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Abstract

Colored noise, a class of temporally correlated noise processes, has shown
promising results for improving exploration in deep reinforcement learning
for both off-policy and on-policy algorithms. However, It is unclear how tem-
porally correlated colored noise affects policy learning apart from changing
exploration properties. In this paper, we investigate the influence of colored
noise on the optimal policy in a simplified linear quadratic regulator (LQR)
setting. We show that the expected trajectory remains independent of the
noise color for a given linear policy. We derive a closed-form solution for
the expected cost and find that the noise affects both the expected cost and
the optimal policy. The cost splits into two parts: a state-cost part equaling
the cost for the unperturbed system and a noise-cost term independent of
the initial state. Far from the goal state, the state cost dominates, and the
effect due to the noise is negligible: the policy approaches the optimal policy
of the unperturbed system. Near the goal state, the noise cost dominates,
changing the optimal policy.

1 Introduction

Deep reinforcement learning is an approximate dynamic programming technique to derive
a policy (a controller) for a given environment, i.e., reward (=−cost) and dynamics. The
policy is estimated based on trajectory samples gathered from the environment. To do so,
the data collection, and thus the action selection, needs to be varied. This is typically done
by randomly perturbing the action selection process, i.e., by action noise. Action noise can
be applied additively to the deterministically selected action of a policy or by sampling from
a stochastic policy. In continuous control settings, such as robotics, the system dynamics
include integrative components: the action signal (e.g., force, torque, velocity), is integrated
(velocity, position). This explains why temporally correlated action noise has been found to
improve learning performance in reinforcement learning (Rückstieß et al., 2008; Raffin et al.,
2021; Eberhard et al., 2023; Hollenstein et al., 2022; Chiappa et al., 2023; Hollenstein et al.,
2024). In particular, the temporally correlated colored noise processes have shown promising
results for continuous control (Eberhard et al., 2023; Pinneri et al., 2020; Hollenstein et al.,
2024).
While empirically, these noise processes have shown improvements in learning performance,
it is less clear how this noise affects the optimal policy. In this paper, we investigate this
question in a simplified setting.
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While reinforcement learning is able to deal with stochastic dynamics, i.e.,

st+1 ∼ p(·|at, st)

in practice, often environments with deterministic dynamics are used (Tassa et al., 2018;
Todorov et al., 2012; Brockman et al., 2016). In this paper, we make the simplifying
assumption of linear deterministic dynamics:

st+1 = Gst + Hat

and a linear policy:
at = −Kst

Furthermore, we assume that the actions of the policy are perturbed by colored noise:

at = −Kst + εt (1)

and εt ∼ Cβ . Additionally, we assume the cost (= −reward) to be quadratic and the goal
state to be s = 0. That is, we study the question of the impact of colored noise in the linear
quadratic regulator (LQR) setting. As is typical for reinforcement learning, we assume the
initial state s0 ∼ S to be sampled from a given initial state distribution. Furthermore, we
limit the study to the episodic setting, limiting the length of the trajectories to T .
We are interested in the following questions:

1. Does colored noise change the expected trajectory E [st], given an expected starting
state s0.

2. Does the expected cost change when the noise color (β) is changed?
3. Does colored noise change the optimal policy?

Our contributions are:

1. We show that the expected trajectory remains unchanged regardless of the noise
(Q1).

2. We derive a closed-form solution for the expected cost.
3. We show that the cost is increased by the noise (Q2).
4. We show that this can affect the optimal policy K.

1.1 Related Work

Exploration is critical for reinforcement learning. In continuous control deep reinforcement
learning, the two most prominent noise types used for exploration are uncorrelated white
noise (Haarnoja et al., 2019; Fujimoto et al., 2018; Abdolmaleki et al., 2018; Schulman et al.,
2017) or temporally correlated Ornstein-Uhlenbeck (Uhlenbeck & Ornstein, 1930) noise
are used (Lillicrap et al., 2016). The importance of temporally correlated noise has also
been shown by methods that combine random aspects with deterministic state-to-action
mappings (Raffin et al., 2021; Rückstieß et al., 2008; Chiappa et al., 2023). A further type
of random exploration, more similar to white noise and Ornstein-Uhlenbeck noise is action
noise exploration based on colored noise processes (Pinneri et al., 2020; Eberhard et al.,
2023; Hollenstein et al., 2024). In the setting of LQR, the problem of noisy observations
and dynamics is approached in the setting of linear–quadratic–Gaussian (LQG) control,
also in the setting of temporally correlated noise (Kwong, 1987). Escobedo-Trujillo &
Garrido-Meléndez (2021) also study the setting LQR with dynamics noise of white noise and
Ornstein-Uhlenbeck noise. Our setting is different in two ways: first, we focus on additive
action noise at = −Kst + εt which is typically not modeled directly in LQG (but can be
modeled indirectly as observation noise, modulated by the control gain). Secondly, the
colored noise process we study cannot be expressed as a recursion because it is generated in
the frequency domain. We focus on this generating noise process because it is most relevant
for deep reinforcement learning (Eberhard et al., 2023; Hollenstein et al., 2024; Pinneri et al.,
2020). Recursive filtering approximations of colored noise are possible but have not been
compared against the method of generating the noise in the frequency domain.
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2 Background

Colored noise processes are a class of temporally correlated noise processes that are parame-
terized by the noise color β. This class includes temporally uncorrelated noise (white noise,
β = 0) and temporally correlated red noise (β = 2), which is exhibited by, e.g., Brownian
motion. Sequences of different noise colors are illustrated in the time domain in Figure 1.
The noise color β describes how the expected power spectral density (PSD) behaves, i.e., the
power components scale with 1

fβ . This is illustrated in Figure 2.
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Figure 1: Colored noise processes generate temporally correlated noise with varying degrees of
temporal correlation depending on the noise color β. From left to right: the temporal correlation
increases with increasing β, from β = 0 (temporally uncorrelated white noise) to β = 2 (highly
temporally correlated red noise).
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Figure 2: Colored noise is defined by the slope of the expected power spectral density: the power
components scale with 1

fβ

Generating colored noise Following the work by Eberhard et al. (2023); Hollenstein
et al. (2024) on colored noise in deep reinforcement learning, we generate colored noise in the
frequency domain and apply the Inverse Real (Fast) Fourier (IRFFT) to retrieve a sequence
of perturbation εt, i.e., noise generation follows the algorithm proposed by Timmer & König
(1995). This means that for a specific rollout the frequency components Φ are sampled once
Φ ∼ Cβ , and remain fixed for the entire episode. εt can then be computed by the inverse
Fourier transform, which amounts to a weighted summation of the components of Φ. This
summation can be expressed as the inner product between Φ⊤ and the time dependent
Fourier coefficients ft:

εt = Φ⊤ · ft (2)

The perturbation εt can be interpreted as a discrete-time signal at time index t ∈ {0, . . . , M−
1}, derived using the inverse real Fourier transform from N = ⌊M/2⌋+1 frequency components.
For simplicity in the colored noise generation and inverse Fourier transform, we assume both
M and N to be even valued. The derivations in both cases are analogous. For details on the
noise generation process see Appendix A.1.

εt = 1
N − 1

N−1∑
k=0

[
ckφ2k cos(−k

t

M
· 2π) + ckφ2k+1 sin(−k

t

M
· 2π)

]
(3)
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where φ2k, φ2k+1 denote the real, respectively imaginary part of the frequency domain Fourier
coefficients and ck denotes a scaling factor.

ck =
{

0 if k ∈ {0, N − 1}
1

The sum can be rewritten as the dot product

εt = Φ⊤ft

where Φ and ft are defined as:

Φ =

 φ1
...

φ2N

 ft =


c0 cos(−0 · 2π i

M )
c0 sin(−0 · 2π i

M...
cN−1 cos(−(N − 1) · 2π i

M
cN−1 sin(−(N − 1) · 2π i

M

 (4)

The components φi of Φ are independently sampled, depending on the noise color β, and
the sequence length M :
1: procedure C(M, β)
2: N ← M/2 + 1
3: f ← { 1

M , 1
M , . . . , i

M , . . . , N−1
M }

4: σ2 ← {. . . , f−β
i , . . .} ▷ Calculate scales

5: 1
c2 ←

( 2
M

)2 ·
∑

w2
i |wi ∈ {σ1, . . . , σN−2, σN−1

2 }

6: Φ ∼



N (0, c · σ0 ·
√

2)
N (0, c · σ0 · 0)
N (0, c · σ1)
N (0, c · σ1)

...
N (0, c · σN−1)
N (0, c · σN−1)


7: return Φ
8: end procedure

3 Q1: Expected Trajectory remains unchanged

The addition of action noise changes the distribution of sampled trajectories. The distribution
also changes when the noise color is varied. This is illustrated in Figure 3. Empirically this
figure also shows, that despite the widely different distribution of trajectories, the expected
trajectory remains unchanged. In this section we derive the expected trajectory.
For a given Φ, the action noise is fixed for the whole duration of a trajectory. The policy
can be included in the dynamical system to make it autonomous, i.e., the system evolution
only depends on the initial state. This means that the trajectory, or more precisely, the
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Figure 3: Effect of different noise colors on sampled trajectories. (first three plots) Double Integrator
environment, (last three plots) Randomly generated test environment. While the distribution of
trajectories (black) changes depending on the noise color, the expected trajectory (red) remains
unchanged, reaching the same goal state (marked X) reliably.
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state st, can be expressed as a sum capturing the recursion starting at the given state s0
(Appendix B):

s1 = Gs0 + Ha0 (5)
s1 = Gs0 −HKs0 + HΦ⊤f0 (6)

s2 = Gs1 + Ha1 (7)
... (8)

st = (G−HK)ts0 +
t∑

i=1
(G−HK)t−iHΦ⊤fi−1 (9)

Assuming that the initial state is randomly chosen, s0 ∼ S0 and the expected value exists
E [s0] = s0, the expected value for E [st] can be computed:

E [st] = E

[
(G−HK)ts0 +

t∑
i=1

(G−HK)t−iHΦ⊤fi−1

]
Because E [Φ] = 0, by definition of the chosen colored noise generation process, using the
linearity property of the expectation, this simplifies to

E [st] = E
[
(G−HK)ts0

]
= (G−HK)tE [s0]

That is: the expected trajectory under colored noise remains unchanged.

4 Q2: Effect of Colored Noise on Cost

In the previous section, we demonstrated that the noise color alters the distribution of
sampled trajectories, but the expected trajectory stays the same. This raises the question of
how the noise color affects the cost, particularly the expected cost.
We assume quadratic costs:

J =
⊤∑

t=0
s⊤

t Qst + a⊤
t Rat = JQ + JR (10)

Because of the presence of action noise, e.g., Equation (1), we are interested in the expected
cost J = E [J ], which we derive (see Appendix C for details) as follows:

E [J ] = E [JQ] + E [JR] = E
[ ⊤∑

t=0
s⊤

t Qst

]
+ E

[ ⊤∑
t=0

a⊤
t Rat

]
= (11)

⊤∑
t=0

(
s⊤

0 Sts0 + tr (StCov[s0]) (12)

+f⊤
t E

[
ΦRΦ⊤] ft+ (13)

+
t∑

i=1

t∑
j=1

f⊤
j−1E

[
Φ(Wi,j,t + Bi,j,t)Φ⊤] fi−1 +

t∑
i=1

f⊤
i−1E

[
ΦYt,iΦ⊤] ft

)
(14)

where Ct = (G−HK)t Bi,j,t := H⊤Ct−j⊤
K⊤RKCt−iH

Wi,j,t = H⊤Ct−j⊤
QCt−iH Yt,i := H⊤(Ct−i)⊤K⊤R

St := Ct⊤
QCt + (Ct)⊤K⊤RKCt

Note that the cost splits into a state dependent term equal to the cost of the noise-free system
(12) and three noise terms, one independent of the policy K (13), and two dependent on the
policy K (14). Interestingly, all three of the noise terms are independent of the expected
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initial state s0. These additional terms show analytically that the noise influences the cost.
This is illustrated empirically in Figure 4.
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Figure 4: Effect of different noise colors β and noise scales σ · Φ on the expected cost. Generally,
the cost increases with a larger noise scale σ. Whether the cost is higher for a specific noise color β
depends on the dynamics. The experiments are performed with a horizon T = 30.

5 Q3: Optimal Policy K under Colored Noise

In the previous section we showed that the noise color affects the expected cost and that the
expected cost splits into a state dependent cost term and a noise dependent cost term.
The split of the expected cost J Equation (11), into the state dependent cost

Js0 =
⊤∑

t=0

(
s⊤

0 Sts0 + tr (StCov[s0])
)

and noise dependent cost (keeping only terms dependent on K)

Jε =
⊤∑

t=0

(
t∑

i=1

t∑
j=1

f⊤
j−1E

[
Φ(Wi,j,t + Bi,j,t)Φ⊤] fi−1 +

t∑
i=1

f⊤
i−1E

[
ΦYt,iΦ⊤] ft

)
shows a dependency of the optimal policy, i.e., a change in optimal K in the presence of
noise.
The effect of σ and β on K is illustrated empirically in Figure 5. Here, the Double Integrator
is studied with initial state s⊤

0 = [0.5 0.5], horizon T = 32, the optimal policy K, (K ∈ R2)
is found numerically from the closed form solution of the expected cost. With larger scale σ,
or change in β the components of the gain matrix policy K change.
However, if the noise is scaled down, σ · Φ for σ ≪ 1, Js0 dominates the combined cost and
the optimal policy K approaches the optimal policy of the unperturbed system. On the
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Figure 5: The optimal policy K, is affected by the noise color β and the noise scale σ. We numerically
derive the optimal K for the Double Integrator for s⊤

0 =
[
0 0

]
and horizon T = 30. The plots

show the difference to the optimal K for the action-noise free setting for both dimensions of K
(state, velocity) separately. The color gradients show that the growing discrepancy to the noise-free
policy is driven by the increase in noise scale and the change in noise color (i.e., temporal correlation
of the noise).
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Figure 6: Visualization of the contributions to the cost for each timestep t: The closed-form solution
for the expected cost consists of a state dependent term Js0 (t) (■) and a noise dependent term Jε(t)
(■) At the beginning of the trajectory, the cost is dominated by Js0 (t), close to the goal state, the
cost is dominated by the cost incurred by the noise Jε(t). The noise cost Jε(t) appears to reach an
equilibrium. Overall Js0 , which is independent of the action noise, dominates.

flip side, when Js0 has little influence, Jε dominates the combined cost, causing a shift in
the optimal policy K to counteract the noise effect. The influence of Js0 is small when the
system is close to the goal state (sgoal = 0). This indicates that the cost is likely to be
dominated by the state cost Js0 at the beginning of the trajectory, shifting to Jε towards
the end, i.e., close to the goal.
This has several interesting implications:

• Jε is independent of s0 and will thus not converge to zero. For an infinite horizon
limT →∞ J might diverge and average or discounted cost formulations need to be
investigated.

• Hollenstein et al. (2022) suggests reducing the influence of the noise over the course of
the training process, i.e., scheduling σ in σ ·Φ to shrink over the training process. This
would reduce the influence of Jε and recover the optimal policy of the unperturbed
system.

• Close to the goal state s = 0, the unperturbed policy would not take any action
a = −Ks = 0. In this case, Jε would dominate over Js0 . However, in practical
applications, the policy will either have to take actions, suggesting s ̸= 0, or, if
the system is required to stay close to the goal state, the action noise scale needs
to be small to prevent the system from deviating too far from 0. Both of these
factors would lead to Js0 ≫ Jε, suggesting that the optimal policy K approaches
the solution of the unperturbed system.

This shift from the state dependent cost Js0 to the noise dependent cost Jε is illustrated in

Figure 6 for the Double Integrator, s0 =
[
10
10

]
, for K the infinite horizon LQR solution is

used, and T = 120. In this example, the total cost of the trajectory is determined mostly by
the state dependent cost accounting for 99.7% of the total cost. Here, the influence of the
noise on the policy would be marginal.

6 Conclusion

In this paper, we investigated the effect of colored action noise on the optimal policy in a
simplified LQR setting. We found that the expected trajectory for a given policy remains
unchanged in the presence of colored noise but that the expected cost changes. Associated
with this change in cost is a change in the optimal policy. The change in cost is due to an
additional cost term compared to the cost of the unperturbed system, which is independent
of the starting state and instead depends on the noise color, system dynamics, and policy
matrix. This effect is relevant close to the goal state, but has little impact further away from
the goal. This suggests that while colored noise can change the optimal policy, this change
is likely to be small in practice.
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A Colored Noise

A.1 Generating Colored Noise
1: procedure GenerateColoredNoise(N, β)
2: L← ⌊N/2⌋
3: f ← { 1

N , 1
N , . . . , i

N , . . . , L
N } ▷ Frequencies of components 0 . . . L

4: s← {. . . , f
− β/2

i , . . .} ▷ Calculate scales

5: wL ←
{

sL, if L is odd
sL/2, otherwise

6: w ← {s1, . . . sL−1, wL}
7: σ ← 2

N ·
√∑

w2
i

8: α = {. . . , αi, . . .} : αi ∼ N (0, si) ▷ Real part
9: β = {. . . , βi, . . .} : βi ∼ N (0, si) ▷ Imaginary part

10: α0 ∼ N (0, s0 ·
√

2)
11: β0 ← 0

12: αL ∼
{
N (0, s0 ·

√
2), if odd

N (0, s0), otherwise

13: βL ∼ N (0, s0) ·
{

0, if odd

1, otherwise
14: γ ← {. . . , γi, . . .} : γi = αi + iβi

15: τε = F−1[γ] · 1/σ

16: return τε ▷ Return noise sequence of length N
17: end procedure

B Derivation of st

at = −Kst + Φ⊤ft

s1 = Gs0 + Ha0

s1 = Gs0 −HKs0 + HΦ⊤f0

s1 = (G−HK)s0 + HΦ⊤f0

s2 = Gs1 + Ha1

s2 = Gs1 −HKs1 + HΦ⊤f1

s2 = (G−HK)s1 + HΦ⊤f1

s2 = (G−HK)(G−HK)s0 + HΦ⊤f0) + HΦ⊤f1

s2 = (G−HK)2s0 + (G−HK)(HΦ⊤f0) + HΦ⊤f1

s3 = Gs2 + Ha2

s3 = (G−HK)s2 + HΦ⊤f2

s3 = (G−HK)((G−HK)2s0 + (G−HK)(HΦ⊤f0) + HΦ⊤f1) + HΦ⊤f2

s3 = (G−HK)3s0 + (G−HK)2(HΦ⊤f0) + (G−HK)HΦ⊤f1 + HΦ⊤f2

...

st = (G−HK)ts0 +
t∑

i=1
(G−HK)t−iΦ⊤fi−1

C Derivation of closed-form expected cost E [J ]

From Equations (1) and (9) and let C = (G−HK). For a given trajectory length T , the
noise sample εt is generated by the Fourier series at time t. This amounts to a weighted sum
of the frequency component random variables: εt = Φ⊤ft.
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E [J ] = E [JQ] + E [JR] = E
[ T∑

t=0
s⊤

t Qst

]
+ E

[ T∑
t=0

a⊤
t Rat

]
=

T∑
t=0

E
[
s⊤

t Qst

]
+

T∑
t=0

E
[
a⊤

t Rat

]
=

T∑
t=0

E
[
s⊤

t Qst

]
+ E

[
a⊤

t Rat

]
We derive E

[
s⊤

t Qst

]
and E

[
a⊤

t Rat

]
in separate subsections and combine the results after-

wards into the final closed-form expected cost solution.

C.1 Derivation of E
[
s⊤

t Qst

]
E
[
s⊤

t Qst

]
=E

[(
Cts0 +

t∑
i=1

Ct−iHΦ⊤fi−1

)⊤

Q

(
Cts0 +

t∑
i=1

Ct−iHΦ⊤fi−1

)]
=

=E
[
s⊤

0 Ct⊤
QCts0

]
+ E

[
2s⊤

0 Ct⊤
Q

t∑
i=1

Ct−iHΦ⊤fi−1

]
+

+ E

 t∑
j=1

f⊤
j−1ΦH⊤Ct−j⊤

Q

t∑
i=1

Ct−iHΦ⊤fi−1

 =

=E
[
s⊤

0
]

Ct⊤
QCtE [s0] + tr(Ct⊤

QCtCov[s0]) + 2E
[
s⊤

0
]

Ct⊤
Q

t∑
i=1

Ct−iE
[
Φ⊤] fi−1+

+
t∑

j=1

t∑
i=1

f⊤
j−1H⊤E

[
ΦCt−j⊤

QCt−iHΦ⊤
]

fi−1 =

=s⊤
0 Ct⊤

QCts0 + tr(Ct⊤
QCtCov[s0]) +

t∑
j=1

t∑
i=1

f⊤
j−1E

[
ΦH⊤Ct−j⊤

QCt−iHΦ⊤
]

fi−1 =

=s⊤
0 Ct⊤

QCts0 + tr(Ct⊤
QCtCov[s0]) +

t∑
j=1

t∑
i=1

f⊤
j−1E

[
ΦWi,j,tΦ⊤] fi−1

C.2 Derivation of E
[
a⊤

t Rat

]
Calculating the expected action cost for time step at results in three separate action cost
terms:

E
[
a⊤

t Rat

]
=E

[
(−Kst + Φ⊤ft)⊤R(−Kst + Φ⊤ft)

]
=

=E
[
f⊤

t ΦRΦ⊤ft

]
+ E

[
s⊤

t K⊤RKst

]
− 2E

[
s⊤

t K⊤RΦ⊤ft

]
First action cost term:

E
[
f⊤

t ΦRΦ⊤ft

]
= f⊤

t E
[
ΦRΦ⊤] ft
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Second action cost term:

E
[
s⊤

t K⊤RKst

]
= E

[
s⊤

0 (Ct)⊤K⊤RKCts0
]

+ tr
(
(Ct)⊤K⊤RKCtCov[s0]

)
+

+E

[
2s⊤

0 Ct⊤
K⊤R

t∑
i=1

KCt−iHΦ⊤fi−1

]
+

+E

 t∑
i=1

t∑
j=1

(
Cj−iHΦ⊤fj−1

)⊤
K⊤RKCt−iHΦ⊤fi−1

 =

= E
[
s⊤

0
]

(Ct)⊤K⊤RKCtE [s0] + tr
(
(Ct)⊤K⊤RKCtCov[s0]

)
+

+E

 t∑
i=1

t∑
j=1

f⊤
j−1ΦH⊤Cj−i⊤

K⊤RKCt−iHΦ⊤fi−1

 =

= s⊤
0 (Ct)⊤K⊤RKCts0 + tr

(
(Ct)⊤K⊤RKCtCov[s0]

)
+

+
t∑

i=1

t∑
j=1

f⊤
j−1E

[
ΦH⊤Cj−i⊤

K⊤RKCt−iHΦ⊤
]

fi−1 =

[substitute : Bi,j,t := H⊤Cj−i⊤
K⊤RKCt−iH]

= s⊤
0 (Ct)⊤K⊤RKCts0 + tr

(
(Ct)⊤K⊤RKCtCov[s0]

)
+

t∑
i=1

t∑
j=1

f⊤
j−1E

[
ΦBi,j,tΦ⊤] fi−1

Third action cost term:

E
[
s⊤

t K⊤RΦ⊤ft

]
= E

[
(Cts0 +

t∑
i=1

Ct−iHΦ⊤)⊤K⊤RΦ⊤ft

]
=

= E
[
s⊤

0 (Ct)⊤K⊤RΦ⊤ft

]
+ E

[
t∑

i=1
f⊤

i−1ΦH⊤(Ct−i)⊤K⊤RΦ⊤ft

]
=[

E
[
s⊤

0 (Ct)⊤K⊤RΦ⊤ft

]
= 0 & substitute Yt,i := H⊤(Ct−i)⊤K⊤R

]
=

t∑
i=1

f⊤
i−1E

[
ΦYt,iΦ⊤] ft

C.3 Closed-form expected cost E [J ]

When combining the derived parts, we group them based on

(15) Initial state dependency: We use the linear property of the quadratic form
and trace operator to merge the state cost and action cost parts with initial state
dependency.

(16) Noise dependency: The action cost term that only depends on the noise.
(17) Noise + Policy dependency: State and action cost have a quadratic double sum

term, which we combine to one (linearity of expectation). This term and the linear
action cost term are both noise and policy dependent but have no dependents on
the initial state.
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E [J ] =
T∑

t=0
E
[
s⊤

t Qst

]
+

T∑
t=0

E
[
a⊤

t Rat

]
=

T∑
t=0

(
s⊤

0

(
Ct⊤

QCt + (Ct)⊤K⊤RKCt
)

s0 + tr
((

Ct⊤
QCt + (Ct)⊤K⊤RKCt

)
Cov[s0]

)
(15)

+f⊤
t E

[
ΦRΦ⊤] ft+ (16)

+
t∑

i=1

t∑
j=1

f⊤
j−1E

[
Φ(Wi,j,t + Bi,j,t)Φ⊤] fi−1 +

t∑
i=1

f⊤
i−1E

[
ΦYt,iΦ⊤] ft

)
(17)

where Ct = (G−HK)t Bi,j,t := H⊤Ct−j⊤
K⊤RKCt−iH

Wi,j,t = H⊤Ct−j⊤
QCt−iH Yt,i := H⊤(Ct−i)⊤K⊤R

To make this a closed-form solution we have to evaluate all expectations in the formula which
all can be evaluated in the following way analogously:

E
[
ΦZΦ⊤] =

E


φ1,1 · · · φM,1

...
φ1,N · · · φM,N

Z

φ1,1 · · · φM,1
...

φ1,N · · · φM,N


 =

E



∑

k,l Zk,lφk,0φl,0 · · ·
∑

k,l Zk,lφk,0φl,N

...∑
k,l Zk,lφk,N φl,0 · · ·

∑
k,l Zk,lφk,N φl,N


 =


∑

k,l Zk,lE [φk,0φl,0] · · ·
∑

k,l Zk,lE [φk,0φl,N ]
...∑

k,l Zk,lE [φk,N φl,0] · · ·
∑

k,l Zk,lE [φk,N φl,N ]

 =

[E [φi,kφj,k] = 0 for i ̸= j ]
∑

k Zk,kE [φk,0φk,0] · · ·
∑

k Zk,kE [φk,0φk,N ]
...∑

k Zk,kE [φk,N φk,0] · · ·
∑

k Zk,kE [φk,N φk,N ]

 =

[E [φk,iφk,j ] = 0 for i ̸= j ]
∑

k Zk,kVar[φk,0] 0
. . .

0
∑

k Zk,kVar[φk,N ]


= diagV →M (diagM→V (Z) ·Var[Φ])) (18)
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By definition of the colored noise generation process Var[Φ] is known which results in the
following closed form solution:

E [J ] =
T∑

t=0
E
[
s⊤

t Qst

]
+

T∑
t=0

E
[
a⊤

t Rat

]
=

T∑
t=0

(
s⊤

0 Sts0 + tr (StCov[s0]) +

+f⊤
t diagV →M (diagM→V (R) ·Var[Φ])) ft+

+
t∑

i=1

t∑
j=1

f⊤
j−1 diagV →M (diagM→V (Wi,j,t + Bi,j,t) ·Var[Φ])) fi−1+

+
t∑

i=1
f⊤

i−1 diagV →M (diagM→V (Yt,i) ·Var[Φ])) ft

)
where Ct := (G−HK)t Bi,j,t := H⊤Ct−j⊤

K⊤RKCt−iH

Wi, j, t := H⊤Ct−j⊤
QCt−iH Yt,i := H⊤(Ct−i)⊤K⊤R

St := Ct⊤
QCt + (Ct)⊤K⊤RKCt
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