) 240 

The projection-rotation matrices 𝑊ℎ
𝑄,𝑊ℎ

𝐾 ,𝑊ℎ
𝑉 , 241 

along with the dimension 𝑑𝑘 of the subspace where 242 

we perform the dot product, are used to calculate, 243 

and determine the attention strengths. Using 244 

multiple “heads” in multi-headed attention allows 245 

for specific syntactic roles to be identified, 246 

applying appropriate shifts to each query word. 247 

In self-attention, Q, K, and V belong to the same 248 

language, whereas in cross-attention, they belong 249 

to different languages. After processing through 250 

multiple attention heads and a feedforward layer, 251 

the Transformer effectively translates a sequence of 252 

words into concepts. This process is comparable to 253 

the translation of DNA into proteins, where 254 

information is distributed across multiple slices, 255 

not isolated to individual tokens. 256 

Overall, Transformers use a sophisticated 257 

mechanism to convert word sequences into 258 
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conceptual sequences, adapting to different 259 

grammatical structures of languages, much like the 260 

intricate process of translating genetic information 261 

into functional proteins. 262 

2.6 Shift Invariance and Generalized Inner 263 

Product 264 

Shift invariance is a crucial concept when 265 

considering the relationships between words in a 266 

text. The relationship between a word A and a word 267 

B should remain consistent, even if additional text 268 

is prepended to the original sentence where they 269 

appear. This principle, known as shift invariance, is 270 

essential for nearby words unless strong contextual 271 

dependencies are present. Without shift invariance, 272 

the Transformer algorithm would need different 273 

implementations of attention heads for different 274 

positions.  275 

In the standard Transformer model, the 276 

positional encoding vector is added to the semantic 277 

embedding vector, which seems to compromise 278 

translational invariance. The embedding of shifted 279 

words yields altered vectors, and the generalized 280 

inner product of these vectors does not maintain 281 

translational invariance: 282 

〈𝑄, 𝐾〉 ≠ 〈𝑄 + 𝑃𝑄1, 𝐾 + 𝑃𝐾1〉 284 

≠ 〈𝑄 + 𝑃𝑄2, 𝐾 + 𝑃𝐾2〉                       (5)                       283 

Where 𝑃𝑄1  and 𝑃𝐾1  are the positional encoding 285 

vectors of the words 𝑄 and 𝐾, and 𝑃𝑄2 and 𝑃𝐾2 are 286 

their shifted versions. Despite its apparent lack of 287 

explicit shift invariance, the Transformer 288 

accomplishes invariance through two mechanisms. 289 

Firstly, a submanifold exists in the Q, K space, 290 

preserving the value of 〈𝑄, 𝐾〉  for certain 291 

alignments of positional vectors. Secondly, the 292 

projection matrices 𝑊𝑖
𝑄 ,𝑊𝑖

𝐾 ,𝑊𝑖
𝑉  can project onto 293 

subspaces effectively orthogonal to the positional 294 

encoding vectors. Additionally, the input word 295 

embedding is trained alongside other neural 296 

weights, aiding the Transformer in separating 297 

positional and semantic dimensions. If the 298 

“conceptual dimensions” represented by vectors Q 299 

and K are orthogonal to the positional vectors the 300 

positional vectors 𝑃𝑄1, 𝑃𝐾1, 𝑃𝑄2 and 𝑃𝐾2, we have: 301 

〈𝑄 + 𝑃𝑄1, 𝐾 + 𝑃𝐾1〉 = 〈𝑄, 𝐾〉 + 〈𝑃𝑄1, 𝑃𝐾1〉  302 

  〈𝑄 + 𝑃𝑄2, 𝐾 + 𝑃𝐾2〉 = 〈𝑄, 𝐾〉 + 〈𝑃𝑄2, 𝑃𝐾2〉  (6)                       303 

Given shift invariance in positional encoding (i.e.,  304 

〈𝑃𝑄1, 𝑃𝐾1〉 = 〈𝑃𝑄2, 𝑃𝐾2〉), the overall Transformer 305 

algorithm can achieve shift invariance. Positional 306 

encoding schemes like a multi-handed clock on a 307 

hypertorus satisfy this requirement, as do helix-308 

shaped encodings. The most general topology for 309 

positional encoding is a hypertorus, with the helix 310 

and straight line as limiting cases, making a multi-311 

handed clock with sinusoidal functions a natural 312 

choice. 313 

The Transformer model's capacity to implement 314 

shift invariance is remarkable, given the general 315 

non-invariance of inner products. This seems to be 316 

largely due to the training of the semantic 317 

embedding layer in conjunction with other layers, 318 

allowing the model to separate semantic and 319 

positional dimensions. Conceptual dimensions 320 

eventually become orthogonal to positional ones. 321 

During encoding, the Transformer allocates certain 322 

dimensions for positional encoding while reserving 323 

others for semantic or conceptual encoding. This 324 

automatic separation of dimensions is one of the 325 

Transformer model's most notable features. 326 

3 Data and Codes 327 

To build the model, we used Google's Transformer 328 

codes (tensorflow) as a base. We ran the model in a 329 

Docker container on an NVIDIA-SMI 470.103.01 330 

powered DGX server, equipped with Tesla V100-331 

SXM2 GPUs and CUDA Version 11.4. 332 

We employed the Portuguese-English 333 

translation dataset from TensorFlow Datasets, 334 

consisting of approximately 52,000 training, 1,200 335 

validation, and 1,800 test instances. Each instance 336 

contains a Portuguese-English sentence pair. For 337 

efficiency, we tokenized the dataset and arranged it 338 

into ragged batches. Our model processes 339 

tokenized Portuguese and English sequence pairs 340 

(pt, en) as inputs. The target labels are the 341 

corresponding English sequences, offset by one 342 

token, ensuring that the target label for each 343 

position in the English sequence is the next token. 344 

We used tf.keras.layers.Embedding layer (Gal et 345 

al., 2016) to convert input Portuguese and target 346 

English tokens into vectors. 347 

Unlike static embeddings in Word2Vec and 348 

GloVe (Mikolov et al., 2013; Gal et al., 2016; 349 

Pennington et al., 2014), our Transformer model 350 

generates dynamic word embeddings. It starts with 351 

randomly initialized weights and refines them 352 

during training. The dimensionality in word 353 

embeddings, referring to the number of features, 354 

was set to 128 for this project. The encoder and 355 

decoder architectures are similar, each with N = 4 356 

attention layers. Each layer comprises an 8-head 357 
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multi-head self-attention mechanism and a fully 358 

connected feed-forward network, enabling concept 359 

synthesis. The decoder includes an additional 360 

multi-head cross-attention sub-layer to focus on 361 

various parts of the encoder's output, utilizing the 362 

conceptual information for enhanced performance 363 

in the translation task.  364 

4 Results 365 

4.1 Questioning the Adding of Positional 366 

Encoding Vector 367 

In the conventional Transformer algorithm, the 368 

positional encoding vector is directly added with 369 

the semantic embedding vector, a process that lacks 370 

justified rationale. This direct addition is 371 

problematic, as these vectors originate from 372 

distinct domains - akin to adding apples with 373 

oranges. To elucidate this issue, we adapted 374 

Google's Transformer code and replaced the direct 375 

sum of the semantic embedding 𝑆  vector and 376 

positional encoding vector 𝑃, 𝑆 + 𝑃, with 𝑤𝑆 + 𝑃, 377 

where 𝑤 is a weight factor. We evaluated the loss 378 

function across varying values of  𝑤  with results 379 

depicted in Figure 5(a). Our findings revealed an 380 

optimal weight of 𝑤 = 0.3 , challenging the 381 

convention of a direct sum. This indicates that the 382 

positional information significantly outweighs the 383 

semantic information, portraying a picture of small 384 

“semantic hyperspheres” situated along a broad 385 

positional encoding trajectory.  386 

An enhanced method involves utilizing a full 387 

linear neural network instead of a simple weighted 388 

sum, as demonstrated in Figure 4. By integrating a 389 

dense linear layer (sans activation function) and a 390 

dropout layer, a more sophisticated combination is 391 

achieved. Adding back the positional encoding 392 

vector post-linear layer further enhances model 393 

stability and mitigates the risk of local minima 394 

during training. We have termed this methodology 395 

“Linear & Add,” reflecting the sequence of linear 396 

layer application followed by addition. Figure 5 397 

contrasts the model performance using three 398 

distinct methods of combining positional encoding 399 

with semantic embedding: (1) direct addition, (2) 400 

weighted sum with a reduced semantic embedding 401 

significance (w=0.3), and (3) the application of a 402 

dense layer followed by summation. Consistent 403 

with our hypothesis, the “Linear & Add” method 404 

outperforms the others. 405 

 406 

Figure 4 “Linear & Add” method to concatenate the 407 

positional encoding and the semantic embedding vectors 408 

  409 

(a)                                               (b) 410 

Fig. 5. (a) Model performance by weight of semantic 411 

embedding. (b) Model performance comparison of three 412 

different approaches for combining positional encoding 413 

with semantic embedding. 414 

4.2 The First Helix: Positional Information 415 

After the Encoding Stage of a 416 

Transformer 417 

To understand the positional encoding in the 418 

Transformer's input layer, we conducted Principal 419 

Component Analysis (PCA). Applying PCA to the 420 

linear-and-add positional encoding vectors (up to 421 

the 80th position) yielded a 2D plot of the first two 422 

components (Fig. 6b), a 3D plot of the first three 423 

components (Fig. 6a), and a bar chart showing the 424 

variance explained (Fig. 6c). The analysis revealed 425 

that the positional encoding follows a 2D path 426 

resembling the "Arch of St. Louis" (the Gateway 427 

Arch). Notice the variance decays slowly across the 428 

principal components. 429 

 430 

 431 

(a)                                                     (b)                         432 

 433 

                             (c)                       434 

Fig. 6. Principal Component Analysis of positional 435 

encoding. (a) 3D plot of the first three PCA components. 436 
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(b) 2D plot of the first two PCA components. (c) 437 

Variance explained. 438 

 439 

(a)                                                   (b) 440 

 441 

                                     (c) 442 

Fig. 7. Principal Component Analysis after the encoding 443 

stage. (a) 3D plot of the first three PCA components. (b) 444 

2D plot of the first two PCA components. (c) Variance 445 

explained. 446 

We repeated this analysis post-encoding stage of 447 

the Transformer. By averaging the embedding 448 

vectors of 1,000 randomly selected sentences at 449 

identical positions, we isolated positional 450 

information, effectively removing semantic, 451 

contextual, and syntactic information. PCA on the 452 

resulting “average sentence” showed that the 453 

residual positional encoding forms a helical shape 454 

(Fig. 7a and 7b). In contrast to the input positional 455 

encoding that spans all 128 dimensions, the post-456 

encoding positional vectors predominantly use 457 

three dimensions (Fig. 7c). This dimensional 458 

reduction facilitates shift invariance, allowing the 459 

Transformer to capture semantic, syntactic, and 460 

contextual information in the remaining 125 461 

dimensions.  462 

One might question the wisdom of combining 463 

positional and conceptual information from the 464 

outset. While separating them in the input stage is 465 

valid, merging them there offers flexibility in 466 

handling varying sentence lengths. This approach 467 

eliminates the need for preset dimensions for 468 

positional information, allowing the algorithm to 469 

dynamically allocate dimensions for positional and 470 

conceptual elements. This adaptability is key for 471 

handling diverse text lengths and complexities, 472 

effectively allowing the algorithm to “set its own 473 

clock”. Nevertheless, exploring alternative 474 

methods for merging information remains a vital 475 

area of research (Wang et al., 2020). 476 

4.3 The Second Helix: Positional 477 

Information Deep Inside the Decoder 478 

Stage of a Transformer  479 

In exploring the decoding stage of the transformer 480 

algorithm, we aimed to identify a helical pattern 481 

akin to what was observed in the encoding stage. 482 

Surprisingly, we found such a helix, but not where 483 

we initially expected. In the decoding stage, as 484 

tokens are generated to form English sentences, the 485 

positional information resembles the original 486 

positional encoding, tracing a path similar to the 487 

“Arch of St. Louis.” A more detailed examination 488 

of the four layers of decoder-attention in Google's 489 

transformer algorithm revealed a distinct 3D helix 490 

in the second layer, as depicted in Figures 8a and 491 

8b. Principal Component Analysis confirmed the 492 

three-dimensional nature of this helix. This 493 

discovery suggests that the helical pattern is a core 494 

characteristic of the transformer architecture, 495 

raising interesting questions about its role in the 496 

algorithm's language processing and generation 497 

capabilities. 498 

 499 

(a)                                          (b) 500 

 501 

                                   (c) 502 

Fig. 8. Principal Component Analysis in the decoder 503 

stage. (a) 2D plot of the first two PCA components. (b) 504 

3D plot of the first three PCA components. (c) Variance 505 

explained. 506 

  507 

 (a)                                        (b)                          508 
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Fig. 9. (a) Google Transformer model architecture. (b) 509 

Identification of two helix patterns in the transformer 510 

model architecture. 511 

4.4 Accidental Mingling 512 

In the transformer algorithm, positional and 513 

semantic embeddings are combined, which could 514 

potentially result in indistinguishable embeddings 515 

for different words. To illustrate, if token A and 516 

token B have positional embeddings of 3 and 4, and 517 

semantic embeddings of 6 and 5, respectively, their 518 

combined embeddings would both sum to 9. This 519 

overlap might obscure distinct meanings. 520 

However, the transformer model employs 521 

strategies to prevent such overlaps. 522 

Renormalization in deep learning (De Mello Koch 523 

et al., 2020) emphasizes slight differences between 524 

embeddings. The high dimensionality of the 525 

embedding space and the improbability of overlaps 526 

in linguistic translation reduce the likelihood of 527 

collisions. Crucially, the transformer's semantic 528 

embeddings are trained to be orthogonal to 529 

positional embeddings, which minimizes the risk 530 

of mixing up different words, ensuring accurate 531 

language processing. 532 

4.5 Running Text Density of Words 533 

Different languages often need varying word 534 

counts to express identical ideas. For instance, 535 

Spanish usually uses more words than English for 536 

the same concept. This discrepancy poses a 537 

question about transformers handling the “text 538 

density” differences. The adaptation likely takes 539 

place at the transformer's cross-attention layer, 540 

which discerns text relationships and modulates the 541 

output's text density to match the target language's 542 

norms. 543 

4.6 Part of Speech 544 

Through analyzing a large sample of sentences and 545 

calculating average embedding vector values, we 546 

successfully identified positional information 547 

vectors for each transformer stage. Isolating the 548 

conceptual dimensions - syntactic, semantic, and 549 

contextual information – can be achieved by 550 

deducting the positional vector from the 551 

embedding vector. Dimension reduction can then 552 

be performed using PCA, reducing the dimensions 553 

from 128 to 5. This allowed us to delve deeper into 554 

the language structure, uncovering meaningful 555 

relationships within the language model. 556 

Our study focused on the transformer's encoder 557 

side (Portuguese), examining tokens of four or 558 

more characters, excluding suffixes, punctuation, 559 

and sentence markers. For clustering, we employed 560 

K-Means++ (sklearn.cluster.KMeans) with the 561 

elbow method to determine the optimal number of 562 

clusters. This has revealed distinct clusters 563 

corresponding to parts of speech (PoS) attributes 564 

like nouns, adjectives, and verbs, as highlighted in 565 

Fig. 10. 566 

 567 

Fig. 10. Tokens formed distinct clusters by their part of 568 

speech (PoS) attributes, such as nouns, adjectives, and 569 

verbs. (Left) Pre-attention stage after semantic 570 

embedding. (Right) Post-attention stage after encoding. 571 

 572 

Fig. 11. A second level of clustering split Verboid cluster 573 

into Verb and Adjuvant clusters. (Left) Pre-attention 574 

stage after semantic embedding. (Right) Post-attention 575 

stage after encoding. 576 

 577 

Fig. 12.  Word Clouds After Encoding Stage. (Top row) 578 

3 clusters clustering. (Bottom row) Verbs and Adjuvants 579 

clusters from sub-clustering of “Verboids”  580 

 581 

Fig. 13: In mid-attention encoder stage English tokens 582 

formed distinct clusters by their PoS attributes, verbs, 583 

nouns, adjectives, and adjuvants. 584 



8 

 
 

 585 

Fig.14. PoS clusters visualized with t-SNE 586 

Interestingly, the verb cluster included numerous 587 

“functional words” such as pronouns, prepositions, 588 

conjunctions, determiners, and some adverbs. We 589 

termed these “adjuvants” - a term derived from 590 

Latin, meaning “to help” - due to their supportive 591 

role in sentence construction. Applying a second 592 

layer of K-Means++ clustering to this “verboid” 593 

cluster distinguished the adjuvants as a separate 594 

group, as shown in Fig. 11. Fig. 12 displays word 595 

clouds post-encoding, showing meaningful 596 

grouping. Our findings also indicated that the self-597 

attention layers enhance cluster delineation. This 598 

underscores the self-attention mechanism's 599 

effectiveness in capturing token relationships and 600 

their PoS functions. We observed that points 601 

fluctuated between (-6.0, 6.0) in the original 602 

semantic layer, narrowing to (-1.0, 1.0) post-603 

encoding, reflecting a “renormalization” process 604 

akin to the “renormalization group” in physics (De 605 

Mello Koch et al., 2020). Analysis of the decoder 606 

side (English) revealed challenges in forming well-607 

defined clusters due to the decoder's dual role in 608 

concept formation/translation as well as decoding 609 

to tokens. Optimal PoS clustering was achieved in 610 

the mid-attention stage (Fig. 13) using PCA and 611 

two-step K-means++ clustering. Additionally, we 612 

explored t-distributed stochastic neighbor 613 

embedding (t-SNE) (Maaten et al., 2008) for 614 

visualizing PoS clusters without PCA reduction. 615 

Applied directly to 128-dimensional embeddings, 616 

distinct PoS clusters emerged after over 10,000 617 

iterations, as illustrated in Fig. 14. Lastly, for post-618 

attention stage analysis, K-Means++ alone was 619 

insufficient for clear PoS clustering. However, 620 

applying the technique to di-grams of current and 621 

next tokens yielded discernible PoS clusters. 622 

4.7 Additional Syntactical, Semantic, and 623 

Contextual Information 624 

We observed that removing positional information 625 

from vectors reveals “conceptual” information, 626 

with single-delta vectors indicating some PoS 627 

cluster structure. For tokens appearing multiple 628 

times, we calculated their “semantic vector” by 629 

averaging their single-delta vectors. Subtracting 630 

the “semantic vector” from the single-delta 631 

embedding yields a residual “double-delta vector”, 632 

likely representing the syntactic and contextual 633 

dimensions of each token. However, 634 

comprehending the full extent of syntactical 635 

information requires examining token sequences, 636 

not just individual tokens. It's possible that single-637 

delta or double-delta vectors contain additional 638 

syntactical information, but confirming this 639 

necessitates analysis of multiple consecutive 640 

tokens. We leave this detailed examination for 641 

future research. 642 

5 Conclusions  643 

The Transformer architecture has significantly 644 

advanced natural language processing with its 645 

innovative design and exceptional performance. 646 

Central to its function is the encoding of input 647 

words into “concepts”, facilitating efficient 648 

sequence-to-sequence translation. A key feature of 649 

the Transformer is positional encoding, which not 650 

only allows for processing of variable-length 651 

sequences but also supports parallel processing on 652 

modern hardware, akin to the use of free-body 653 

diagrams in physics. Remarkably, the 654 

Transformer's principles can be applied to diverse 655 

data types, such as images (Dosovitskiy et al., 656 

2020) and protein folding (Jumper et al., 2021), 657 

demonstrating its versatility and adaptability in 658 

various deep learning applications. 659 

This paper has provided an in-depth analysis of 660 

the Transformer, examining its handling of 661 

positional, syntactic, semantic, and contextual 662 

information. We highlighted the unique positional 663 

information mapping in the encoding and decoding 664 

stages, drawing parallels to the double-helix 665 

structure of DNA. The significance of the semantic 666 

embedding layer in token clustering by parts of 667 

speech was also emphasized. These insights 668 

demystify the transformer algorithm, presenting it 669 

as a comprehensible tool for AI practitioners. Our 670 

goal is to equip professionals with a thorough 671 

understanding of the transformer's mechanisms, 672 

enabling them to leverage its potential and spur 673 

innovation in natural language processing. 674 

 675 

 676 

 677 
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