
Automating Thought of Search: A Journey Towards
Soundness and Completeness

Daniel Cao
Cornell University

dyc33@cornell.edu

Michael Katz
IBM Research

Michael.Katz1@ibm.com

Harsha Kokel
IBM Research

Harsha.Kokel@ibm.com

Kavitha Srinivas
IBM Research

Kavitha.Srinivas@ibm.com

Shirin Sohrabi
IBM Research

ssohrab@us.ibm.com

Abstract

Language models (LLMs) have recently used for search, primarily as world models
that define the space; the use of LLMs for search forgo soundness for the sake of
flexibility. A recent work, Thought of Search (ToS), proposed defining the search
space with code, having the language models produce that code. ToS requires
a human in the loop, collaboratively producing a sound successor function and
goal test. The result, however, is worth the effort: all the tested datasets were
solved with 100% accuracy. In this work, we automate ToS (AutoToS), completely
taking the human out of the loop of solving planning problems. AutoToS guides
the language model step by step towards the generation of sound and complete
search components, through feedback from both generic and domain specific unit
tests. We achieve 100% accuracy, with minimal feedback iterations, using LLMs
of various sizes on all evaluated domains.

1 Introduction

Figure 1: An overview of AutoToS.

Spurred by the abilities of large lan-
guage models (LLMs) in natural lan-
guage tasks, several recent works have
studied AI planning with them as a
subset of code generation and code re-
finement. The approaches vary from
giving a planning problem to an LLM
and asking it to output an entire plan
in a single call [40, 23, 33] to asking
an LLM to generate a planning model
to be given to an automated planner
[13, 32, 12]. Between these two ex-
tremes, lies a body of work on using
language models to plan by perform-
ing a combinatorial search [15, 48, 5, 37]. Among these, Thought of Search (ToS) [25] stands out; it
uses LLMs to define the search space for the entire domain at once. It is done simply by soliciting 2
crucial search components, a successor function and a goal test. These components are then plugged
into a search algorithm, such as Breadth-First Search (BFS) [9].

ToS has impressive accuracy of 100% on all tested benchmarks and it produces a symbolic model
whose soundness and completeness can be verified. However, ToS has a limitation - it requires a

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Workshop on Open-World Agents.

human expert in the loop, providing feedback to the model on the produced code. We automate the
iterative feedback and exception handling process through the use of unit tests and printed debugging
statements for use with few shot and Chain of Thought (CoT) prompting [6, 45, 27, 44], limiting the
human expert involvement with the language model. We test the search components for soundness
and completeness and provide feedback to the model when a violation is detected. We use a mixture
of domain-independent and domain-specific tests, based on a small number of held out instances.

We exemplify our proposed approach on five representative search problems from the recent literature
and test with a variety of LLMs of different sizes. Through automated feedback, we find that the
accuracy of the generated code consistently increases to reach 100% across all tested domains. We
show that the total number of calls to the LLM is typically small, comparable to the results of ToS
with human feedback. In an ablation study, we justify the importance of soundness and completeness
feedback for obtaining the highly accurate final code. Finally, we investigate the errors in the code
generated by the language models and find that they differ significantly in error distribution.

2 Related Works

Planning with LLMs Recently, several works have leveraged LLMs for plan generation.
Valmeekam et al. [43] analyzed LLMs ability to generate plans for classical planning problems
described in natural language. Raman et al. [36] generated task plans and used precondition errors as
feedback to revise the generated plan. In the same vein, various works have used external verifiers or
validators as feedback for LLMs to generate better plans [41, 24]. Pallagani et al. [34] investigate
training approaches to improve plan generation abilities. All these approaches use LLMs to solve
one problem at a time–essentially treating LLM as a policy. Another line of work has tried to extract
policies or generalized plans from LLMs. Silver et al. [39] synthesized generalized plans as Python
programs from LLMs for planning domains described in a formal language (PDDL). Further, LLMs
have also been used to extract planning problems and models in formal language from their natural
language description. Liu et al. [29] used LLMs to translate natural language planning problems to
PDDL problems, and Zuo et al. [53] proposed a benchmark for such evaluating this ability while Xie
et al. [46] use LLMs to translate natural language goals to PDDL. Recently, Guan et al. [13], Gestrin
et al. [12] and Oswald et al. [32] leveraged LLMs to convert natural language domain description to
PDDL domains. However, the LLM generated PDDL remains less reliable and difficult to evaluate.

Planning with LLMs using Search A burgeoning research field utilizes LLM’s to conduct a
search via structured prompting and feedback for planning and reasoning problems. Hao et al. [15]
used LLMs in the loop for Monte Carlos Tree search, using LLMs as world models to generate next
state and as reasoning agents to pick the next state to expand. Similarly, Tree of Thoughts [49] used
LLMs to generate a search tree—to expand each node in the search tree—and also for evaluating the
choices and selecting the next best state. Graph of Thoughts [5] modeled LLM generated output as a
graph instead of a tree and reduces the number of LLM calls. Similar approaches with integration
to search are also proposed for interactive domains [52, 38]. Their significant reliance on LLMs
for generating successors makes them not only extremely inefficient but also unsound. Thought of
Search (ToS) [25], on the other hand, proposed using LLMs to generate code for the successor and
goal functions. Once these functions are available, any offline search algorithm can be used to solve
any problem in the domain. This approach is significantly more efficient than approaches which use
LLMs in the loop during search. However, it requires human expert for the feedback. Our work
focuses on alleviating the requirement of human in the loop feedback.

Code Generation with LLMs LLM’s abilities in program synthesis are rapidly advancing. Various
benchmarks evaluate correctness of LLM generated code [7, 35, 28]. Subsequent approaches have
demonstrated human level performance on coding benchmarks [51, 31]. Execution errors are used as
feedback to LLMs to refine the code [8, 50]. External verifies are used to curate feedback for LLMs
[30, 19]. Unit test results and error messages were used as feedback [21]. Recently, LLMs code
generation has also shown to help in mathematical reasoning problems [51]. Inspired by their success,
we automatically feedback ToS with both generic and domain-specific unit tests and validators.

2

3 Background

We follow the notation of Katz et al. (2018), slightly adapting it for our purposes. A deterministic
planning problem over a state space is a tuple Π = ⟨S,A, s0, SG, f⟩, where S is a finite set of states,
A is a finite set of action labels, s0 ∈ S is the initial state, SG ⊆ S is the set of goal states, and
f : S×A → S is the transition function, such that f(s, a) is the state which applying action a in state
s leads to. A triplet ⟨s, a, f(s, a)⟩ is called a transition. A solution to Π is a sequence of states and
action labels (trace) ρ = ⟨s0, a1, s1, a2, . . . an, sn⟩, such that f(si, ai+1) = si+1 for 0 ≤ i < n and
sn ∈ SG. In cases when the action labels are not important, they can be dropped from the definition.

The “black box” approach encodes the state space with a tuple Πbb = ⟨s0, succ, isgoal⟩, where s0
is the initial state, succ : S → 2A×S is a successor generator, and isgoal : S → {T, F} is the
goal test function. A solution to the black-box problem is a sequence of states and action labels
(a trace) π = ⟨s0, a1, s1, a2, . . . an, sn⟩, such that ⟨ai+1, si+1⟩ ∈ succ(si) for 0 ≤ i < n and
isgoal(sn) = T . Here as well, if action labels are not important, they can be dropped. We now
establish the correspondence between the black-box encoding and the planning problem.

Definition 1 (Soundness and completeness) We say that isgoal is sound if isgoal(s) = F for all
s ̸∈ SG and isgoal is complete if isgoal(s) = T for all s ∈ SG. We say that succ is sound if
succ(s)⊆{⟨a, s′⟩ |f(s, a)=s′} and succ is complete if succ(s) ⊇ {⟨a, s′⟩ | f(s, a) = s′}.

Sound and complete successor generator and goal test provide the “black box” description of the state
space of the planning problem Π. In such cases, a solution to Πbb is guaranteed to be a solution to Π,
and if no solution for Πbb exists, then Π also must be unsolvable. If the successor generator and goal
test are sound, but not necessarily complete, it is still the case that a solution to Πbb is guaranteed to
be a solution to Π and hence soundness allows us to reliably use Πbb for producing solutions for Π.

4 Proposed Approach and Methodology

We build upon the previous work that proposed producing a code implementation of succ and isgoal
functions [25], taking the human out of the feedback loop. Similar to that work, we care about two
properties, soundness and completeness. As we deal with planning problems described in a natural
language, we do not have the formally defined planning task Π. Albeit not stated formally, previous
work on generating succ and isgoal with language models assumes the existence of a human expert
with the ability to access Π. Examples of such access include a feedback on the code of succ and
isgoal produced by the LLM [25] or validating the obtained solution in cases when succ and isgoal
are implemented through LLMs [15, 48, 5, 37]. Here, we make a similar assumption, but request
a different access to Π. In order to test the soundness and completeness of the produced functions,
the human expert is asked for unit tests, information which can provide evidence of unsoundness or
incompleteness. The evidence is then used to automatically feedback the model with the information
needed to fix the code. We deal with three types of information, exemplified on the 24 Game [48].

1. Examples of inputs to isgoal for which the correct output is known. For instance, we know that
isgoal([24]) should be true and isgoal([24, 1]) should be false.

2. Examples of inputs to succ for which some of the correct outputs are known. For instance, we
know that [24], [2], and [-2] are valid successors of [6,4] and therefore should be in succ([6, 4]).

3. Partial soundness check for a transition ⟨s, a, t⟩ quickly invalidating (obviously) incorrect transitions.
For instance, in 24 Game the successor state t must be of length exactly one less than s.

The first two are are usually readily available and often come with the description of the problem.
The third one might require some level of understanding of the problem being solved, but it is always
possible to use a trivial partial soundness test that always reports that there are no issues. Figure 1
presents an overview of our approach, describing how the provided information is used.

Step 1 Following Katz et al. (2024), we start with the initial prompts asking for the successor
function succ and the goal test isgoal .

Step 2 Then, we perform the goal unit tests, providing feedback to the model in cases of failure,
repeatedly asking for a new isgoal until all goal unit tests have passed or a predefined number
of iterations was exhausted.

3

The goal test function failed on the following input state [24, 1], incorrectly reporting it as a goal state. First think step by step what it
means for a state to be a goal state in this domain. Then think through in words why the goal test function incorrectly reported input state:
[24, 1] as a goal state. Now, revise the goal test function and ensure it returns false for the input state. Remember how you fixed the
previous mistakes, if any. Keep the same function signature.

Invalid transformation: length mismatch - the length of a successor must be one less than the parent. Let’s think step by step. First think
through in words why the successor function produced a successor that had a length that was not exactly one less than the parent. Then
provide the complete Python code for the revised successor function that ensures the length of a successor is exactly one less than the
parent. Remember how you fixed the previous mistakes, if any. Keep the same function signature.
Input state: [1, 1, 4, 6] Example wrong successor state: [6, 5]

Successor function when run on the state [1, 1, 4, 6] failed to produce all successors. Missing successors are: [[1, 4, 7], [-5, 1, 4], [1, 1, 2],
[1, 5, 6], [0.25, 1, 6], [-3, 1, 6], [0.16666666666666666, 1, 4], [1, 3, 6], [1, 4, 5], [1, 1, 1.5]] First think step by step why the successor
function failed to produce all successors of the state. Then, fix the successor function. Remember how you fixed the previous mistakes, if
any. Keep the same function signature.

Figure 2: 24 Game example feedback.

Step 3 Once isgoal has passed the unit tests, we perform a soundness check of the current succ and
isgoal functions. We do that by plugging these functions in a BFS extended with additional
checks and run it on a few example problem instances. If BFS finished, we check whether
the goal was indeed reached. If not, that means that isgoal failed to correctly identify a state
as a non-goal state and we provide that as feedback to the model, repeating Steps 2 and 3.

Step 4 (Optional) Once the previous steps were finished, we perform the successor unit test, provid-
ing feedback to the language model in case of failure.

Every time a goal test fails, we go back to Step 2, every time the successor test fails, we go back to
Step 3. After the first step, we always have succ and isgoal that can be plugged into a blind search
algorithm. However, if Step 3 fails, we have an indication that we cannot trust the solutions produced
by that algorithm. Example feedback produced in Steps 2, 3, and 4 can be seen in Listing 2. In what
follows, we provide detailed description of each step of AutoToS.

4.1 System prompt

We instruct the model to provide answers in convenient form for integrating as a search component.
Thus, the produced code should consist of a single, self-contained function, as in [51, 47].

Step 1: Initial prompt We take the existing initial prompt from previous work, only ensuring that
it includes an example input to the requested function in the correct format [25].

Step 2: Goal function check Goal unit tests assume the existence of a few known goal and non-goal
states. If the goal function isgoal incorrectly identifies a goal state, then it is incomplete, according
to Definition 1. If it incorrectly identifies a non-goal state, then it is not sound. A search with a
non-sound goal function can incorrectly report that a solution was found. Whenever an issue with
either goal function soundness or completeness was identified, we give feedback to the language
model with the description of the failure and the state for which the failure occurred, see example in
Figure 2 (top). We use a chain of thought style request, asking the model to discuss why a mistake
was made and to generate a fix.

Step 3: Successor function soundness check A soundness check assumes the existence of example
problem instances for which we know how to validate that a goal was reached. We extend the
BFS/DFS search with additional checks as follows. First, both the successor and goal test functions
are wrapped with a timeout of 1 second. These functions should be able to finish in a few milliseconds
and therefore 1 second timeout is an indication of an issue with the function. An issue can be as
simple as unnecessary computation or multiple successor steps performed instead of a single step
or it can even be an infinite loop. Second, the successor function is wrapped with a check whether
it modifies the input state. Such modifications often happen when successor states are copied from
the input state and modified. Shallow copy of the input state was observed in the previous work
[25]. Third, for every successor generated at the expansion step of BFS, a partial soundness check is
performed, examining the validity of transitioning from the parent state to the successor state. An
example of such a partial soundness check in 24 Game is that the successor state size must be one
number less than the parent state. If that does not hold, the successor function is not sound according

4

to Def. 1. It is worth emphasizing that this partial soundness check can be trivial, reporting True for
every pair of parent and successor states. If any of the checks did not pass, we provide feedback to
the language model with the respective error message, the example input state and the unexpected (or
expected and unobserved) output, until all tests are passed or a predefined number of iterations was
exhausted (see Fig. 2 middle).

Step 4: Successor function completeness check A successor function completeness check assumes
the existence of a few known parent and successor states. These can include all successors for some
parent state or a subset thereof. If the successor function does not produce some of the known
successors, then it is not complete according to Definition 1. While completeness is not required for
producing sound solutions, incomplete functions may not generate search space areas where goal
states are located, missing existing solutions. Improving completeness is thus an optional step that
may improve the accuracy of the produced code. Here as well, we feedback the language model with
the respective error message, providing example input state and the missing successors (see Fig. 2).

4.2 Automation, evaluation and validation

Since LLMs are not called during search, there is no need to artificially restrict the algorithms to
their incomplete variants [48]; sound and complete algorithms BFS/DFS can be used for solving the
search problems. Still, as the human feedback is before the feedback loop and the search components
produced are not guaranteed to be sound, the solutions produced must be validated for soundness.

5 Experiments

To check the feasibility of our approach, AutoToS, we conduct experiments with a representative
collection of five search/planning problems: BlocksWorld [14], PrOntoQA [16], Mini Crossword and
24 Game [49], and Sokoban [22]. Four of these domains appeared in ToS [25], while the Sokoban
domain did not. We test the performance of various LLMs from three families, using both the largest
and smallest models from the same family. Specifically, we use GPT-4o and GPT-4o-Mini [2],
Llama3.1-70b and Llama3.1-405b [11], as well as DeepSeek-CoderV2 [10]. We additionally tested
Llama3-70b [3], Mistral7x-8b [20], and DeepSeek-CoderV2-Lite, finding these models to perform
poorly and therefore excluded from consideration. We use Greedy decoding with maximum context
length for each model. For each domain, we restrict the number of calls to the language model per
function to 10 (total maximum of 19 per domain). We repeat each experiment 5 times.

Following ToS, we use a simple implementation of BFS and DFS search algorithms in Python. DFS
is used for Mini Crosswords, while BFS is used for the other 4 domains. Each successor function
execution is limited to 1 second and each overall search is limited to 600 seconds. For each domain, a
few (up to 10) instances are used for creating the unit tests. In one case, these instances are taken
out of the available set of instances, in other cases we invent new instances. The rest are used
for evaluating the accuracy of the generated code, where accuracy measures the percentage of the
instances solved. In the case of BFS search, we also require the solution produced to be optimal.
This is relevant to BlocksWorld and Sokoban where the solution length matters, but irrelevant for
PrOntoQA, where solution is a boolean answer, and 24 Game, where all solutions are of the same
length. It is important to emphasize again that if successor function and goal test are sound and
complete, then the solution produced by BFS/DFS is guaranteed to be correct (and in the case of BFS
optimal). However, since no such guarantees are available, we automatically validate every solution
obtained. Experiments were performed on a AMD Ryzen 7 4800H. All models were accessed via
API, except for Llama and Deepseek, which were interacted with through a chat interface. Model
correspondences logs across all 5 domains are provided in the Appendix.

The aim of our evaluation is to test the following hypotheses. First, whether a partial soundness test
improves the accuracy of AutoToS. Second, whether the (optional) completeness step improves the
accuracy of AutoToS or not. Third, whether the number of calls to the language model increases
significantly compared to ToS. Finally, whether the performance of AutoToS is consistent across
different language models of varying sizes.

5

0 1 2
24 Game

Llama 3.1
 70B

Llama 3.1
 405B

GPT-4o
 Mini

GPT-4o

DeepSeek
 Coder V2

0 1 2 3 4 5
24 Game

0 1 2 3 4 5
BlocksWorld

0 1 2 3 4 5
Crossword

0 1 2 3 4 5
PrOntoQA

goal soundness
successor soundness
successor completeness

0 1 2 3 4 5
Sokoban

Figure 4: Average # of feedback calls for goal soundness, successor soundness and completeness.

24 Game The 24 Game [49] takes 4 integers in input that can be manipulated through the four
arithmetic operations: addition, subtraction, multiplication, and division. The goal is to produce a
formula that evaluates to 24, if one exists. States are represented as lists of length 4 or less.

We use the set of 1362 instances [49, 25] and we take out the first 10 instances for unit tests. For
the partial soundness test we check whether the number of elements in a successor state is one less
than for the parent state. A solution is a sequence of states s0, s1, s2, s3, where s0 is the initial state,
s3 = [24] is the goal state, and ⟨s0, s1⟩, ⟨s1, s2⟩, and ⟨s2, s3⟩, are valid transitions. We check that all
these hold for a given sequence.

Figure 3: Progression of accuracy values during AutoToS.

BlocksWorld BlocksWorld is a clas-
sic AI planning domain, where the task
is to rearrange blocks in towers [14].
There are 4 actions: stack a block on
top of another block, unstack a block
from another block, put a block down on
the table, and pick a block up from the
table. States are represented as dictio-
naries based on ‘clear’, ‘on-table’, ‘arm-
empty’, ‘holding’, and ‘on’, describing
whether a block is clear (no block above
it in the tower), the block is on the table,
whether the arm is not holding a block and which blocks are on which.

The domain has a PDDL representation and a large collection of 502 instances was created by
Valmeekam et al. (2023a) and used in the recent literature [15]. We use the entire collection for
evaluation and invent 2 example states (and transitions along 2 plans) per unit test. The examples can
be found in the Appendix. For the partial soundness test we notice that in each tower there is a top
block (that is clear) and there is a bottom block (that is on the table). So, we simply check that the
number of blocks in the ‘clear’ list is the same as in the ‘on-table’ list. As the instances are given in
PDDL, we simply translate the solution into a PDDL format and use an external validator VAL [18].

24 Game PrOntoQA Sokoban Crossword BlocksWorld

A
utoToS

GPT-4o-mini 8.8 4.8 6.4 9.6 10.0
GPT-4o 3.4 2.6 2.2 5.8 2.0
Llama3.1-405b 3.4 2.0 2.6 4.0 3.2
Llama3.1-70b 7.4 2.0 8.2 6.2 5.8
DeepSeek-CoderV2 4.4 2.0 2.8 6.6 4.2

ToS GPT-4 2.2 2.6 NA 3.8 3.8

Table 1: Average # of calls to LLM per domain.

Mini Crosswords The mini cross-
words [49] is a 5x5 crosswords dataset
where the input describes the 5 horizon-
tal and 5 vertical clues and the output
is the full 25 letters board. We provide
a list of horizontal and vertical clues
which are strings of words. The verifier
ensures that the size of each word in the
rows or columns does not exceed 5.

We use the existing 20 instances [49, 25], all used for evaluation, with the unit tests constructed based
on 3 invented states each, with the successor completeness based on a state in which one horizontal
and one vertical clue already filled, which limits the number of possible successors considerably. The
partial soundness test verifies that at most 5 new letters are filled in one transition, as well as that the
number of unfilled letters does not get larger. A crossword puzzle is solved if the end result is valid,
meaning every vertical and horizontal clue is present in the list of possible clues.

PrOntoQA Logical reasoning can be viewed as a search problem of finding a sequence of logical
rules that when applied to the known facts, derive or disprove the target hypothesis. Previous work

6

Figure 5: Partition of the errors in the generated code.

applies MCTS with successor function and rewards obtained by calling an LLM, to examples from
the PrOntoQA dataset [16] to derive the answer but also the proof, a sequence of reasoning steps. A
state is therefore a set of the facts known to be true.

We use the existing set of 4000 instances entirely for evaluation, inventing 3 examples per unit test.
A partial soundness test simply checks that each transition adds a single known fact to the state,
ensuring that the state size increases by exactly 1. In order to validate the solution, we compare to the
known correct answer.

Sokoban Sokoban [22] is a planning problem with PSPACE-complete complexity even for non-
optimal planning. The problem, despite its simple conceptual rules, is a notoriously hard for generic
AI planners and even for specialized solvers. We use a 2-D grid setup, in which, given equal number
of boxes and goal squares, the player needs to push all boxes to goal squares without crossing walls
or pushing boxes into walls. The player can only move upward, downward, leftward and rightward
where many pushes are irreversible. The domain has a known planning model, described in PDDL
of varying grid sizes and difficulties. States are represented as dictionaries with entries: ‘at-player,’
which represents a single pair of coordinates, and ‘at-stone’, a list of coordinates for the stones.

We use the collection of PDDL problem instances from the International Planning Competition (IPC)
2008. Out of these instances, we select a subset that can be solved relatively quickly by using the
blind search configuration of the efficient planner Fast Downward [17] and choose the instances that
were solved in under 5 seconds. This resulted in 11 instances. We use the entire set for evaluation and
invent 3 states per unit test. The test simply checks whether the locations of the player and the stones
are all different. Similar to BlocksWorld, we translate the solution to PDDL format and use VAL.

Figure 3 depicts the progression of accuracy values for three time points in the process, comparing
using the partial soundness test (solid lines, ‘w/ val’) and not (dotted lines, ‘w/o val’). Same colors
represent the same language model. The first point in the process corresponds to when the search
components are first created, meaning no feedback at all. The second point in the process is when the
goal and successor function soundness tests are not failing. The third and final point is the end of
the process, when successor completeness tests are not failing. Each point is also annotated with the
percentage of cases the step was reached. The aggregation is performed over such cases. The figure
allows us to find answers for both the first and the second hypotheses. We can clearly see the benefit
from using the partial soundness test, even as simple as the ones we described above. Going forward,
we therefore restrict our attention to using the partial soundness test. Further, we can clearly see the
strong increase in accuracy when not stopping after the soundness test passes and performing the
completeness tests, across all models.

Table 1 shows the total number of calls to the language model until soundness and completeness tests
pass. Note that the minimum number of calls is 2, one for each component, even without feedback.
We see that the number of automated calls is comparable to the one when a human expert is giving
the feedback to the model. To look deeper into how the feedback is partitioned among the three
phases, Figure 4 compares the numbers across language models and domains. We see that the larger
models rarely require any feedback on the goal function and only a few iterations on the successor
function, and more often than not on completeness.

Finally, we can observe that there is no single model that performs better than all other, according
to all parameters and the performance is quite consistent across the large models. Interestingly, the
smaller model GPT-4o-mini performs quite well in terms of accuracy.

7

6 Code Errors Discussion

To improve the performance of LLMs in generating search components, it is important to understand
the errors in the code produced by these models. We first present the error categories and show the
partitioning of the errors to these categories and then elaborate on a few interesting cases.

AutoToS distinguishes 10 error categories and gives each a separate feedback.

1. succ soundness test failed. 6. isgoal exception occurred.
2. Input state changed by succ. 7. Search timeout in succ soundness test.
3. succ completeness failed. 8. succ execution took too long.
4. isgoal soundness failed. 9. isgoal execution took too long.
5. succ exception occurred. 10. Response parsing error.

Interestingly, we did not observe any errors in the last two categories. Further only 1, 2, and 3
errors in categories 6, 8, and 7, respectively. The partition of the errors to the other 5 categories (see
Figure 5), shows just how much the models differ in the type of errors produced. Interestingly, the
DeepSeek-Coder-V2 model rarely produces code that triggers exception or changes the input state
and even typically passes the goal soundness test. Other models, especially the smaller ones, are
more diverse in errors produced. Across all models, the majority of the errors account for the failed
successor soundness and completeness tests.

Bloopers We noticed a few “bloopers," interesting phenomena that occur during AutoToS. We
share these observations in a hope of shedding some light onto future understanding of LLM code
generation for planning and search problems.

The first blooper occurs in the 5x5 Crossword for Llama3.1-70b. The representation of a Crossword
instance includes vertical and horizontal clues which are lists of 5 words each. The model handles
horizontal clues well by simply checking whether a word in row i is in the ith list in horizontal clues.
For vertical clues, however, the model checks whether the word in column i is at position i among the
clues for every column, despite explicit instructions in the prompt.

The second blooper occurs in the GPT-4o-mini, Llama3.1-70b, and even in Llama3.1-405b on the
BlocksWorld domain. When generating successors for the unstack block from another block action,
the models check if the block is clear, but never actually check whether the arm is empty. The
resulting code, in cases when a block is already held, can generate a successor state in which the
held block is overwritten with the one that is unstacked, and therefore disappears from the state. On
some instances in the evaluation set the situation does not occur. On others, invalid solutions are
produced and the accuracy score falls far below 100%. The AutoToS feedback in the next iterations
often solves the problem.

Another blooper occurs in Sokoban, when Llama3.1-70b generates the initial successor function and
the goal test, and no partial soundness check is performed. The model generates a helper function
is_clear that only checks whether the location on the grid is 0 or 2 (not a wall), disregarding whether
any of the stones are currently at the location. This allows the player to move and push stones to the
locations of other stones, resulting in the accuracy score of 0. Since the unit tests pass in this case, no
additional iterations were performed.

Yet another blooper happens in 24 Game with GPT-4o-mini and DeepSeek-CoderV2 when no partial
soundness check is performed. When creating a new state out of the input state, two numbers are
chosen to perform an arithmetic operation and in order to obtain the remaining numbers, the code
selects the numbers from the state that are different from the two chosen numbers (compares by
value). Thus in cases of duplicate numbers, the state size becomes more than one smaller than of the
parent and on some instances the produced solutions would not be valid.

7 Conclusions and Future Work

We automate the process of generating correct and sound code for the search components by leverag-
ing debugging and exception handing with natural language, code feedback, iterative reprompting.
We demonstrate the performance of our approach, AutoToS, across various sized models and across

8

search problem domains used by the planning community. With just a few calls to the language
model, we demonstrate that we can obtain the search components without any direct human in the
loop feedback, ensuring soundness, completeness, accuracy, and nearly 100% accuracy across all
models and all domains.

For future work it would be interesting to see if the language models could generate the unit tests as
well as the partial soundness tests instead of relying on the user writing these for a specific domain.
The partial soundness test is related to the notion of invariants in planning [4]. It is worth exploring
whether LLMs can help us derive such invariants. Finally, seeing that smaller language models can
achieve accuracy on par with the largest ones, begs the question of whether it would be possible to
finetune an even smaller model and achieve a similar or better accuracy.

References
[1] 2023. Proceedings of the Thirty-Seventh Annual Conference on Neural Information Processing

Systems (NeurIPS 2023).

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023).

[3] AI@Meta. 2024. Llama 3 Model Card. (2024). https://github.com/meta-llama/
llama3/blob/main/MODEL_CARD.md

[4] Vidal Alcázar and Álvaro Torralba. 2015. A Reminder about the Importance of Computing and
Exploiting Invariants in Planning. In Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling (ICAPS 2015), Ronen Brafman, Carmel Domshlak,
Patrik Haslum, and Shlomo Zilberstein (Eds.). AAAI Press, 2–6.

[5] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. 2024.
Graph of thoughts: Solving elaborate problems with large language models. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 38. 17682–17690.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language
models are few-shot learners. Advances in neural information processing systems 33 (2020),
1877–1901.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, et al. 2021. Evaluating Large Language
Models Trained on Code. CoRR abs/2107.03374 (2021).

[8] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2024. Teaching Large
Language Models to Self-Debug. In ICLR. OpenReview.net.

[9] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. 1990. Introduction to
Algorithms. The MIT Press.

[10] DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao,
Chengqi Dengr, Chong Ruan, et al. 2024. DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language Model. arXiv:2405.04434 [cs.CL] https://arxiv.org/
abs/2405.04434

[11] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, et al.
2024. The Llama 3 Herd of Models. arXiv:2407.21783 [cs.AI] https://arxiv.org/
abs/2407.21783

[12] Elliot Gestrin, Marco Kuhlmann, and Jendrik Seipp. 2024. NL2Plan: Robust LLM-Driven
Planning from Minimal Text Descriptions. arXiv:2405.04215 [cs.AI] https://arxiv.
org/abs/2405.04215

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2405.04215
https://arxiv.org/abs/2405.04215

[13] Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. 2023. Lever-
aging pre-trained large language models to construct and utilize world models for model-based
task planning. Advances in Neural Information Processing Systems 36 (2023), 79081–79094.

[14] Naresh Gupta and Dana S. Nau. 1992. On the Complexity of Blocks-World Planning. 56, 2–3
(1992), 223–254.

[15] Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. 2023.
Reasoning with Language Model is Planning with World Model. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing (EMNLP 2023).

[16] Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. 2023.
Reasoning with Language Model is Planning with World Model. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing. 8154–8173.

[17] Malte Helmert. 2006. The Fast Downward Planning System. Journal of Artificial Intelligence
Research 26 (2006), 191–246.

[18] Richard Howey and Derek Long. 2003. VAL’s Progress: The Automatic Validation Tool
for PDDL2.1 used in the International Planning Competition. In Proceedings of the ICAPS
2003 Workshop on the Competition: Impact, Organisation, Evaluation, Benchmarks, Stefan
Edelkamp and Jörg Hoffmann (Eds.).

[19] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. 2024. Large Language Models Cannot Self-Correct Reasoning Yet. In
The Twelfth International Conference on Learning Representations. https://openreview.
net/forum?id=IkmD3fKBPQ

[20] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, et al. 2024. Mixtral of
Experts. arXiv:2401.04088 [cs.LG] https://arxiv.org/abs/2401.04088

[21] Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. SelfEvolve: A Code Evolution Framework
via Large Language Models. arXiv:2306.02907 [cs.CL] https://arxiv.org/abs/
2306.02907

[22] Andreas Junghanns and Jonathan Schaeffer. 1997. Sokoban: A Challenging Single-Agent
Search Problem. In International Joint Conference on Artificial Intelligence. https://api.
semanticscholar.org/CorpusID:4049565

[23] Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. 2024. Position: LLMs Can’t Plan, But
Can Help Planning in LLM-Modulo Frameworks. In Forty-first International Conference on
Machine Learning. https://openreview.net/forum?id=Th8JPEmH4z

[24] Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. 2024. Position: LLMs Can’t Plan, But
Can Help Planning in LLM-Modulo Frameworks. In Forty-first International Conference on
Machine Learning. https://openreview.net/forum?id=Th8JPEmH4z

[25] Michael Katz, Harsha Kokel, Kavitha Srinivas, and Shirin Sohrabi. 2024. Thought of Search:
Planning with Language Models Through The Lens of Efficiency. arXiv:2404.11833 [cs.AI].

[26] Michael Katz, Dany Moshkovich, and Erez Karpas. 2018. Semi-Black Box: Rapid Development
of Planning Based Solutions. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI 2018). AAAI Press, 6211–6218.

[27] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022.
Large language models are zero-shot reasoners. Advances in neural information processing
systems 35 (2022), 22199–22213.

[28] Yixuan Li, Julian Parsert, and Elizabeth Polgreen. 2024. Guiding Enumerative Program
Synthesis with Large Language Models. In CAV (2) (Lecture Notes in Computer Science,
Vol. 14682). Springer, 280–301.

10

https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2306.02907
https://arxiv.org/abs/2306.02907
https://api.semanticscholar.org/CorpusID:4049565
https://api.semanticscholar.org/CorpusID:4049565
https://openreview.net/forum?id=Th8JPEmH4z
https://openreview.net/forum?id=Th8JPEmH4z

[29] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter
Stone. 2023. LLM+P: Empowering Large Language Models with Optimal Planning Proficiency.
CoRR abs/2304.11477 (2023).

[30] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta,
Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh,
and Peter Clark. 2023. Self-Refine: Iterative Refinement with Self-Feedback. In Ad-
vances in Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates, Inc., 46534–
46594. https://proceedings.neurips.cc/paper_files/paper/2023/
file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf

[31] Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue
Zhuo, Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. 2024. OctoPack:
Instruction Tuning Code Large Language Models. In ICLR. OpenReview.net.

[32] James Oswald, Kavitha Srinivas, Harsha Kokel, Junkyu Lee, Michael Katz, and Shirin Sohrabi.
2024. Large Language Models as Planning Domain Generators. In Proceedings of the Thirty-
Fourth International Conference on Automated Planning and Scheduling (ICAPS 2024), Sara
Bernardini and Christian Muise (Eds.). AAAI Press.

[33] Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Lior Horesh,
Biplav Srivastava, Francesco Fabiano, and Andrea Loreggia. 2022. Plansformer: Generating
Symbolic Plans using Transformers. arXiv:2212.08681 [cs.AI].

[34] Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Biplav Sri-
vastava, Lior Horesh, Francesco Fabiano, and Andrea Loreggia. 2023. Understanding the
Capabilities of Large Language Models for Automated Planning. CoRR abs/2305.16151
(2023).

[35] Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir
Zolotov, Julian Dolby, Jie Chen, Mihir R. Choudhury, Lindsey Decker, Veronika Thost, Luca
Buratti, Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss. 2021.
CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of Coding Tasks. In
NeurIPS Datasets and Benchmarks.

[36] Shreyas Sundara Raman, Vanya Cohen, Eric Rosen, Ifrah Idrees, David Paulius, and Stefanie
Tellex. 2022. Planning With Large Language Models Via Corrective Re-Prompting. In NeurIPS
2022 Foundation Models for Decision Making Workshop. https://openreview.net/
forum?id=cMDMRBe1TKs

[37] Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj Khattar, Lu Wang, Ruoxi Jia, and Ming Jin. 2023.
Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models. CoRR
abs/2308.10379 (2023).

[38] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. 2023.
Reflexion: language agents with verbal reinforcement learning, See [1].

[39] Tom Silver, Soham Dan, Kavitha Srinivas, Josh Tenenbaum, Leslie Pack Kaelbling, and Michael
Katz. 2024. Generalized Planning in PDDL Domains with Pretrained Large Language Models.
In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2024),
Jennifer Dy and Sriraam Natarajan (Eds.). AAAI Press.

[40] Tom Silver, Varun Hariprasad, Reece S Shuttleworth, Nishanth Kumar, Tomás Lozano-Pérez,
and Leslie Pack Kaelbling. 2022. PDDL Planning with Pretrained Large Language Models. In
NeurIPS 2022 Foundation Models for Decision Making Workshop. https://openreview.
net/forum?id=1QMMUB4zfl

[41] Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. 2024. On the Self-Verification
Limitations of Large Language Models on Reasoning and Planning Tasks. arXiv preprint
arXiv:2402.08115 (2024).

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://openreview.net/forum?id=cMDMRBe1TKs
https://openreview.net/forum?id=cMDMRBe1TKs
https://openreview.net/forum?id=1QMMUB4zfl
https://openreview.net/forum?id=1QMMUB4zfl

[42] Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao
Kambhampati. 2023. PlanBench: An Extensible Benchmark for Evaluating Large Language
Models on Planning and Reasoning about Change, See [1], 38975–38987.

[43] Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. 2023.
On the Planning Abilities of Large Language Models - A Critical Investigation, See [1].

[44] Zihao Wang, Anji Liu, Haowei Lin, Jiaqi Li, Xiaojian Ma, and Yitao Liang. 2024. Rat: Retrieval
augmented thoughts elicit context-aware reasoning in long-horizon generation. arXiv preprint
arXiv:2403.05313 (2024).

[45] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems 35 (2022), 24824–24837.

[46] Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. 2023. Translating
Natural Language to Planning Goals with Large-Language Models. CoRR abs/2302.05128
(2023).

[47] John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. 2024. Swe-agent: Agent-computer interfaces enable automated
software engineering. arXiv preprint arXiv:2405.15793 (2024).

[48] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate problem solving with large language models,
See [1].

[49] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and
Karthik R Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solving with Large
Language Models. In Thirty-seventh Conference on Neural Information Processing Systems.
https://openreview.net/forum?id=5Xc1ecxO1h

[50] Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023. Self-Edit: Fault-Aware Code Editor for
Code Generation. In ACL (1). Association for Computational Linguistics, 769–787.

[51] Li Zhong, Zilong Wang, and Jingbo Shang. 2024. Debug like a Human: A Large Language
Model Debugger via Verifying Runtime Execution Step-by-step. arXiv:2402.16906 [cs.SE]
https://arxiv.org/abs/2402.16906

[52] Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. 2023.
Language Agent Tree Search Unifies Reasoning Acting and Planning in Language Models.
CoRR abs/2310.04406 (2023).

[53] Max Zuo, Francisco Piedrahita Velez, Xiaochen Li, Michael L. Littman, and Stephen H.
Bach. 2024. Planetarium: A Rigorous Benchmark for Translating Text to Structured Planning
Languages. CoRR abs/2407.03321 (2024).

12

https://openreview.net/forum?id=5Xc1ecxO1h
https://arxiv.org/abs/2402.16906

8 Additional data for experimental domains

We provide additional information on the domains included in our experimental evaluation, such as
examples used in unit tests, code for the partial successor soundness test, etc.

8.1 24 Game

Goal Unit Test Goal unit test cases are stored in two jsonl files, one for goal states and one for
non-goal states.

[h] [frame=single, framesep=3mm, linenos=true, xleftmargin=21pt, tabsize=4]js [24]

[h] [frame=single, framesep=3mm, linenos=true, xleftmargin=21pt, tabsize=4]js [] [3] [24, 1] [1, 6,
4] [1, 1, 4, 6]

Successor Unit Test Successor unit test cases are stored in a jsonl file. The test cases used are
depicted in Listing 8.1.

[frame=single, framesep=3mm, linenos=true, xleftmargin=21pt,breaklines, tabsize=4]js [[1, 1, 4, 6], [[1, 1, 10], [0.6666666666666666, 1, 1], [1,

4, 7], [-2, 1, 1], [-5, 1, 4], [1, 4, 6], [1, 1, 2], [1, 5, 6], [0.25, 1, 6], [-3, 1, 6], [0, 4, 6], [0.16666666666666666, 1, 4], [1, 1, 24], [1, 3, 6], [2, 4, 6],

[1, 4, 5], [1, 1, 1.5]]] [[1, 1, 11, 11], [[1, 11, 11], [0.09090909090909091, 1, 11], [0, 11, 11], [1, 1, 22], [2, 11, 11], [0, 1, 1], [1, 1, 121], [1, 11,

12], [1, 1, 1.0], [1, 10, 11], [-10, 1, 11]]] [[1, 1, 3, 8], [[-2, 1, 8], [1, 3, 8], [0.3333333333333333, 1, 8], [-7, 1, 3], [1, 1, 2.6666666666666665],

[0.125, 1, 3], [2, 3, 8], [1, 3, 7], [1, 1, 11], [1, 1, 5], [1, 1, 24], [-5, 1, 1], [0.375, 1, 1], [1, 2, 8], [1, 3, 9], [0, 3, 8], [1, 4, 8]]] [[1, 1, 1, 8],

[[0.125, 1, 1], [1, 1, 9], [1, 1, 8], [0, 1, 8], [1, 2, 8], [1, 1, 7], [-7, 1, 1]]] [[6, 6, 6, 6], [[1.0, 6, 6], [6, 6, 12], [0, 6, 6], [6, 6, 36]]] [[1, 1, 2, 12],

[[1, 3, 12], [-10, 1, 1], [1, 1, 10], [2, 2, 12], [1, 2, 13], [0.5, 1, 12], [-11, 1, 2], [1, 1, 12], [1, 1, 6.0], [1, 2, 12], [0, 2, 12], [1, 1, 24], [1, 2,

11], [1, 1, 14], [0.16666666666666666, 1, 1], [0.08333333333333333, 1, 2], [-1, 1, 12]]] [[1, 2, 2, 6], [[2, 2, 6], [-5, 2, 2], [2, 3, 6], [1, 2, 6],

[0.3333333333333333, 1, 2], [2, 2, 5], [1, 1.0, 6], [0.16666666666666666, 2, 2], [1, 4, 6], [0, 1, 6], [-4, 1, 2], [1, 2, 12], [1, 2, 3.0], [2, 2, 7], [-1,

2, 6], [1, 2, 8], [1, 2, 4], [0.5, 2, 6]]] [[1, 1, 10, 12], [[-9, 1, 12], [1, 1, 1.2], [0.08333333333333333, 1, 10], [-2, 1, 1], [1, 10, 13], [1, 1, 22], [2, 10,

12], [0.1, 1, 12], [1, 1, 120], [1, 1, 2], [0.8333333333333334, 1, 1], [1, 9, 12], [1, 10, 12], [0, 10, 12], [1, 11, 12], [1, 10, 11], [-11, 1, 10]]] [[2, 2,

10, 10], [[0, 2, 2], [2, 10, 12], [1.0, 10, 10], [0, 10, 10], [-8, 2, 10], [2, 2, 100], [2, 5.0, 10], [1.0, 2, 2], [2, 2, 20], [4, 10, 10], [0.2, 2, 10], [2, 8, 10],

[2, 10, 20]]] [[1, 1, 1, 12], [[0.08333333333333333, 1, 1], [1, 1, 13], [1, 1, 12], [0, 1, 12], [1, 2, 12], [-11, 1, 1], [1, 1, 11]]] [[1, 4, 6], [[4, 6]]] [[4,

6], [[24]]] [[1, 1, 22], [[1, 23]]] [[1, 23], [[24]]] [[1, 1, 24], [[1, 24]]] [[1, 24], [[24]]] [[1, 2, 8], [[3, 8]]] [[3, 8], [[24]]] [[6, 6, 12], [[6, 18]]] [[6,

18], [[24]]] [[0, 2, 12], [[0, 24]]] [[0, 24], [[24]]] [[2, 2, 6], [[2, 12]]] [[2, 12], [[24]]] [[1, 11, 12], [[11, 13]]] [[11, 13], [[24]]] [[2, 2, 20], [[2,

22]]] [[2, 22], [[24]]] [[1, 1, 12], [[2, 12]]]

Partial Successor Soundness Test The code for the partial successor soundness test is as follows.

[breaklines]python def validatetransitioncomplex(s, t) : if len(s) − len(t)! =
1 : feedback = prettyprint(”Invalidtransformation : lengthmismatch −
thelengthofasuccessormustbeonelessthantheparent.”)feedback+ =
prettyprint(”Let′sthinkstepbystep.F irstthinkthroughinwordswhythesuccessorfunctionproducedasuccessorthathadalengththatwasnotexactlyonelessthantheparent.ThenprovidethecompletePythoncodefortherevisedsuccessorfunctionthatensuresthelengthofasuccessorisexactlyonelessthantheparent.”)feedback+ =
prettyprint(”Rememberhowyoufixedthepreviousmistakes, ifany.Keepthesamefunctionsignature.”)returnFalse, feedbackreturnTrue, ””

8.2 Blocksworld

Goal Unit Test Goal unit test cases are stored in two jsonl files, one for goal states and one for
non-goal states, depicted in Listings 8.2 and 8.2.

[h] [frame=single, framesep=3mm, linenos=true, breaklines, xleftmargin=21pt, tabsize=4]js ["state": "clear": ["b"], "on-table": ["d"],

"arm-empty": true, "holding": null, "on": [["a", "c"],["b", "a"],["c","d"]] , "goal": "clear": [], "on-table": [], "on": [["a","c"],["b","a"],["c","d"]]

, "state": "clear": ["a"], "on-table": ["d"], "arm-empty": false, "holding": "b", "on": [["a","c"],["c","d"]] , "goal": "clear": [], "on-table": [],

"on": [["a","c"]]]

[h] [frame=single, framesep=3mm, linenos=true, breaklines, xleftmargin=21pt, tabsize=4]js ["state": "clear": ["b"], "on-table": ["d"],

"arm-empty": true, "holding": null, "on": [["a","c"],["b","a"],["c","d"]] , "goal": "clear": [], "on-table": [], "on": [["a","b"],["b","c"],["c","d"]] ,

"state": "clear": ["a"], "on-table": ["d"], "arm-empty": false, "holding": "b", "on": [["a","c"],["c","d"]] , "goal": "clear": [], "on-table": [], "on":

[["a","c"],["c","b"]]]

Successor Unit Test Successor unit test cases are stored in a jsonl file, depicted in Listing 8.2.

[frame=single, framesep=3mm, linenos=true, breaklines, xleftmargin=21pt, tabsize=4]js ["state": "clear": ["b"], "on-table": ["d"], "arm-empty":

true, "holding": null, "on": [["a","c"],["b","a"],["c","d"]] , "successors": ["clear": ["a"], "on-table": ["d"], "arm-empty": false, "holding":

13

"b", "on": [["a","c"],["c","d"]]] , "state": "clear": ["a"], "on-table": ["d"], "arm-empty": false, "holding": "b", "on": [["a","c"],["c","d"]] ,

"successors": ["clear": ["a","b"], "on-table": ["d","b"], "arm-empty": true, "holding": null, "on": [["a","c"],["c","d"]] , "clear": ["b"], "on-table":

["d"], "arm-empty": true, "holding": null, "on": [["a","c"],["c","d"],["b","a"]]] , "state": "clear": ["a","b","d"], "on-table": ["a","c","d"],

"arm-empty": true, "holding": null, "on": [["b","c"]] , "successors": ["clear": ["b","d"], "on-table": ["c","d"], "arm-empty": false, "holding":

"a", "on": [["b","c"]] , "clear": ["a","b"], "on-table": ["a","c"], "arm-empty": false, "holding": "d", "on": [["b","c"]] , "clear": ["a","d","c"],

"on-table": ["a","c","d"], "arm-empty": false, "holding": "b", "on": []] , "state": "clear": ["b","d"], "on-table": ["c","d"], "arm-empty":

false, "holding": "a", "on": [["b","c"]] , "successors": ["clear": ["b","d","a"], "on-table": ["c","d","a"], "arm-empty": true, "holding": null,

"on": [["b","c"]] , "clear": ["d","a"], "on-table": ["c","d"], "arm-empty": true, "holding": null, "on": [["b","c"],["a","b"]] , "clear": ["b","a"],

"on-table": ["c","d"], "arm-empty": true, "holding": null, "on": [["b","c"],["a","d"]]] , "state": "clear": ["a","d"], "on-table": ["b","c"],

"arm-empty": true, "holding": null, "on": [["a","b"],["d","c"]] , "successors": ["clear": ["d","b"], "on-table": ["b","c"], "arm-empty": false,

"holding": "a", "on": [["d","c"]] , "clear": ["a","c"], "on-table": ["b","c"], "arm-empty": false, "holding": "d", "on": [["a","b"]]] , "state":

"clear": ["d","b"], "on-table": ["b","c"], "arm-empty": false, "holding": "a", "on": [["d","c"]] , "successors": ["clear": ["d","b","a"], "on-table":

["b","c","a"], "arm-empty": true, "holding": null, "on": [["d","c"]] , "clear": ["b","a"], "on-table": ["b","c"], "arm-empty": true, "holding":

null, "on": [["d","c"],["a","d"]] , "clear": ["d","a"], "on-table": ["b","c"], "arm-empty": true, "holding": null, "on": [["d","c"],["a","b"]]] ,

"state": "clear": ["b"], "on-table": ["a"], "arm-empty": true, "holding": null, "on": [["b","c"],["c","d"],["d","a"]] , "successors": ["clear": ["c"],

"on-table": ["a"], "arm-empty": false, "holding": "b", "on": [["c","d"],["d","a"]]] , "state": "clear": ["c"], "on-table": ["a"], "arm-empty":

false, "holding": "b", "on": [["c","d"],["d","a"]] , "successors": ["clear": ["c","b"], "on-table": ["a","b"], "arm-empty": true, "holding":

null, "on": [["c","d"],["d","a"]] , "clear": ["b"], "on-table": ["a"], "arm-empty": true, "holding": null, "on": [["c","d"],["d","a"],["b","c"]]] ,

"state": "clear": ["d"], "on-table": ["b"], "arm-empty": true, "holding": null, "on": [["a","c"],["c","b"],["d","a"]] , "successors": ["clear": ["a"],

"on-table": ["b"], "arm-empty": false, "holding": "d", "on": [["a","c"],["c","b"]]] , "state": "clear": ["a"], "on-table": ["b"], "arm-empty":

false, "holding": "d", "on": [["a","c"],["c","b"]] , "successors": ["clear": ["a","d"], "on-table": ["b","d"], "arm-empty": true, "holding": null,

"on": [["a","c"],["c","b"]] , "clear": ["d"], "on-table": ["b"], "arm-empty": true, "holding": null, "on": [["a","c"],["c","b"],["d","a"]]] , "state":

"clear": ["c","d"], "on-table": ["a","d"], "arm-empty": true, "holding": null, "on": [["b","a"],["c","b"]] , "successors": ["clear": ["c"], "on-table":

["a"], "arm-empty": false, "holding": "d", "on": [["b","a"],["c","b"]] , "clear": ["d","b"], "on-table": ["a","d"], "arm-empty": false, "holding":

"c", "on": [["b","a"]]] , "state": "clear": ["c"], "on-table": ["a"], "arm-empty": false, "holding": "d", "on": [["b","a"],["c","b"]] , "successors":

["clear": ["c","d"], "on-table": ["a","d"], "arm-empty": true, "holding": null, "on": [["b","a"],["c","b"]] , "clear": ["d"], "on-table": ["a"],

"arm-empty": true, "holding": null, "on": [["b","a"],["c","b"],["d","c"]]] , "state": "clear": ["d"], "on-table": ["b"], "arm-empty": true,

"holding": null, "on": [["a","c"],["c","b"],["d","a"]] , "successors": ["clear": ["a"], "on-table": ["b"], "arm-empty": false, "holding": "d", "on":

[["a","c"],["c","b"]]] , "state": "clear": ["a"], "on-table": ["b"], "arm-empty": false, "holding": "d", "on": [["a","c"],["c","b"]] , "successors":

["clear": ["a","d"], "on-table": ["b","d"], "arm-empty": true, "holding": null, "on": [["a","c"],["c","b"]] , "clear": ["d"], "on-table": ["b"],

"arm-empty": true, "holding": null, "on": [["a","c"],["c","b"],["d","a"]]] , "state": "clear": ["a"], "on-table": ["c"], "arm-empty": true,

"holding": null, "on": [["a","d"],["b","c"],["d","b"]] , "successors": ["clear": ["d"], "on-table": ["c"], "arm-empty": false, "holding": "a",

"on": [["b","c"],["d","b"]]] , "state": "clear": ["d"], "on-table": ["c"], "arm-empty": false, "holding": "a", "on": [["b","c"],["d","b"]] ,

"successors": ["clear": ["d","a"], "on-table": ["c","a"], "arm-empty": true, "holding": null, "on": [["b","c"],["d","b"]] , "clear": ["a"], "on-table":

["c"], "arm-empty": true, "holding": null, "on": [["b","c"],["d","b"],["a","d"]]] , "state": "clear": ["a","b","d"], "on-table": ["a","c","d"],

"arm-empty": true, "holding": null, "on": [["b","c"]] , "successors": ["clear": ["b","d"], "on-table": ["c","d"], "arm-empty": false, "holding":

"a", "on": [["b","c"]] , "clear": ["a","b"], "on-table": ["a","c"], "arm-empty": false, "holding": "d", "on": [["b","c"]] , "clear": ["a","d","c"],

"on-table": ["a","c","d"], "arm-empty": false, "holding": "b", "on": []] , "state": "clear": ["b","d"], "on-table": ["c","d"], "arm-empty":

false, "holding": "a", "on": [["b","c"]] , "successors": ["clear": ["b","d","a"], "on-table": ["c","d","a"], "arm-empty": true, "holding": null,

"on": [["b","c"]] , "clear": ["d","a"], "on-table": ["c","d"], "arm-empty": true, "holding": null, "on": [["b","c"],["a","b"]] , "clear": ["b","a"],

"on-table": ["c","d"], "arm-empty": true, "holding": null, "on": [["b","c"],["a","d"]]] , "state": "clear": ["b","c"], "on-table": ["a","b"],

"arm-empty": true, "holding": null, "on": [["c","d"],["d","a"]] , "successors": ["clear": ["c"], "on-table": ["a"], "arm-empty": false, "holding":

"b", "on": [["c","d"],["d","a"]] , "clear": ["b","d"], "on-table": ["a","b"], "arm-empty": false, "holding": "c", "on": [["d","a"]]] , "state":

"clear": ["c"], "on-table": ["a"], "arm-empty": false, "holding": "b", "on": [["c","d"],["d","a"]] , "successors": ["clear": ["c","b"], "on-table":

["a","b"], "arm-empty": true, "holding": null, "on": [["c","d"],["d","a"]] , "clear": ["b"], "on-table": ["a"], "arm-empty": true, "holding": null,

"on": [["c","d"],["d","a"],["b","c"]]]]

Partial Successor Soundness Test [breaklines]python def validatetransitioncomplex(parent, state) :
iflen(state.get(′clear′))! = len(state.get(′on − table′)) : feedback+ =
prettyprint(”Eachtowerhasthebottomblockonthetableandthetopblockclear.”)feedback+ =
prettyprint(”Therefore, thenumberofclearblocksshouldbethesameasthenumberofblocksonthetable.”)feedback+ =
prettyprint(”Thenumberofelementsintheclearlistisnotthesameasthenumberofelementsintheon −
tablelist.”)feedback+ = prettyprint(”Reminder : OnceIpickupablock, Iamholdingtheblockanditisnolongerclearandnolongeronthetable.”)feedback+ =
prettyprint(”OnceIunstackfromontopofanotherblock, Iamholdingtheblockanditisnolongerclear.Instead, theotherblockbecomesclear.”)feedback+ =
prettyprint(”OnceIputdownablock,myhandbecomesempty, theblockbecomesclear, anditisnowonthetable.”)feedback+ =
prettyprint(”OnceIstackablockontopofanotherblock, theblockontopbecomesclearandtheblockunderitisnolongerclear.”)

feedback += prettyprint("Let’s think step by step. First, think of how applying each action changes which blocks are clear.") feedback +=

prettyprint("Then, think of how applying each action changes which blocks are on the table.") feedback += prettyprint("Then, provide the

complete Python code for the revised successor function that returns a list of successor states.") feedback += prettyprint("Remember how you

fixed the previous mistakes, if any. Keep the same function signature.") return False, feedback return True, ""

14

8.3 5x5 Crosswords

Goal Unit Test Goal unit test cases are stored in two jsonl files, one for goal states and one for
non-goal states.

[frame=single, framesep=3mm, linenos=true, xleftmargin=21pt, breaklines, tabsize=4]js ["state": [["a", "g", "e", "n", "d"],

["m", "o", "t", "o", "r"], ["a", "r", "t", "s", "y"], ["s", "a", "l", "l", "e"], ["s", "l", "e", "e", "r"]], "horizontalclues” :

[[”tasks”, ”goals”, ”plans”, ”agend”, ”chores”, ”works”, ”deeds”, ”items”, ”lists”, ”brief”], [”motor”, ”power”, ”drive”, ”diesel”, ”steam”, ”pumps”, ”crank”, ”gears”, ”turbn”, ”motor”], [”grand”, ”artsy”, ”showy”, ”ornate”, ”fancy”, ”vain”, ”proud”, ”vogue”, ”swank”, ”luxus”], [”venue”, ”salle”, ”forum”, ”atria”, ”lobby”, ”parls”, ”court”, ”malls”, ”mall”, ”lobby”], [”jeer”, ”scoff”, ”sleer”, ”deris”, ”sneer”, ”scorn”, ”derid”, ”gibes”, ”gibed”, ”flout”]], ”verticalclues” :

[[”amass”, ”stack”, ”hoard”, ”pile”, ”store”, ”heaps”, ”massy”, ”gathe”, ”lumps”, ”mound”], [”nilga”, ”goral”, ”eland”, ”lepus”, ”gazal”, ”kudu”, ”oryx”, ”gnu”, ”imps”, ”carb”], [”scheme”, ”design”, ”ettle”, ”nettle”, ”sting”, ”wiles”, ”plans”, ”ideas”, ”plots”, ”cocks”], [”spout”, ”nosle”, ”snout”, ”mouth”, ”nostr”, ”ports”, ”inlet”, ”vents”, ”outlt”, ”beaks”], [”drier”, ”arid”, ”sere”, ”parch”, ”dryer”, ”wring”, ”drear”, ”sear”, ”pall”, ”lack”]], ”state” : [[”a”, ”r”, ”e”, ”f”, ”y”], [”r”, ”e”, ”v”, ”i”, ”e”], [”i”, ”g”, ”a”, ”l”, ”a”], [”s”, ”e”, ”d”, ”e”, ”r”], [”e”, ”t”, ”e”, ”r”, ”n”]], ”horizontalclues” : [[”parch”, ”dryup”, ”arefy”, ”wring”, ”suckd”, ”wizen”, ”desic”, ”evapo”, ”scald”, ”toast”], [”excel”, ”revie”, ”beat”, ”top”, ”best”, ”rise”, ”win”, ”lead”, ”rule”, ”boss”], [”igala”, ”tribe”, ”people”, ”race”, ”ethni”, ”nation”, ”yorub”, ”niger”, ”triba”, ”tribu”], [”seder”, ”meal”, ”food”, ”feast”, ”dine”, ”dish”, ”supper”, ”banqu”, ”treat”, ”fetes”], [”eterl”, ”etern”, ”everl”, ”forev”, ”immor”, ”endur”, ”const”, ”perma”, ”durab”, ”timeless”]], ”verticalclues” : [[”arise”, ”climb”, ”soar”, ”ascen”, ”mount”, ”leaps”, ”scale”, ”clamb”, ”steps”, ”jump”], [”regain”, ”renew”, ”recoi”, ”recla”, ”retri”, ”regra”, ”reget”, ”reapo”, ”reboo”, ”reset”], [”dodge”, ”elude”, ”shirk”, ”escap”, ”hide”, ”evade”, ”flee”, ”duck”, ”ditch”, ”evite”], [”filer”, ”files”, ”rasps”, ”grind”, ”blade”, ”sawer”, ”tool”, ”sharp”, ”knife”, ”metal”], [”yearn”, ”long”, ”ache”, ”crave”, ”desir”, ”need”, ”want”, ”thirst”, ”hunger”, ”lust”]], ”state” : [[”b”, ”e”, ”b”, ”o”, ”p”], [”u”, ”r”, ”e”, ”n”, ”a”], [”f”, ”r”, ”i”, ”a”, ”r”], [”f”, ”o”, ”n”, ”g”, ”e”], [”o”, ”r”, ”g”, ”a”, ”l”]], ”horizontalclues” : [[”bebop”, ”jazzy”, ”music”, ”salsa”, ”swing”, ”blues”, ”riffs”, ”drums”, ”horns”, ”notes”], [”senna”, ”urena”, ”herbs”, ”flora”, ”mints”, ”trees”, ”leaves”, ”oils”, ”spice”, ”lavas”], [”monk”, ”friar”, ”nun”, ”saint”, ”clerk”, ”deity”, ”mystic”, ”faith”, ”pious”, ”sacra”], [”fetch”, ”carry”, ”fonge”, ”take”, ”seize”, ”hold”, ”grab”, ”earn”, ”gain”, ”yield”], [”tart”, ”argal”, ”orgal”, ”lemon”, ”sours”, ”wines”, ”taste”, ”tangs”, ”zesty”, ”acid”]], ”verticalclues” : [[”buffo”, ”clown”, ”actor”, ”joker”, ”wit”, ”humor”, ”silly”, ”gag”, ”role”, ”fool”], [”error”, ”fault”, ”flaw”, ”slip”, ”oops”, ”blips”, ”bugs”, ”glitch”, ”bugs”, ”boob”], [”being”, ”alive”, ”human”, ”being”, ”exist”, ”life”, ”creed”, ”soul”, ”love”, ”kind”], [”fishy”, ”onaga”, ”ruby”, ”salmo”, ”tuna”, ”sushi”, ”prawn”, ”trout”, ”shrim”, ”codex”], [”dress”, ”appar”, ”parel”, ”gowns”, ”style”, ”drape”, ”shirts”, ”veils”, ”outfi”, ”apron”]]]

[frame=single, framesep=3mm, linenos=true, xleftmargin=21pt, breaklines, tabsize=4]js ["state": [[null, null, null, null, null],

["m", "o", "t", "o", "r"], ["a", "r", "t", "s", "y"], ["s", "a", "l", "l", "e"], ["s", "l", "e", "e", "r"]], "horizontalclues” :

[[”tasks”, ”goals”, ”plans”, ”agend”, ”chores”, ”works”, ”deeds”, ”items”, ”lists”, ”brief”], [”motor”, ”power”, ”drive”, ”diesel”, ”steam”, ”pumps”, ”crank”, ”gears”, ”turbn”, ”motor”], [”grand”, ”artsy”, ”showy”, ”ornate”, ”fancy”, ”vain”, ”proud”, ”vogue”, ”swank”, ”luxus”], [”venue”, ”salle”, ”forum”, ”atria”, ”lobby”, ”parls”, ”court”, ”malls”, ”mall”, ”lobby”], [”jeer”, ”scoff”, ”sleer”, ”deris”, ”sneer”, ”scorn”, ”derid”, ”gibes”, ”gibed”, ”flout”]], ”verticalclues” :

[[”amass”, ”stack”, ”hoard”, ”pile”, ”store”, ”heaps”, ”massy”, ”gathe”, ”lumps”, ”mound”], [”nilga”, ”goral”, ”eland”, ”lepus”, ”gazal”, ”kudu”, ”oryx”, ”gnu”, ”imps”, ”carb”], [”scheme”, ”design”, ”ettle”, ”nettle”, ”sting”, ”wiles”, ”plans”, ”ideas”, ”plots”, ”cocks”], [”spout”, ”nosle”, ”snout”, ”mouth”, ”nostr”, ”ports”, ”inlet”, ”vents”, ”outlt”, ”beaks”], [”drier”, ”arid”, ”sere”, ”parch”, ”dryer”, ”wring”, ”drear”, ”sear”, ”pall”, ”lack”]], ”state” : [[null, null, null, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [”i”, ”g”, ”a”, ”l”, ”a”], [”s”, ”e”, ”d”, ”e”, ”r”], [”e”, ”t”, ”e”, ”r”, ”n”]], ”horizontalclues” : [[”parch”, ”dryup”, ”arefy”, ”wring”, ”suckd”, ”wizen”, ”desic”, ”evapo”, ”scald”, ”toast”], [”excel”, ”revie”, ”beat”, ”top”, ”best”, ”rise”, ”win”, ”lead”, ”rule”, ”boss”], [”igala”, ”tribe”, ”people”, ”race”, ”ethni”, ”nation”, ”yorub”, ”niger”, ”triba”, ”tribu”], [”seder”, ”meal”, ”food”, ”feast”, ”dine”, ”dish”, ”supper”, ”banqu”, ”treat”, ”fetes”], [”eterl”, ”etern”, ”everl”, ”forev”, ”immor”, ”endur”, ”const”, ”perma”, ”durab”, ”timeless”]], ”verticalclues” : [[”arise”, ”climb”, ”soar”, ”ascen”, ”mount”, ”leaps”, ”scale”, ”clamb”, ”steps”, ”jump”], [”regain”, ”renew”, ”recoi”, ”recla”, ”retri”, ”regra”, ”reget”, ”reapo”, ”reboo”, ”reset”], [”dodge”, ”elude”, ”shirk”, ”escap”, ”hide”, ”evade”, ”flee”, ”duck”, ”ditch”, ”evite”], [”filer”, ”files”, ”rasps”, ”grind”, ”blade”, ”sawer”, ”tool”, ”sharp”, ”knife”, ”metal”], [”yearn”, ”long”, ”ache”, ”crave”, ”desir”, ”need”, ”want”, ”thirst”, ”hunger”, ”lust”]], ”state” : [[null, null, null, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [”f”, ”r”, ”i”, ”a”, ”r”], [”f”, ”o”, ”n”, ”g”, ”e”], [”o”, ”r”, ”g”, ”a”, ”l”]], ”horizontalclues” : [[”bebop”, ”jazzy”, ”music”, ”salsa”, ”swing”, ”blues”, ”riffs”, ”drums”, ”horns”, ”notes”], [”senna”, ”urena”, ”herbs”, ”flora”, ”mints”, ”trees”, ”leaves”, ”oils”, ”spice”, ”lavas”], [”monk”, ”friar”, ”nun”, ”saint”, ”clerk”, ”deity”, ”mystic”, ”faith”, ”pious”, ”sacra”], [”fetch”, ”carry”, ”fonge”, ”take”, ”seize”, ”hold”, ”grab”, ”earn”, ”gain”, ”yield”], [”tart”, ”argal”, ”orgal”, ”lemon”, ”sours”, ”wines”, ”taste”, ”tangs”, ”zesty”, ”acid”]], ”verticalclues” : [[”buffo”, ”clown”, ”actor”, ”joker”, ”wit”, ”humor”, ”silly”, ”gag”, ”role”, ”fool”], [”error”, ”fault”, ”flaw”, ”slip”, ”oops”, ”blips”, ”bugs”, ”glitch”, ”bugs”, ”boob”], [”being”, ”alive”, ”human”, ”being”, ”exist”, ”life”, ”creed”, ”soul”, ”love”, ”kind”], [”fishy”, ”onaga”, ”ruby”, ”salmo”, ”tuna”, ”sushi”, ”prawn”, ”trout”, ”shrim”, ”codex”], [”dress”, ”appar”, ”parel”, ”gowns”, ”style”, ”drape”, ”shirts”, ”veils”, ”outfi”, ”apron”]]]

Successor Unit Test Successor unit test cases are stored in a jsonl file. The test cases used are
depicted in Listing 8.3.

[frame=single, framesep=3mm, linenos=true, xleftmargin=21pt,breaklines, tabsize=4]js ["state": [[null, null, "e", null, null], ["m", "o", "t", "o",

"r"], [null, null, "t", null, null], [null, null, "l", null, null], [null, null, "e", null, null]], "successors": [[["a", "g", "e", "n", "d"], ["m", "o", "t", "o",

"r"], [null, null, "t", null, null], [null, null, "l", null, null], [null, null, "e", null, null]], [["d", "e", "e", "d", "s"], ["m", "o", "t", "o", "r"], [null, null,

"t", null, null], [null, null, "l", null, null], [null, null, "e", null, null]], [["i", "t", "e", "m", "s"], ["m", "o", "t", "o", "r"], [null, null, "t", null, null],

[null, null, "l", null, null], [null, null, "e", null, null]], [[null, null, "e", null, null], ["m", "o", "t", "o", "r"], ["a", "r", "t", "s", "y"], [null, null, "l",

null, null], [null, null, "e", null, null]], [[null, null, "e", null, null], ["m", "o", "t", "o", "r"], [null, null, "t", null, null], ["s", "a", "l", "l", "e"], [null,

null, "e", null, null]], [[null, null, "e", null, null], ["m", "o", "t", "o", "r"], [null, null, "t", null, null], ["m", "a", "l", "l", "s"], [null, null, "e", null,

null]], [[null, null, "e", null, null], ["m", "o", "t", "o", "r"], [null, null, "t", null, null], [null, null, "l", null, null], ["s", "l", "e", "e", "r"]], [[null,

null, "e", null, null], ["m", "o", "t", "o", "r"], [null, null, "t", null, null], [null, null, "l", null, null], ["s", "n", "e", "e", "r"]], [["a", null, "e", null,

null], ["m", "o", "t", "o", "r"], ["a", null, "t", null, null], ["s", null, "l", null, null], ["s", null, "e", null, null]], [[null, "g", "e", null, null], ["m", "o",

"t", "o", "r"], [null, "r", "t", null, null], [null, "a", "l", null, null], [null, "l", "e", null, null]], [[null, null, "e", "n", null], ["m", "o", "t", "o", "r"],

[null, null, "t", "s", null], [null, null, "l", "l", null], [null, null, "e", "e", null]], [[null, null, "e", "m", null], ["m", "o", "t", "o", "r"], [null, null, "t",

"u", null], [null, null, "l", "t", null], [null, null, "e", "h", null]], [[null, null, "e", "n", null], ["m", "o", "t", "o", "r"], [null, null, "t", "s", null], [null,

null, "l", "t", null], [null, null, "e", "r", null]], [[null, null, "e", "p", null], ["m", "o", "t", "o", "r"], [null, null, "t", "r", null], [null, null, "l", "t",

null], [null, null, "e", "s", null]], [[null, null, "e", null, "d"], ["m", "o", "t", "o", "r"], [null, null, "t", null, "i"], [null, null, "l", null, "e"], [null, null,

"e", null, "r"]], [[null, null, "e", null, "d"], ["m", "o", "t", "o", "r"], [null, null, "t", null, "y"], [null, null, "l", null, "e"], [null, null, "e", null, "r"]],

[[null, null, "e", null, "w"], ["m", "o", "t", "o", "r"], [null, null, "t", null, "i"], [null, null, "l", null, "n"], [null, null, "e", null, "g"]], [[null, null,

"e", null, "d"], ["m", "o", "t", "o", "r"], [null, null, "t", null, "e"], [null, null, "l", null, "a"], [null, null, "e", null, "r"]]], "horizontalclues” :

[[”tasks”, ”goals”, ”plans”, ”agend”, ”chores”, ”works”, ”deeds”, ”items”, ”lists”, ”brief”], [”motor”, ”power”, ”drive”, ”diesel”, ”steam”, ”pumps”, ”crank”, ”gears”, ”turbn”, ”motor”], [”grand”, ”artsy”, ”showy”, ”ornate”, ”fancy”, ”vain”, ”proud”, ”vogue”, ”swank”, ”luxus”], [”venue”, ”salle”, ”forum”, ”atria”, ”lobby”, ”parls”, ”court”, ”malls”, ”mall”, ”lobby”], [”jeer”, ”scoff”, ”sleer”, ”deris”, ”sneer”, ”scorn”, ”derid”, ”gibes”, ”gibed”, ”flout”]], ”verticalclues” :

[[”amass”, ”stack”, ”hoard”, ”pile”, ”store”, ”heaps”, ”massy”, ”gathe”, ”lumps”, ”mound”], [”nilga”, ”goral”, ”eland”, ”lepus”, ”gazal”, ”kudu”, ”oryx”, ”gnu”, ”imps”, ”carb”], [”scheme”, ”design”, ”ettle”, ”nettle”, ”sting”, ”wiles”, ”plans”, ”ideas”, ”plots”, ”cocks”], [”spout”, ”nosle”, ”snout”, ”mouth”, ”nostr”, ”ports”, ”inlet”, ”vents”, ”outlt”, ”beaks”], [”drier”, ”arid”, ”sere”, ”parch”, ”dryer”, ”wring”, ”drear”, ”sear”, ”pall”, ”lack”]]][”state” : [[null, null, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, null, ”a”, null, null], [null, null, ”d”, null, null], [null, null, ”e”, null, null]], ”successors” : [[[”a”, ”r”, ”e”, ”f”, ”y”], [”r”, ”e”, ”v”, ”i”, ”e”], [null, null, ”a”, null, null], [null, null, ”d”, null, null], [null, null, ”e”, null, null]], [[null, null, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [”i”, ”g”, ”a”, ”l”, ”a”], [null, null, ”d”, null, null], [null, null, ”e”, null, null]], [[null, null, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, null, ”a”, null, null], [”s”, ”e”, ”d”, ”e”, ”r”], [null, null, ”e”, null, null]], [[null, null, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, null, ”a”, null, null], [null, null, ”d”, null, null], [”e”, ”t”, ”e”, ”r”, ”l”]], [[null, null, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, null, ”a”, null, null], [null, null, ”d”, null, null], [”e”, ”t”, ”e”, ”r”, ”n”]], [[null, null, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, null, ”a”, null, null], [null, null, ”d”, null, null], [”e”, ”v”, ”e”, ”r”, ”l”]], [[”a”, null, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [”i”, null, ”a”, null, null], [”s”, null, ”d”, null, null], [”e”, null, ”e”, null, null]], [[null, ”r”, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, ”n”, ”a”, null, null], [null, ”e”, ”d”, null, null], [null, ”w”, ”e”, null, null]], [[null, ”r”, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, ”c”, ”a”, null, null], [null, ”o”, ”d”, null, null], [null, ”i”, ”e”, null, null]], [[null, ”r”, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, ”c”, ”a”, null, null], [null, ”l”, ”d”, null, null], [null, ”a”, ”e”, null, null]], [[null, ”r”, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, ”t”, ”a”, null, null], [null, ”r”, ”d”, null, null], [null, ”i”, ”e”, null, null]], [[null, ”r”, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, ”g”, ”a”, null, null], [null, ”r”, ”d”, null, null], [null, ”a”, ”e”, null, null]], [[null, ”r”, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, ”g”, ”a”, null, null], [null, ”e”, ”d”, null, null], [null, ”t”, ”e”, null, null]], [[null, ”r”, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, ”a”, ”a”, null, null], [null, ”p”, ”d”, null, null], [null, ”o”, ”e”, null, null]], [[null, ”r”, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, ”b”, ”a”, null, null], [null, ”o”, ”d”, null, null], [null, ”o”, ”e”, null, null]], [[null, ”r”, ”e”, null, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, ”s”, ”a”, null, null], [null, ”e”, ”d”, null, null], [null, ”t”, ”e”, null, null]], [[null, null, ”e”, ”f”, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, null, ”a”, ”l”, null], [null, null, ”d”, ”e”, null], [null, null, ”e”, ”r”, null]], [[null, null, ”e”, ”f”, null], [”r”, ”e”, ”v”, ”i”, ”e”], [null, null, ”a”, ”l”, null], [null, null, ”d”, ”e”, null], [null, null, ”e”, ”s”, null]], [[null, null, ”e”, null, ”y”], [”r”, ”e”, ”v”, ”i”, ”e”], [null, null, ”a”, null, ”a”], [null, null, ”d”, null, ”r”], [null, null, ”e”, null, ”n”]], [[null, null, ”e”, null, ”d”], [”r”, ”e”, ”v”, ”i”, ”e”], [null, null, ”a”, null, ”s”], [null, null, ”d”, null, ”i”], [null, null, ”e”, null, ”r”]]], ”horizontalclues” : [[”parch”, ”dryup”, ”arefy”, ”wring”, ”suckd”, ”wizen”, ”desic”, ”evapo”, ”scald”, ”toast”], [”excel”, ”revie”, ”beat”, ”top”, ”best”, ”rise”, ”win”, ”lead”, ”rule”, ”boss”], [”igala”, ”tribe”, ”people”, ”race”, ”ethni”, ”nation”, ”yorub”, ”niger”, ”triba”, ”tribu”], [”seder”, ”meal”, ”food”, ”feast”, ”dine”, ”dish”, ”supper”, ”banqu”, ”treat”, ”fetes”], [”eterl”, ”etern”, ”everl”, ”forev”, ”immor”, ”endur”, ”const”, ”perma”, ”durab”, ”timeless”]], ”verticalclues” : [[”arise”, ”climb”, ”soar”, ”ascen”, ”mount”, ”leaps”, ”scale”, ”clamb”, ”steps”, ”jump”], [”regain”, ”renew”, ”recoi”, ”recla”, ”retri”, ”regra”, ”reget”, ”reapo”, ”reboo”, ”reset”], [”dodge”, ”elude”, ”shirk”, ”escap”, ”hide”, ”evade”, ”flee”, ”duck”, ”ditch”, ”evite”], [”filer”, ”files”, ”rasps”, ”grind”, ”blade”, ”sawer”, ”tool”, ”sharp”, ”knife”, ”metal”], [”yearn”, ”long”, ”ache”, ”crave”, ”desir”, ”need”, ”want”, ”thirst”, ”hunger”, ”lust”]]][”state” : [[null, null, ”b”, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [null, null, ”i”, null, null], [null, null, ”n”, null, null], [null, null, ”g”, null, null]], ”successors” : [[[”b”, ”e”, ”b”, ”o”, ”p”], [”u”, ”r”, ”e”, ”n”, ”a”], [null, null, ”i”, null, null], [null, null, ”n”, null, null], [null, null, ”g”, null, null]], [[null, null, ”b”, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [”f”, ”r”, ”i”, ”a”, ”r”], [null, null, ”n”, null, null], [null, null, ”g”, null, null]], [[null, null, ”b”, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [”s”, ”a”, ”i”, ”n”, ”t”], [null, null, ”n”, null, null], [null, null, ”g”, null, null]], [[null, null, ”b”, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [”d”, ”e”, ”i”, ”t”, ”y”], [null, null, ”n”, null, null], [null, null, ”g”, null, null]], [[null, null, ”b”, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [”f”, ”a”, ”i”, ”t”, ”h”], [null, null, ”n”, null, null], [null, null, ”g”, null, null]], [[null, null, ”b”, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [null, null, ”i”, null, null], [”f”, ”o”, ”n”, ”g”, ”e”], [null, null, ”g”, null, null]], [[null, null, ”b”, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [null, null, ”i”, null, null], [null, null, ”n”, null, null], [”a”, ”r”, ”g”, ”a”, ”l”]], [[null, null, ”b”, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [null, null, ”i”, null, null], [null, null, ”n”, null, null], [”o”, ”r”, ”g”, ”a”, ”l”]], [[”b”, null, ”b”, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [”f”, null, ”i”, null, null], [”f”, null, ”n”, null, null], [”o”, null, ”g”, null, null]], [[”h”, null, ”b”, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [”m”, null, ”i”, null, null], [”o”, null, ”n”, null, null], [”r”, null, ”g”, null, null]], [[null, ”e”, ”b”, null, null], [”u”, ”r”, ”e”, ”n”, ”a”], [null, ”r”, ”i”, null, null], [null, ”o”, ”n”, null, null], [null, ”r”, ”g”, null, null]], [[null, null, ”b”, ”o”, null], [”u”, ”r”, ”e”, ”n”, ”a”], [null, null, ”i”, ”a”, null], [null, null, ”n”, ”g”, null], [null, null, ”g”, ”a”, null]], [[null, null, ”b”, null, ”p”], [”u”, ”r”, ”e”, ”n”, ”a”], [null, null, ”i”, null, ”r”], [null, null, ”n”, null, ”e”], [null, null, ”g”, null, ”l”]]], ”horizontalclues” : [[”bebop”, ”jazzy”, ”music”, ”salsa”, ”swing”, ”blues”, ”riffs”, ”drums”, ”horns”, ”notes”], [”senna”, ”urena”, ”herbs”, ”flora”, ”mints”, ”trees”, ”leaves”, ”oils”, ”spice”, ”lavas”], [”monk”, ”friar”, ”nun”, ”saint”, ”clerk”, ”deity”, ”mystic”, ”faith”, ”pious”, ”sacra”], [”fetch”, ”carry”, ”fonge”, ”take”, ”seize”, ”hold”, ”grab”, ”earn”, ”gain”, ”yield”], [”tart”, ”argal”, ”orgal”, ”lemon”, ”sours”, ”wines”, ”taste”, ”tangs”, ”zesty”, ”acid”]], ”verticalclues” : [[”buffo”, ”clown”, ”actor”, ”joker”, ”wit”, ”humor”, ”silly”, ”gag”, ”role”, ”fool”], [”error”, ”fault”, ”flaw”, ”slip”, ”oops”, ”blips”, ”bugs”, ”glitch”, ”bugs”, ”boob”], [”being”, ”alive”, ”human”, ”being”, ”exist”, ”life”, ”creed”, ”soul”, ”love”, ”kind”], [”fishy”, ”onaga”, ”ruby”, ”salmo”, ”tuna”, ”sushi”, ”prawn”, ”trout”, ”shrim”, ”codex”], [”dress”, ”appar”, ”parel”, ”gowns”, ”style”, ”drape”, ”shirts”, ”veils”, ”outfi”, ”apron”]]]

Partial Successor Soundness Test [breaklines]python def validatetransitioncomplex(s, t) : defcountnone(s) :
ns = 0forrins : ns+ = len([cforcinrifcisNone])returnns

ns = countnone(s)nt = countnone(t)

feedback = "" if ns < nt: More unknown feedback += prettyprint("Successor state has less filled cells than the parent state.") elif ns == nt:
Same unknown feedback += prettyprint("Successor state has the same number of filled cells as the parent state.") elif ns - nt > 5: Way too many
less unknown feedback += prettyprint("Successor state has more than 5 filled cells more than the parent state.") else: return True, ""

feedback += prettyprint("Let’s think step by step. First, think what you did wrong.") feedback += prettyprint("Then, think of in what ways

successor state should be different from the parent state.") feedback += prettyprint("Then, provide the complete Python code for the revised

successor function that returns a list of successor states.") feedback += prettyprint("Remember how you fixed the previous mistakes, if any. Keep

the same function signature.") return False, feedback

8.4 ProntoQA

Goal Unit Test Goal unit test cases are stored in two jsonl files, one for goal states and one for
non-goal states.

[h] [frame=single, framesep=3mm, linenos=true, xleftmargin=21pt, tabsize=4]js "state": ["painted lady", "bony"], "goal": "bony" "state":

["mersenne prime", "real"], "goal": "real" "state": ["lepidopteran", "small"], "goal": "small"

15

[h] [frame=single, framesep=3mm, linenos=true, xleftmargin=21pt, tabsize=4]js "state": ["painted lady"], "goal": "not-bony" "state":

["mersenne prime"], "goal": "not-real" "state": ["lepidopteran"], "goal": "not-small"

Successor Unit Test Successor unit test cases are stored in a jsonl file. The test cases used are
depicted in Listing 8.4.

[frame=single, framesep=3mm, linenos=true, xleftmargin=21pt,breaklines, tabsize=4]js "state": ["painted lady"], "rules": [["arthropod",

"protostome"], ["lepidopteran", "insect"], ["painted lady", "butterfly"], ["insect", "arthropod"], ["invertebrate", "animal"], ["arthropod", "not-

bony"], ["protostome", "invertebrate"], ["whale", "bony"], ["butterfly", "lepidopteran"], ["animal", "multicellular"], ["insect", "six-legged"]],

"successors": [["painted lady", "butterfly"]] "state": ["mersenne prime"], "rules": [["integer", "real number"], ["prime number", "natural

number"], ["real number", "number"], ["mersenne prime", "prime number"], ["mersenne prime", "not-composite"], ["natural number", "integer"],

["imaginary number", "not-real"], ["real number", "real"], ["prime number", "not-composite"], ["natural number", "positive"]], "successors":

[["prime number", "mersenne prime"], ["not-composite", "mersenne prime"]] "state": ["lepidopteran"], "rules": [["lepidopteran", "insect"],

["arthropod", "small"], ["insect", "arthropod"], ["whale", "not-small"], ["invertebrate", "animal"], ["butterfly", "lepidopteran"], ["arthropod",

"invertebrate"], ["animal", "multicellular"], ["insect", "six-legged"]], "successors": [["insect", "lepidopteran"]]

Partial Successor Soundness Test [breaklines]python def validatetransitioncomplex(s, t) :
ifs == t : returnTrue, ””eliflen(t) − len(s)! = 1 :
feedback = prettyprint(”Invalidtransition : lengthmismatch −
thelengthofasuccessormustbeonemorethantheparent.”)feedback+ =
prettyprint(”Let′sthinkstepbystep.F irstthinkthroughinwordswhythesuccessorfunctionproducedasuccessorthathadalengththatwasnotexactlyonemorethantheparent.ThenprovidethecompletePythoncodefortherevisedsuccessorfunctionthatensuresthelengthofasuccessorisexactlyonemorethantheparent.”)feedback+ =
prettyprint(”Rememberhowyoufixedthepreviousmistakes, ifany.Keepthesamefunctionsignature.”)returnFalse, feedbackreturnTrue, ””

8.5 Sokoban

Goal Unit Test Goal unit test cases are stored in two jsonl files, one for goal states and one for
non-goal states.

[h] [frame=single, framesep=3mm, linenos=true, xleftmargin=21pt, breaklines, tabsize=4]js "state": "at-player": [5, 3], "at-stone": [[3, 3], [4,

3]], "grid": [[1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 2, 0, 1], [1, 0, 1, 2, 1, 1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]] "state":

"at-player": [5, 2], "at-stone": [[3, 2], [4, 2]], "grid": [[1, 0, 1, 1, 1, 1, 1], [0, 0, 1, 0, 0, 0, 1], [1, 1, 1, 0, 0, 0, 1], [1, 0, 2, 0, 0, 0, 1], [1, 0, 2, 1, 0,

0, 1], [1, 0, 0, 1, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1]] "state": "at-player": [4, 4], "at-stone": [[2, 2], [3, 3]], "grid": [[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0,

0, 0], [1, 0, 2, 0, 1, 1, 1, 1], [1, 0, 0, 2, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0, 1, 1, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0,

1, 1, 1, 1, 1]]

[h] [frame=single, framesep=3mm, linenos=true, xleftmargin=21pt, breaklines, tabsize=4]js "state": "at-player": [5, 3], "at-stone": [[3, 3], [4,

3]], "grid": [[1, 1, 1, 1, 1, 1], [1, 0, 0, 2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1, 1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]] "state":

"at-player": [5, 2], "at-stone": [[3, 2], [4, 2]], "grid": [[1, 0, 1, 1, 1, 1, 1], [0, 0, 1, 0, 0, 0, 1], [1, 1, 1, 0, 0, 2, 1], [1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0,

2, 1], [1, 0, 0, 1, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1]] "state": "at-player": [4, 4], "at-stone": [[2, 2], [3, 3]], "grid": [[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0,

0, 0], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0, 1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0,

1, 1, 1, 1, 1]]

Successor Unit Test Successor unit test cases are stored in a jsonl file. The test cases used are
depicted in Listing 8.5.

[frame=single, framesep=3mm, linenos=true, xleftmargin=21pt,breaklines, tabsize=4]js "state": "at-player": [5, 3], "at-stone": [[3, 3], [4, 3]],

"successors": ["at-player": [5, 2], "at-stone": [[3, 3], [4, 3]]], "grid": [[1, 1, 1, 1, 1, 1], [1, 0, 0, 2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1,

2, 1, 1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]] "state": "at-player": [5, 2], "at-stone": [[3, 2], [4, 2]], "successors": ["at-player": [5, 1], "at-stone": [[3,

2], [4, 2]]], "grid": [[1, 0, 1, 1, 1, 1, 1], [0, 0, 1, 0, 0, 0, 1], [1, 1, 1, 0, 0, 2, 1], [1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0, 2, 1], [1, 0, 0, 1, 0, 0, 1], [1, 1, 1, 1,

1, 1, 1]] "state": "at-player": [4, 4], "at-stone": [[2, 2], [3, 3]], "successors": ["at-player": [5, 4], "at-stone": [[2, 2], [3, 3]], "at-player": [4, 3],

"at-stone": [[2, 2], [3, 3]], "at-player": [4, 5], "at-stone": [[2, 2], [3, 3]]], "grid": [[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1,

1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0, 1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 1, 1, 1, 1]] "state":

"at-player": [5, 3], "at-stone": [[5, 2], [4, 3]], "successors": ["at-player": [5, 2], "at-stone": [[5, 1], [4, 3]]], "grid": [[1, 1, 1, 1, 1, 1], [1, 0, 0, 2, 0,

1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1, 1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]

Partial Successor Soundness Test [breaklines]python def validatetransitioncomplex(s, t) :
locations = set(t[′at − stone′])if len(locations) < len(t[′at − stone′]) : feedback =
prettyprint(”Invalidtransition : multiplestonesatthesamelocation.”)feedback+ =
prettyprint(”Let′sthinkstepbystep.F irstthinkthroughinwordswhythesuccessorfunctionproducedasuccessorthathastwostonesatthesamelocation.ThenprovidethecompletePythoncodefortherevisedsuccessorfunctionthatensuresthatinallsuccessorsallstonesareatdifferentlocations.”)feedback+ =
prettyprint(”Rememberhowyoufixedthepreviousmistakes, ifany.Keepthesamefunctionsignature.”)returnFalse, feedbackift[′at−
player′]inlocations : feedback = prettyprint(”Invalidtransition :

16

astoneandtheplayerareatthesamelocation.”)feedback+ = prettyprint(”Let′sthinkstepbystep.F irstthinkthroughinwordswhythesuccessorfunctionproducedasuccessorthathasastoneandtheplayeratthesamelocation.ThenprovidethecompletePythoncodefortherevisedsuccessorfunctionthatensuresthatinallsuccessorstheplayerandthestonesareatdifferentlocations.”)feedback+ =
prettyprint(”Rememberhowyoufixedthepreviousmistakes, ifany.Keepthesamefunctionsignature.”)returnFalse, feedbackreturnTrue, ””

9 Model Correspondences

We show one full correspondence with the language model per domain, LLM, and with or without
validation. The correspondences include AutoToS prompt, Model response, as well as System messages
that log the current state of the system.

9.1 24 Game

9.1.1 Deepseek-CoderV2

Listing 16: Without partial successor soundness test

AutoToS prompt:

The 24 Game is a mathematical card game in which the objective is to
find a way to manipulate four integers so that the end result is
24. The game is played with a list of four numbers, and the player
must use all four numbers exactly once, using any combination of

addition, subtraction, multiplication, or division, to arrive at
the number 24. If a state is defined by a list of numbers (4 or
less), how are successor states defined? Please think step by step
. Then, provide only the Python function that returns a list of
successor states for an input state.

Here is an example of an initial state:
[6, 6, 2, 1]

Model response:
To define successor states for the 24 Game, we need to consider all

possible ways to combine two numbers from the list using the
allowed operations (addition, subtraction, multiplication, and
division). Each combination will result in a new list of numbers,
which represents a successor state.

Here’s a step-by-step breakdown of how to generate successor states:

1. **Select Two Numbers**: Choose any two numbers from the list.
2. **Apply Operations**: Apply each of the four operations (addition,

subtraction, multiplication, and division) to the selected numbers
.

3. **Generate New List**: Replace the two selected numbers with the
result of the operation, forming a new list of numbers.

4. **Repeat**: Repeat the process for all possible pairs of numbers
and all operations.

For example, given the initial state ‘[6, 6, 2, 1]‘:
- Select ‘6‘ and ‘6‘, apply addition to get ‘12‘, resulting in the new

list ‘[12, 2, 1]‘.
- Select ‘6‘ and ‘2‘, apply subtraction to get ‘4‘, resulting in the

new list ‘[6, 4, 1]‘.
- And so on for all pairs and operations.

Here is the Python function that returns a list of successor states
for an input state:

python
‘‘‘
def successor_states(state):

successors = []
n = len(state)

17

Iterate over all pairs of numbers in the state
for i in range(n):

for j in range(n):
if i != j:

a, b = state[i], state[j]

Generate successor states for each operation
Addition
new_state = state[:]
new_state.remove(a)
new_state.remove(b)
new_state.append(a + b)
successors.append(new_state)

Subtraction (consider both a - b and b - a)
new_state = state[:]
new_state.remove(a)
new_state.remove(b)
new_state.append(a - b)
successors.append(new_state)

new_state = state[:]
new_state.remove(a)
new_state.remove(b)
new_state.append(b - a)
successors.append(new_state)

Multiplication
new_state = state[:]
new_state.remove(a)
new_state.remove(b)
new_state.append(a * b)
successors.append(new_state)

Division (consider both a / b and b / a, if non-zero
denominator)

if b != 0:
new_state = state[:]
new_state.remove(a)
new_state.remove(b)
new_state.append(a / b)
successors.append(new_state)

if a != 0:
new_state = state[:]
new_state.remove(a)
new_state.remove(b)
new_state.append(b / a)
successors.append(new_state)

return successors

Example usage:
initial_state = [6, 6, 2, 1]
print(successor_states(initial_state))
‘‘‘

This function generates all possible successor states by applying each
operation to every pair of numbers in the input state. The

resulting lists of numbers are collected in the ‘successors‘ list
and returned

AutoToS prompt:

18

Provide only the python code that tests whether a state is a goal
state.

Example goal state: [24]
Example non-goal state: [24,1]

Model response:
python
‘‘‘
def is_goal_state(state):

return state == [24]

Example usage:
goal_state = [24]
non_goal_state = [24, 1]

print(is_goal_state(goal_state)) # Output: True
print(is_goal_state(non_goal_state)) # Output: False
‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 1352, failure: 0, total expansions 628081, total generated

5420036

Listing 17: With partial successor soundness test

AutoToS prompt:

The 24 Game is a mathematical card game in which the objective is to
find a way to manipulate four integers so that the end result is
24. The game is played with a list of four numbers, and the player
must use all four numbers exactly once, using any combination of

addition, subtraction, multiplication, or division, to arrive at
the number 24. If a state is defined by a list of numbers (4 or
less), how are successor states defined? Please think step by step
. Then, provide only the Python function that returns a list of
successor states for an input state.

Here is an example of an initial state:
[6, 6, 2, 1]

Model response:
To define successor states for the 24 Game, we need to consider all

possible ways to combine two numbers from the list using the
allowed operations (addition, subtraction, multiplication, and
division). Each combination will result in a new list of numbers,
which represents a successor state.

Here’s a step-by-step breakdown of how to generate successor states:

Select two numbers from the list: For a list of four numbers, there
are 6 possible pairs of numbers to choose from.

Apply the operations: For each pair, apply addition, subtraction,
multiplication, and division to get a new number.

Form the new list: Replace the two selected numbers with the result of
the operation, resulting in a new list of three numbers.

19

Repeat for all pairs and operations: Generate all possible new lists
by repeating the above steps for each pair and each operation.

Here is the Python function that returns a list of successor states
for an input state:

python
Copy code
‘‘‘
from itertools import combinations

def successor_states(state):
successors = []
for (a, b) in combinations(state, 2):

remaining = [x for x in state if x not in (a, b)]
successors.append(remaining + [a + b])
successors.append(remaining + [a - b])
successors.append(remaining + [b - a])
successors.append(remaining + [a * b])
if b != 0:

successors.append(remaining + [a / b])
if a != 0:

successors.append(remaining + [b / a])
return successors

Example usage:
initial_state = [6, 6, 2, 1]
print(successor_states(initial_state))
‘‘‘
Explanation of the Function:
combinations(state, 2): This generates all possible pairs of numbers

from the input state.

remaining: This list contains the numbers that are not part of the
current pair.

successors.append(remaining + [a + b]): This adds the new list formed
by replacing the pair with the result of the operation to the list
of successor states.

Division by zero check: To avoid division by zero errors, we check if
the divisor is not zero before performing the division operation.

This function will generate all possible successor states by applying
all allowed operations to each pair of numbers in the input state

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state.

Example goal state: [24]
Example non-goal state: [24,1]

Model response:
python
Copy code
‘‘‘
def is_goal_state(state):

return state == [24]

Example usage:
goal_state = [24]
non_goal_state = [24, 1]

print(is_goal_state(goal_state)) # Output: True

20

print(is_goal_state(non_goal_state)) # Output: False
‘‘

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Invalid transformation: length mismatch - the length of a successor

must be one less than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one less than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one less than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: [1, 1, 4, 6]
Example wrong successor state: [6, 5]

Model response:
Step-by-Step Analysis
The initial successor function produced successors that did not always

have a length exactly one less than the parent due to the way it
handled the operations and the formation of the new list.
Specifically, the function did not correctly ensure that the new
list always had one less element than the original list after
combining two numbers.

To fix this, we need to:

Ensure that after combining two numbers with an operation, the
resulting list has exactly one less element than the original list
.

Properly handle the formation of the new list by replacing the two
selected numbers with the result of the operation.

Revised Successor Function
Here is the revised Python function that ensures the length of a

successor is exactly one less than the parent:

python
Copy code
‘‘‘
from itertools import combinations

def successor_states(state):
successors = []
for (a, b) in combinations(state, 2):

remaining = [x for x in state if x not in (a, b)]
new_state = remaining + [a + b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [a - b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [b - a]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [a * b]
if len(new_state) == len(state) - 1:

successors.append(new_state)

21

if b != 0:
new_state = remaining + [a / b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
if a != 0:

new_state = remaining + [b / a]
if len(new_state) == len(state) - 1:

successors.append(new_state)
return successors

Example usage:
initial_state = [1, 1, 4, 6]
print(successor_states(initial_state))
‘‘‘
Explanation of the Revised Function:
combinations(state, 2): This generates all possible pairs of numbers

from the input state.

remaining: This list contains the numbers that are not part of the
current pair.

new_state = remaining + [a + b]: This forms the new list by replacing
the pair with the result of the operation.

if len(new_state) == len(state) - 1: This checks if the new state has
exactly one less element than the original state before adding it
to the list of successors.

Division by zero check: To avoid division by zero errors, we check if
the divisor is not zero before performing the division operation.

This function ensures that each successor state has exactly one less
element than the parent state, adhering to the rules of the 24
Game

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 2

AutoToS prompt:
Successor function when run on the state [1, 1, 4, 6] failed to

produce all successors.
Missing successors are: [[1, 4, 7], [-5, 1, 4], [1, 5, 6], [0.25, 1,

6], [-3, 1, 6], [0.16666666666666666, 1, 4], [1, 3, 6], [1, 4, 5]]
First think step by step why the successor function failed to produce

all successors of the state.
Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
Step-by-Step Analysis
The initial successor function failed to produce all possible

successors because it did not correctly handle the formation of
the new list after combining two numbers with an operation.
Specifically, the function did not ensure that all possible
combinations of operations on pairs of numbers were considered,
and it did not correctly handle the formation of the new list by
replacing the two selected numbers with the result of the
operation.

To fix this, we need to:

Ensure that all possible pairs of numbers are considered.

22

Ensure that all operations (addition, subtraction, multiplication,
division) are applied to each pair.

Properly handle the formation of the new list by replacing the two
selected numbers with the result of the operation.

Revised Successor Function
Here is the revised Python function that ensures all possible

successors are generated:

python
Copy code
‘‘‘
from itertools import combinations

def successor_states(state):
successors = []
for (a, b) in combinations(state, 2):

remaining = [x for x in state if x not in (a, b)]
successors.append(remaining + [a + b])
successors.append(remaining + [a - b])
successors.append(remaining + [b - a])
successors.append(remaining + [a * b])
if b != 0:

successors.append(remaining + [a / b])
if a != 0:

successors.append(remaining + [b / a])
return successors

Example usage:
initial_state = [1, 1, 4, 6]
print(successor_states(initial_state))
‘‘‘
Explanation of the Revised Function:
combinations(state, 2): This generates all possible pairs of numbers

from the input state.

remaining: This list contains the numbers that are not part of the
current pair.

successors.append(remaining + [a + b]): This forms the new list by
replacing the pair with the result of the addition operation and
adds it to the list of successors.

successors.append(remaining + [a - b]): This forms the new list by
replacing the pair with the result of the subtraction operation (a
- b) and adds it to the list of successors.

successors.append(remaining + [b - a]): This forms the new list by
replacing the pair with the result of the subtraction operation (b
- a) and adds it to the list of successors.

successors.append(remaining + [a * b]): This forms the new list by
replacing the pair with the result of the multiplication operation
and adds it to the list of successors.

if b != 0: successors.append(remaining + [a / b]): This forms the new
list by replacing the pair with the result of the division
operation (a / b) and adds it to the list of successors, ensuring
that division by zero is avoided.

if a != 0: successors.append(remaining + [b / a]): This forms the new
list by replacing the pair with the result of the division

23

operation (b / a) and adds it to the list of successors, ensuring
that division by zero is avoided.

This function ensures that all possible successors are generated by
considering all pairs of numbers and applying all allowed
operations, adhering to the rules of the 24 Game

Successor Iteration 3

AutoToS prompt:
Invalid transformation: length mismatch - the length of a successor

must be one less than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one less than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one less than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: [1, 1, 4, 6]
Example wrong successor state: [6, 5]

Model response:
Step-by-Step Analysis
The initial successor function produced successors that did not always

have a length exactly one less than the parent due to the way it
handled the operations and the formation of the new list.
Specifically, the function did not correctly ensure that the new
list always had one less element than the original list after
combining two numbers.

To fix this, we need to:

Ensure that after combining two numbers with an operation, the
resulting list has exactly one less element than the original list
.

Properly handle the formation of the new list by replacing the two
selected numbers with the result of the operation.

Revised Successor Function
Here is the revised Python function that ensures the length of a

successor is exactly one less than the parent:

python
Copy code
‘‘‘
from itertools import combinations

def successor_states(state):
successors = []
for (a, b) in combinations(state, 2):

remaining = [x for x in state if x not in (a, b)]
new_state = remaining + [a + b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [a - b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [b - a]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [a * b]
if len(new_state) == len(state) - 1:

successors.append(new_state)

24

if b != 0:
new_state = remaining + [a / b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
if a != 0:

new_state = remaining + [b / a]
if len(new_state) == len(state) - 1:

successors.append(new_state)
return successors

Example usage:
initial_state = [1, 1, 4, 6]
print(successor_states(initial_state))
‘‘‘
Explanation of the Revised Function:
combinations(state, 2): This generates all possible pairs of numbers

from the input state.

remaining: This list contains the numbers that are not part of the
current pair.

new_state = remaining + [a + b]: This forms the new list by replacing
the pair with the result of the operation.

if len(new_state) == len(state) - 1: This checks if the new state has
exactly one less element than the original state before adding it
to the list of successors.

Division by zero check: To avoid division by zero errors, we check if
the divisor is not zero before performing the division operation.

This function ensures that each successor state has exactly one less
element than the parent state, adhering to the rules of the 24
Game

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 4

AutoToS prompt:
Successor function when run on the state [1, 1, 4, 6] failed to

produce all successors.
Missing successors are: [[1, 4, 7], [-5, 1, 4], [1, 5, 6], [0.25, 1,

6], [-3, 1, 6], [0.16666666666666666, 1, 4], [1, 3, 6], [1, 4, 5]]
First think step by step why the successor function failed to produce

all successors of the state.
Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
Step-by-Step Analysis
The initial successor function failed to produce all possible

successors because it did not correctly handle the formation of
the new list after combining two numbers with an operation.
Specifically, the function did not ensure that all possible
combinations of operations on pairs of numbers were considered,
and it did not correctly handle the formation of the new list by
replacing the two selected numbers with the result of the
operation.

To fix this, we need to:

Ensure that all possible pairs of numbers are considered.

25

Ensure that all operations (addition, subtraction, multiplication,
division) are applied to each pair.

Properly handle the formation of the new list by replacing the two
selected numbers with the result of the operation.

Revised Successor Function
Here is the revised Python function that ensures all possible

successors are generated:

python
Copy code
‘‘‘
from itertools import combinations

def successor_states(state):
successors = []
for (a, b) in combinations(state, 2):

remaining = [x for x in state if x not in (a, b)]
successors.append(remaining + [a + b])
successors.append(remaining + [a - b])
successors.append(remaining + [b - a])
successors.append(remaining + [a * b])
if b != 0:

successors.append(remaining + [a / b])
if a != 0:

successors.append(remaining + [b / a])
return successors

Example usage:
initial_state = [1, 1, 4, 6]
print(successor_states(initial_state))
‘‘‘
Explanation of the Revised Function:
combinations(state, 2): This generates all possible pairs of numbers

from the input state.

remaining: This list contains the numbers that are not part of the
current pair.

successors.append(remaining + [a + b]): This forms the new list by
replacing the pair with the result of the addition operation and
adds it to the list of successors.

successors.append(remaining + [a - b]): This forms the new list by
replacing the pair with the result of the subtraction operation (a
- b) and adds it to the list of successors.

successors.append(remaining + [b - a]): This forms the new list by
replacing the pair with the result of the subtraction operation (b
- a) and adds it to the list of successors.

successors.append(remaining + [a * b]): This forms the new list by
replacing the pair with the result of the multiplication operation
and adds it to the list of successors.

if b != 0: successors.append(remaining + [a / b]): This forms the new
list by replacing the pair with the result of the division
operation (a / b) and adds it to the list of successors, ensuring
that division by zero is avoided.

if a != 0: successors.append(remaining + [b / a]): This forms the new
list by replacing the pair with the result of the division

26

operation (b / a) and adds it to the list of successors, ensuring
that division by zero is avoided.

This function ensures that all possible successors are generated by
considering all pairs of numbers and applying all allowed
operations, adhering to the rules of the 24 Game

Successor Iteration 5

AutoToS prompt:
Invalid transformation: length mismatch - the length of a successor

must be one less than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one less than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one less than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: [1, 1, 4, 6]
Example wrong successor state: [6, 5]

Model response:
Step-by-Step Analysis
The initial successor function produced successors that did not always

have a length exactly one less than the parent due to the way it
handled the operations and the formation of the new list.
Specifically, the function did not correctly ensure that the new
list always had one less element than the original list after
combining two numbers.

To fix this, we need to:

Ensure that after combining two numbers with an operation, the
resulting list has exactly one less element than the original list
.

Properly handle the formation of the new list by replacing the two
selected numbers with the result of the operation.

Revised Successor Function
Here is the revised Python function that ensures the length of a

successor is exactly one less than the parent:

python
Copy code
‘‘‘
from itertools import combinations

def successor_states(state):
successors = []
for (a, b) in combinations(state, 2):

remaining = [x for x in state if x not in (a, b)]
new_state = remaining + [a + b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [a - b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [b - a]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [a * b]
if len(new_state) == len(state) - 1:

successors.append(new_state)

27

if b != 0:
new_state = remaining + [a / b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
if a != 0:

new_state = remaining + [b / a]
if len(new_state) == len(state) - 1:

successors.append(new_state)
return successors

Example usage:
initial_state = [1, 1, 4, 6]
print(successor_states(initial_state))
‘‘‘
Explanation of the Revised Function:
combinations(state, 2): This generates all possible pairs of numbers

from the input state.

remaining: This list contains the numbers that are not part of the
current pair.

new_state = remaining + [a + b]: This forms the new list by replacing
the pair with the result of the operation.

if len(new_state) == len(state) - 1: This checks if the new state has
exactly one less element than the original state before adding it
to the list of successors.

Division by zero check: To avoid division by zero errors, we check if
the divisor is not zero before performing the division operation.

This function ensures that each successor state has exactly one less
element than the parent state, adhering to the rules of the 24
Game

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 6

AutoToS prompt:
Successor function when run on the state [1, 1, 4, 6] failed to

produce all successors.
Missing successors are: [[1, 4, 7], [-5, 1, 4], [1, 5, 6], [0.25, 1,

6], [-3, 1, 6], [0.16666666666666666, 1, 4], [1, 3, 6], [1, 4, 5]]
First think step by step why the successor function failed to produce

all successors of the state.
Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
Step-by-Step Analysis
The initial successor function failed to produce all possible

successors because it did not correctly handle the formation of
the new list after combining two numbers with an operation.
Specifically, the function did not ensure that all possible
combinations of operations on pairs of numbers were considered,
and it did not correctly handle the formation of the new list by
replacing the two selected numbers with the result of the
operation.

To fix this, we need to:

Ensure that all possible pairs of numbers are considered.

28

Ensure that all operations (addition, subtraction, multiplication,
division) are applied to each pair.

Properly handle the formation of the new list by replacing the two
selected numbers with the result of the operation.

Revised Successor Function
Here is the revised Python function that ensures all possible

successors are generated:

python
Copy code
‘‘‘
from itertools import combinations

def successor_states(state):
successors = []
for (a, b) in combinations(state, 2):

remaining = [x for x in state if x not in (a, b)]
successors.append(remaining + [a + b])
successors.append(remaining + [a - b])
successors.append(remaining + [b - a])
successors.append(remaining + [a * b])
if b != 0:

successors.append(remaining + [a / b])
if a != 0:

successors.append(remaining + [b / a])
return successors

Example usage:
initial_state = [1, 1, 4, 6]
print(successor_states(initial_state))
‘‘‘
Explanation of the Revised Function:
combinations(state, 2): This generates all possible pairs of numbers

from the input state.

remaining: This list contains the numbers that are not part of the
current pair.

successors.append(remaining + [a + b]): This forms the new list by
replacing the pair with the result of the addition operation and
adds it to the list of successors.

successors.append(remaining + [a - b]): This forms the new list by
replacing the pair with the result of the subtraction operation (a
- b) and adds it to the list of successors.

successors.append(remaining + [b - a]): This forms the new list by
replacing the pair with the result of the subtraction operation (b
- a) and adds it to the list of successors.

successors.append(remaining + [a * b]): This forms the new list by
replacing the pair with the result of the multiplication operation
and adds it to the list of successors.

if b != 0: successors.append(remaining + [a / b]): This forms the new
list by replacing the pair with the result of the division
operation (a / b) and adds it to the list of successors, ensuring
that division by zero is avoided.

if a != 0: successors.append(remaining + [b / a]): This forms the new
list by replacing the pair with the result of the division

29

operation (b / a) and adds it to the list of successors, ensuring
that division by zero is avoided.

This function ensures that all possible successors are generated by
considering all pairs of numbers and applying all allowed
operations, adhering to the rules of the 24 Game

Successor Iteration 7

AutoToS prompt:
Invalid transformation: length mismatch - the length of a successor

must be one less than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one less than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one less than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: [1, 1, 4, 6]
Example wrong successor state: [6, 5]

Model response:
Step-by-Step Analysis
The initial successor function produced successors that did not always

have a length exactly one less than the parent due to the way it
handled the operations and the formation of the new list.
Specifically, the function did not correctly ensure that the new
list always had one less element than the original list after
combining two numbers.

To fix this, we need to:

Ensure that after combining two numbers with an operation, the
resulting list has exactly one less element than the original list
.

Properly handle the formation of the new list by replacing the two
selected numbers with the result of the operation.

Revised Successor Function
Here is the revised Python function that ensures the length of a

successor is exactly one less than the parent:

python
Copy code
‘‘‘
from itertools import combinations

def successor_states(state):
successors = []
for (a, b) in combinations(state, 2):

remaining = [x for x in state if x not in (a, b)]
new_state = remaining + [a + b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [a - b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [b - a]
if len(new_state) == len(state) - 1:

successors.append(new_state)
new_state = remaining + [a * b]
if len(new_state) == len(state) - 1:

successors.append(new_state)

30

if b != 0:
new_state = remaining + [a / b]
if len(new_state) == len(state) - 1:

successors.append(new_state)
if a != 0:

new_state = remaining + [b / a]
if len(new_state) == len(state) - 1:

successors.append(new_state)
return successors

Example usage:
initial_state = [1, 1, 4, 6]
print(successor_states(initial_state))
‘‘‘
Explanation of the Revised Function:
combinations(state, 2): This generates all possible pairs of numbers

from the input state.

remaining: This list contains the numbers that are not part of the
current pair.

new_state = remaining + [a + b]: This forms the new list by replacing
the pair with the result of the operation.

if len(new_state) == len(state) - 1: This checks if the new state has
exactly one less element than the original state before adding it
to the list of successors.

Division by zero check: To avoid division by zero errors, we check if
the divisor is not zero before performing the division operation.

This function ensures that each successor state has exactly one less
element than the parent state, adhering to the rules of the 24
Game

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 8

AutoToS prompt:
Successor function when run on the state [1, 1, 4, 6] failed to

produce all successors.
Missing successors are: [[1, 4, 7], [-5, 1, 4], [1, 5, 6], [0.25, 1,

6], [-3, 1, 6], [0.16666666666666666, 1, 4], [1, 3, 6], [1, 4, 5]]
First think step by step why the successor function failed to produce

all successors of the state.
Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
Step-by-Step Analysis
The initial successor function failed to produce all possible

successors because it did not correctly handle the formation of
the new list after combining two numbers with an operation.
Specifically, the function did not ensure that all possible
combinations of operations on pairs of numbers were considered,
and it did not correctly handle the formation of the new list by
replacing the two selected numbers with the result of the
operation.

To fix this, we need to:

Ensure that all possible pairs of numbers are considered.

31

Ensure that all operations (addition, subtraction, multiplication,
division) are applied to each pair.

Properly handle the formation of the new list by replacing the two
selected numbers with the result of the operation.

Revised Successor Function
Here is the revised Python function that ensures all possible

successors are generated:

python
Copy code
‘‘‘
from itertools import combinations

def successor_states(state):
successors = []
for (a, b) in combinations(state, 2):

remaining = [x for x in state if x not in (a, b)]
successors.append(remaining + [a + b])
successors.append(remaining + [a - b])
successors.append(remaining + [b - a])
successors.append(remaining + [a * b])
if b != 0:

successors.append(remaining + [a / b])
if a != 0:

successors.append(remaining + [b / a])
return successors

Example usage:
initial_state = [1, 1, 4, 6]
print(successor_states(initial_state))
‘‘‘
Explanation of the Revised Function:
combinations(state, 2): This generates all possible pairs of numbers

from the input state.

remaining: This list contains the numbers that are not part of the
current pair.

successors.append(remaining + [a + b]): This forms the new list by
replacing the pair with the result of the addition operation and
adds it to the list of successors.

successors.append(remaining + [a - b]): This forms the new list by
replacing the pair with the result of the subtraction operation (a
- b) and adds it to the list of successors.

successors.append(remaining + [b - a]): This forms the new list by
replacing the pair with the result of the subtraction operation (b
- a) and adds it to the list of successors.

successors.append(remaining + [a * b]): This forms the new list by
replacing the pair with the result of the multiplication operation
and adds it to the list of successors.

if b != 0: successors.append(remaining + [a / b]): This forms the new
list by replacing the pair with the result of the division
operation (a / b) and adds it to the list of successors, ensuring
that division by zero is avoided.

if a != 0: successors.append(remaining + [b / a]): This forms the new
list by replacing the pair with the result of the division

32

operation (b / a) and adds it to the list of successors, ensuring
that division by zero is avoided.

This function ensures that all possible successors are generated by
considering all pairs of numbers and applying all allowed
operations, adhering to the rules of the 24 Game

Successor Iteration 9

AutoToS prompt:
Invalid transformation: length mismatch - the length of a successor

must be one less than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one less than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one less than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: [1, 1, 4, 6]
Example wrong successor state: [6, 5]

Model response:

System message:
Maximum iterations reached for completeness test. Process stopped.

9.1.2 GPT4-Mini

Listing 18: Without partial successor soundness test

AutoToS prompt:

The 24 Game is a mathematical card game in which the objective is to
find a way to manipulate four integers so that the end result is
24. The game is played with a list of four numbers, and the player
must use all four numbers exactly once, using any combination of

addition, subtraction, multiplication, or division, to arrive at
the number 24. If a state is defined by a list of numbers (4 or
less), how are successor states defined? Please think step by step
. Then, provide only the Python function that returns a list of
successor states for an input state.

Here is an example of an initial state:
[6, 6, 2, 1]

Model response:
‘‘‘python
def successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def calculate(a, b, operation):
if operation == add:

return a + b
elif operation == sub:

return a - b
elif operation == mul:

return a * b
elif operation == truediv:

if b != 0:
return a / b

return None

33

def generate_expressions(numbers):
if len(numbers) == 1:

yield numbers[0]
else:

for i in range(len(numbers)):
for j in range(len(numbers)):

if i != j:
remaining = [numbers[k] for k in range(len(

numbers)) if k != i and k != j]
for result in generate_expressions(remaining):

for operation in (add, sub, mul, truediv):
if operation == sub:

yield calculate(numbers[i],
numbers[j], operation)

elif operation == truediv:
if numbers[j] != 0:

yield calculate(numbers[i],
numbers[j], operation)

else:
yield calculate(numbers[i],

numbers[j], operation)

successors = set()
for perm in permutations(state):

for value in generate_expressions(list(perm)):
if value is not None:

new_state = [v for v in perm if v not in {perm[0],
perm[1]}]

if len(new_state) < 4:
new_state.append(value)
successors.add(tuple(sorted(new_state)))

return [list(s) for s in successors]
‘‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state.

Example goal state: [24]
Example non-goal state: [24,1]

Model response:
‘‘‘python
def is_goal_state(state):

return len(state) == 1 and state[0] == 24
‘‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 1

AutoToS prompt:
Successor function when run on the state [1, 1, 4, 6] failed to

produce all successors.
Missing successors are: [[1, 1, 10], [0.6666666666666666, 1, 1], [1,

4, 7], [-2, 1, 1], [-5, 1, 4], [1, 4, 6], [1, 1, 2], [1, 5, 6],
[0.25, 1, 6], [-3, 1, 6], [0, 4, 6], [0.16666666666666666, 1, 4],
[1, 1, 24], [1, 3, 6], [2, 4, 6], [1, 4, 5], [1, 1, 1.5]]

34

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The successor function likely failed to generate all successors of the

state due to the limited handling of operational combinations and
the omission of necessary states that can arise from expressions.
The function needs to consider all possible permutations of the

numbers for every operation regardless of the order of operations
and evaluate all combinations to ensure that all results get added
to the successor states.

Here’s the updated function:

‘‘‘python
def successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def calculate(a, b, operation):
if operation == add:

return a + b
elif operation == sub:

return a - b
elif operation == mul:

return a * b
elif operation == truediv:

if b != 0:
return a / b

return None

successors = set()
n = len(state)

for perm in permutations(state):
Generate all combinations of two numbers and combine with

remaining numbers
for i in range(n):

for j in range(n):
if i != j:

a, b = perm[i], perm[j]
remaining = [perm[k] for k in range(n) if k != i

and k != j]

for operation in (add, sub, mul, truediv):
result = calculate(a, b, operation)
if result is not None:

new_state = remaining + [result]
successors.add(tuple(sorted(new_state)))

return [list(s) for s in successors]
‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 1352, failure: 0, total expansions 630318, total generated

2470303

Listing 19: With partial successor soundness test

35

AutoToS prompt:

The 24 Game is a mathematical card game in which the objective is to
find a way to manipulate four integers so that the end result is
24. The game is played with a list of four numbers, and the player
must use all four numbers exactly once, using any combination of

addition, subtraction, multiplication, or division, to arrive at
the number 24. If a state is defined by a list of numbers (4 or
less), how are successor states defined? Please think step by step
. Then, provide only the Python function that returns a list of
successor states for an input state.

Here is an example of an initial state:
[6, 6, 2, 1]

Model response:
‘‘‘python
def get_successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def valid_expression(a, b, op):
if op == truediv and b == 0:

return None
return op(a, b)

def generate_expressions(n1, n2):
return [

(valid_expression(n1, n2, add), ’+’),
(valid_expression(n1, n2, sub), ’-’),
(valid_expression(n1, n2, mul), ’*’),
(valid_expression(n1, n2, truediv), ’/’)

]

successor_states = set()

for nums in permutations(state):
for i in range(3):

for j in range(3):
if i != j:

n1, n2, n3, n4 = nums[i], nums[j], nums[3 - i - j
], nums[6 - i - j]

expressions = generate_expressions(n1, n2)

for result, op in expressions:
if result is not None:

new_numbers = [result] + [nums[k] for k in
range(4) if k != i and k != j]

successor_states.add(tuple(sorted(
new_numbers)))

return [list(state) for state in successor_states]
‘‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state.

Example goal state: [24]
Example non-goal state: [24,1]

Model response:
‘‘‘python
def is_goal_state(state):

return len(state) == 1 and state[0] == 24

36

‘‘‘

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 24, in get_successor_states

tuple index out of range. Please fix this exception in the successor
function.

Model response:
‘‘‘python
def get_successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def valid_expression(a, b, op):
if op == truediv and b == 0:

return None
return op(a, b)

def generate_expressions(n1, n2):
return [

(valid_expression(n1, n2, add), ’+’),
(valid_expression(n1, n2, sub), ’-’),
(valid_expression(n1, n2, mul), ’*’),
(valid_expression(n1, n2, truediv), ’/’)

]

successor_states = set()

for nums in permutations(state):
for i in range(4):

for j in range(4):
if i != j:

n1, n2 = nums[i], nums[j]
remaining = [nums[k] for k in range(4) if k != i

and k != j]
expressions = generate_expressions(n1, n2)

for result, op in expressions:
if result is not None:

new_numbers = [result] + remaining
successor_states.add(tuple(sorted(

new_numbers)))

return [list(state) for state in successor_states]
‘‘‘
Successor Iteration 2

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 25, in <listcomp>

tuple index out of range. Please fix this exception in the successor
function.

Model response:
‘‘‘python
def get_successor_states(state):

from itertools import permutations

37

from operator import add, sub, mul, truediv

def valid_expression(a, b, op):
if op == truediv and b == 0:

return None
return op(a, b)

def generate_expressions(n1, n2):
return [

(valid_expression(n1, n2, add), ’+’),
(valid_expression(n1, n2, sub), ’-’),
(valid_expression(n1, n2, mul), ’*’),
(valid_expression(n1, n2, truediv), ’/’)

]

successor_states = set()

for nums in permutations(state):
for i in range(4):

for j in range(i + 1, 4):
n1, n2 = nums[i], nums[j]
remaining = [nums[k] for k in range(4) if k != i and k

!= j]
expressions = generate_expressions(n1, n2)

for result, op in expressions:
if result is not None:

new_numbers = [result] + remaining
successor_states.add(tuple(sorted(new_numbers)

))

return [list(state) for state in successor_states]
‘‘‘
Successor Iteration 3

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 24, in <listcomp>

tuple index out of range. Please fix this exception in the successor
function.

Model response:
‘‘‘python
def get_successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def valid_expression(a, b, op):
if op == truediv and b == 0:

return None
return op(a, b)

def generate_expressions(n1, n2):
return [

(valid_expression(n1, n2, add), ’+’),
(valid_expression(n1, n2, sub), ’-’),
(valid_expression(n1, n2, mul), ’*’),
(valid_expression(n1, n2, truediv), ’/’)

]

successor_states = set()

for nums in permutations(state):
for i in range(4):

38

for j in range(i + 1, 4):
n1, n2 = nums[i], nums[j]
remaining = [nums[k] for k in range(4) if k != i and k

!= j]
expressions = generate_expressions(n1, n2)

for result, op in expressions:
if result is not None:

new_numbers = [result] + remaining
if len(new_numbers) > 4:

continue
successor_states.add(tuple(sorted(new_numbers)

))

return [list(state) for state in successor_states]
‘‘‘
Successor Iteration 4

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 24, in <listcomp>

tuple index out of range. Please fix this exception in the successor
function.

Model response:
‘‘‘python
def get_successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def valid_expression(a, b, op):
if op == truediv and b == 0:

return None
return op(a, b)

def generate_expressions(n1, n2):
return [

(valid_expression(n1, n2, add), ’+’),
(valid_expression(n1, n2, sub), ’-’),
(valid_expression(n1, n2, mul), ’*’),
(valid_expression(n1, n2, truediv), ’/’)

]

successor_states = set()

if len(state) < 2:
return []

for nums in permutations(state):
for i in range(4):

for j in range(4):
if i != j:

n1, n2 = nums[i], nums[j]
remaining = [nums[k] for k in range(4) if k != i

and k != j]
expressions = generate_expressions(n1, n2)

for result, op in expressions:
if result is not None:

new_numbers = [result] + remaining
if len(new_numbers) <= 4:

successor_states.add(tuple(sorted(
new_numbers)))

39

return [list(state) for state in successor_states]
‘‘‘
Successor Iteration 5

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 28, in <listcomp>

tuple index out of range. Please fix this exception in the successor
function.

Model response:
‘‘‘python
def get_successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def valid_expression(a, b, op):
if op == truediv and b == 0:

return None
return op(a, b)

def generate_expressions(n1, n2):
return [

(valid_expression(n1, n2, add), ’+’),
(valid_expression(n1, n2, sub), ’-’),
(valid_expression(n1, n2, mul), ’*’),
(valid_expression(n1, n2, truediv), ’/’)

]

successor_states = set()

if len(state) < 2:
return []

for nums in permutations(state):
for i in range(4):

for j in range(i + 1, 4):
n1, n2 = nums[i], nums[j]
remaining = [nums[k] for k in range(4) if k != i and k

!= j]
expressions = generate_expressions(n1, n2)

for result, op in expressions:
if result is not None:

new_numbers = [result] + remaining
if len(new_numbers) <= 4:

successor_states.add(tuple(sorted(
new_numbers)))

return [list(state) for state in successor_states if len(state) >
0]

‘‘‘
Successor Iteration 6

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 27, in <listcomp>

tuple index out of range. Please fix this exception in the successor
function.

Model response:
‘‘‘python
def get_successor_states(state):

40

from itertools import permutations
from operator import add, sub, mul, truediv

def valid_expression(a, b, op):
if op == truediv and b == 0:

return None
return op(a, b)

def generate_expressions(n1, n2):
return [

(valid_expression(n1, n2, add), ’+’),
(valid_expression(n1, n2, sub), ’-’),
(valid_expression(n1, n2, mul), ’*’),
(valid_expression(n1, n2, truediv), ’/’)

]

successor_states = set()

Check if the state has fewer than 2 numbers.
if len(state) < 2:

return []

for nums in permutations(state):
for i in range(4):

for j in range(i + 1, 4):
n1, n2 = nums[i], nums[j]
remaining = [nums[k] for k in range(4) if k != i and k

!= j]
expressions = generate_expressions(n1, n2)

for result, _ in expressions:
if result is not None:

new_numbers = [result] + remaining
successor_states.add(tuple(sorted(new_numbers)

))

return [list(state) for state in successor_states if len(state) >
0]

‘‘‘
Successor Iteration 7

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 28, in <listcomp>

tuple index out of range. Please fix this exception in the successor
function.

Model response:
‘‘‘python
def get_successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def valid_expression(a, b, op):
if op == truediv and b == 0:

return None
return op(a, b)

def generate_expressions(n1, n2):
return [

(valid_expression(n1, n2, add), ’+’),
(valid_expression(n1, n2, sub), ’-’),
(valid_expression(n1, n2, mul), ’*’),
(valid_expression(n1, n2, truediv), ’/’)

41

]

successor_states = set()

Ensure there are at least 4 numbers to manipulate.
if len(state) < 2:

return []

for nums in permutations(state):
for i in range(4):

for j in range(4):
if i != j:

n1, n2 = nums[i], nums[j]
remaining = [nums[k] for k in range(4) if k != i

and k != j]
if len(remaining) == 2:

expressions = generate_expressions(n1, n2)

for result, _ in expressions:
if result is not None:

new_numbers = [result] + remaining
successor_states.add(tuple(sorted(

new_numbers)))

return [list(state) for state in successor_states]
‘‘‘
Successor Iteration 8

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 29, in <listcomp>

tuple index out of range. Please fix this exception in the successor
function.

Model response:
‘‘‘python
def get_successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def valid_expression(a, b, op):
if op == truediv and b == 0:

return None
return op(a, b)

def generate_expressions(n1, n2):
return [

(valid_expression(n1, n2, add), ’+’),
(valid_expression(n1, n2, sub), ’-’),
(valid_expression(n1, n2, mul), ’*’),
(valid_expression(n1, n2, truediv), ’/’)

]

successor_states = set()

Ensure there are exactly 4 numbers to manipulate.
if len(state) != 4:

return []

for nums in permutations(state):
for i in range(4):

for j in range(i + 1, 4):
n1, n2 = nums[i], nums[j]

42

remaining = [nums[k] for k in range(4) if k != i and k
!= j]

expressions = generate_expressions(n1, n2)

for result, _ in expressions:
if result is not None:

new_numbers = [result] + remaining
successor_states.add(tuple(sorted(new_numbers)

))

return [list(state) for state in successor_states]
‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 9

AutoToS prompt:
Successor function when run on the state [1, 4, 6] failed to produce

all successors.
Missing successors are: [[4, 6]]
First think step by step why the successor function failed to produce

all successors of the state.
Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The issue with the existing successor function is that it only

considers pairs of numbers for operations and then adds the result
with the remaining numbers. However, it does not explore all

combinations of the remaining numbers after getting a result from
a pair. To generate complete successor states, we need to ensure
that after an operation is performed, the result is combined with
all possible combinations of the remaining numbers, including
further operations.

This means:
1. After calculating a result from two selected numbers, we should

consider this result along with the others for further
calculations, using the available operations again.

2. Instead of restricting to just pairing without recursion, we should
generate all possible combinations through additional recursive

steps.

Here’s how to implement this:

‘‘‘python
def get_successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def valid_expression(a, b, op):
if op == truediv and b == 0:

return None
return op(a, b)

def generate_expressions(n1, n2):
return [

(valid_expression(n1, n2, add), ’+’),
(valid_expression(n1, n2, sub), ’-’),
(valid_expression(n1, n2, mul), ’*’),
(valid_expression(n1, n2, truediv), ’/’)

]

43

successor_states = set()

def generate_successors(current_state):
Add current state if it has valid length
if len(current_state) == 1:

successor_states.add(tuple(current_state))

for i in range(len(current_state)):
for j in range(len(current_state)):

if i != j:
n1, n2 = current_state[i], current_state[j]
remaining = [current_state[k] for k in range(len(

current_state)) if k != i and k != j]
expressions = generate_expressions(n1, n2)

for result, _ in expressions:
if result is not None:

new_numbers = [result] + remaining
generate_successors(new_numbers)

generate_successors(state)
return [list(state) for state in successor_states]

‘‘‘

In this revised function:
- I introduced a recursive ‘generate_successors‘ function to keep

generating successors by carrying forward the newly created
numbers after each operation.

- This handles multiple generations of outcomes by applying the
operations on the intermediate results recursively until we are
left with a single number or valid states.

System message:
Maximum iterations reached for completeness test. Process stopped.

9.1.3 GPT4

Listing 20: Without partial successor soundness test

AutoToS prompt:

The 24 Game is a mathematical card game in which the objective is to
find a way to manipulate four integers so that the end result is
24. The game is played with a list of four numbers, and the player
must use all four numbers exactly once, using any combination of

addition, subtraction, multiplication, or division, to arrive at
the number 24. If a state is defined by a list of numbers (4 or
less), how are successor states defined? Please think step by step
. Then, provide only the Python function that returns a list of
successor states for an input state.

Here is an example of an initial state:
[6, 6, 2, 1]

Model response:
To generate successor states, we need to take every pair of numbers

from the list, apply one of the four operations (addition,
subtraction, multiplication, division), and generate a new state
with the result of that operation and the remaining numbers. Here’
s how to implement this:

1. Iterate over all pairs of numbers in the list.
2. For each pair, perform all valid operations.

44

3. Generate new states with the result of the operation and the
remaining numbers.

4. Return the list of all possible new states.

Here’s the function:

‘‘‘python
from itertools import permutations

def generate_successor_states(state):
def valid_operations(a, b):

ops = [(a + b), (a - b), (b - a), (a * b)]
if b != 0:

ops.append(a / b)
if a != 0:

ops.append(b / a)
return ops

def generate_new_states(state):
n = len(state)
new_states = []

for i in range(n):
for j in range(i + 1, n):

for result in valid_operations(state[i], state[j]):
new_state = [state[k] for k in range(n) if k != i

and k != j] + [result]
new_states.append(new_state)

return new_states

return generate_new_states(state)
‘‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state.

Example goal state: [24]
Example non-goal state: [24,1]

Model response:
‘‘‘python
def is_goal_state(state):

return len(state) == 1 and state[0] == 24
‘‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 1352, failure: 0, total expansions 627424, total generated

2706100

Listing 21: With partial successor soundness test

AutoToS prompt:

The 24 Game is a mathematical card game in which the objective is to
find a way to manipulate four integers so that the end result is
24. The game is played with a list of four numbers, and the player

45

must use all four numbers exactly once, using any combination of
addition, subtraction, multiplication, or division, to arrive at
the number 24. If a state is defined by a list of numbers (4 or
less), how are successor states defined? Please think step by step
. Then, provide only the Python function that returns a list of
successor states for an input state.

Here is an example of an initial state:
[6, 6, 2, 1]

Model response:
To generate the successor states, we need to evaluate all possible

operations between any two numbers and form new states by
replacing the two numbers with the result of their operation. We’
ll iterate through all pairs of numbers in the list and apply
addition, subtraction, multiplication, and both division
directions (if the second number is non-zero to avoid division by
zero). Here is the Python function that implements this:

‘‘‘python
def generate_successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def generate_new_state(numbers, x, y, operation):
result = operation(x, y)
new_numbers = [num for num in numbers if num != x and num != y

]
new_numbers.append(result)
return new_numbers

operations = [add, sub, mul, truediv]
successors = []

for x, y in permutations(state, 2):
for operation in operations:

if operation == truediv and y == 0:
continue # skip division by zero

try:
new_state = generate_new_state(state, x, y, operation)
if new_state not in successors:

successors.append(new_state)
except ZeroDivisionError:

pass
return successors

‘‘‘

This function will return all possible successor states from the given
state of numbers by applying all operations between each pair of

numbers. Note that we check for division by zero before performing
the operation to avoid errors.

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state.

Example goal state: [24]
Example non-goal state: [24,1]

Model response:
‘‘‘python
def is_goal_state(state):

return state == [24]
‘‘‘

46

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Invalid transformation: length mismatch - the length of a successor

must be one less than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one less than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one less than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: [1, 1, 4, 6]
Example wrong successor state: [6, 5]

Model response:
The issue with the previous implementation was that it didn’t

correctly account for removing exactly two numbers and adding just
one result for each operation between a pair of numbers. The new

state should always have one less number than the original state.
Here is the correct approach to ensure the length of the successor
state is one less than the parent:

1. Select a pair of numbers from the state.
2. Apply each operation to the pair and get the result.
3. Form a new state by removing the selected pair of numbers and

adding the result.

Here is the corrected function:

‘‘‘python
def generate_successor_states(state):

from itertools import combinations
from operator import add, sub, mul, truediv

def generate_new_state(numbers, x, y, operation):
result = operation(x, y)
new_numbers = [num for num in numbers if num != x and num != y

]
new_numbers.append(result)
return new_numbers

operations = [add, sub, mul, truediv]
successors = []

for x, y in combinations(state, 2):
for operation in operations:

if operation == truediv:
if y == 0:

continue # skip division by zero
new_state = generate_new_state(state, x, y, operation)
if len(new_state) == len(state) - 1 and new_state not

in successors:
successors.append(new_state)

else:
new_state = generate_new_state(state, x, y, operation)
if len(new_state) == len(state) - 1 and new_state not

in successors:
successors.append(new_state)

return successors
‘‘‘

47

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 2

AutoToS prompt:
Successor function when run on the state [1, 1, 4, 6] failed to

produce all successors.
Missing successors are: [[1, 4, 7], [-5, 1, 4], [1, 1, 2], [1, 5, 6],

[0.25, 1, 6], [-3, 1, 6], [0.16666666666666666, 1, 4], [1, 3, 6],
[1, 4, 5], [1, 1, 1.5]]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The main reason the previous successor function failed to produce all

successor states is due to the logic used to remove the pair of
numbers from the current state. Specifically, the logic used for
removing numbers was not robust enough to handle cases where
numbers might be equal or where other nuances like ordering
affected the removal operation.

To fix this, we need to rewrite the removal logic to ensure that the
state is correctly updated by removing exactly one instance of
each selected pair and then adding the result. Here’s the
corrected approach:

1. Select a pair of numbers from the state.
2. Apply each operation to the pair and get the result.
3. Form a new state by removing exactly the selected pair of numbers (

considering possible duplicates) and adding the result.

Here is the corrected function:

‘‘‘python
def generate_successor_states(state):

from itertools import permutations
from operator import add, sub, mul, truediv

def generate_new_state(numbers, x, y, operation):
result = operation(x, y)
temp_numbers = numbers[:] # create a copy to manipulate
temp_numbers.remove(x) # remove one instance of x
temp_numbers.remove(y) # remove one instance of y
new_numbers = temp_numbers + [result] # add the result of

operation
return new_numbers

operations = [add, sub, mul, truediv]
successors = []

for x, y in permutations(state, 2):
if y != 0 or y == 0 and operations.index(truediv) != -1:

for operation in operations:
if operation == truediv and y == 0:

continue # skip division by zero
try:

new_state = generate_new_state(state, x, y,
operation)

if new_state not in successors:
successors.append(new_state)

48

except ZeroDivisionError:
pass

return successors
‘‘‘

This function ensures that each operation on a pair of numbers results
in a successor state that has exactly one less number than the

original state, and it correctly handles cases with duplicate
numbers in the state.

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 1352, failure: 0, total expansions 611864, total generated

2477716

9.1.4 Llama3.1 70B

Listing 22: Without partial successor soundness test

AutoToS prompt:

The 24 Game is a mathematical card game in which the objective is to
find a way to manipulate four integers so that the end result is
24. The game is played with a list of four numbers, and the player
must use all four numbers exactly once, using any combination of

addition, subtraction, multiplication, or division, to arrive at
the number 24. If a state is defined by a list of numbers (4 or
less), how are successor states defined? Please think step by step
. Then, provide only the Python function that returns a list of
successor states for an input state.

Here is an example of an initial state:
[6, 6, 2, 1]

Model response:
To define successor states, we’ll consider all possible operations (+,

-, x, /) between each pair of numbers in the input state. Here’s
the step-by-step process:

Choose two numbers from the input state.
Apply each of the four operations to the chosen numbers.
Replace the chosen numbers in the input state with the result of the

operation.
Repeat steps 1-3 for all possible pairs of numbers in the input state.
Here’s the Python function to generate successor states:
Python
‘‘‘
def get_successor_states(state):

successor_states = []
for i in range(len(state)):

for j in range(i+1, len(state)):
a, b = state[i], state[j]
new_state = state[:i] + state[i+1:j] + state[j+1:]
successor_states.append(new_state + [a + b])
successor_states.append(new_state + [a - b])
successor_states.append(new_state + [b - a])
successor_states.append(new_state + [a * b])
if b != 0:

successor_states.append(new_state + [a / b])
if a != 0:

successor_states.append(new_state + [b / a])
return successor_states

‘‘‘

49

This function generates all possible successor states by applying the
four operations to each pair of numbers in the input state. Note
that division by zero is avoided by checking if the divisor is non
-zero

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state.

Example goal state: [24]
Example non-goal state: [24,1]

Model response:
Here’s the Python function to test whether a state is a goal state:
Python
‘‘‘
def is_goal_state(state):

return len(state) == 1 and state[0] == 24
‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 1352, failure: 0, total expansions 627424, total generated

2706100

Listing 23: With partial successor soundness test

AutoToS prompt:

The 24 Game is a mathematical card game in which the objective is to
find a way to manipulate four integers so that the end result is
24. The game is played with a list of four numbers, and the player
must use all four numbers exactly once, using any combination of

addition, subtraction, multiplication, or division, to arrive at
the number 24. If a state is defined by a list of numbers (4 or
less), how are successor states defined? Please think step by step
. Then, provide only the Python function that returns a list of
successor states for an input state.

Here is an example of an initial state:
[6, 6, 2, 1]

Model response:
Successor State Definition
To define successor states, we need to consider all possible

operations (+, -, x, /) between each pair of numbers in the input
state. For each operation, we’ll create a new state by applying
the operation to the two numbers and replacing them with the
result in the original list.

Step-by-Step Process
Choose two numbers from the input state (e.g., a and b).
Apply each operation (+, -, x, /) to a and b, resulting in a new value

c.
Create a new state by replacing a and b with c in the original list.
Repeat steps 1-3 for all possible pairs of numbers in the input state.
Python Function
Python
‘‘‘
def get_successor_states(state):

50

successor_states = []
ops = [’+’, ’-’, ’*’, ’/’]

for i in range(len(state)):
for j in range(i + 1, len(state)):

a, b = state[i], state[j]
for op in ops:

if op == ’+’:
c = a + b

elif op == ’-’:
c = a - b

elif op == ’*’:
c = a * b

elif op == ’/’:
if b != 0:

c = a / b
else:

continue
new_state = state[:i] + [c] + state[j + 1:]
successor_states.append(new_state)

return successor_states
‘‘‘
You can call this function with your initial state to get the list of

successor states:
Python
initial_state = [6, 6, 2, 1]
successor_states = get_successor_states(initial_state)
print(successor_states

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state.

Example goal state: [24]
Example non-goal state: [24,1]

Model response:
Python
‘‘‘
def is_goal_state(state):

return len(state) == 1 and state[0] == 24
‘‘

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Invalid transformation: length mismatch - the length of a successor

must be one less than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one less than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one less than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: [1, 1, 4, 6]
Example wrong successor state: [5, 6]

Model response:

51

The successor function produced a successor with a length that was not
exactly one less than the parent because it was replacing two

numbers with one result, but not removing the other numbers from
the list.

Here’s the revised Python code for the successor function:
Python
‘‘‘
def get_successor_states(state):

successor_states = []
ops = [’+’, ’-’, ’*’, ’/’]

for i in range(len(state)):
for j in range(i + 1, len(state)):

a, b = state[i], state[j]
for op in ops:

if op == ’+’:
c = a + b

elif op == ’-’:
c = a - b

elif op == ’*’:
c = a * b

elif op == ’/’:
if b != 0:

c = a / b
else:

continue
Create a new state with the result and the remaining

numbers
new_state = [x for k, x in enumerate(state) if k not

in (i, j)] + [c]
successor_states.append(new_state)

return successor_states
‘‘‘
In this revised version, we create a new state by including the result

c and the remaining numbers from the original state, excluding
the two numbers a and b that were used to produce c. This ensures
that the length of each successor state is exactly one less than
the parent state

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 2

AutoToS prompt:
Successor function when run on the state [1, 1, 4, 6] failed to

produce all successors.
Missing successors are: [[1, 1, 2], [1, 3, 6], [1, 4, 5], [1, 1, 1.5]]
First think step by step why the successor function failed to produce

all successors of the state.
Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The successor function failed to produce all successors because it

only considered operations between two numbers in the order they
appear in the state. It didn’t consider operations between numbers
in different orders (e.g., b - a instead of a - b) and didn’t

consider operations between the same number (e.g., a / a or a * a)
.

Here’s the revised Python code for the successor function:
Python
‘‘‘

52

def get_successor_states(state):
successor_states = []
ops = [’+’, ’-’, ’*’, ’/’]

for i in range(len(state)):
for j in range(len(state)):

if i != j:
a, b = state[i], state[j]
for op in ops:

if op == ’+’:
c = a + b

elif op == ’-’:
c = a - b
if a != b:

c2 = b - a
new_state = [x for k, x in enumerate(state

) if k not in (i, j)] + [c2]
successor_states.append(new_state)

elif op == ’*’:
c = a * b

elif op == ’/’:
if b != 0:

c = a / b
else:

continue
if a != b and a % b == 0:

c2 = b / a
new_state = [x for k, x in enumerate(state

) if k not in (i, j)] + [c2]
successor_states.append(new_state)

new_state = [x for k, x in enumerate(state) if k
not in (i, j)] + [c]

successor_states.append(new_state)

return successor_states
‘‘‘
In this revised version, we consider operations between numbers in

different orders and operations between the same number. We also
avoid division by zero and ensure that we don’t add duplicate
states

Successor Iteration 3

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 28, in get_successor_states

division by zero. Please fix this exception in the successor function.
Model response:
Here’s the revised Python code for the successor function, which

handles the division by zero exception:
Python
‘‘‘
def get_successor_states(state):

successor_states = []
ops = [’+’, ’-’, ’*’, ’/’]

for i in range(len(state)):
for j in range(len(state)):

if i != j:
a, b = state[i], state[j]
for op in ops:

if op == ’+’:
c = a + b

elif op == ’-’:

53

c = a - b
if a != b:

c2 = b - a
new_state = [x for k, x in enumerate(state

) if k not in (i, j)] + [c2]
successor_states.append(new_state)

elif op == ’*’:
c = a * b

elif op == ’/’:
if b != 0:

c = a / b
if a != b and a % b == 0:

c2 = b / a
new_state = [x for k, x in enumerate(

state) if k not in (i, j)] + [c2]
successor_states.append(new_state)

elif a != 0:
c = b / a
new_state = [x for k, x in enumerate(state

) if k not in (i, j)] + [c]
successor_states.append(new_state)

new_state = [x for k, x in enumerate(state) if k
not in (i, j)] + [c]

successor_states.append(new_state)

return successor_states
‘‘‘
In this revised version, we added a check to ensure that we don’t

divide by zero. If b is zero, we check if a is also zero. If a is
not zero, we can safely divide b by a. This handles the division
by zero exception

Successor Iteration 4

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 26, in get_successor_states

division by zero. Please fix this exception in the successor function.
Model response:
Here’s the revised Python code for the successor function, which

handles the division by zero exception:
Python
‘‘‘
def get_successor_states(state):

successor_states = []
ops = [’+’, ’-’, ’*’, ’/’]

for i in range(len(state)):
for j in range(len(state)):

if i != j:
a, b = state[i], state[j]
for op in ops:

if op == ’+’:
c = a + b

elif op == ’-’:
c = a - b
if a != b:

c2 = b - a
new_state = [x for k, x in enumerate(state

) if k not in (i, j)] + [c2]
successor_states.append(new_state)

elif op == ’*’:
c = a * b

elif op == ’/’:

54

if b != 0:
c = a / b
if a != b and a % b == 0:

c2 = b / a
new_state = [x for k, x in enumerate(

state) if k not in (i, j)] + [c2]
successor_states.append(new_state)

else:
continue # Skip division by zero

new_state = [x for k, x in enumerate(state) if k
not in (i, j)] + [c]

successor_states.append(new_state)

return successor_states
‘‘‘
In this revised version, I added an else clause to the if b != 0 check

. If b is zero, the function will continue to the next iteration
of the loop, skipping the division operation and avoiding the
division by zero exception

Successor Iteration 5

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 26, in get_successor_states

division by zero. Please fix this exception in the successor function.
Model response:
Here’s the revised Python code for the successor function, which

handles the division by zero exception:
Python
‘‘‘
def get_successor_states(state):

successor_states = []
ops = [’+’, ’-’, ’*’, ’/’]

for i in range(len(state)):
for j in range(len(state)):

if i != j:
a, b = state[i], state[j]
for op in ops:

if op == ’+’:
c = a + b

elif op == ’-’:
c = a - b
if a != b:

c2 = b - a
new_state = [x for k, x in enumerate(state

) if k not in (i, j)] + [c2]
successor_states.append(new_state)

elif op == ’*’:
c = a * b

elif op == ’/’:
if b != 0 and a != 0: # Check both a and b

for zero
c = a / b
if a != b and a % b == 0:

c2 = b / a
new_state = [x for k, x in enumerate(

state) if k not in (i, j)] + [c2]
successor_states.append(new_state)

else:
continue # Skip division by zero

new_state = [x for k, x in enumerate(state) if k
not in (i, j)] + [c]

55

successor_states.append(new_state)

return successor_states
‘‘‘
In this revised version, I added an additional check a != 0 to ensure

that we don’t divide by zero when a is also zero. If either a or b
is zero, the function will continue to the next iteration of the

loop, skipping the division operation and avoiding the division by
zero exception

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 1352, failure: 0, total expansions 614323, total generated

4596510

9.1.5 Llama3.1 405B

Listing 24: Without partial successor soundness test

AutoToS prompt:

The 24 Game is a mathematical card game in which the objective is to
find a way to manipulate four integers so that the end result is
24. The game is played with a list of four numbers, and the player
must use all four numbers exactly once, using any combination of

addition, subtraction, multiplication, or division, to arrive at
the number 24. If a state is defined by a list of numbers (4 or
less), how are successor states defined? Please think step by step
. Then, provide only the Python function that returns a list of
successor states for an input state.

Here is an example of an initial state:
[6, 6, 2, 1]

Model response:
Successor States in the 24 Game
Definition
Given a state in the 24 Game, a successor state is one that results

from applying a mathematical operation (+, -, *, /) to two numbers
in the state, reducing the list of numbers by one.

Step-by-Step Process
Choose Two Numbers: Select two distinct numbers from the current state

.
Apply Operations: For each pair of chosen numbers, apply all four

mathematical operations (+, -, *, /) to generate new numbers.
Create Successor States: For each new number generated, create a new

state by replacing the two chosen numbers with the new number,
ensuring the new state has one less number than the original state
.

Handle Division by Zero: Ignore division operations that would result
in division by zero.

Python Function to Generate Successor States
‘‘‘Python
def get_successor_states(state):

"""
Generate all possible successor states for a given state in the 24

Game.

Parameters:
state (list): A list of numbers representing the current state.

Returns:
list: A list of lists, where each sublist is a successor state.

56

"""
successor_states = []

Iterate over all pairs of distinct numbers in the state
for i in range(len(state)):

for j in range(i + 1, len(state)):
Extract the two chosen numbers
num1, num2 = state[i], state[j]

Generate new numbers by applying mathematical operations
new_numbers = [

num1 + num2,
num1 - num2,
num2 - num1,
num1 * num2,

]
Handle division, avoiding division by zero
if num2 != 0:

new_numbers.append(num1 / num2)
if num1 != 0:

new_numbers.append(num2 / num1)

Create successor states for each new number
for new_num in new_numbers:

successor_state = state[:i] + state[i + 1:j] + state[j
+ 1:] + [new_num]

successor_states.append(successor_state)

return successor_states
‘‘‘

‘‘‘
Example usage
initial_state = [6, 6, 2, 1]
successors = get_successor_states(initial_state)
for state in successors:

print(state)
‘‘‘
This function generates all possible successor states by applying

mathematical operations to all pairs of distinct numbers in the
input state, handling division by zero appropriately. The result
is a comprehensive list of next possible states in the 24 Game,
useful for exploring the game tree or implementing a solution
strategy.

Generated by Meta Llama 3.1-405B

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state.

Example goal state: [24]
Example non-goal state: [24,1]

Model response:
Python Function to Check if a State is a Goal State
‘‘‘Python
def is_goal_state(state):

"""
Check if a given state is a goal state in the 24 Game.

A goal state is defined as a state containing only the number 24.

Parameters:
state (list): A list of numbers representing the current state.

57

Returns:
bool: True if the state is a goal state, False otherwise.
"""
return state == [24]

‘‘‘
Example Usage:
‘‘‘Python
Test a goal state
print(is_goal_state([24])) # Output: True

Test a non-goal state
print(is_goal_state([24, 1])) # Output: False
‘‘‘
Generated by Meta Llama 3.1-405B

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 1352, failure: 0, total expansions 627424, total generated

2706100

Listing 25: With partial successor soundness test

AutoToS prompt:

The 24 Game is a mathematical card game in which the objective is to
find a way to manipulate four integers so that the end result is
24. The game is played with a list of four numbers, and the player
must use all four numbers exactly once, using any combination of

addition, subtraction, multiplication, or division, to arrive at
the number 24. If a state is defined by a list of numbers (4 or
less), how are successor states defined? Please think step by step
. Then, provide only the Python function that returns a list of
successor states for an input state.

Here is an example of an initial state:
[6, 6, 2, 1]

Model response:
Successor States Definition
Given a state with 4 or less numbers, successor states are defined as

the states that can be reached by applying a mathematical
operation (+, -, *, /) to two numbers in the current state. The
two numbers are then replaced by the result of the operation.

Here are the steps to generate successor states:
Choose two numbers from the current state.
Apply each of the four mathematical operations (+, -, *, /) to the two

numbers.
For each operation, create a new state by replacing the two numbers

with the result of the operation.
Add the new states to the list of successor states.
Python Function: Successor States
Python
‘‘‘
import itertools
import operator

def get_successor_states(state):
"""
Returns a list of successor states for the given state.

58

Args:
state (list): A list of numbers representing the current state

.

Returns:
list: A list of lists, where each sublist is a successor state

.
"""
successor_states = []
ops = {

’+’: operator.add,
’-’: operator.sub,
’*’: operator.mul,
’/’: operator.truediv

}

Choose two numbers from the current state
for i, j in itertools.combinations(range(len(state)), 2):

num1, num2 = state[i], state[j]

Apply each mathematical operation to the two numbers
for op, func in ops.items():

try:
result = func(num1, num2)
Create a new state by replacing the two numbers with

the result
new_state = state[:i] + [result] + state[i+1:j] +

state[j+1:]
successor_states.append(new_state)
Also try the operation with num2 as the first

operand
result = func(num2, num1)
new_state = state[:i] + [result] + state[i+1:j] +

state[j+1:]
successor_states.append(new_state)

except ZeroDivisionError:
Skip division by zero
continue

return successor_states
‘‘‘
Example usage:
Python
initial_state = [6, 6, 2, 1]
successor_states = get_successor_states(initial_state)
print(successor_states)
Generated by Meta Llama 3.1-405

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state.

Example goal state: [24]
Example non-goal state: [24,1]

Model response:
Python
‘‘‘
def is_goal_state(state):

"""
Returns True if the state is a goal state, False otherwise.

A goal state is a state with a single number, which is 24.

59

Args:
state (list): A list of numbers representing the state.

Returns:
bool: Whether the state is a goal state.

"""
return len(state) == 1 and state[0] == 24

‘‘‘
Generated by Meta Llama 3.1-405

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 1352, failure: 0, total expansions 628046, total generated

3603139

9.2 BlocksWorld

9.2.1 Deepseek-CoderV2

Listing 26: Without partial successor soundness test

AutoToS prompt:

I am playing with a set of blocks where I need to arrange the blocks
into stacks. Here are the actions I can do
Pick up a block from the table
Put down a block on the table
Unstack a block from on top of another block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up a block, I am holding the block and it is no longer
clear and no longer on the table.

Once I unstack from on top of another block, I am holding the block
and it is no longer clear. Instead, the other block becomes

clear.

I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down a block, my hand becomes empty, the block becomes

clear, and it is now on the table.
Once I stack a block on top of another block, the block on top

becomes clear and the block under it is no longer clear.
If a state is defined by a dictionary of following predicates "clear

block", "on-table block", "arm-empty", "holding block", and "on
block1 block2", how are successor states defined?

Here is an example of the initial state:

60

Init: {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding
’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}

Please provide only the Python code for the successor function that
returns a list of successor states.

Model response:
Here is the Python code for the successor function that returns a list

of successor states based on the given actions and restrictions:

python
‘‘‘
def successor(state):

successors = []
clear_blocks = state[’clear’]
on_table_blocks = state[’on-table’]
arm_empty = state[’arm-empty’]
holding_block = state[’holding’]
on_blocks = state[’on’]

Action: Pick up a block from the table
if arm_empty and holding_block is None:

for block in clear_blocks:
if block in on_table_blocks:

new_state = state.copy()
new_state[’clear’] = [b for b in clear_blocks if b !=

block]
new_state[’on-table’] = [b for b in on_table_blocks if

b != block]
new_state[’arm-empty’] = False
new_state[’holding’] = block
successors.append(new_state)

Action: Put down a block on the table
if holding_block is not None:

new_state = state.copy()
new_state[’clear’] = clear_blocks + [holding_block]
new_state[’on-table’] = on_table_blocks + [holding_block]
new_state[’arm-empty’] = True
new_state[’holding’] = None
successors.append(new_state)

Action: Unstack a block from on top of another block
if arm_empty and holding_block is None:

for block1, block2 in on_blocks:
if block1 in clear_blocks:

new_state = state.copy()
new_state[’clear’] = [b for b in clear_blocks if b !=

block1] + [block2]
new_state[’on’] = [t for t in on_blocks if t != (

block1, block2)]
new_state[’arm-empty’] = False
new_state[’holding’] = block1
successors.append(new_state)

Action: Stack a block on top of another block
if holding_block is not None:

for block in clear_blocks:
new_state = state.copy()
new_state[’clear’] = [b for b in clear_blocks if b !=

block] + [holding_block]
new_state[’on’] = on_blocks + [(holding_block, block)]
new_state[’arm-empty’] = True
new_state[’holding’] = None
successors.append(new_state)

61

return successors

Example usage:
init_state = {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’

holding’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
successor_states = successor(init_state)
for s in successor_states:

print(s)
‘‘‘

This function takes the current state as input and returns a list of
possible successor states based on the available actions and
restrictions. Each action is implemented as a separate block of
code within the function, ensuring that the state transitions
adhere to the rules provided

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state. The goal specifies a partial state, the facts that must be
true in any full goal state. Assume that the goal configuration is
provided in the same dictionary format.

Here’s an example goal specification:
Goal: {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)]}

Model response:
python
‘‘‘
def is_goal_state(state, goal):

for key in goal:
if key == ’on’:

for block_pair in goal[key]:
if block_pair not in state[key]:

return False
else:

for block in goal[key]:
if block not in state[key]:

return False
return True

Example usage:
goal_state = {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b

’)]}
current_state = {’clear’: [’a’], ’on-table’: [’a’], ’arm-empty’: True,

’holding’: None, ’on’: [(’b’, ’c’), (’d’, ’b’)]}
print(is_goal_state(current_state, goal_state)) # Output: True or

False depending on the current state
‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 502, failure: 0, total expansions 50484, total generated

130127

Listing 27: With partial successor soundness test

AutoToS prompt:

62

I am playing with a set of blocks where I need to arrange the blocks
into stacks. Here are the actions I can do
Pick up a block from the table
Put down a block on the table
Unstack a block from on top of another block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up a block, I am holding the block and it is no longer
clear and no longer on the table.

Once I unstack from on top of another block, I am holding the block
and it is no longer clear. Instead, the other block becomes

clear.

I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down a block, my hand becomes empty, the block becomes

clear, and it is now on the table.
Once I stack a block on top of another block, the block on top

becomes clear and the block under it is no longer clear.
If a state is defined by a dictionary of following predicates "clear

block", "on-table block", "arm-empty", "holding block", and "on
block1 block2", how are successor states defined?

Here is an example of the initial state:
Init: {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding

’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
Please provide only the Python code for the successor function that

returns a list of successor states.

Model response:
Here is the Python code for the successor function that returns a list

of successor states based on the given actions and restrictions:

python
‘‘‘
def successor(state):

successors = []
clear_blocks = state[’clear’]
on_table_blocks = state[’on-table’]
arm_empty = state[’arm-empty’]
holding_block = state[’holding’]
on_blocks = state[’on’]

Action: Pick up a block from the table
if arm_empty:

for block in clear_blocks:
if block in on_table_blocks:

new_state = state.copy()
new_state[’clear’] = [b for b in clear_blocks if b !=

block]
new_state[’on-table’] = [b for b in on_table_blocks if

b != block]
new_state[’arm-empty’] = False

63

new_state[’holding’] = block
successors.append(new_state)

Action: Unstack a block from on top of another block
if arm_empty:

for block1, block2 in on_blocks:
if block1 in clear_blocks:

new_state = state.copy()
new_state[’clear’] = [b for b in clear_blocks if b !=

block1] + [block2]
new_state[’on’] = [pair for pair in on_blocks if pair

!= (block1, block2)]
new_state[’arm-empty’] = False
new_state[’holding’] = block1
successors.append(new_state)

Action: Put down a block on the table
if not arm_empty and holding_block is not None:

new_state = state.copy()
new_state[’clear’] = clear_blocks + [holding_block]
new_state[’on-table’] = on_table_blocks + [holding_block]
new_state[’arm-empty’] = True
new_state[’holding’] = None
successors.append(new_state)

Action: Stack a block on top of another block
if not arm_empty and holding_block is not None:

for block in clear_blocks:
new_state = state.copy()
new_state[’clear’] = [b for b in clear_blocks if b !=

block] + [holding_block]
new_state[’on’] = on_blocks + [(holding_block, block)]
new_state[’arm-empty’] = True
new_state[’holding’] = None
successors.append(new_state)

return successors

Example usage:
initial_state = {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True,

’holding’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
successor_states = successor(initial_state)
for s in successor_states:

print(s)
‘‘‘

This function takes the current state as input and returns a list of
possible successor states based on the available actions and
restrictions. Each action is implemented according to the rules
provided, and the function ensures that only valid actions are
performed

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state. The goal specifies a partial state, the facts that must be
true in any full goal state. Assume that the goal configuration is
provided in the same dictionary format.

Here’s an example goal specification:
Goal: {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)]}

Model response:
Here is the Python code that tests whether a state is a goal state

based on the provided goal specification:

64

python
‘‘‘
def is_goal_state(state, goal):

for key in goal:
if key == ’clear’:

if not all(block in state[’clear’] for block in goal[’
clear’]):
return False

elif key == ’on-table’:
if not all(block in state[’on-table’] for block in goal[’

on-table’]):
return False

elif key == ’on’:
for block1, block2 in goal[’on’]:

if (block1, block2) not in state[’on’]:
return False

elif key == ’arm-empty’:
if state[’arm-empty’] != goal[’arm-empty’]:

return False
elif key == ’holding’:

if state[’holding’] != goal[’holding’]:
return False

return True

Example usage:
goal_state = {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b

’)]}
current_state = {’clear’: [’a’, ’d’], ’on-table’: [’a’, ’c’], ’arm-

empty’: True, ’holding’: None, ’on’: [(’b’, ’c’), (’d’, ’b’)]}
print(is_goal_state(current_state, goal_state)) # Output: True or

False
‘‘‘

This function compares the current state with the goal state and
returns ‘True‘ if the current state satisfies all the conditions
specified in the goal state, otherwise it returns ‘False‘. The
comparison is done for each key in the goal dictionary, ensuring
that the current state matches the goal state for the specified
predicates

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 502, failure: 0, total expansions 50484, total generated

130127

9.2.2 GPT4-Mini

Listing 28: Without partial successor soundness test

AutoToS prompt:

I am playing with a set of blocks where I need to arrange the blocks
into stacks. Here are the actions I can do
Pick up a block from the table
Put down a block on the table
Unstack a block from on top of another block
Stack a block on top of another block

65

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up a block, I am holding the block and it is no longer
clear and no longer on the table.

Once I unstack from on top of another block, I am holding the block
and it is no longer clear. Instead, the other block becomes

clear.

I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down a block, my hand becomes empty, the block becomes

clear, and it is now on the table.
Once I stack a block on top of another block, the block on top

becomes clear and the block under it is no longer clear.
If a state is defined by a dictionary of following predicates "clear

block", "on-table block", "arm-empty", "holding block", and "on
block1 block2", how are successor states defined?

Here is an example of the initial state:
Init: {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding

’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
Please provide only the Python code for the successor function that

returns a list of successor states.

Model response:
‘‘‘python
def successor(state):

from copy import deepcopy

successors = []

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’] and state[’arm-empty’]

def can_stack(block1, block2):
return block1 in state[’holding’] and block2 in state[’clear’]

for block in state[’on-table’]:
if can_pick_up(block):

new_state = deepcopy(state)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

for block1, block2 in state[’on’]:
if can_unstack(block1, block2):

new_state = deepcopy(state)
new_state[’holding’] = block1

66

new_state[’arm-empty’] = False
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
new_state[’clear’].remove(block1)
successors.append(new_state)

if state[’holding’] is not None:
block = state[’holding’]
if block in state[’clear’]:

new_state = deepcopy(state)
new_state[’on-table’].append(block)
new_state[’arm-empty’] = True
new_state[’holding’] = None
new_state[’clear’].append(block)
successors.append(new_state)

for block2 in state[’clear’]:
if can_stack(block, block2):

new_state = deepcopy(state)
new_state[’holding’] = None
new_state[’arm-empty’] = True
new_state[’on’].append((block, block2))
new_state[’clear’].remove(block2)
successors.append(new_state)

return successors
‘‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state. The goal specifies a partial state, the facts that must be
true in any full goal state. Assume that the goal configuration is
provided in the same dictionary format.

Here’s an example goal specification:
Goal: {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)]}

Model response:
‘‘‘python
def is_goal(state, goal):

return (set(state[’clear’]) == set(goal[’clear’]) and
set(state[’on-table’]) == set(goal[’on-table’]) and
set(state[’on’]) == set(goal[’on’]))

‘‘‘
Goal Iteration 1 - Goal Soundness Test

AutoToS prompt:
The goal test function failed on the following input state {’clear’:

[’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on
’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}, incorrectly reporting it
as a non-goal state.

First think step by step what it means for a state to be a goal state
in this domain. Then think through in words why the goal test
function incorrectly reported input state: {’clear’: [’b’], ’on-
table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c
’), (’b’, ’a’), (’c’, ’d’)]} as a non-goal state. Now, revise the
goal test function and ensure it returns true for the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Goal: {’clear’: [], ’on-table’: [], ’on’: [(’a’, ’c’), (’b’, ’a’), (’c
’, ’d’)]}

Model response:
To determine if a state is a goal state, we need to check whether the

required conditions from the goal specification are satisfied. In

67

this case, we are looking for a state that matches the specified
goal, which includes the contents of the ‘clear‘, ‘on-table‘, and
‘on‘ lists.

The previous goal test function incorrectly reported the input state
as a non-goal state because it was looking for exact matches in
the ‘clear‘, ‘on-table‘, and ‘on‘ attributes based on the
specified goal. The goal was defined as having no clear blocks and
no blocks on the table, while the input state had a clear block

(’b’) and a block on the table (’d’).

To fix the function, it should check that each condition that is
specified in the goal is satisfied, but only for the blocks that
are present in the input state. We can modify the logic to simply
check if any of the goal’s requirements are matched by the state
without using strict equality checks of lists.

Here’s the revised function:

‘‘‘python
def is_goal(state, goal):

return (all(item in state[’clear’] for item in goal[’clear’]) and
all(item in state[’on-table’] for item in goal[’on-table

’]) and
all(item in state[’on’] for item in goal[’on’]))

‘‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 1

AutoToS prompt:
Successor function when run on the state {’clear’: [’a’], ’on-table’:

[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’a’, ’b’], ’on-table’: [’d’, ’b’],
’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’)

]}, {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’
holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The previous successor function failed to produce all successors from

the given state because it did not account for the scenario where
the block being held can be put down on the table. It also did not
properly explore the possibility of stacking the block being held
on the available clear blocks. Each possibility of putting down

or stacking the held block needs to be explicitly captured to
ensure that all valid successor states are generated.

To fix the function, we need to ensure that:
1. We can always generate a successor state for putting the held block

down on the table, adding it to the ‘on-table‘ list and making it
clear.

2. We also need to generate successor states for stacking the held
block on any other clear block present in the state.

68

Here’s the revised successor function:

‘‘‘python
def successor(state):

from copy import deepcopy

successors = []

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’] and state[’arm-empty’]

def can_stack(block1, block2):
return block1 in state[’holding’] and block2 in state[’clear’]

for block in state[’on-table’]:
if can_pick_up(block):

new_state = deepcopy(state)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

for block1, block2 in state[’on’]:
if can_unstack(block1, block2):

new_state = deepcopy(state)
new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
new_state[’clear’].remove(block1)
successors.append(new_state)

if state[’holding’] is not None:
block = state[’holding’]

Put down the held block on the table
new_state = deepcopy(state)
new_state[’on-table’].append(block)
new_state[’arm-empty’] = True
new_state[’holding’] = None
new_state[’clear’].append(block)
successors.append(new_state)

Stack the held block onto each clear block
for block2 in state[’clear’]:

new_state = deepcopy(state)
new_state[’on’].append((block, block2))
new_state[’clear’].remove(block2)
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

return successors
‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test

69

Successor Iteration 2

AutoToS prompt:
Successor function when run on the state {’clear’: [’a’], ’on-table’:

[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’b’], ’on-table’: [’d’], ’arm-
empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b
’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The previous implementation of the successor function failed to

produce all successors in a specific scenario because it did not
consider that the block being held (’b’) can be stacked on a block
that is under it (’a’). Specifically, since ’b’ was held and ’a’

was clear, the function should have generated a successor state
reflecting ’b’ being stacked on ’a’, which was not accounted for.

To ensure that we capture all possible successor states:
1. We must check if the held block can be stacked on any block that is

clear, including the situation where it can stack onto a block
that is already in the ‘on‘ states.

2. We will generate the successor states for stacking the held block
onto any clear block while the block that is stacked on ’b’
becomes no longer clear.

Here’s the revised function that addresses this:

‘‘‘python
def successor(state):

from copy import deepcopy

successors = []

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’] and state[’arm-empty’]

for block in state[’on-table’]:
if can_pick_up(block):

new_state = deepcopy(state)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

for block1, block2 in state[’on’]:
if can_unstack(block1, block2):

new_state = deepcopy(state)
new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
new_state[’clear’].remove(block1)
successors.append(new_state)

70

if state[’holding’] is not None:
block = state[’holding’]

Put down the held block on the table
new_state = deepcopy(state)
new_state[’on-table’].append(block)
new_state[’arm-empty’] = True
new_state[’holding’] = None
new_state[’clear’].append(block)
successors.append(new_state)

Stack the held block onto any clear block
for block2 in state[’clear’]:

new_state = deepcopy(state)
new_state[’on’].append((block, block2))
new_state[’clear’].remove(block2)
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

Check if we can also stack the held block on top of a block
that is under it

for block1, block2 in state[’on’]:
if block1 == block and block2 in state[’clear’]:

new_state = deepcopy(state)
new_state[’on’].append((block, block2))
new_state[’clear’].remove(block2)
new_state[’holding’] = None
new_state[’arm-empty’] = True
new_state[’clear’].remove(block1)
successors.append(new_state)

return successors
‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 3

AutoToS prompt:
Successor function when run on the state {’clear’: [’a’], ’on-table’:

[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’b’], ’on-table’: [’d’], ’arm-
empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b
’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The failure of the previous implementations to produce all successors

of the provided state indicates that I did not properly account
for the condition where the held block (’b’) can be stacked on top
of another block (’a’) that is clear.

Specifically, the successors should include the scenario where you
stack the held block (’b’) on the block (’a’) since ’a’ is clear
in the given state. The previous code lacked a proper check to
handle this action while ensuring the clear status and updating
the states pertinent to that action.

71

To address this, we should incorporate logic to add this action
explicitly. Here’s how to adjust the successor function:

1. Continue to check that the held block can be stacked on any clear
block.

2. Add logic to stack the held block specifically on the clear block
if it satisfies the conditions.

3. Ensure to update the clear status accordingly and remove the block
from the clear status when it is involved in a stacking action.

Here’s the corrected version of the successor function:

‘‘‘python
def successor(state):

from copy import deepcopy

successors = []

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’] and state[’arm-empty’]

for block in state[’on-table’]:
if can_pick_up(block):

new_state = deepcopy(state)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

for block1, block2 in state[’on’]:
if can_unstack(block1, block2):

new_state = deepcopy(state)
new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
new_state[’clear’].remove(block1)
successors.append(new_state)

if state[’holding’] is not None:
block = state[’holding’]

Put down the held block on the table
new_state = deepcopy(state)
new_state[’on-table’].append(block)
new_state[’arm-empty’] = True
new_state[’holding’] = None
new_state[’clear’].append(block)
successors.append(new_state)

Stack the held block onto any clear block
for block2 in state[’clear’]:

new_state = deepcopy(state)
new_state[’on’].append((block, block2))
new_state[’clear’].remove(block2)
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

72

Check if we can stack the held block on top of another block
for block2 in state[’clear’]:

if state[’holding’] == ’b’ and block2 == ’a’: # Assuming ’b’
can stack on ’a’
new_state = deepcopy(state)
new_state[’on’].append((block, block2))
new_state[’clear’].remove(block2)
new_state[’holding’] = None
new_state[’arm-empty’] = True
new_state[’clear’].remove(block)
successors.append(new_state)

return successors
‘‘‘

This updated function adds the logic necessary to capture the
potential successor states properly, ensuring that if ’b’ is being
held, and ’a’ is clear, we generate the correct state where ’b’

is stacked on ’a’.
Successor Iteration 4

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 59, in successor

list.remove(x): x not in list. Please fix this exception in the
successor function.

Model response:
The error occurs because of attempting to remove a block from the list

of clear blocks without ensuring that the block is present in the
list before performing the removal. Specifically, if we’re trying
to remove the block we’re holding (e.g., ’b’ in this case) from

the clear list, it might not be there, as the block being held is
indeed not clear.

To avoid this issue, we need to adjust the code in two areas:
1. When stacking the held block, we shouldn’t try to remove it from

the clear list, since it’s not clear when it’s being held.
2. We must ensure that we handle the case of adding/removing blocks to

/from the ’clear’ list more robustly.

Here’s the corrected version of the successor function that addresses
these issues:

‘‘‘python
def successor(state):

from copy import deepcopy

successors = []

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’] and state[’arm-empty’]

for block in state[’on-table’]:
if can_pick_up(block):

new_state = deepcopy(state)
new_state[’holding’] = block
new_state[’arm-empty’] = False

73

new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

for block1, block2 in state[’on’]:
if can_unstack(block1, block2):

new_state = deepcopy(state)
new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
new_state[’clear’].remove(block1)
successors.append(new_state)

if state[’holding’] is not None:
block = state[’holding’]

Put down the held block on the table
new_state = deepcopy(state)
new_state[’on-table’].append(block)
new_state[’arm-empty’] = True
new_state[’holding’] = None
new_state[’clear’].append(block)
successors.append(new_state)

Stack the held block onto any clear block
for block2 in state[’clear’]:

new_state = deepcopy(state)
new_state[’on’].append((block, block2))
new_state[’clear’].remove(block2)
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

Check if we can stack the held block on top of a clear block
for block in state[’clear’]:

if state[’holding’] == ’b’ and block == ’a’: # Assuming ’b’
can stack on ’a’
new_state = deepcopy(state)
new_state[’on’].append((state[’holding’], block))
new_state[’clear’].remove(block)
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

return successors
‘‘‘

Key Changes:
- Removed the attempt to remove the held block from the ‘clear‘ list.
- Verified the condition under which we were attempting to remove the

’clear’ blocks to ensure it remains valid.
- Streamlined the condition checking for specific blocks being stacked

to align with the actual game rules.

This should resolve the exception and ensure that all valid successors
of the state are correctly generated.

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 5

AutoToS prompt:

74

Successor function when run on the state {’clear’: [’a’], ’on-table’:
[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’b’], ’on-table’: [’d’], ’arm-
empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b
’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The failure of the function to produce the correct successors is due

to not correctly handling the scenario in which the held block (‘’
b’‘) is being stacked on the clear block (‘’a’‘). This involves
ensuring that when the held block is stacked, the state of the
clear blocks is properly updated.

The current logic does not account for the case where you stack the
block that you are currently holding (‘’b’‘) onto a clear block
(‘’a’‘). The function should check that ‘’a’‘ is clear, then
create a successor state where ‘’b’‘ is stacked on ‘’a’‘, removing
‘’b’‘ from the ‘clear‘ list because it will no longer be clear

once stacked.

Here’s the revised version of the successor function that ensures we
properly check and create the successor where ‘’b’‘ is stacked on
‘’a’‘:

‘‘‘python
def successor(state):

from copy import deepcopy

successors = []

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’] and state[’arm-empty’]

Generate successors for picking up blocks
for block in state[’on-table’]:

if can_pick_up(block):
new_state = deepcopy(state)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Generate successors for unstacking blocks
for block1, block2 in state[’on’]:

if can_unstack(block1, block2):
new_state = deepcopy(state)
new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
new_state[’clear’].remove(block1)
successors.append(new_state)

75

If holding a block, explore possibilities
if state[’holding’] is not None:

block = state[’holding’]

Put down the held block on the table
new_state = deepcopy(state)
new_state[’on-table’].append(block)
new_state[’arm-empty’] = True
new_state[’holding’] = None
new_state[’clear’].append(block)
successors.append(new_state)

Stack the held block onto any clear block
for block2 in state[’clear’]:

new_state = deepcopy(state)
new_state[’on’].append((block, block2)) # Stack ’block’

on ’block2’
new_state[’clear’].remove(block2) # ’block2’ is no

longer clear
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

Additionally check if we can stack held block onto the
specifically clear block ’a’

if state[’holding’] == ’b’ and ’a’ in state[’clear’]:
new_state = deepcopy(state)
new_state[’on’].append((’b’, ’a’)) # Stack ’b’ on ’a’
new_state[’clear’].remove(’a’) # ’a’ is no longer clear
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

return successors
‘‘‘

Key Updates:
1. **Stacking Logic:** The code now includes logic to stack ‘held‘

block (‘’b’‘) directly on block ‘’a’‘ if it’s clear.
2. **State Management:** When stacking ‘’b’‘ on ‘’a’‘, it properly

updates the clear list and maintains the integrity of the
remaining part of the state.

This should now produce the expected successors, handling the specific
case of stacking ‘’b’‘ on ‘’a’‘ correctly.

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 6

AutoToS prompt:
Successor function when run on the state {’clear’: [’a’], ’on-table’:

[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’b’], ’on-table’: [’d’], ’arm-
empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b
’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:

76

The failure of the successor function to produce the expected
successor state arises from a misunderstanding of the circumstance
when the held block (‘’b’‘) can be stacked onto another block (‘’

a’‘). The function did not produce the necessary state when
placing the held block onto a block that is also in the state
because it was checked separately instead of being a general case
handled in the stacking loop.

The key points are:
1. When the block is stacked, we must ensure that the ‘clear‘

characteristic of the block we are stacking onto gets updated
correctly. In this case, when stacking ‘’b’‘ on top of ‘’a’‘, ‘’a
’‘ becomes no longer clear.

2. The logic did not correctly account for situations where the stack
action could resolve to a state that was valid by definition of
the rules.

To fix the function, we need to make sure the stack operation
correctly identifies that while holding block ‘’b’‘, it can indeed
be stacked on ‘clear‘ block ‘’a’‘.

Here’s the corrected successor function:

‘‘‘python
def successor(state):

from copy import deepcopy

successors = []

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’] and state[’arm-empty’]

Generate successors for picking up blocks
for block in state[’on-table’]:

if can_pick_up(block):
new_state = deepcopy(state)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Generate successors for unstacking blocks
for block1, block2 in state[’on’]:

if can_unstack(block1, block2):
new_state = deepcopy(state)
new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
new_state[’clear’].remove(block1)
successors.append(new_state)

If holding a block, explore possibilities
if state[’holding’] is not None:

block = state[’holding’]

Put down the held block on the table
new_state = deepcopy(state)
new_state[’on-table’].append(block)

77

new_state[’arm-empty’] = True
new_state[’holding’] = None
new_state[’clear’].append(block)
successors.append(new_state)

Stack the held block onto any clear block
for block2 in state[’clear’]:

new_state = deepcopy(state)
new_state[’on’].append((block, block2)) # Stack ’block’

on ’block2’
new_state[’clear’].remove(block2) # ’block2’ is no

longer clear
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

Specifically account for stacking ’b’ on ’a’ since ’a’ is
clear

if state[’holding’] == ’b’ and ’a’ in state[’clear’]:
new_state = deepcopy(state)
new_state[’on’].append((’b’, ’a’)) # Stack ’b’ on ’a’
new_state[’clear’].remove(’a’) # ’a’ is no longer

clear
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

return successors
‘‘‘

Key Changes:

- The function logic for stacking now incorporates explicit checks for
the specific case of stacking ‘held‘ block ’b’ on block ’a’.

- When the held block can be stacked on a clear block, the function
effectively manages to reflect those changes in the ‘clear‘ list,
ensuring that any block stacked on is properly marked as no longer
clear.

This should now ensure that the successor reflects the correct output,
capturing the state where ’b’ is stacked on ’a’ correctly.

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 7

AutoToS prompt:
Successor function when run on the state {’clear’: [’a’], ’on-table’:

[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’b’], ’on-table’: [’d’], ’arm-
empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b
’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The failure to generate the expected successor state arises from

incorrectly identifying the conditions under which the action of
stacking the held block (‘’b’‘) on the clear block (‘’a’‘) can
occur. Specifically, the function is failing to account for the

78

addition of the successor where ‘’b’‘ is stacked on ‘’a’‘
correctly.

Why the Failure Occurred:
1. The logic for stacking was not properly set up to include the

specific condition of stacking the held block on top of a
designated clear block.

2. There should be no assumptions outside of explicitly evaluating
each potential stacking action when the block is being held.

3. After checking if the block being held can stack on a clear block,
the necessary structural changes to the successor state must be
made.

Correction Approach:
- We need to explicitly ensure that when the block being held is ‘’b’‘

and there exists a clear block ‘’a’‘, we generate a state where
‘’b’‘ is stacked on ‘’a’‘.

- Adjust the conditions under which we modify the list of clear blocks
and the on relationship.

Here’s the corrected implementation of the successor function:

‘‘‘python
def successor(state):

from copy import deepcopy

successors = []

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’] and state[’arm-empty’]

Generate successors for picking up blocks
for block in state[’on-table’]:

if can_pick_up(block):
new_state = deepcopy(state)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Generate successors for unstacking blocks
for block1, block2 in state[’on’]:

if can_unstack(block1, block2):
new_state = deepcopy(state)
new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
new_state[’clear’].remove(block1)
successors.append(new_state)

If holding a block, explore possibilities
if state[’holding’] is not None:

block = state[’holding’]

Put down the held block on the table
new_state = deepcopy(state)
new_state[’on-table’].append(block)
new_state[’arm-empty’] = True

79

new_state[’holding’] = None
new_state[’clear’].append(block)
successors.append(new_state)

Stack the held block onto any clear block
for block2 in state[’clear’]:

new_state = deepcopy(state)
new_state[’on’].append((block, block2)) # Stack ’block’

on ’block2’
new_state[’clear’].remove(block2) # ’block2’ is no

longer clear
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

Specifically account for stacking ’b’ on ’a’ since ’a’ is clear
if state[’holding’] == ’b’ and ’a’ in state[’clear’]:

new_state = deepcopy(state)
new_state[’on’].append((’b’, ’a’)) # Stack ’b’ on ’a’
new_state[’clear’].remove(’a’) # ’a’ is no longer clear
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

return successors
‘‘‘

Key Changes Made:
- Explicitly accounted for the condition of stacking ‘’b’‘ on ‘’a’‘ if

’a’ is clear and ‘’b’‘ is the held block.
- Updated the successors to ensure that the state of blocks is

accurately reflected after stacking actions are performed.

This implementation should now correctly handle all scenarios of the
provided state, including producing the expected successors like
the one where ‘’b’‘ is stacked on ‘’a’‘.

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 8

AutoToS prompt:
Successor function when run on the state {’clear’: [’a’], ’on-table’:

[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’b’], ’on-table’: [’d’], ’arm-
empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b
’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
To address the failures observed when the successor function was run

on the provided state, let’s examine the specific requirements of
the action and how the current function is designed.

Analysis of the Failure

1. **Understanding the Problem**: The state being analyzed is:
‘‘‘

80

{’clear’: [’a’], ’on-table’: [’d’], ’arm-empty’: False, ’holding’:
’b’, ’on’: [(’a’, ’c’), (’c’, ’d’)]}

‘‘‘
In this state, the following conditions hold:
- Block ’b’ is currently being held.
- Block ’a’ is clear, making it suitable for stacking.
- The function should generate a successor state where block ’b’ is

stacked onto block ’a’.

2. **Current Implementation Limitation**: The function handles
multiple actions, but it does not explicitly ensure that when ’b’
is held, a valid state is generated for stacking ’b’ on ’a’ when ’
a’ is clear. While it correctly allows for putting ’b’ down on the
table, it fails to generate the scenario of stacking ’b’ on ’a’.

3. **Missing Successor**: The essential missing action is stacking ’b’
on ’a’ and then transitioning ’a’ to no longer be clear. This

needs to be explicitly handled.

Fixing the Function

We need to ensure:
- That when the held block is available for stacking on a clear block,

especially if the clear block is a defined block like ’a’, we
create the successor state correctly.

Here’s how the revised successor function looks:

‘‘‘python
def successor(state):

from copy import deepcopy

successors = []

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’] and state[’arm-empty’]

Generate successors for picking up blocks
for block in state[’on-table’]:

if can_pick_up(block):
new_state = deepcopy(state)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Generate successors for unstacking blocks
for block1, block2 in state[’on’]:

if can_unstack(block1, block2):
new_state = deepcopy(state)
new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
new_state[’clear’].remove(block1)
successors.append(new_state)

If holding a block, explore possibilities
if state[’holding’] is not None:

81

block = state[’holding’]

Put down the held block on the table
new_state = deepcopy(state)
new_state[’on-table’].append(block) # Putting the held block

on the table
new_state[’arm-empty’] = True
new_state[’holding’] = None
new_state[’clear’].append(block) # The block is now clear
successors.append(new_state)

Specify stacking action
if block == ’b’ and ’a’ in state[’clear’]:

new_state = deepcopy(state)
new_state[’on’].append((’b’, ’a’)) # Stack ’b’ on ’a’
new_state[’clear’].remove(’a’) # ’a’ is no longer

clear after stacking
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

return successors
‘‘‘

Key Revisions Made:
- **Stacking Logic**: The function now includes specific logic to

stack ‘’b’‘ on ‘’a’‘ if ‘’a’‘ is clear when ‘’b’‘ is the held
block.

- **Successor State Update**: It ensures that when stacking occurs,
the block that is stacked upon is marked as no longer clear.

This revised function should now properly generate all the expected
successors for the given state, addressing the gaps in the
previous implementation and ensuring that all valid actions are
captured.

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 9

AutoToS prompt:
Successor function when run on the state {’clear’: [’a’], ’on-table’:

[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’b’], ’on-table’: [’d’], ’arm-
empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b
’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
To identify why the successor function failed to produce the expected

successors, we need to closely examine the logic of the current
implementation and understand the actions available in the
specified state.

Analyzing the Current Situation

Given the state:
‘‘‘python

82

{’clear’: [’a’], ’on-table’: [’d’], ’arm-empty’: False, ’holding’: ’b
’, ’on’: [(’a’, ’c’), (’c’, ’d’)]}

‘‘‘
We need to identify possible actions that can produce valid successor

states.

1. **Held Block:** The held block is ‘’b’‘.
2. **Clear Block:** The only clear block is ‘’a’‘.
3. **Possible Actions:**

- **Put Down:** Block ‘’b’‘ can be put down on the table.
- **Stacking:** Block ‘’b’‘ can be stacked on block ‘’a’‘ since it

is clear.

The missing successor state is one where ‘’b’‘ is stacked on top of ‘’
a’‘, which should look like:

‘‘‘python
{’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding’: None

, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b’, ’a’)]}
‘‘‘

The Issue with Current Implementation

The previously defined successor function logic does not adequately
account for the condition of stacking the held block ‘’b’‘ onto
the clear block ‘’a’‘ when it is held. Although it handles the
action of putting the block down, it seems to miss checking the
stacking condition directly within the loop that processes holding
blocks.

Correcting the Function

To ensure that the successor states include the action of stacking ‘’b
’‘ on ‘’a’‘, we’ll explicitly check if the held block can be
stacked onto a clear block, especially ‘’a’‘.

Here’s the corrected version of the successor function:

‘‘‘python
def successor(state):

from copy import deepcopy

successors = []

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’] and state[’arm-empty’]

Generate successors for picking up blocks
for block in state[’on-table’]:

if can_pick_up(block):
new_state = deepcopy(state)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Generate successors for unstacking blocks
for block1, block2 in state[’on’]:

if can_unstack(block1, block2):
new_state = deepcopy(state)

83

new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
new_state[’clear’].remove(block1)
successors.append(new_state)

If holding a block, explore possibilities
if state[’holding’] is not None:

block = state[’holding’]

Action: Put down the held block on the table
new_state = deepcopy(state)
new_state[’on-table’].append(block)
new_state[’arm-empty’] = True
new_state[’holding’] = None
new_state[’clear’].append(block) # The block is now clear

after being put down
successors.append(new_state)

Action: Stack the held block onto any clear block (’a’ in
this case)

if block == ’b’ and ’a’ in state[’clear’]:
new_state = deepcopy(state)
new_state[’on’].append((’b’, ’a’)) # Stack ’b’ on ’a’
new_state[’clear’].remove(’a’) # ’a’ is no longer

clear after stacking
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

return successors
‘‘‘

Key Changes Made:
1. **Direct Stacking Logic**: The function now includes a condition

that checks if the held block (‘’b’‘) can be stacked on the clear
block (‘’a’‘).

2. **Successor Generation for Stacking**: If the condition is met, it
generates the appropriate successor state where ‘’b’‘ is stacked
on ‘’a’‘.

This implementation should now produce all the expected successors,
including correctly stacking ‘’b’‘ on ‘’a’‘.

System message:
Successor States Soundness Test Passed
Completeness test

System message:
Maximum iterations reached for completeness test. Process stopped.

Listing 29: With partial successor soundness test

AutoToS prompt:

I am playing with a set of blocks where I need to arrange the blocks
into stacks. Here are the actions I can do
Pick up a block from the table
Put down a block on the table
Unstack a block from on top of another block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.

84

I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up a block, I am holding the block and it is no longer
clear and no longer on the table.

Once I unstack from on top of another block, I am holding the block
and it is no longer clear. Instead, the other block becomes

clear.

I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down a block, my hand becomes empty, the block becomes

clear, and it is now on the table.
Once I stack a block on top of another block, the block on top

becomes clear and the block under it is no longer clear.
If a state is defined by a dictionary of following predicates "clear

block", "on-table block", "arm-empty", "holding block", and "on
block1 block2", how are successor states defined?

Here is an example of the initial state:
Init: {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding

’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
Please provide only the Python code for the successor function that

returns a list of successor states.

Model response:
‘‘‘python
def successor(state):

from collections import defaultdict

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’]

def can_stack(block1, block2):
return block1 in state[’holding’] and block2 in state[’clear’]

successors = []

1. Pick up a clear block from the table
for block in state[’on-table’]:

if can_pick_up(block):
new_state = state.copy()
new_state[’on-table’].remove(block)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
successors.append(new_state)

2. Unstack a block from on top of another block
for block1, block2 in state[’on’]:

if can_unstack(block1, block2):
new_state = state.copy()
new_state[’holding’] = block1

85

new_state[’arm-empty’] = False
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
successors.append(new_state)

3. Put down the block being held onto the table
if state[’holding’]:

new_state = state.copy()
block = state[’holding’]
new_state[’holding’] = None
new_state[’arm-empty’] = True
new_state[’on-table’].append(block)
new_state[’clear’].append(block)
successors.append(new_state)

4. Stack the block being held on top of a clear block
for block in state[’clear’]:

if block != state[’holding’]:
new_state = state.copy()
block_to_stack = state[’holding’]
new_state[’holding’] = None
new_state[’arm-empty’] = True
new_state[’on’].append((block_to_stack, block))
new_state[’clear’].remove(block)
new_state[’clear’].append(block_to_stack)
successors.append(new_state)

return successors
‘‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state. The goal specifies a partial state, the facts that must be
true in any full goal state. Assume that the goal configuration is
provided in the same dictionary format.

Here’s an example goal specification:
Goal: {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)]}

Model response:
‘‘‘python
def is_goal(state, goal):

def matches(fact_list, goal_list):
return all(item in fact_list for item in goal_list)

return (matches(state[’clear’], goal[’clear’]) and
matches(state[’on-table’], goal[’on-table’]) and
matches(state[’on’], goal[’on’]))

‘‘‘

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "autoToS/src/domain_base_class.py", line 145, in _str
val = sorted(val)

^^^^^^^^^^^

’<’ not supported between instances of ’NoneType’ and ’str’. Please
fix this exception in the successor function.

86

Model response:
‘‘‘python
def successor(state):

from collections import defaultdict

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’]

successors = []

1. Pick up a clear block from the table
for block in state[’on-table’]:

if can_pick_up(block):
new_state = state.copy()
new_state[’on-table’].remove(block)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
successors.append(new_state)

2. Unstack a block from on top of another block
for block1, block2 in state[’on’]:

if can_unstack(block1, block2):
new_state = state.copy()
new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
successors.append(new_state)

3. Put down the block being held onto the table
if state[’holding’]:

new_state = state.copy()
block = state[’holding’]
new_state[’holding’] = None
new_state[’arm-empty’] = True
new_state[’on-table’].append(block)
new_state[’clear’].append(block)
successors.append(new_state)

4. Stack the block being held on top of a clear block
for block in state[’clear’]:

if block != state[’holding’] and state[’holding’] is not None:
new_state = state.copy()
block_to_stack = state[’holding’]
new_state[’holding’] = None
new_state[’arm-empty’] = True
new_state[’on’].append((block_to_stack, block))
new_state[’clear’].remove(block)
new_state[’clear’].append(block_to_stack)
successors.append(new_state)

return successors
‘‘‘
Successor Iteration 2

AutoToS prompt:
Input state should not change as a result of applying the successor

function.

87

State before successor function applied: {’clear’: [’b’], ’on-table’:
[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’b
’, ’a’), (’c’, ’d’)]}

State after successor function applied: {’clear’: [’a’], ’on-table’:
[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c
’, ’d’)]}

Let’s think step by step. First, think of the possible reasons why the
input state may change as a result of applying the successor

function, such as the use of shallow copy.
Then, provide the complete Python code for the revised successor

function that returns a list of successor states and ensure it
does not change the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Model response:
The issue of the input state changing as a result of applying the

successor function is likely due to the use of a shallow copy.
When we create a shallow copy of the dictionary, the lists within
the dictionary (like ‘on-table‘, ‘clear‘, and ‘on‘) are not copied
deeply; instead, they are still references to the original lists.
Thus, when we modify these lists in the new state, it also

modifies them in the original state.

To avoid this, we need to create deep copies of any mutable elements (
like lists and tuples) in the state. Here’s the revised successor
function that ensures the input state does not change:

‘‘‘python
def successor(state):

from collections import defaultdict
from copy import deepcopy

def can_pick_up(block):
return block in state[’on-table’] and block in state[’clear’]

and state[’arm-empty’]

def can_unstack(block1, block2):
return (block1, block2) in state[’on’] and block1 in state[’

clear’]

successors = []

1. Pick up a clear block from the table
for block in state[’on-table’]:

if can_pick_up(block):
new_state = deepcopy(state) # Deep copy to avoid side

effects
new_state[’on-table’].remove(block)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
successors.append(new_state)

2. Unstack a block from on top of another block
for block1, block2 in state[’on’]:

if can_unstack(block1, block2):
new_state = deepcopy(state) # Deep copy to avoid side

effects
new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
successors.append(new_state)

88

3. Put down the block being held onto the table
if state[’holding’]:

new_state = deepcopy(state) # Deep copy to avoid side effects
block = state[’holding’]
new_state[’holding’] = None
new_state[’arm-empty’] = True
new_state[’on-table’].append(block)
new_state[’clear’].append(block)
successors.append(new_state)

4. Stack the block being held on top of a clear block
for block in state[’clear’]:

if block != state[’holding’] and state[’holding’] is not None:
new_state = deepcopy(state) # Deep copy to avoid side

effects
block_to_stack = state[’holding’]
new_state[’holding’] = None
new_state[’arm-empty’] = True
new_state[’on’].append((block_to_stack, block))
new_state[’clear’].remove(block)
new_state[’clear’].append(block_to_stack)
successors.append(new_state)

return successors
‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 418, failure: 84, total expansions 102111, total generated

273070

9.2.3 GPT4

Listing 30: Without partial successor soundness test

AutoToS prompt:

I am playing with a set of blocks where I need to arrange the blocks
into stacks. Here are the actions I can do
Pick up a block from the table
Put down a block on the table
Unstack a block from on top of another block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up a block, I am holding the block and it is no longer
clear and no longer on the table.

Once I unstack from on top of another block, I am holding the block
and it is no longer clear. Instead, the other block becomes

clear.

I can only put down a block that I am holding.

89

I can only stack a block on top of another block if I am holding
the block being stacked.

I can only stack a block on top of another block if the block onto
which I am stacking the block is clear.

Once I put down a block, my hand becomes empty, the block becomes
clear, and it is now on the table.

Once I stack a block on top of another block, the block on top
becomes clear and the block under it is no longer clear.

If a state is defined by a dictionary of following predicates "clear
block", "on-table block", "arm-empty", "holding block", and "on
block1 block2", how are successor states defined?

Here is an example of the initial state:
Init: {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding

’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
Please provide only the Python code for the successor function that

returns a list of successor states.

Model response:
‘‘‘python
def successor_states(state):

from copy import deepcopy

def is_action_valid(action, block=None, block1=None, block2=None):
if action == "pick_up":

return state[’arm-empty’] and block in state[’on-table’]
and block in state[’clear’]

elif action == "put_down":
return state[’holding’] is not None

elif action == "unstack":
return state[’arm-empty’] and (block1, block2) in state[’

on’] and block1 in state[’clear’]
elif action == "stack":

return state[’holding’] is not None and block1 in state[’
clear’]

return False

def apply_action(state, action, block=None, block1=None, block2=
None):
new_state = deepcopy(state)
if action == "pick_up":

new_state[’on-table’].remove(block)
new_state[’clear’].remove(block)
new_state[’arm-empty’] = False
new_state[’holding’] = block

elif action == "put_down":
new_state[’on-table’].append(state[’holding’])
new_state[’clear’].append(state[’holding’])
new_state[’arm-empty’] = True
new_state[’holding’] = None

elif action == "unstack":
new_state[’on’].remove((block1, block2))
new_state[’clear’].append(block2)
new_state[’clear’].remove(block1)
new_state[’arm-empty’] = False
new_state[’holding’] = block1

elif action == "stack":
new_state[’on’].append((state[’holding’], block1))
new_state[’clear’].remove(block1)
new_state[’clear’].append(state[’holding’])
new_state[’arm-empty’] = True
new_state[’holding’] = None

return new_state

successors = []

90

Generate all possible actions and generate new states
for block in state[’on-table’]:

if is_action_valid("pick_up", block=block):
new_state = apply_action(state, "pick_up", block=block)
successors.append(new_state)

if state[’holding’] is not None:
new_state = apply_action(state, "put_down")
successors.append(new_state)

for (block1, block2) in state[’on’]:
if is_action_valid("unstack", block1=block1, block2=block2):

new_state = apply_action(state, "unstack", block1=block1,
block2=block2)

successors.append(new_state)

if state[’holding’] is not None:
for clear_block in state[’clear’]:

if is_action_valid("stack", block1=clear_block):
new_state = apply_action(state, "stack", block1=

clear_block)
successors.append(new_state)

return successors
‘‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state. The goal specifies a partial state, the facts that must
be true in any full goal state. Assume that the goal
configuration is provided in the same dictionary format.

Here’s an example goal specification:
Goal: {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)

]}

Model response:
‘‘‘python
def is_goal_state(state, goal):

def match(condition, state_values, goal_values):
if isinstance(goal_values, list):

return all(elem in state_values for elem in goal_values)
return state_values == goal_values

for predicate in goal:
if not match(predicate, state[predicate], goal[predicate]):

return False
return True

‘‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 502, failure: 0, total expansions 50456, total generated

130124

Listing 31: With partial successor soundness test

AutoToS prompt:

91

I am playing with a set of blocks where I need to arrange the blocks
into stacks. Here are the actions I can do
Pick up a block from the table
Put down a block on the table
Unstack a block from on top of another block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up a block, I am holding the block and it is no longer
clear and no longer on the table.

Once I unstack from on top of another block, I am holding the block
and it is no longer clear. Instead, the other block becomes

clear.

I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down a block, my hand becomes empty, the block becomes

clear, and it is now on the table.
Once I stack a block on top of another block, the block on top

becomes clear and the block under it is no longer clear.
If a state is defined by a dictionary of following predicates "clear

block", "on-table block", "arm-empty", "holding block", and "on
block1 block2", how are successor states defined?

Here is an example of the initial state:
Init: {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding

’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
Please provide only the Python code for the successor function that

returns a list of successor states.

Model response:
‘‘‘python
def get_successor_states(state):

def pick_up(block):
if block in state[’clear’] and block in state[’on-table’] and

state[’arm-empty’]:
new_state = {

’clear’: state[’clear’][:],
’on-table’: [b for b in state[’on-table’] if b !=

block],
’arm-empty’: False,
’holding’: block,
’on’: [pair for pair in state[’on’]]

}
new_state[’clear’].remove(block)
return new_state

return None

def put_down(block):
if state[’holding’] == block:

new_state = {
’clear’: state[’clear’][:] + [block],
’on-table’: state[’on-table’][:] + [block],

92

’arm-empty’: True,
’holding’: None,
’on’: [pair for pair in state[’on’]]

}
return new_state

return None

def unstack(block1, block2):
if (block1, block2) in state[’on’] and block1 in state[’clear

’] and state[’arm-empty’]:
new_state = {

’clear’: state[’clear’][:] + [block2],
’on-table’: state[’on-table’][:],
’arm-empty’: False,
’holding’: block1,
’on’: [pair for pair in state[’on’] if pair != (block1

, block2)]
}
new_state[’clear’].remove(block1)
return new_state

return None

def stack(block1, block2):
if state[’holding’] == block1 and block2 in state[’clear’]:

new_state = {
’clear’: [b for b in state[’clear’] if b != block2] +

[block1],
’on-table’: state[’on-table’][:],
’arm-empty’: True,
’holding’: None,
’on’: state[’on’][:] + [(block1, block2)]

}
return new_state

return None

successors = []

for clear_block in state[’clear’]:
if state[’arm-empty’]:

if clear_block in state[’on-table’]:
new_state = pick_up(clear_block)
if new_state:

successors.append(new_state)
for block1, block2 in state[’on’]:

if block1 == clear_block:
new_state = unstack(block1, block2)
if new_state:

successors.append(new_state)
else:

if state[’holding’]:
if clear_block != state[’holding’]:

new_state = stack(state[’holding’], clear_block)
if new_state:

successors.append(new_state)

if not state[’arm-empty’] and state[’holding’]:
new_state = put_down(state[’holding’])
if new_state:

successors.append(new_state)

return successors
‘‘‘

AutoToS prompt:

93

Provide only the python code that tests whether a state is a goal
state. The goal specifies a partial state, the facts that must
be true in any full goal state. Assume that the goal
configuration is provided in the same dictionary format.

Here’s an example goal specification:
Goal: {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)

]}

Model response:
‘‘‘python
def is_goal_state(state, goal):

def match_predicate(predicate, state_value, goal_value):
return all(item in state_value for item in goal_value)

clear_match = match_predicate(’clear’, state.get(’clear’, []),
goal.get(’clear’, []))

on_table_match = match_predicate(’on-table’, state.get(’on-table’,
[]), goal.get(’on-table’, []))

on_match = match_predicate(’on’, state.get(’on’, []), goal.get(’on
’, []))

return clear_match and on_table_match and on_match
‘‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 502, failure: 0, total expansions 221012, total generated

729268

9.2.4 Llama3.1 70B

Listing 32: Without partial successor soundness test

AutoToS prompt:

I am playing with a set of blocks where I need to arrange the blocks
into stacks. Here are the actions I can do
Pick up a block from the table
Put down a block on the table
Unstack a block from on top of another block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up a block, I am holding the block and it is no longer
clear and no longer on the table.

Once I unstack from on top of another block, I am holding the block
and it is no longer clear. Instead, the other block becomes

clear.

94

I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down a block, my hand becomes empty, the block becomes

clear, and it is now on the table.
Once I stack a block on top of another block, the block on top

becomes clear and the block under it is no longer clear.
If a state is defined by a dictionary of following predicates "clear

block", "on-table block", "arm-empty", "holding block", and "on
block1 block2", how are successor states defined?

Here is an example of the initial state:
Init: {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding

’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
Please provide only the Python code for the successor function that

returns a list of successor states.

Model response:
Here is the Python code for the successor function:
Python
‘‘‘
def successor(state):

successors = []
if state[’arm-empty’]:

Pick up a block from the table
for block in state[’clear’]:

if block in state[’on-table’]:
new_state = state.copy()
new_state[’arm-empty’] = False
new_state[’holding’] = block
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state[’on’]:

if block1 in state[’clear’]:
new_state = state.copy()
new_state[’arm-empty’] = False
new_state[’holding’] = block1
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
successors.append(new_state)

else:
Put down a block on the table
new_state = state.copy()
new_state[’arm-empty’] = True
new_state[’on-table’].append(state[’holding’])
new_state[’clear’].append(state[’holding’])
new_state[’holding’] = None
successors.append(new_state)

Stack a block on top of another block
for block in state[’clear’]:

new_state = state.copy()
new_state[’arm-empty’] = True
new_state[’on’].append((state[’holding’], block))
new_state[’clear’].remove(block)
new_state[’holding’] = None
successors.append(new_state)

return successors
‘‘‘

95

This function takes a state as input and returns a list of successor
states. It checks the current state and applies the possible
actions to generate new states. Note that this code assumes that
the input state is valid and follows the restrictions you provided

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state. The goal specifies a partial state, the facts that must be
true in any full goal state. Assume that the goal configuration is
provided in the same dictionary format.

Here’s an example goal specification:
Goal: {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)]}

Model response:
Here is the Python code that tests whether a state is a goal state:
Python
‘‘‘
def is_goal_state(state, goal):

for key, value in goal.items():
if key == ’clear’ and state[’clear’] != value:

return False
elif key == ’on-table’ and state[’on-table’] != value:

return False
elif key == ’on’ and set(state[’on’]) != set(value):

return False
return True

‘‘‘
This function takes a state and a goal as input and returns True if

the state is a goal state and False otherwise. It checks each
predicate in the goal and verifies that it is satisfied in the
state. Note that for the on predicate, it uses a set comparison to
ignore the order of the tuples

Goal Iteration 1 - Goal Soundness Test

AutoToS prompt:
The goal test function failed on the following input state {’clear’:

[’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on
’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}, incorrectly reporting it
as a non-goal state.

First think step by step what it means for a state to be a goal state
in this domain. Then think through in words why the goal test
function incorrectly reported input state: {’clear’: [’b’], ’on-
table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c
’), (’b’, ’a’), (’c’, ’d’)]} as a non-goal state. Now, revise the
goal test function and ensure it returns true for the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Goal: {’clear’: [], ’on-table’: [], ’on’: [(’a’, ’c’), (’b’, ’a’), (’c
’, ’d’)]}

Model response:
Here’s the revised goal test function:
Python
‘‘‘
def is_goal_state(state, goal):

for key, value in goal.items():
if key == ’clear’ and set(state[’clear’]) != set(value):

return False
elif key == ’on-table’ and set(state[’on-table’]) != set(value

):
return False

elif key == ’on’ and set(state[’on’]) != set(value):
return False

return True

96

‘‘‘
Explanation:
A state is a goal state if all the predicates in the goal are

satisfied.
The previous function incorrectly reported the input state as a non-

goal state because it was checking for exact list equality, not
set equality. This meant that the order of the elements in the
lists mattered, which is not the case in this domain.

By changing the comparison to set equality, we ignore the order of the
elements and correctly identify the input state as a goal state.

Note that I also added set comparison for the ’clear’ and ’on-table’
predicates, to be consistent with the ’on’ predicate. This ensures
that the order of the elements in these lists does not affect the
goal test

Goal Iteration 2 - Goal Soundness Test

AutoToS prompt:
The goal test function failed on the following input state {’clear’:

[’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on
’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}, incorrectly reporting it
as a non-goal state.

First think step by step what it means for a state to be a goal state
in this domain. Then think through in words why the goal test
function incorrectly reported input state: {’clear’: [’b’], ’on-
table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c
’), (’b’, ’a’), (’c’, ’d’)]} as a non-goal state. Now, revise the
goal test function and ensure it returns true for the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Goal: {’clear’: [], ’on-table’: [], ’on’: [(’a’, ’c’), (’b’, ’a’), (’c
’, ’d’)]}

Model response:
To be a goal state, the following conditions must be met:
The ’clear’ predicate must be empty, meaning no blocks are clear.
The ’on-table’ predicate must be empty, meaning no blocks are on the

table.
The ’on’ predicate must match the goal configuration, meaning the

blocks are stacked in the correct order.
The goal test function incorrectly reported the input state as a non-

goal state because it was checking for exact equality with the
goal state, including the ’clear’ and ’on-table’ predicates.
However, the goal state only specifies that these predicates
should be empty, not that they must be exactly equal to the input
state.

Here is the revised goal test function:
Python
‘‘‘
def is_goal_state(state, goal):

for key, value in goal.items():
if key == ’clear’ and state[’clear’] != []:

return False
elif key == ’on-table’ and state[’on-table’] != []:

return False
elif key == ’on’ and set(state[’on’]) != set(value):

return False
return True

‘‘‘
In this revised function, we only check that the ’clear’ and ’on-table

’ predicates are empty, and that the ’on’ predicate matches the
goal configuration. This ensures that the function returns True
for the input state

Goal Iteration 3 - Goal Soundness Test

AutoToS prompt:

97

The goal test function failed on the following input state {’clear’:
[’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on
’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}, incorrectly reporting it
as a non-goal state.

First think step by step what it means for a state to be a goal state
in this domain. Then think through in words why the goal test
function incorrectly reported input state: {’clear’: [’b’], ’on-
table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c
’), (’b’, ’a’), (’c’, ’d’)]} as a non-goal state. Now, revise the
goal test function and ensure it returns true for the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Goal: {’clear’: [], ’on-table’: [], ’on’: [(’a’, ’c’), (’b’, ’a’), (’c
’, ’d’)]}

Model response:
To be a goal state, the following conditions must be met:
The ’clear’ predicate must be empty, meaning no blocks are clear.
The ’on-table’ predicate must be empty, meaning no blocks are on the

table.
The ’on’ predicate must match the goal configuration, meaning the

blocks are stacked in the correct order.
The goal test function incorrectly reported the input state as a non-

goal state because it was checking for exact equality with the
goal state, including the ’clear’ and ’on-table’ predicates.
However, the goal state only specifies that these predicates
should be empty, not that they must be exactly equal to the input
state.

Here is the revised goal test function:
Python
def is_goal_state(state, goal):

for key, value in goal.items():
if key == ’clear’ and len(state[’clear’]) != len(value):

return False
elif key == ’on-table’ and len(state[’on-table’]) != len(value

):
return False

elif key == ’on’ and set(state[’on’]) != set(value):
return False

return True
In this revised function, we only check that the lengths of the ’clear

’ and ’on-table’ predicates match the goal state, and that the ’on
’ predicate matches the goal configuration. This ensures that the
function returns True for the input state.

However, this revised function still fails to return True for the
input state because the ’clear’ and ’on-table’ predicates are not
empty in the input state. To fix this, we need to revise the
function to ignore the ’clear’ and ’on-table’ predicates if they
are not present in the goal state.

Here is the revised goal test function:
Python
‘‘‘
def is_goal_state(state, goal):

for key, value in goal.items():
if key in state:

if key == ’on’ and set(state[’on’]) != set(value):
return False

elif key in [’clear’, ’on-table’] and len(state[key]) !=
len(value):
return False

return True
‘‘‘
In this revised function, we only check the predicates that are

present in the goal state, and we ignore the ’clear’ and ’on-table

98

’ predicates if they are not present. This ensures that the
function returns True for the input state

Goal Iteration 4 - Goal Soundness Test

AutoToS prompt:
The goal test function failed on the following input state {’clear’:

[’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on
’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}, incorrectly reporting it
as a non-goal state.

First think step by step what it means for a state to be a goal state
in this domain. Then think through in words why the goal test
function incorrectly reported input state: {’clear’: [’b’], ’on-
table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c
’), (’b’, ’a’), (’c’, ’d’)]} as a non-goal state. Now, revise the
goal test function and ensure it returns true for the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Goal: {’clear’: [], ’on-table’: [], ’on’: [(’a’, ’c’), (’b’, ’a’), (’c
’, ’d’)]}

Model response:
To be a goal state, the following conditions must be met:
The blocks are stacked in the correct order, as specified in the ’on’

predicate.
The ’clear’ and ’on-table’ predicates are empty, meaning no blocks are

clear or on the table.
The goal test function incorrectly reported the input state as a non-

goal state because it was checking for exact equality with the
goal state, including the ’clear’ and ’on-table’ predicates.
However, the goal state only specifies that these predicates
should be empty, but the input state has blocks ’b’ and ’d’ that
are clear and on the table, respectively.

Here is the revised goal test function:
Python
‘‘‘
def is_goal_state(state, goal):

if ’on’ in goal and set(state[’on’]) != set(goal[’on’]):
return False

if ’clear’ in goal and len(state[’clear’]) != len(goal[’clear’]):
return False

if ’on-table’ in goal and len(state[’on-table’]) != len(goal[’on-
table’]):
return False

return True
‘‘‘
In this revised function, we only check the predicates that are

present in the goal state. If the ’on’ predicate is present, we
check that the blocks are stacked in the correct order. If the ’
clear’ or ’on-table’ predicates are present, we check that they
are empty. This ensures that the function returns True for the
input state

Goal Iteration 5 - Goal Soundness Test

AutoToS prompt:
The goal test function failed on the following input state {’clear’:

[’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on
’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}, incorrectly reporting it
as a non-goal state.

First think step by step what it means for a state to be a goal state
in this domain. Then think through in words why the goal test
function incorrectly reported input state: {’clear’: [’b’], ’on-
table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c
’), (’b’, ’a’), (’c’, ’d’)]} as a non-goal state. Now, revise the
goal test function and ensure it returns true for the input state.

99

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Goal: {’clear’: [], ’on-table’: [], ’on’: [(’a’, ’c’), (’b’, ’a’), (’c
’, ’d’)]}

Model response:
To be a goal state, the following conditions must be met:
The blocks are stacked in the correct order, as specified in the ’on’

predicate.
The ’clear’ and ’on-table’ predicates are empty, meaning no blocks are

clear or on the table.
The goal test function incorrectly reported the input state as a non-

goal state because it was checking for exact equality with the
goal state, including the ’clear’ and ’on-table’ predicates.
However, the goal state only specifies that these predicates
should be empty, but the input state has blocks ’b’ and ’d’ that
are clear and on the table, respectively.

Here is the revised goal test function:
Python
‘‘‘
def is_goal_state(state, goal):

if ’on’ in goal and set(state[’on’]) != set(goal[’on’]):
return False

if ’clear’ in goal and goal[’clear’] == [] and state[’clear’] !=
[]:
return False

if ’on-table’ in goal and goal[’on-table’] == [] and state[’on-
table’] != []:
return False

return True
‘‘‘
In this revised function, we only check the predicates that are

present in the goal state. If the ’on’ predicate is present, we
check that the blocks are stacked in the correct order. If the ’
clear’ or ’on-table’ predicates are present and empty in the goal
state, we check that they are also empty in the input state. This
ensures that the function returns True for the input state

Goal Iteration 6 - Goal Soundness Test

AutoToS prompt:
The goal test function failed on the following input state {’clear’:

[’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on
’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}, incorrectly reporting it
as a non-goal state.

First think step by step what it means for a state to be a goal state
in this domain. Then think through in words why the goal test
function incorrectly reported input state: {’clear’: [’b’], ’on-
table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c
’), (’b’, ’a’), (’c’, ’d’)]} as a non-goal state. Now, revise the
goal test function and ensure it returns true for the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Goal: {’clear’: [], ’on-table’: [], ’on’: [(’a’, ’c’), (’b’, ’a’), (’c
’, ’d’)]}

Model response:
To be a goal state, the following conditions must be met:
The blocks are stacked in the correct order, as specified in the ’on’

predicate.
The ’clear’ and ’on-table’ predicates are empty, meaning no blocks are

clear or on the table.
The goal test function incorrectly reported the input state as a non-

goal state because it was checking for exact equality with the
goal state, including the ’clear’ and ’on-table’ predicates.
However, the goal state only specifies that these predicates

100

should be empty, but the input state has blocks ’b’ and ’d’ that
are clear and on the table, respectively.

Here is the revised goal test function:
Python
‘‘‘
def is_goal_state(state, goal):

for key, value in goal.items():
if key == ’on’ and set(state[’on’]) != set(value):

return False
elif key in [’clear’, ’on-table’] and value == [] and state[

key] != []:
return False

return True
‘‘‘
In this revised function, we iterate over the goal state’s predicates.

If the ’on’ predicate is present, we check that the blocks are
stacked in the correct order. If the ’clear’ or ’on-table’
predicates are present and empty in the goal state, we check that
they are also empty in the input state. This ensures that the
function returns True for the input state

Goal Iteration 7 - Goal Soundness Test

AutoToS prompt:
The goal test function failed on the following input state {’clear’:

[’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on
’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}, incorrectly reporting it
as a non-goal state.

First think step by step what it means for a state to be a goal state
in this domain. Then think through in words why the goal test
function incorrectly reported input state: {’clear’: [’b’], ’on-
table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c
’), (’b’, ’a’), (’c’, ’d’)]} as a non-goal state. Now, revise the
goal test function and ensure it returns true for the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Goal: {’clear’: [], ’on-table’: [], ’on’: [(’a’, ’c’), (’b’, ’a’), (’c
’, ’d’)]}

Model response:
To be a goal state, the following conditions must be met:
The blocks are stacked in the correct order, as specified in the ’on’

predicate.
The ’clear’ and ’on-table’ predicates do not need to be empty, but

rather, their contents do not matter for the goal state.
The goal test function incorrectly reported the input state as a non-

goal state because it was checking for exact equality with the
goal state, including the ’clear’ and ’on-table’ predicates.

Here is the revised goal test function:
Python
‘‘‘
def is_goal_state(state, goal):

for key, value in goal.items():
if key == ’on’ and set(state[’on’]) != set(value):

return False
return True

‘‘‘
In this revised function, we only check the ’on’ predicate, ignoring

the ’clear’ and ’on-table’ predicates. This ensures that the
function returns True for the input state, as the blocks are
stacked in the correct order

Goal Iteration 8 - Goal Soundness Test

AutoToS prompt:
The goal test function failed on the following input state {’clear’:

[’a’], ’on-table’: [’d’], ’arm-empty’: False, ’holding’: ’b’, ’on

101

’: [(’a’, ’c’), (’c’, ’d’)]}, incorrectly reporting it as a non-
goal state.

First think step by step what it means for a state to be a goal state
in this domain. Then think through in words why the goal test
function incorrectly reported input state: {’clear’: [’a’], ’on-
table’: [’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c
’), (’c’, ’d’)]} as a non-goal state. Now, revise the goal test
function and ensure it returns true for the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Goal: {’clear’: [], ’on-table’: [], ’on’: [(’a’, ’c’)]}

Model response:
To be a goal state, the following conditions must be met:
The blocks are stacked in the correct order, as specified in the ’on’

predicate.
The ’clear’ and ’on-table’ predicates do not need to be empty, but

rather, their contents do not matter for the goal state, unless
they are specified in the goal.

The goal test function incorrectly reported the input state as a non-
goal state because it was checking for exact equality with the
goal state, including the ’clear’ and ’on-table’ predicates.

Here is the revised goal test function:
Python
‘‘‘
def is_goal_state(state, goal):

for key, value in goal.items():
if key == ’on’ and not all(pair in state[’on’] for pair in

value):
return False

elif key in [’clear’, ’on-table’] and value != [] and state[
key] != value:
return False

return True
‘‘‘
In this revised function, we check the ’on’ predicate to ensure all

pairs in the goal are present in the state. We also check the ’
clear’ and ’on-table’ predicates only if they are specified in the
goal and not empty, to ensure they match the state. This ensures

that the function returns True for the input state

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Input state should not change as a result of applying the successor

function.
State before successor function applied: {’clear’: [’b’], ’on-table’:

[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’b
’, ’a’), (’c’, ’d’)]}

State after successor function applied: {’clear’: [’a’], ’on-table’:
[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’b
’, ’a’), (’c’, ’d’)]}

Let’s think step by step. First, think of the possible reasons why the
input state may change as a result of applying the successor

function, such as the use of shallow copy.
Then, provide the complete Python code for the revised successor

function that returns a list of successor states and ensure it
does not change the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Model response:

102

The input state may change as a result of applying the successor
function due to the use of shallow copy. In Python, when you
assign a new variable to an existing list or dictionary, it
creates a reference to the original data, not a copy. Therefore,
modifying the new variable affects the original data.

Here is the revised successor function that returns a list of
successor states without changing the input state:

Python
‘‘‘
def successor(state):

successors = []
state_copy = state.copy() # Create a deep copy of the state

if state_copy[’arm-empty’]:
Pick up a block from the table
for block in state_copy[’clear’]:

if block in state_copy[’on-table’]:
new_state = state_copy.copy() # Create a new copy for

each successor
new_state[’arm-empty’] = False
new_state[’holding’] = block
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state_copy[’on’]:

if block1 in state_copy[’clear’]:
new_state = state_copy.copy() # Create a new copy for

each successor
new_state[’arm-empty’] = False
new_state[’holding’] = block1
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
successors.append(new_state)

else:
Put down a block on the table
new_state = state_copy.copy() # Create a new copy for each

successor
new_state[’arm-empty’] = True
new_state[’on-table’].append(state_copy[’holding’])
new_state[’clear’].append(state_copy[’holding’])
new_state[’holding’] = None
successors.append(new_state)

Stack a block on top of another block
for block in state_copy[’clear’]:

new_state = state_copy.copy() # Create a new copy for
each successor

new_state[’arm-empty’] = True
new_state[’on’].append((state_copy[’holding’], block))
new_state[’clear’].remove(block)
new_state[’holding’] = None
successors.append(new_state)

return successors
‘‘‘
In this revised function, we create a deep copy of the state using the

copy() method before generating successor states. We also create
a new copy for each successor state to avoid modifying the
original state

Successor Iteration 2

AutoToS prompt:

103

Input state should not change as a result of applying the successor
function.

State before successor function applied: {’clear’: [’b’], ’on-table’:
[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’b
’, ’a’), (’c’, ’d’)]}

State after successor function applied: {’clear’: [’a’], ’on-table’:
[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’b
’, ’a’), (’c’, ’d’)]}

Let’s think step by step. First, think of the possible reasons why the
input state may change as a result of applying the successor

function, such as the use of shallow copy.
Then, provide the complete Python code for the revised successor

function that returns a list of successor states and ensure it
does not change the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Model response:
The input state may change due to the use of shallow copy or direct

modification of the input state.
Here is the revised successor function that returns a list of

successor states without changing the input state:
Python
‘‘‘
import copy

def successor(state):
successors = []

Create a deep copy of the state
state_copy = copy.deepcopy(state)

if state_copy[’arm-empty’]:
Pick up a block from the table
for block in state_copy[’on-table’]:

if block in state_copy[’clear’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = False
new_state[’holding’] = block
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state_copy[’on’]:

if block1 in state_copy[’clear’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = False
new_state[’holding’] = block1
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
successors.append(new_state)

else:
Put down a block on the table
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on-table’].append(state_copy[’holding’])
new_state[’clear’].append(state_copy[’holding’])
new_state[’holding’] = None
successors.append(new_state)

Stack a block on top of another block
for block in state_copy[’clear’]:

104

new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on’].append((state_copy[’holding’], block))
new_state[’clear’].remove(block)
new_state[’holding’] = None
successors.append(new_state)

return successors
‘‘‘
In this revised function, we use copy.deepcopy() to create deep copies

of the state, ensuring that the input state remains unchanged

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 3

AutoToS prompt:
Successor function when run on the state {’clear’: [’a’], ’on-table’:

[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’b’], ’on-table’: [’d’], ’arm-
empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b
’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The successor function failed to produce all successors because it

didn’t consider the case where the arm is holding a block and can
be stacked on top of another block.

Here is the revised successor function:
Python
‘‘‘
import copy

def successor(state):
successors = []

Create a deep copy of the state
state_copy = copy.deepcopy(state)

if state_copy[’arm-empty’]:
Pick up a block from the table
for block in state_copy[’on-table’]:

if block in state_copy[’clear’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = False
new_state[’holding’] = block
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state_copy[’on’]:

if block1 in state_copy[’clear’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = False
new_state[’holding’] = block1
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))

105

successors.append(new_state)

else:
Put down a block on the table
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on-table’].append(state_copy[’holding’])
new_state[’clear’].append(state_copy[’holding’])
new_state[’holding’] = None
successors.append(new_state)

Stack a block on top of another block
for block in state_copy[’clear’]:

new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on’].append((state_copy[’holding’], block))
new_state[’clear’].remove(block)
new_state[’holding’] = None
successors.append(new_state)

Stack the held block on top of another block
for block1, block2 in state_copy[’on’]:

if block2 in state_copy[’clear’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on’].append((state_copy[’holding’], block2)

)
new_state[’on’].remove((block1, block2))
new_state[’clear’].append(block1)
new_state[’holding’] = None
successors.append(new_state)

return successors
‘‘‘
In this revised function, we added a new case to stack the held block

on top of another block, which was missing in the previous
implementation

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 4

AutoToS prompt:
Successor function when run on the state {’clear’: [’a’], ’on-table’:

[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’b’], ’on-table’: [’d’], ’arm-
empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b
’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The successor function failed to produce all successors because it

didn’t consider the case where the arm is holding a block and can
be stacked on top of another block that is clear.

Here is the revised successor function:
Python
‘‘‘
import copy

106

def successor(state):
successors = []

Create a deep copy of the state
state_copy = copy.deepcopy(state)

if state_copy[’arm-empty’]:
Pick up a block from the table
for block in state_copy[’on-table’]:

if block in state_copy[’clear’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = False
new_state[’holding’] = block
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state_copy[’on’]:

if block1 in state_copy[’clear’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = False
new_state[’holding’] = block1
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
successors.append(new_state)

else:
Put down a block on the table
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on-table’].append(state_copy[’holding’])
new_state[’clear’].append(state_copy[’holding’])
new_state[’holding’] = None
successors.append(new_state)

Stack a block on top of another block
for block in state_copy[’clear’]:

new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on’].append((state_copy[’holding’], block))
new_state[’clear’].remove(block)
new_state[’holding’] = None
successors.append(new_state)

Stack the held block on top of another clear block
for block in state_copy[’clear’]:

new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on’].append((state_copy[’holding’], block))
new_state[’clear’].remove(block)
new_state[’holding’] = None
successors.append(new_state)

return successors
‘‘‘
In this revised function, we added a new case to stack the held block

on top of another clear block, which was missing in the previous
implementation

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 5

107

AutoToS prompt:
Successor function when run on the state {’clear’: [’a’], ’on-table’:

[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’b’], ’on-table’: [’d’], ’arm-
empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b
’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The successor function failed to produce all successors because it

didn’t consider the case where the arm is holding a block and can
be stacked on top of another clear block.

Here is the revised successor function:
Python
‘‘‘
import copy

def successor(state):
successors = []

Create a deep copy of the state
state_copy = copy.deepcopy(state)

if state_copy[’arm-empty’]:
Pick up a block from the table
for block in state_copy[’on-table’]:

if block in state_copy[’clear’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = False
new_state[’holding’] = block
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state_copy[’on’]:

if block1 in state_copy[’clear’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = False
new_state[’holding’] = block1
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
successors.append(new_state)

else:
Put down a block on the table
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on-table’].append(state_copy[’holding’])
new_state[’clear’].append(state_copy[’holding’])
new_state[’holding’] = None
successors.append(new_state)

Stack a block on top of another block
for block in state_copy[’clear’]:

new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on’].append((state_copy[’holding’], block))

108

new_state[’clear’].remove(block)
new_state[’holding’] = None
successors.append(new_state)

Stack the held block on top of another clear block
for block in state_copy[’clear’]:

if block != state_copy[’holding’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on’].append((state_copy[’holding’], block))
new_state[’clear’].remove(block)
new_state[’holding’] = None
successors.append(new_state)

return successors
‘‘‘
In this revised function, we added a new case to stack the held block

on top of another clear block, and also added a condition to avoid
stacking the held block on top of itself

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 6

AutoToS prompt:
Successor function when run on the state {’clear’: [’a’], ’on-table’:

[’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c’), (’c
’, ’d’)]} failed to produce all successors.

Missing successors are: [{’clear’: [’b’], ’on-table’: [’d’], ’arm-
empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c’, ’d’), (’b
’, ’a’)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The successor function failed to produce all successors because it

didn’t consider the case where the arm is holding a block and can
be stacked on top of another clear block, specifically when the
clear block is not the same as the held block.

Here is the revised successor function:
Python
‘‘‘
import copy

def successor(state):
successors = []

Create a deep copy of the state
state_copy = copy.deepcopy(state)

if state_copy[’arm-empty’]:
Pick up a block from the table
for block in state_copy[’on-table’]:

if block in state_copy[’clear’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = False
new_state[’holding’] = block
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

109

Unstack a block from on top of another block
for block1, block2 in state_copy[’on’]:

if block1 in state_copy[’clear’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = False
new_state[’holding’] = block1
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
successors.append(new_state)

else:
Put down a block on the table
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on-table’].append(state_copy[’holding’])
new_state[’clear’].append(state_copy[’holding’])
new_state[’holding’] = None
successors.append(new_state)

Stack a block on top of another block
for block in state_copy[’clear’]:

if block != state_copy[’holding’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on’].append((state_copy[’holding’], block))
new_state[’clear’].remove(block)
new_state[’holding’] = None
successors.append(new_state)

Stack the held block on top of another clear block
for block in state_copy[’clear’]:

if block != state_copy[’holding’]:
new_state = copy.deepcopy(state_copy)
new_state[’arm-empty’] = True
new_state[’on’].append((state_copy[’holding’], block))
new_state[’clear’].append(state_copy[’holding’])
new_state[’clear’].remove(block)
new_state[’holding’] = None
successors.append(new_state)

return successors
‘‘‘
In this revised function, we added a new case to stack the held block

on top of another clear block, and also added a condition to avoid
stacking the held block on top of itself. Additionally, we added

the held block to the clear list when stacking it on top of
another block

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 502, failure: 0, total expansions 118287, total generated

281762

Listing 33: With partial successor soundness test

AutoToS prompt:

I am playing with a set of blocks where I need to arrange the blocks
into stacks. Here are the actions I can do
Pick up a block from the table
Put down a block on the table

110

Unstack a block from on top of another block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up a block, I am holding the block and it is no longer
clear and no longer on the table.

Once I unstack from on top of another block, I am holding the block
and it is no longer clear. Instead, the other block becomes

clear.

I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down a block, my hand becomes empty, the block becomes

clear, and it is now on the table.
Once I stack a block on top of another block, the block on top

becomes clear and the block under it is no longer clear.
If a state is defined by a dictionary of following predicates "clear

block", "on-table block", "arm-empty", "holding block", and "on
block1 block2", how are successor states defined?

Here is an example of the initial state:
Init: {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding

’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
Please provide only the Python code for the successor function that

returns a list of successor states.

Model response:
Here is the Python code for the successor function:
Python
‘‘‘
def successor(state):

successors = []
if state[’arm-empty’]:

Pick up a block from the table
for block in state[’clear’]:

if block in state[’on-table’]:
new_state = state.copy()
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
new_state[’arm-empty’] = False
new_state[’holding’] = block
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state[’on’]:

if block1 in state[’clear’]:
new_state = state.copy()
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’arm-empty’] = False
new_state[’holding’] = block1
new_state[’on’].remove((block1, block2))
successors.append(new_state)

111

else:
Put down a block on the table
new_state = state.copy()
new_state[’clear’].append(state[’holding’])
new_state[’on-table’].append(state[’holding’])
new_state[’arm-empty’] = True
new_state[’holding’] = None
successors.append(new_state)

Stack a block on top of another block
for block in state[’clear’]:

new_state = state.copy()
new_state[’clear’].remove(block)
new_state[’clear’].append(state[’holding’])
new_state[’on’].append((state[’holding’], block))
new_state[’arm-empty’] = True
new_state[’holding’] = None
successors.append(new_state)

return successors
‘‘‘
This function takes a state as input and returns a list of successor

states. It checks the current state and applies the possible
actions to generate the successor states. Note that this function
assumes that the input state is a dictionary with the same
structure as the initial state you provided

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state. The goal specifies a partial state, the facts that must be
true in any full goal state. Assume that the goal configuration is
provided in the same dictionary format.

Here’s an example goal specification:
Goal: {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)]}

Model response:
Here is the Python code that tests whether a state is a goal state:
Python
‘‘‘
def is_goal_state(state, goal):

for key, value in goal.items():
if key == ’clear’:

if len(state[key]) != len(value) or any(block not in state
[key] for block in value):
return False

elif key == ’on-table’:
if len(state[key]) != len(value) or any(block not in state

[key] for block in value):
return False

elif key == ’on’:
if len(state[key]) != len(value) or any((block1, block2)

not in state[key] for block1, block2 in value):
return False

elif key == ’arm-empty’:
if state[key] != value:

return False
elif key == ’holding’:

if state[key] != value:
return False

return True
‘‘‘
This function takes a state and a goal as input and returns True if

the state is a goal state, and False otherwise. It checks each
predicate in the goal and verifies that it is true in the state

112

Goal Iteration 1 - Goal Soundness Test

AutoToS prompt:
The goal test function failed on the following input state {’clear’:

[’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on
’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}, incorrectly reporting it
as a non-goal state.

First think step by step what it means for a state to be a goal state
in this domain. Then think through in words why the goal test
function incorrectly reported input state: {’clear’: [’b’], ’on-
table’: [’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c
’), (’b’, ’a’), (’c’, ’d’)]} as a non-goal state. Now, revise the
goal test function and ensure it returns true for the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Goal: {’clear’: [], ’on-table’: [], ’on’: [(’a’, ’c’), (’b’, ’a’), (’c
’, ’d’)]}

Model response:
A state is a goal state if it satisfies all the conditions specified

in the goal. In this domain, the goal specifies the desired
relationships between blocks (on top of which other blocks) and
does not care about the ’clear’ and ’on-table’ predicates.

The goal test function incorrectly reported the input state as a non-
goal state because it checked if the ’clear’ and ’on-table’
predicates in the state matched the goal, which is not necessary.
The goal only cares about the ’on’ predicate.

Here is the revised goal test function:
Python
‘‘‘
def is_goal_state(state, goal):

for key, value in goal.items():
if key == ’on’:

if len(state[key]) != len(value) or any((block1, block2)
not in state[key] for block1, block2 in value):
return False

elif key == ’arm-empty’:
if state[key] != value:

return False
elif key == ’holding’:

if state[key] != value:
return False

return True
‘‘‘
This revised function only checks the ’on’, ’arm-empty’, and ’holding’

predicates, which are the only ones that matter for the goal in
this domain. It will correctly return True for the input state

Goal Iteration 2 - Goal Soundness Test

AutoToS prompt:
The goal test function failed on the following input state {’clear’:

[’a’], ’on-table’: [’d’], ’arm-empty’: False, ’holding’: ’b’, ’on
’: [(’a’, ’c’), (’c’, ’d’)]}, incorrectly reporting it as a non-
goal state.

First think step by step what it means for a state to be a goal state
in this domain. Then think through in words why the goal test
function incorrectly reported input state: {’clear’: [’a’], ’on-
table’: [’d’], ’arm-empty’: False, ’holding’: ’b’, ’on’: [(’a’, ’c
’), (’c’, ’d’)]} as a non-goal state. Now, revise the goal test
function and ensure it returns true for the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Goal: {’clear’: [], ’on-table’: [], ’on’: [(’a’, ’c’)]}

Model response:

113

A state is a goal state if it satisfies all the conditions specified
in the goal. In this domain, the goal specifies the desired
relationships between blocks (on top of which other blocks) and
does not care about the ’clear’ and ’on-table’ predicates unless
they are specified in the goal.

The goal test function incorrectly reported the input state as a non-
goal state because it checked if the ’arm-empty’ and ’holding’
predicates in the state matched the goal, which is not necessary.
The goal only cares about the ’on’ predicate and the ’clear’ and ’
on-table’ predicates if they are specified.

Here is the revised goal test function:
Python
‘‘‘
def is_goal_state(state, goal):

for key, value in goal.items():
if key == ’on’:

if not all((block1, block2) in state[key] for block1,
block2 in value):
return False

elif key in [’clear’, ’on-table’]:
if value and not all(block in state[key] for block in

value):
return False

return True
‘‘‘
This revised function only checks the predicates that are specified in

the goal and ignores the others. It will correctly return True
for the input state. Note that it also checks if all the desired ’
on’ relationships are present in the state, not just if the state’
s ’on’ relationships are a subset of the goal’s

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Input state should not change as a result of applying the successor

function.
State before successor function applied: {’clear’: [’b’], ’on-table’:

[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’b
’, ’a’), (’c’, ’d’)]}

State after successor function applied: {’clear’: [’a’], ’on-table’:
[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c
’, ’d’)]}

Let’s think step by step. First, think of the possible reasons why the
input state may change as a result of applying the successor

function, such as the use of shallow copy.
Then, provide the complete Python code for the revised successor

function that returns a list of successor states and ensure it
does not change the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Model response:
The input state may change as a result of applying the successor

function because the function is modifying the state directly
instead of creating a new copy of the state. This is likely due to
the use of shallow copy (e.g., new_state = state.copy()) which

only creates a new reference to the original state’s mutable
objects, such as lists.

Here is the revised successor function that returns a list of
successor states without modifying the input state:

Python
‘‘‘

114

import copy

def successor(state):
successors = []
if state[’arm-empty’]:

Pick up a block from the table
for block in state[’clear’]:

if block in state[’on-table’]:
new_state = copy.deepcopy(state)
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
new_state[’arm-empty’] = False
new_state[’holding’] = block
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state[’on’]:

if block1 in state[’clear’]:
new_state = copy.deepcopy(state)
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’arm-empty’] = False
new_state[’holding’] = block1
new_state[’on’].remove((block1, block2))
successors.append(new_state)

else:
Put down a block on the table
new_state = copy.deepcopy(state)
new_state[’clear’].append(state[’holding’])
new_state[’on-table’].append(state[’holding’])
new_state[’arm-empty’] = True
new_state[’holding’] = None
successors.append(new_state)

Stack a block on top of another block
for block in state[’clear’]:

new_state = copy.deepcopy(state)
new_state[’clear’].remove(block)
new_state[’clear’].append(state[’holding’])
new_state[’on’].append((state[’holding’], block))
new_state[’arm-empty’] = True
new_state[’holding’] = None
successors.append(new_state)

return successors
‘‘‘
In this revised function, I used copy.deepcopy(state) to create a deep

copy of the state, which ensures that any modifications made to
the new state do not affect the original state

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 502, failure: 0, total expansions 50484, total generated

130127

9.2.5 Llama3.1 405B

Listing 34: Without partial successor soundness test

AutoToS prompt:

115

I am playing with a set of blocks where I need to arrange the blocks
into stacks. Here are the actions I can do
Pick up a block from the table
Put down a block on the table
Unstack a block from on top of another block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up a block, I am holding the block and it is no longer
clear and no longer on the table.

Once I unstack from on top of another block, I am holding the block
and it is no longer clear. Instead, the other block becomes

clear.

I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down a block, my hand becomes empty, the block becomes

clear, and it is now on the table.
Once I stack a block on top of another block, the block on top

becomes clear and the block under it is no longer clear.
If a state is defined by a dictionary of following predicates "clear

block", "on-table block", "arm-empty", "holding block", and "on
block1 block2", how are successor states defined?

Here is an example of the initial state:
Init: {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding

’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
Please provide only the Python code for the successor function that

returns a list of successor states.

Model response:
Successor Function
Python
‘‘‘
def successor(state):

successors = []

Pick up a block from the table
for block in state[’on-table’]:

if state[’arm-empty’] and block in state[’clear’]:
new_state = state.copy()
new_state[’arm-empty’] = False
new_state[’holding’] = block
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state[’on’]:

if state[’arm-empty’] and block1 in state[’clear’]:
new_state = state.copy()
new_state[’arm-empty’] = False
new_state[’holding’] = block1
new_state[’clear’].remove(block1)

116

new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
successors.append(new_state)

Put down a block on the table
if not state[’arm-empty’]:

new_state = state.copy()
new_state[’arm-empty’] = True
new_state[’on-table’].append(new_state[’holding’])
new_state[’clear’].append(new_state[’holding’])
new_state[’holding’] = None
successors.append(new_state)

Stack a block on top of another block
if not state[’arm-empty’]:

for block in state[’clear’]:
if block != state[’holding’]:

new_state = state.copy()
new_state[’arm-empty’] = True
new_state[’on’].append((new_state[’holding’], block))
new_state[’clear’].remove(block)
new_state[’clear’].append(new_state[’holding’])
new_state[’holding’] = None
successors.append(new_state)

return successors
‘‘‘
This function generates all possible successor states based on the

current state and the actions defined. It iterates over all blocks
and checks the preconditions for each action. If the

preconditions are met, it creates a new state by applying the
effects of the action and adds it to the list of successors.

Generated by Meta Llama 3.1-405

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state. The goal specifies a partial state, the facts that must be
true in any full goal state. Assume that the goal configuration is
provided in the same dictionary format.

Here’s an example goal specification:
Goal: {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)]}

Model response:
Python
‘‘‘
def is_goal_state(state, goal):

for predicate, values in goal.items():
if predicate not in state:

return False
if predicate == ’on’:

for block1, block2 in values:
if (block1, block2) not in state[predicate]:

return False
else:

for value in values:
if value not in state[predicate]:

return False
return True

‘‘‘
This function checks if a given state satisfies the goal conditions by

iterating over the predicates and values in the goal
specification and verifying if they exist in the state. If any
condition is not met, it returns False. If all conditions are met,
it returns True.

117

You can use this function like this:
Python
state = {’clear’: [’a’], ’on-table’: [’d’], ’arm-empty’: True, ’

holding’: None, ’on’: [(’b’, ’c’), (’d’, ’b’), (’a’, ’d’)]}
goal = {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)]}
print(is_goal_state(state, goal)) # Output: True
Generated by Meta Llama 3.1-405

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Input state should not change as a result of applying the successor

function.
State before successor function applied: {’clear’: [’b’], ’on-table’:

[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’b
’, ’a’), (’c’, ’d’)]}

State after successor function applied: {’clear’: [’a’], ’on-table’:
[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c
’, ’d’)]}

Let’s think step by step. First, think of the possible reasons why the
input state may change as a result of applying the successor

function, such as the use of shallow copy.
Then, provide the complete Python code for the revised successor

function that returns a list of successor states and ensure it
does not change the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Model response:
The issue is due to the use of shallow copy when creating new states

in the successor function. In Python, when you use the copy()
method or the dict() constructor to copy a dictionary, it only
creates a new reference to the same dictionary, not a deep copy.
This means that when you modify the new state, you’re also
modifying the original state.

To fix this, we can use the deepcopy() function from the copy module
to create a deep copy of the state dictionary. Here’s the revised
successor function:

Python
‘‘‘
import copy

def successor(state):
successors = []

Pick up a block from the table
for block in state[’on-table’]:

if state[’arm-empty’] and block in state[’clear’]:
new_state = copy.deepcopy(state)
new_state[’arm-empty’] = False
new_state[’holding’] = block
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state[’on’]:

if state[’arm-empty’] and block1 in state[’clear’]:
new_state = copy.deepcopy(state)
new_state[’arm-empty’] = False
new_state[’holding’] = block1
new_state[’clear’].remove(block1)

118

new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
successors.append(new_state)

Put down a block on the table
if not state[’arm-empty’]:

new_state = copy.deepcopy(state)
new_state[’arm-empty’] = True
new_state[’on-table’].append(new_state[’holding’])
new_state[’clear’].append(new_state[’holding’])
new_state[’holding’] = None
successors.append(new_state)

Stack a block on top of another block
if not state[’arm-empty’]:

for block in state[’clear’]:
if block != state[’holding’]:

new_state = copy.deepcopy(state)
new_state[’arm-empty’] = True
new_state[’on’].append((new_state[’holding’], block))
new_state[’clear’].remove(block)
new_state[’clear’].append(new_state[’holding’])
new_state[’holding’] = None
successors.append(new_state)

return successors
‘‘‘
By using copy.deepcopy(state), we ensure that each new state is a

completely independent copy of the original state, and modifying
the new state will not affect the original state.

Generated by Meta Llama 3.1-405

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 502, failure: 0, total expansions 50456, total generated

130124

Listing 35: With partial successor soundness test

AutoToS prompt:

I am playing with a set of blocks where I need to arrange the blocks
into stacks. Here are the actions I can do
Pick up a block from the table
Put down a block on the table
Unstack a block from on top of another block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the

block is clear. A block is clear if the block has no other
blocks on top of it and if the block is not picked up.

I can only unstack a block from on top of another block if the
block I am unstacking was really on top of the other block.

I can only unstack a block from on top of another block if the
block I am unstacking is clear.

Once I pick up a block, I am holding the block and it is no longer
clear and no longer on the table.

119

Once I unstack from on top of another block, I am holding the block
and it is no longer clear. Instead, the other block becomes

clear.

I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding

the block being stacked.
I can only stack a block on top of another block if the block onto

which I am stacking the block is clear.
Once I put down a block, my hand becomes empty, the block becomes

clear, and it is now on the table.
Once I stack a block on top of another block, the block on top

becomes clear and the block under it is no longer clear.
If a state is defined by a dictionary of following predicates "clear

block", "on-table block", "arm-empty", "holding block", and "on
block1 block2", how are successor states defined?

Here is an example of the initial state:
Init: {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’holding

’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
Please provide only the Python code for the successor function that

returns a list of successor states.

Model response:
Successor Function
Python
‘‘‘
def successor(state):

"""
Generate a list of successor states based on the current state.

:param state: A dictionary representing the current state with
predicates:

"clear", "on-table", "arm-empty", "holding", and "on
".

:return: A list of dictionaries, each representing a possible
successor state.

"""
successors = []

Pick up a block from the table
for block in state[’on-table’]:

if block in state[’clear’]:
new_state = state.copy()
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state[’on’]:

if block1 in state[’clear’]:
new_state = state.copy()
new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
successors.append(new_state)

Put down a block on the table
if not state[’arm-empty’]:

new_state = state.copy()
new_state[’on-table’].append(state[’holding’])
new_state[’clear’].append(state[’holding’])

120

new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

Stack a block on top of another block
if not state[’arm-empty’]:

for block in state[’clear’]:
if block != state[’holding’]:

new_state = state.copy()
new_state[’on’].append((state[’holding’], block))
new_state[’clear’].remove(block)
new_state[’clear’].append(state[’holding’])
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

return successors
‘‘‘
You can use this function to generate successor states for a given

state. For example:
Python
init_state = {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’

holding’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
successors = successor(init_state)
for i, succ in enumerate(successors):

print(f"Successor {i+1}: {succ}")
Generated by Meta Llama 3.1-405

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state. The goal specifies a partial state, the facts that must be
true in any full goal state. Assume that the goal configuration is
provided in the same dictionary format.

Here’s an example goal specification:
Goal: {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)]}

Model response:
Goal Test Function
Python
‘‘‘
def is_goal(state, goal):

"""
Check if a state satisfies the goal configuration.

:param state: A dictionary representing the current state.
:param goal: A dictionary representing the goal configuration.
:return: True if the state satisfies the goal, False otherwise.
"""
for key, value in goal.items():

if key == ’clear’:
if not all(block not in state[’clear’] for block in value)

:
return False

elif key == ’on-table’:
if not all(block not in state[’on-table’] for block in

value):
return False

elif key == ’on’:
if not all(tuple(sorted(on_pair)) in [tuple(sorted(on))

for on in state[’on’]] for on_pair in value):
return False

return True
‘‘‘

121

You can use this function to test whether a state is a goal state. For
example:

Python
state = {’clear’: [’a’], ’on-table’: [’d’], ’arm-empty’: True, ’

holding’: None, ’on’: [(’b’, ’c’), (’d’, ’b’), (’a’, ’d’)]}
goal = {’clear’: [], ’on-table’: [], ’on’: [(’b’, ’c’), (’d’, ’b’)]}
print(is_goal(state, goal)) # Output: True
Generated by Meta Llama 3.1-405

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Input state should not change as a result of applying the successor

function.
State before successor function applied: {’clear’: [’b’], ’on-table’:

[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’b
’, ’a’), (’c’, ’d’)]}

State after successor function applied: {’clear’: [’a’], ’on-table’:
[’d’], ’arm-empty’: True, ’holding’: None, ’on’: [(’a’, ’c’), (’c
’, ’d’)]}

Let’s think step by step. First, think of the possible reasons why the
input state may change as a result of applying the successor

function, such as the use of shallow copy.
Then, provide the complete Python code for the revised successor

function that returns a list of successor states and ensure it
does not change the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Model response:
Revised Successor Function
Python
‘‘‘
import copy

def successor(state):
"""
Generate a list of successor states based on the current state.

:param state: A dictionary representing the current state with
predicates:

"clear", "on-table", "arm-empty", "holding", and "on
".

:return: A list of dictionaries, each representing a possible
successor state.

"""
successors = []

Pick up a block from the table
for block in state[’on-table’]:

if block in state[’clear’]:
new_state = copy.deepcopy(state)
new_state[’holding’] = block
new_state[’arm-empty’] = False
new_state[’clear’].remove(block)
new_state[’on-table’].remove(block)
successors.append(new_state)

Unstack a block from on top of another block
for block1, block2 in state[’on’]:

if block1 in state[’clear’]:
new_state = copy.deepcopy(state)

122

new_state[’holding’] = block1
new_state[’arm-empty’] = False
new_state[’clear’].remove(block1)
new_state[’clear’].append(block2)
new_state[’on’].remove((block1, block2))
successors.append(new_state)

Put down a block on the table
if not state[’arm-empty’]:

new_state = copy.deepcopy(state)
new_state[’on-table’].append(state[’holding’])
new_state[’clear’].append(state[’holding’])
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

Stack a block on top of another block
if not state[’arm-empty’]:

for block in state[’clear’]:
if block != state[’holding’]:

new_state = copy.deepcopy(state)
new_state[’on’].append((state[’holding’], block))
new_state[’clear’].remove(block)
new_state[’clear’].append(state[’holding’])
new_state[’holding’] = None
new_state[’arm-empty’] = True
successors.append(new_state)

return successors
‘‘‘
The main issue was that the state.copy() method creates a shallow copy

, which means it only copies the references to the original
elements. When we modify the lists in the copied state, it affects
the original state as well.

To fix this, we use copy.deepcopy(state) to create a deep copy of the
state, which recursively creates new copies of all elements. This
ensures that modifying the copied state does not affect the
original state.

You can test this revised function with the same example:
Python
state = {’clear’: [’b’], ’on-table’: [’d’], ’arm-empty’: True, ’

holding’: None, ’on’: [(’a’, ’c’), (’b’, ’a’), (’c’, ’d’)]}
successors = successor(state)
print(state) # Should remain unchanged
for i, succ in enumerate(successors):

print(f"Successor {i+1}: {succ}")
Generated by Meta Llama 3.1-405

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Failed to validate the plan for problem blocks_instances/instance-0.

pddl
[’(unstack b a)’, ’(put-down b)’, ’(unstack a c)’, ’(unstack c d)’, ’(

put-down c)’, ’(pick-up b)’, ’(stack b d)’, ’(pick-up c)’, ’(stack
c b)’]

Failed to validate the plan for problem blocks_instances/instance-1.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-10.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-100.

pddl

123

[’(unstack a c)’, ’(put-down a)’, ’(unstack c d)’, ’(unstack d b)’, ’(
put-down d)’, ’(pick-up b)’, ’(stack b a)’, ’(pick-up d)’, ’(stack
d b)’]

Failed to validate the plan for problem blocks_instances/instance-101.
pddl

[’(unstack c a)’, ’(put-down c)’, ’(unstack a b)’, ’(unstack b d)’, ’(
put-down b)’, ’(pick-up d)’, ’(stack d c)’, ’(pick-up b)’, ’(stack
b d)’]

Failed to validate the plan for problem blocks_instances/instance-103.
pddl

[’(unstack c d)’, ’(put-down c)’, ’(unstack d b)’, ’(put-down d)’, ’(
pick-up c)’, ’(stack c b)’, ’(pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-104.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(unstack d b)’, ’(put-down d)’, ’(
pick-up a)’, ’(stack a d)’, ’(unstack b c)’, ’(put-down b)’, ’(
pick-up c)’, ’(stack c a)’, ’(pick-up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-105.
pddl

[’(unstack b a)’, ’(put-down b)’, ’(unstack a d)’, ’(stack a c)’, ’(
pick-up d)’, ’(stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-106.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-107.

pddl
[’(unstack b c)’, ’(put-down b)’, ’(unstack d a)’, ’(pick-up a)’, ’(

stack a c)’, ’(pick-up b)’, ’(stack b a)’]
Failed to validate the plan for problem blocks_instances/instance-109.

pddl
[’(unstack c a)’, ’(unstack a d)’, ’(put-down a)’, ’(pick-up b)’, ’(

stack b d)’, ’(pick-up a)’, ’(stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-11.

pddl
[’(unstack a d)’, ’(put-down a)’, ’(pick-up d)’, ’(stack d b)’, ’(pick

-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-110.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(unstack c d)’, ’(put-down c)’, ’(

unstack d b)’, ’(stack d a)’, ’(pick-up b)’, ’(stack b c)’]
Failed to validate the plan for problem blocks_instances/instance-112.

pddl
[’(unstack a d)’, ’(pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-113.

pddl
[’(unstack b a)’, ’(put-down b)’, ’(unstack a d)’, ’(put-down a)’, ’(

unstack d c)’, ’(stack d a)’, ’(pick-up c)’, ’(stack c d)’, ’(pick
-up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-114.
pddl

[’(unstack c d)’, ’(unstack d b)’, ’(put-down d)’, ’(unstack b a)’, ’(
put-down b)’, ’(pick-up d)’, ’(stack d a)’, ’(pick-up b)’, ’(stack
b d)’]

Failed to validate the plan for problem blocks_instances/instance-117.
pddl

[’(unstack d b)’, ’(put-down d)’, ’(unstack b a)’, ’(stack b d)’, ’(
pick-up c)’, ’(stack c b)’, ’(pick-up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-118.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-119.

pddl
[’(unstack c b)’, ’(put-down c)’, ’(unstack b a)’, ’(put-down b)’, ’(

unstack a d)’, ’(stack a c)’, ’(pick-up d)’, ’(stack d a)’, ’(pick
-up b)’, ’(stack b d)’]

124

Failed to validate the plan for problem blocks_instances/instance-12.
pddl

[’(unstack b d)’, ’(stack b c)’, ’(pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-121.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-122.

pddl
[’(unstack b d)’, ’(unstack d c)’, ’(put-down d)’, ’(unstack c a)’, ’(

put-down c)’, ’(pick-up d)’, ’(stack d a)’, ’(pick-up c)’, ’(stack
c d)’]

Failed to validate the plan for problem blocks_instances/instance-123.
pddl

[’(pick-up c)’, ’(stack c a)’]
Failed to validate the plan for problem blocks_instances/instance-125.

pddl
[’(unstack a b)’, ’(stack a d)’, ’(unstack b c)’, ’(pick-up c)’, ’(

stack c a)’]
Failed to validate the plan for problem blocks_instances/instance-126.

pddl
[’(unstack b a)’, ’(pick-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-127.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(pick-up d)’, ’(stack d c)’, ’(pick

-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-129.

pddl
[’(unstack d c)’, ’(put-down d)’, ’(unstack c b)’, ’(unstack b a)’, ’(

pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-13.

pddl
[’(unstack c b)’, ’(unstack d a)’, ’(pick-up a)’, ’(stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-130.

pddl
[’(unstack b a)’, ’(put-down b)’, ’(unstack c d)’, ’(stack c b)’, ’(

pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-131.

pddl
[’(unstack a c)’, ’(unstack c d)’, ’(put-down c)’, ’(unstack d b)’, ’(

put-down d)’, ’(pick-up c)’, ’(stack c b)’, ’(pick-up d)’, ’(stack
d c)’]

Failed to validate the plan for problem blocks_instances/instance-133.
pddl

[’(unstack a b)’, ’(stack a d)’, ’(pick-up b)’, ’(stack b c)’]
Failed to validate the plan for problem blocks_instances/instance-134.

pddl
[’(unstack d b)’, ’(unstack b c)’, ’(put-down b)’, ’(unstack c a)’, ’(

pick-up a)’, ’(stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-136.

pddl
[’(unstack a b)’, ’(put-down a)’, ’(unstack d c)’, ’(pick-up c)’, ’(

stack c b)’, ’(pick-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-137.

pddl
[’(unstack a c)’, ’(unstack b d)’, ’(put-down b)’, ’(pick-up c)’, ’(

stack c d)’, ’(pick-up b)’, ’(stack b c)’]
Failed to validate the plan for problem blocks_instances/instance-139.

pddl
[’(pick-up a)’, ’(stack a d)’, ’(unstack b c)’, ’(pick-up c)’, ’(stack

c a)’]
Failed to validate the plan for problem blocks_instances/instance-14.

pddl
[’(unstack a b)’, ’(put-down a)’, ’(unstack b c)’, ’(put-down b)’, ’(

unstack c d)’, ’(stack c b)’, ’(pick-up d)’, ’(stack d c)’, ’(pick
-up a)’, ’(stack a d)’]

125

Failed to validate the plan for problem blocks_instances/instance-141.
pddl

[’(unstack b a)’, ’(unstack d c)’, ’(put-down d)’, ’(pick-up c)’, ’(
stack c a)’, ’(pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-143.
pddl

[’(unstack a c)’, ’(put-down a)’, ’(pick-up c)’, ’(stack c d)’, ’(pick
-up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-144.
pddl

[’(unstack a b)’, ’(unstack b d)’, ’(put-down b)’, ’(unstack d c)’, ’(
pick-up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-145.
pddl

[’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(stack a b)’, ’(
pick-up c)’, ’(stack c a)’, ’(pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-146.
pddl

[’(unstack c a)’, ’(put-down c)’, ’(unstack d b)’, ’(stack d a)’, ’(
pick-up b)’, ’(stack b d)’, ’(pick-up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-147.
pddl

[’(unstack a b)’, ’(put-down a)’, ’(pick-up d)’, ’(stack d b)’, ’(pick
-up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-148.
pddl

[’(unstack d b)’, ’(unstack b a)’, ’(put-down b)’, ’(unstack a c)’, ’(
put-down a)’, ’(pick-up c)’, ’(stack c b)’, ’(pick-up a)’, ’(stack
a c)’]

Failed to validate the plan for problem blocks_instances/instance-15.
pddl

[’(unstack c b)’, ’(put-down c)’, ’(pick-up a)’, ’(stack a b)’, ’(pick
-up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-150.
pddl

[’(unstack b d)’, ’(unstack d c)’, ’(put-down d)’, ’(pick-up c)’, ’(
stack c a)’, ’(pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-152.
pddl

[’(unstack d b)’, ’(put-down d)’, ’(unstack b c)’, ’(put-down b)’, ’(
unstack c a)’, ’(stack c d)’, ’(pick-up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-153.
pddl

[’(unstack c d)’, ’(put-down c)’, ’(unstack d b)’, ’(stack d a)’, ’(
pick-up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-154.
pddl

[’(unstack c b)’, ’(put-down c)’, ’(unstack b a)’, ’(put-down b)’, ’(
unstack a d)’, ’(stack a c)’, ’(pick-up b)’, ’(stack b a)’, ’(pick
-up d)’, ’(stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-155.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(unstack d b)’, ’(unstack b c)’, ’(
put-down b)’, ’(pick-up a)’, ’(stack a c)’, ’(pick-up b)’, ’(stack
b a)’]

Failed to validate the plan for problem blocks_instances/instance-156.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(pick-up b)’, ’(stack b a)’, ’(
unstack d c)’, ’(pick-up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-158.
pddl

[’(pick-up a)’, ’(stack a c)’, ’(pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-159.

pddl

126

[’(unstack b d)’, ’(put-down b)’, ’(pick-up d)’, ’(stack d a)’, ’(pick
-up b)’, ’(stack b d)’]

Failed to validate the plan for problem blocks_instances/instance-16.
pddl

[’(unstack d c)’, ’(stack d a)’, ’(pick-up b)’, ’(stack b c)’]
Failed to validate the plan for problem blocks_instances/instance-160.

pddl
[’(unstack a b)’, ’(put-down a)’, ’(unstack b d)’, ’(unstack d c)’, ’(

put-down d)’, ’(pick-up c)’, ’(stack c a)’, ’(pick-up d)’, ’(stack
d c)’]

Failed to validate the plan for problem blocks_instances/instance-162.
pddl

[’(unstack a d)’, ’(stack a b)’, ’(pick-up d)’, ’(stack d a)’]
Failed to validate the plan for problem blocks_instances/instance-163.

pddl
[’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(pick-up c)’, ’(

stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-164.

pddl
[’(pick-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-165.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-168.

pddl
[’(unstack d a)’, ’(put-down d)’, ’(unstack a b)’, ’(stack a d)’, ’(

pick-up c)’, ’(stack c a)’, ’(pick-up b)’, ’(stack b c)’]
Failed to validate the plan for problem blocks_instances/instance-17.

pddl
[’(unstack a d)’, ’(unstack d c)’, ’(put-down d)’, ’(pick-up c)’, ’(

stack c b)’, ’(pick-up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-171.

pddl
[’(unstack d b)’, ’(put-down d)’, ’(unstack b c)’, ’(stack b d)’, ’(

pick-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-172.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(unstack c d)’, ’(pick-up d)’, ’(

stack d a)’]
Failed to validate the plan for problem blocks_instances/instance-174.

pddl
[’(unstack d a)’, ’(put-down d)’, ’(unstack a b)’, ’(put-down a)’, ’(

pick-up b)’, ’(stack b c)’, ’(pick-up d)’, ’(stack d b)’, ’(pick-
up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-175.
pddl

[’(unstack c a)’, ’(unstack d b)’, ’(pick-up a)’, ’(stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-176.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-18.

pddl
[’(unstack d b)’, ’(put-down d)’, ’(unstack b a)’, ’(put-down b)’, ’(

unstack a c)’, ’(pick-up c)’, ’(stack c d)’, ’(pick-up b)’, ’(
stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-180.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-181.

pddl
[’(unstack b a)’, ’(put-down b)’, ’(pick-up d)’, ’(stack d a)’, ’(pick

-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-182.

pddl

127

[’(unstack d b)’, ’(put-down d)’, ’(unstack b a)’, ’(put-down b)’, ’(
unstack a c)’, ’(stack a d)’, ’(pick-up b)’, ’(stack b a)’, ’(pick
-up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-183.
pddl

[’(unstack b c)’, ’(unstack c d)’, ’(pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-184.

pddl
[’(unstack d b)’, ’(pick-up b)’, ’(stack b a)’]
Failed to validate the plan for problem blocks_instances/instance-186.

pddl
[’(unstack b c)’, ’(put-down b)’, ’(unstack c d)’, ’(pick-up b)’, ’(

stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-187.

pddl
[’(unstack b d)’, ’(put-down b)’, ’(pick-up c)’, ’(stack c b)’, ’(pick

-up d)’, ’(stack d c)’, ’(pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-188.

pddl
[’(unstack b c)’, ’(unstack c a)’, ’(pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-189.

pddl
[’(unstack c b)’, ’(put-down c)’, ’(unstack b a)’, ’(put-down b)’, ’(

unstack a d)’, ’(stack a c)’, ’(pick-up d)’, ’(stack d b)’]
Failed to validate the plan for problem blocks_instances/instance-190.

pddl
[’(unstack b a)’, ’(put-down b)’, ’(pick-up a)’, ’(stack a d)’, ’(pick

-up b)’, ’(stack b a)’]
Failed to validate the plan for problem blocks_instances/instance-192.

pddl
[’(pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-194.

pddl
[’(unstack b a)’, ’(stack b d)’, ’(unstack a c)’, ’(pick-up c)’, ’(

stack c b)’]
Failed to validate the plan for problem blocks_instances/instance-196.

pddl
[’(unstack b d)’, ’(unstack d c)’, ’(put-down d)’, ’(pick-up a)’, ’(

stack a c)’, ’(pick-up d)’, ’(stack d a)’]
Failed to validate the plan for problem blocks_instances/instance-197.

pddl
[’(unstack c b)’, ’(put-down c)’, ’(pick-up a)’, ’(stack a c)’, ’(

unstack b d)’, ’(pick-up d)’, ’(stack d a)’]
Failed to validate the plan for problem blocks_instances/instance-198.

pddl
[’(unstack a b)’, ’(pick-up d)’, ’(stack d b)’]
Failed to validate the plan for problem blocks_instances/instance-199.

pddl
[’(unstack b d)’, ’(unstack d a)’, ’(put-down d)’, ’(unstack a c)’, ’(

pick-up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-2.

pddl
[’(unstack d c)’, ’(pick-up c)’, ’(stack c a)’]
Failed to validate the plan for problem blocks_instances/instance-200.

pddl
[’(unstack d a)’, ’(put-down d)’, ’(unstack a b)’, ’(put-down a)’, ’(

pick-up d)’, ’(stack d a)’, ’(unstack b c)’, ’(put-down b)’, ’(
pick-up c)’, ’(stack c d)’, ’(pick-up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-201.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-202.

pddl
[]

128

Failed to validate the plan for problem blocks_instances/instance-203.
pddl

[’(unstack d c)’, ’(pick-up c)’, ’(stack c b)’]
Failed to validate the plan for problem blocks_instances/instance-206.

pddl
[’(pick-up a)’, ’(stack a b)’, ’(pick-up d)’, ’(stack d a)’]
Failed to validate the plan for problem blocks_instances/instance-208.

pddl
[’(unstack d c)’, ’(put-down d)’, ’(unstack c a)’, ’(pick-up d)’, ’(

stack d a)’]
Failed to validate the plan for problem blocks_instances/instance-209.

pddl
[’(unstack c b)’, ’(put-down c)’, ’(unstack b a)’, ’(unstack a d)’, ’(

put-down a)’, ’(pick-up d)’, ’(stack d c)’, ’(pick-up a)’, ’(stack
a d)’]

Failed to validate the plan for problem blocks_instances/instance-210.
pddl

[’(unstack a d)’, ’(pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-211.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-212.

pddl
[’(unstack c b)’, ’(put-down c)’, ’(pick-up d)’, ’(stack d b)’, ’(pick

-up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-213.

pddl
[’(unstack d b)’, ’(put-down d)’, ’(unstack b c)’, ’(put-down b)’, ’(

unstack c a)’, ’(stack c d)’, ’(pick-up b)’, ’(stack b c)’, ’(pick
-up a)’, ’(stack a b)’]

Failed to validate the plan for problem blocks_instances/instance-214.
pddl

[’(pick-up c)’, ’(stack c b)’, ’(unstack a d)’, ’(put-down a)’, ’(pick
-up d)’, ’(stack d c)’, ’(pick-up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-216.
pddl

[’(unstack d b)’, ’(pick-up c)’, ’(stack c b)’]
Failed to validate the plan for problem blocks_instances/instance-217.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(unstack c d)’, ’(stack c a)’, ’(

pick-up d)’, ’(stack d c)’, ’(pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-218.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(unstack b d)’, ’(stack b c)’, ’(

pick-up d)’, ’(stack d a)’]
Failed to validate the plan for problem blocks_instances/instance-22.

pddl
[’(unstack d c)’, ’(put-down d)’, ’(unstack c a)’, ’(stack c b)’, ’(

pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-220.

pddl
[’(unstack c b)’, ’(put-down c)’, ’(unstack b a)’, ’(stack b d)’, ’(

pick-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-222.

pddl
[’(unstack d b)’, ’(put-down d)’, ’(unstack a c)’, ’(stack a d)’, ’(

pick-up b)’, ’(stack b a)’, ’(pick-up c)’, ’(stack c b)’]
Failed to validate the plan for problem blocks_instances/instance-225.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-227.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(pick-up b)’, ’(stack b a)’, ’(pick

-up d)’, ’(stack d b)’, ’(pick-up c)’, ’(stack c d)’]

129

Failed to validate the plan for problem blocks_instances/instance-228.
pddl

[’(unstack b d)’, ’(pick-up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-229.

pddl
[’(unstack d b)’, ’(put-down d)’, ’(unstack b c)’, ’(pick-up c)’, ’(

stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-230.

pddl
[’(unstack c d)’, ’(put-down c)’, ’(unstack d b)’, ’(put-down d)’, ’(

unstack b a)’, ’(stack b c)’, ’(pick-up d)’, ’(stack d b)’, ’(pick
-up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-232.
pddl

[’(pick-up c)’, ’(stack c b)’, ’(unstack d a)’, ’(pick-up a)’, ’(stack
a c)’]

Failed to validate the plan for problem blocks_instances/instance-234.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(unstack d b)’, ’(pick-up a)’, ’(
stack a b)’]

Failed to validate the plan for problem blocks_instances/instance-235.
pddl

[’(unstack d b)’, ’(put-down d)’, ’(pick-up b)’, ’(stack b a)’, ’(pick
-up c)’, ’(stack c b)’, ’(pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-237.
pddl

[’(unstack b a)’, ’(put-down b)’, ’(pick-up a)’, ’(stack a c)’, ’(pick
-up b)’, ’(stack b a)’]

Failed to validate the plan for problem blocks_instances/instance-238.
pddl

[’(unstack d a)’, ’(put-down d)’, ’(unstack a c)’, ’(stack a d)’, ’(
pick-up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-239.
pddl

[’(unstack c a)’, ’(stack c d)’, ’(pick-up a)’, ’(stack a c)’, ’(pick-
up b)’, ’(stack b a)’]

Failed to validate the plan for problem blocks_instances/instance-240.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-241.

pddl
[’(unstack c b)’, ’(put-down c)’, ’(unstack a d)’, ’(stack a b)’, ’(

pick-up c)’, ’(stack c a)’]
Failed to validate the plan for problem blocks_instances/instance-242.

pddl
[’(unstack b a)’, ’(put-down b)’, ’(unstack a d)’, ’(put-down a)’, ’(

pick-up b)’, ’(stack b a)’, ’(unstack d c)’, ’(pick-up c)’, ’(
stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-243.
pddl

[’(unstack b a)’, ’(put-down b)’, ’(unstack a c)’, ’(stack a d)’, ’(
pick-up c)’, ’(stack c a)’, ’(pick-up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-244.
pddl

[’(unstack c d)’, ’(put-down c)’, ’(unstack d b)’, ’(stack d c)’, ’(
unstack b a)’, ’(put-down b)’, ’(pick-up a)’, ’(stack a d)’, ’(
pick-up b)’, ’(stack b a)’]

Failed to validate the plan for problem blocks_instances/instance-245.
pddl

[’(unstack b c)’, ’(put-down b)’, ’(unstack d a)’, ’(stack d c)’, ’(
pick-up a)’, ’(stack a b)’]

Failed to validate the plan for problem blocks_instances/instance-246.
pddl

[’(unstack c a)’, ’(put-down c)’, ’(unstack a b)’, ’(stack a c)’, ’(
pick-up b)’, ’(stack b a)’, ’(pick-up d)’, ’(stack d b)’]

130

Failed to validate the plan for problem blocks_instances/instance-247.
pddl

[’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(unstack d b)’, ’(
pick-up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-248.
pddl

[’(pick-up a)’, ’(stack a c)’, ’(pick-up b)’, ’(stack b a)’, ’(pick-up
d)’, ’(stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-249.
pddl

[’(unstack d a)’, ’(put-down d)’, ’(unstack c b)’, ’(stack c a)’, ’(
pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-25.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-250.

pddl
[’(unstack b c)’, ’(put-down b)’, ’(unstack c d)’, ’(stack c b)’, ’(

unstack d a)’, ’(pick-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-251.

pddl
[’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(put-down a)’, ’(

unstack d b)’, ’(put-down d)’, ’(pick-up c)’, ’(stack c d)’, ’(
pick-up a)’, ’(stack a c)’, ’(pick-up b)’, ’(stack b a)’]

Failed to validate the plan for problem blocks_instances/instance-254.
pddl

[’(unstack d a)’, ’(put-down d)’, ’(unstack a b)’, ’(stack a c)’, ’(
pick-up b)’, ’(stack b d)’]

Failed to validate the plan for problem blocks_instances/instance-255.
pddl

[’(unstack a b)’, ’(put-down a)’, ’(unstack c d)’, ’(stack c b)’, ’(
pick-up d)’, ’(stack d c)’, ’(pick-up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-257.
pddl

[’(unstack a c)’, ’(put-down a)’, ’(unstack b d)’, ’(put-down b)’, ’(
pick-up c)’, ’(stack c b)’, ’(pick-up d)’, ’(stack d c)’, ’(pick-
up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-258.
pddl

[’(unstack d a)’, ’(put-down d)’, ’(unstack a c)’, ’(put-down a)’, ’(
pick-up d)’, ’(stack d c)’, ’(pick-up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-259.
pddl

[’(unstack b c)’, ’(stack b a)’, ’(pick-up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-260.

pddl
[’(unstack a b)’, ’(put-down a)’, ’(unstack b c)’, ’(stack b d)’, ’(

pick-up a)’, ’(stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-261.

pddl
[’(unstack c a)’, ’(unstack a d)’, ’(pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-262.

pddl
[’(unstack d a)’, ’(put-down d)’, ’(pick-up a)’, ’(stack a b)’, ’(pick

-up c)’, ’(stack c a)’, ’(pick-up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-264.

pddl
[’(unstack b d)’, ’(put-down b)’, ’(unstack d c)’, ’(stack d b)’, ’(

pick-up a)’, ’(stack a d)’, ’(pick-up c)’, ’(stack c a)’]
Failed to validate the plan for problem blocks_instances/instance-265.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-266.

pddl

131

[’(unstack a b)’, ’(stack a d)’, ’(pick-up b)’, ’(stack b a)’, ’(pick-
up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-27.
pddl

[’(unstack b d)’, ’(unstack c a)’, ’(put-down c)’, ’(pick-up a)’, ’(
stack a d)’, ’(pick-up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-270.
pddl

[’(unstack a c)’, ’(put-down a)’, ’(unstack c d)’, ’(put-down c)’, ’(
unstack d b)’, ’(stack d c)’, ’(pick-up a)’, ’(stack a d)’, ’(pick
-up b)’, ’(stack b a)’]

Failed to validate the plan for problem blocks_instances/instance-273.
pddl

[’(pick-up b)’, ’(stack b a)’]
Failed to validate the plan for problem blocks_instances/instance-274.

pddl
[’(unstack d a)’, ’(stack d c)’, ’(pick-up a)’, ’(stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-275.

pddl
[’(unstack b d)’, ’(stack b a)’, ’(pick-up c)’, ’(stack c b)’, ’(pick-

up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-276.

pddl
[’(unstack a b)’, ’(put-down a)’, ’(unstack b c)’, ’(put-down b)’, ’(

pick-up d)’, ’(stack d b)’, ’(pick-up a)’, ’(stack a d)’, ’(pick-
up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-280.
pddl

[’(unstack a c)’, ’(put-down a)’, ’(unstack c d)’, ’(put-down c)’, ’(
pick-up a)’, ’(stack a c)’, ’(unstack d b)’, ’(put-down d)’, ’(
pick-up b)’, ’(stack b a)’, ’(pick-up d)’, ’(stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-281.
pddl

[’(unstack b c)’, ’(put-down b)’, ’(pick-up d)’, ’(stack d b)’, ’(
unstack c a)’, ’(pick-up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-282.
pddl

[’(unstack c b)’, ’(put-down c)’, ’(unstack b a)’, ’(put-down b)’, ’(
pick-up c)’, ’(stack c b)’, ’(unstack a d)’, ’(put-down a)’, ’(
pick-up d)’, ’(stack d c)’, ’(pick-up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-284.
pddl

[’(unstack b d)’, ’(put-down b)’, ’(unstack d c)’, ’(stack d b)’, ’(
pick-up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-287.
pddl

[’(pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-29.

pddl
[’(unstack a d)’, ’(put-down a)’, ’(unstack c b)’, ’(stack c d)’, ’(

pick-up b)’, ’(stack b c)’, ’(pick-up a)’, ’(stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-292.

pddl
[’(unstack a d)’, ’(put-down a)’, ’(unstack d b)’, ’(pick-up a)’, ’(

stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-293.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-294.

pddl
[’(unstack c d)’, ’(put-down c)’, ’(unstack d a)’, ’(unstack a b)’, ’(

put-down a)’, ’(pick-up c)’, ’(stack c b)’, ’(pick-up a)’, ’(stack
a c)’]

Failed to validate the plan for problem blocks_instances/instance-295.
pddl

132

[’(unstack d b)’, ’(put-down d)’, ’(unstack c a)’, ’(stack c b)’, ’(
pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-296.
pddl

[’(unstack a c)’, ’(unstack c d)’, ’(put-down c)’, ’(pick-up d)’, ’(
stack d b)’, ’(pick-up c)’, ’(stack c d)’]

Failed to validate the plan for problem blocks_instances/instance-297.
pddl

[’(unstack d a)’, ’(pick-up a)’, ’(stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-298.

pddl
[’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(put-down a)’, ’(

pick-up d)’, ’(stack d c)’, ’(pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-3.

pddl
[’(unstack b c)’, ’(unstack c d)’, ’(put-down c)’, ’(unstack d a)’, ’(

put-down d)’, ’(pick-up a)’, ’(stack a c)’, ’(pick-up d)’, ’(stack
d a)’]

Failed to validate the plan for problem blocks_instances/instance-30.
pddl

[’(pick-up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-300.

pddl
[’(unstack b d)’, ’(put-down b)’, ’(pick-up d)’, ’(stack d c)’, ’(pick

-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-301.

pddl
[’(unstack c a)’, ’(stack c b)’, ’(pick-up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-302.

pddl
[’(unstack d a)’, ’(put-down d)’, ’(unstack a b)’, ’(put-down a)’, ’(

pick-up b)’, ’(stack b d)’, ’(pick-up c)’, ’(stack c b)’, ’(pick-
up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-304.
pddl

[’(unstack b c)’, ’(put-down b)’, ’(unstack c a)’, ’(put-down c)’, ’(
pick-up b)’, ’(stack b c)’, ’(unstack a d)’, ’(pick-up d)’, ’(
stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-305.
pddl

[’(unstack d c)’, ’(put-down d)’, ’(unstack c b)’, ’(pick-up b)’, ’(
stack b a)’, ’(pick-up d)’, ’(stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-306.
pddl

[’(pick-up a)’, ’(stack a d)’, ’(unstack b c)’, ’(pick-up c)’, ’(stack
c a)’]

Failed to validate the plan for problem blocks_instances/instance-307.
pddl

[’(unstack a c)’, ’(unstack c d)’, ’(put-down c)’, ’(unstack d b)’, ’(
put-down d)’, ’(pick-up c)’, ’(stack c b)’, ’(pick-up d)’, ’(stack
d c)’]

Failed to validate the plan for problem blocks_instances/instance-309.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(unstack d c)’, ’(put-down d)’, ’(
unstack c b)’, ’(stack c a)’, ’(pick-up b)’, ’(stack b c)’, ’(pick
-up d)’, ’(stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-310.
pddl

[’(unstack c a)’, ’(put-down c)’, ’(pick-up a)’, ’(stack a d)’, ’(pick
-up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-311.
pddl

[’(unstack d b)’, ’(put-down d)’, ’(unstack b c)’, ’(put-down b)’, ’(
pick-up c)’, ’(stack c d)’, ’(pick-up b)’, ’(stack b c)’]

133

Failed to validate the plan for problem blocks_instances/instance-312.
pddl

[’(pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-313.

pddl
[’(pick-up a)’, ’(stack a b)’, ’(unstack d c)’, ’(pick-up c)’, ’(stack

c a)’]
Failed to validate the plan for problem blocks_instances/instance-315.

pddl
[’(unstack a c)’, ’(pick-up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-316.

pddl
[’(unstack b d)’, ’(put-down b)’, ’(pick-up a)’, ’(stack a b)’, ’(pick

-up c)’, ’(stack c a)’, ’(pick-up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-320.

pddl
[’(unstack b d)’, ’(put-down b)’, ’(unstack a c)’, ’(stack a b)’, ’(

pick-up c)’, ’(stack c a)’, ’(pick-up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-322.

pddl
[’(pick-up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-327.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-330.

pddl
[’(unstack b d)’, ’(put-down b)’, ’(unstack d a)’, ’(put-down d)’, ’(

unstack a c)’, ’(put-down a)’, ’(pick-up b)’, ’(stack b c)’, ’(
pick-up d)’, ’(stack d b)’, ’(pick-up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-331.
pddl

[’(unstack d b)’, ’(put-down d)’, ’(unstack a c)’, ’(stack a b)’, ’(
pick-up d)’, ’(stack d a)’]

Failed to validate the plan for problem blocks_instances/instance-332.
pddl

[’(unstack d b)’, ’(put-down d)’, ’(unstack b a)’, ’(put-down b)’, ’(
unstack a c)’, ’(stack a d)’, ’(pick-up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-333.
pddl

[’(unstack d b)’, ’(stack d a)’, ’(pick-up b)’, ’(stack b d)’, ’(pick-
up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-334.
pddl

[’(pick-up d)’, ’(stack d b)’]
Failed to validate the plan for problem blocks_instances/instance-337.

pddl
[’(unstack c d)’, ’(put-down c)’, ’(pick-up b)’, ’(stack b c)’, ’(

unstack d a)’, ’(put-down d)’, ’(pick-up a)’, ’(stack a b)’, ’(
pick-up d)’, ’(stack d a)’]

Failed to validate the plan for problem blocks_instances/instance-340.
pddl

[’(unstack d c)’, ’(put-down d)’, ’(unstack c b)’, ’(stack c d)’, ’(
unstack b a)’, ’(pick-up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-342.
pddl

[’(unstack d a)’, ’(put-down d)’, ’(unstack a c)’, ’(put-down a)’, ’(
unstack c b)’, ’(put-down c)’, ’(pick-up b)’, ’(stack b d)’, ’(
pick-up a)’, ’(stack a b)’, ’(pick-up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-343.
pddl

[’(unstack b a)’, ’(unstack a d)’, ’(put-down a)’, ’(unstack d c)’, ’(
put-down d)’, ’(pick-up c)’, ’(stack c a)’, ’(pick-up d)’, ’(stack
d c)’]

Failed to validate the plan for problem blocks_instances/instance-344.
pddl

134

[’(unstack b d)’, ’(put-down b)’, ’(unstack c a)’, ’(stack c b)’, ’(
pick-up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-346.
pddl

[’(unstack a c)’, ’(pick-up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-347.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-35.

pddl
[’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(pick-up c)’, ’(

stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-350.

pddl
[’(unstack b d)’, ’(pick-up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-353.

pddl
[’(pick-up b)’, ’(stack b a)’, ’(pick-up c)’, ’(stack c b)’, ’(pick-up

d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-354.

pddl
[’(unstack a d)’, ’(put-down a)’, ’(unstack d c)’, ’(put-down d)’, ’(

unstack c b)’, ’(put-down c)’, ’(pick-up b)’, ’(stack b a)’, ’(
pick-up d)’, ’(stack d b)’, ’(pick-up c)’, ’(stack c d)’]

Failed to validate the plan for problem blocks_instances/instance-355.
pddl

[’(unstack c a)’, ’(put-down c)’, ’(pick-up b)’, ’(stack b c)’, ’(
unstack a d)’, ’(pick-up d)’, ’(stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-356.
pddl

[’(unstack d a)’, ’(put-down d)’, ’(unstack a c)’, ’(stack a d)’, ’(
pick-up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-357.
pddl

[’(unstack b c)’, ’(put-down b)’, ’(unstack d a)’, ’(pick-up a)’, ’(
stack a c)’, ’(pick-up b)’, ’(stack b a)’]

Failed to validate the plan for problem blocks_instances/instance-358.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(unstack d c)’, ’(unstack c b)’, ’(
put-down c)’, ’(pick-up a)’, ’(stack a b)’, ’(pick-up c)’, ’(stack
c a)’]

Failed to validate the plan for problem blocks_instances/instance-359.
pddl

[’(unstack c b)’, ’(stack c a)’, ’(unstack b d)’, ’(pick-up d)’, ’(
stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-36.
pddl

[’(unstack b d)’, ’(stack b a)’, ’(unstack d c)’, ’(pick-up c)’, ’(
stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-360.
pddl

[’(unstack a b)’, ’(put-down a)’, ’(unstack d c)’, ’(stack d b)’, ’(
pick-up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-361.
pddl

[’(unstack c d)’, ’(put-down c)’, ’(unstack d b)’, ’(put-down d)’, ’(
unstack b a)’, ’(stack b d)’, ’(pick-up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-363.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(unstack d b)’, ’(stack d a)’, ’(
pick-up b)’, ’(stack b d)’, ’(pick-up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-364.
pddl

[’(unstack a b)’, ’(put-down a)’, ’(unstack b d)’, ’(pick-up a)’, ’(
stack a d)’]

135

Failed to validate the plan for problem blocks_instances/instance-365.
pddl

[’(unstack d c)’, ’(pick-up b)’, ’(stack b c)’]
Failed to validate the plan for problem blocks_instances/instance-366.

pddl
[’(pick-up b)’, ’(stack b d)’, ’(unstack a c)’, ’(pick-up c)’, ’(stack

c b)’]
Failed to validate the plan for problem blocks_instances/instance-367.

pddl
[’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(put-down a)’, ’(

unstack d b)’, ’(pick-up b)’, ’(stack b c)’, ’(pick-up a)’, ’(
stack a b)’]

Failed to validate the plan for problem blocks_instances/instance-368.
pddl

[’(pick-up c)’, ’(stack c a)’, ’(pick-up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-369.

pddl
[’(unstack a d)’, ’(put-down a)’, ’(unstack d b)’, ’(pick-up a)’, ’(

stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-37.

pddl
[’(unstack b d)’, ’(put-down b)’, ’(unstack d a)’, ’(stack d c)’, ’(

pick-up a)’, ’(stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-370.

pddl
[’(unstack c d)’, ’(put-down c)’, ’(unstack d a)’, ’(stack d c)’, ’(

unstack a b)’, ’(pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-371.

pddl
[’(unstack a b)’, ’(put-down a)’, ’(unstack b d)’, ’(put-down b)’, ’(

pick-up a)’, ’(stack a b)’, ’(unstack d c)’, ’(pick-up c)’, ’(
stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-373.
pddl

[’(unstack b a)’, ’(put-down b)’, ’(unstack a c)’, ’(put-down a)’, ’(
pick-up b)’, ’(stack b a)’, ’(unstack c d)’, ’(pick-up d)’, ’(
stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-374.
pddl

[’(unstack b c)’, ’(unstack d a)’, ’(put-down d)’, ’(pick-up c)’, ’(
stack c a)’, ’(pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-375.
pddl

[’(unstack a b)’, ’(put-down a)’, ’(unstack b d)’, ’(put-down b)’, ’(
unstack d c)’, ’(stack d a)’, ’(pick-up b)’, ’(stack b d)’, ’(pick
-up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-376.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(unstack d b)’, ’(stack d c)’, ’(
pick-up b)’, ’(stack b a)’]

Failed to validate the plan for problem blocks_instances/instance-38.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(unstack d b)’, ’(unstack b c)’, ’(
put-down b)’, ’(pick-up a)’, ’(stack a c)’, ’(pick-up b)’, ’(stack
b a)’]

Failed to validate the plan for problem blocks_instances/instance-380.
pddl

[’(unstack c d)’, ’(put-down c)’, ’(unstack d b)’, ’(unstack b a)’, ’(
pick-up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-381.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(pick-up b)’, ’(stack b a)’, ’(pick
-up c)’, ’(stack c b)’, ’(pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-382.
pddl

136

[’(unstack c a)’, ’(stack c b)’, ’(unstack a d)’, ’(pick-up d)’, ’(
stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-383.
pddl

[’(unstack a b)’, ’(put-down a)’, ’(unstack b c)’, ’(put-down b)’, ’(
pick-up c)’, ’(stack c a)’, ’(pick-up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-384.
pddl

[’(unstack d b)’, ’(stack d a)’, ’(pick-up c)’, ’(stack c d)’, ’(pick-
up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-385.
pddl

[’(unstack d c)’, ’(put-down d)’, ’(unstack c b)’, ’(stack c a)’, ’(
pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-386.
pddl

[’(unstack c d)’, ’(put-down c)’, ’(unstack d b)’, ’(unstack b a)’, ’(
put-down b)’, ’(pick-up a)’, ’(stack a c)’, ’(pick-up b)’, ’(stack
b a)’]

Failed to validate the plan for problem blocks_instances/instance-387.
pddl

[’(unstack b c)’, ’(put-down b)’, ’(unstack c a)’, ’(pick-up b)’, ’(
stack b a)’]

Failed to validate the plan for problem blocks_instances/instance-388.
pddl

[’(unstack b d)’, ’(pick-up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-391.

pddl
[’(unstack b a)’, ’(stack b c)’, ’(pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-393.

pddl
[’(unstack a b)’, ’(unstack b d)’, ’(put-down b)’, ’(unstack d c)’, ’(

put-down d)’, ’(pick-up c)’, ’(stack c b)’, ’(pick-up d)’, ’(stack
d c)’]

Failed to validate the plan for problem blocks_instances/instance-394.
pddl

[’(unstack c b)’, ’(pick-up b)’, ’(stack b a)’, ’(pick-up d)’, ’(stack
d b)’]

Failed to validate the plan for problem blocks_instances/instance-395.
pddl

[’(pick-up c)’, ’(stack c a)’]
Failed to validate the plan for problem blocks_instances/instance-396.

pddl
[’(pick-up b)’, ’(stack b c)’]
Failed to validate the plan for problem blocks_instances/instance-397.

pddl
[’(unstack c b)’, ’(unstack b a)’, ’(pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-398.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(pick-up d)’, ’(stack d a)’, ’(

unstack c b)’, ’(put-down c)’, ’(pick-up b)’, ’(stack b d)’, ’(
pick-up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-399.
pddl

[’(unstack b d)’, ’(put-down b)’, ’(unstack d c)’, ’(put-down d)’, ’(
pick-up b)’, ’(stack b d)’, ’(unstack c a)’, ’(put-down c)’, ’(
pick-up a)’, ’(stack a b)’, ’(pick-up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-4.
pddl

[’(unstack d a)’, ’(put-down d)’, ’(unstack a c)’, ’(put-down a)’, ’(
pick-up d)’, ’(stack d a)’, ’(unstack c b)’, ’(pick-up b)’, ’(
stack b d)’]

Failed to validate the plan for problem blocks_instances/instance-40.
pddl

137

[’(unstack c d)’, ’(put-down c)’, ’(unstack d a)’, ’(put-down d)’, ’(
unstack a b)’, ’(put-down a)’, ’(pick-up c)’, ’(stack c a)’, ’(
pick-up d)’, ’(stack d c)’, ’(pick-up b)’, ’(stack b d)’]

Failed to validate the plan for problem blocks_instances/instance-400.
pddl

[’(unstack d b)’, ’(put-down d)’, ’(unstack b c)’, ’(stack b d)’, ’(
pick-up c)’, ’(stack c b)’, ’(pick-up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-401.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-402.

pddl
[’(unstack c d)’, ’(unstack d b)’, ’(put-down d)’, ’(unstack b a)’, ’(

put-down b)’, ’(pick-up a)’, ’(stack a d)’, ’(pick-up b)’, ’(stack
b a)’]

Failed to validate the plan for problem blocks_instances/instance-403.
pddl

[’(pick-up a)’, ’(stack a d)’, ’(pick-up b)’, ’(stack b a)’, ’(pick-up
c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-404.
pddl

[’(unstack a c)’, ’(stack a b)’, ’(pick-up d)’, ’(stack d a)’]
Failed to validate the plan for problem blocks_instances/instance-405.

pddl
[’(unstack c d)’, ’(put-down c)’, ’(pick-up b)’, ’(stack b c)’, ’(

unstack d a)’, ’(pick-up a)’, ’(stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-406.

pddl
[’(unstack c b)’, ’(put-down c)’, ’(unstack b a)’, ’(put-down b)’, ’(

unstack a d)’, ’(stack a c)’, ’(pick-up d)’, ’(stack d b)’]
Failed to validate the plan for problem blocks_instances/instance-408.

pddl
[’(unstack b d)’, ’(put-down b)’, ’(unstack d a)’, ’(put-down d)’, ’(

unstack a c)’, ’(stack a b)’, ’(pick-up c)’, ’(stack c a)’, ’(pick
-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-409.
pddl

[’(unstack d c)’, ’(put-down d)’, ’(pick-up c)’, ’(stack c b)’, ’(pick
-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-41.
pddl

[’(pick-up d)’, ’(stack d b)’]
Failed to validate the plan for problem blocks_instances/instance-411.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-412.

pddl
[’(unstack a b)’, ’(put-down a)’, ’(unstack b d)’, ’(put-down b)’, ’(

pick-up a)’, ’(stack a b)’, ’(unstack d c)’, ’(pick-up c)’, ’(
stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-413.
pddl

[’(pick-up c)’, ’(stack c a)’]
Failed to validate the plan for problem blocks_instances/instance-414.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-415.

pddl
[’(unstack c a)’, ’(put-down c)’, ’(unstack a b)’, ’(stack a c)’, ’(

pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-416.

pddl
[’(unstack a b)’, ’(put-down a)’, ’(unstack b c)’, ’(put-down b)’, ’(

unstack c d)’, ’(stack c a)’, ’(pick-up b)’, ’(stack b c)’]

138

Failed to validate the plan for problem blocks_instances/instance-417.
pddl

[’(unstack b c)’, ’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(
pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-418.
pddl

[’(unstack b c)’, ’(put-down b)’, ’(unstack c d)’, ’(unstack d a)’, ’(
put-down d)’, ’(pick-up b)’, ’(stack b a)’, ’(pick-up d)’, ’(stack
d b)’]

Failed to validate the plan for problem blocks_instances/instance-420.
pddl

[’(unstack d c)’, ’(put-down d)’, ’(unstack c b)’, ’(put-down c)’, ’(
unstack b a)’, ’(stack b d)’, ’(pick-up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-422.
pddl

[’(pick-up a)’, ’(stack a d)’, ’(unstack c b)’, ’(pick-up b)’, ’(stack
b a)’]

Failed to validate the plan for problem blocks_instances/instance-423.
pddl

[’(pick-up d)’, ’(stack d b)’]
Failed to validate the plan for problem blocks_instances/instance-424.

pddl
[’(unstack d c)’, ’(put-down d)’, ’(unstack c b)’, ’(stack c a)’, ’(

pick-up d)’, ’(stack d c)’, ’(pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-425.

pddl
[’(unstack a c)’, ’(pick-up b)’, ’(stack b c)’]
Failed to validate the plan for problem blocks_instances/instance-427.

pddl
[’(unstack b c)’, ’(put-down b)’, ’(unstack c d)’, ’(put-down c)’, ’(

unstack d a)’, ’(stack d b)’, ’(pick-up c)’, ’(stack c d)’, ’(pick
-up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-429.
pddl

[’(unstack d c)’, ’(put-down d)’, ’(unstack c b)’, ’(put-down c)’, ’(
unstack b a)’, ’(stack b c)’, ’(pick-up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-43.
pddl

[’(unstack d a)’, ’(unstack a b)’, ’(put-down a)’, ’(pick-up c)’, ’(
stack c b)’, ’(pick-up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-430.
pddl

[’(unstack a b)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-431.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-433.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-434.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(pick-up c)’, ’(stack c d)’, ’(pick

-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-435.

pddl
[’(unstack a b)’, ’(put-down a)’, ’(unstack b c)’, ’(unstack c d)’, ’(

put-down c)’, ’(pick-up a)’, ’(stack a d)’, ’(pick-up c)’, ’(stack
c a)’]

Failed to validate the plan for problem blocks_instances/instance-436.
pddl

[’(unstack c a)’, ’(pick-up a)’, ’(stack a b)’]
Failed to validate the plan for problem blocks_instances/instance-437.

pddl

139

[’(unstack a b)’, ’(put-down a)’, ’(pick-up b)’, ’(stack b a)’, ’(
unstack d c)’, ’(put-down d)’, ’(pick-up c)’, ’(stack c b)’, ’(
pick-up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-438.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-44.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(unstack c b)’, ’(unstack b d)’, ’(

put-down b)’, ’(pick-up a)’, ’(stack a d)’, ’(pick-up b)’, ’(stack
b a)’]

Failed to validate the plan for problem blocks_instances/instance-440.
pddl

[’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(stack a c)’, ’(
pick-up b)’, ’(stack b d)’]

Failed to validate the plan for problem blocks_instances/instance-441.
pddl

[’(unstack c b)’, ’(put-down c)’, ’(pick-up b)’, ’(stack b a)’, ’(pick
-up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-443.
pddl

[’(unstack b a)’, ’(put-down b)’, ’(unstack d c)’, ’(stack d a)’, ’(
pick-up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-444.
pddl

[’(unstack c d)’, ’(pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-445.

pddl
[’(unstack d b)’, ’(pick-up b)’, ’(stack b c)’]
Failed to validate the plan for problem blocks_instances/instance-446.

pddl
[’(unstack a e)’, ’(unstack e c)’, ’(put-down e)’, ’(unstack c b)’, ’(

put-down c)’, ’(unstack b d)’, ’(pick-up d)’, ’(stack d e)’, ’(
pick-up c)’, ’(stack c d)’]

Failed to validate the plan for problem blocks_instances/instance-447.
pddl

[’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(stack a c)’, ’(
unstack b e)’, ’(stack b a)’, ’(pick-up d)’, ’(stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-451.
pddl

[’(pick-up e)’, ’(stack e c)’, ’(unstack b a)’, ’(stack b e)’, ’(pick-
up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-452.
pddl

[’(unstack d a)’, ’(unstack a e)’, ’(put-down a)’, ’(unstack e c)’, ’(
stack e a)’, ’(unstack c b)’, ’(put-down c)’, ’(pick-up b)’, ’(
stack b e)’, ’(pick-up c)’, ’(stack c b)’]

Failed to validate the plan for problem blocks_instances/instance-453.
pddl

[’(unstack e a)’, ’(put-down e)’, ’(unstack a d)’, ’(unstack d b)’, ’(
put-down d)’, ’(unstack b c)’, ’(stack b e)’, ’(pick-up d)’, ’(
stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-454.
pddl

[’(unstack b c)’, ’(put-down b)’, ’(unstack c d)’, ’(unstack d e)’, ’(
put-down d)’, ’(unstack e a)’, ’(stack e d)’, ’(pick-up a)’, ’(
stack a b)’]

Failed to validate the plan for problem blocks_instances/instance-455.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-458.

pddl
[’(pick-up e)’, ’(stack e b)’, ’(pick-up d)’, ’(stack d e)’]
Failed to validate the plan for problem blocks_instances/instance-459.

pddl

140

[’(unstack e b)’, ’(unstack b a)’, ’(put-down b)’, ’(unstack a c)’, ’(
put-down a)’, ’(pick-up b)’, ’(stack b a)’, ’(unstack c d)’, ’(
pick-up d)’, ’(stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-460.
pddl

[’(unstack a c)’, ’(put-down a)’, ’(unstack d e)’, ’(stack d a)’, ’(
unstack e b)’, ’(put-down e)’, ’(pick-up b)’, ’(stack b c)’, ’(
pick-up e)’, ’(stack e b)’]

Failed to validate the plan for problem blocks_instances/instance-462.
pddl

[’(unstack e d)’, ’(put-down e)’, ’(unstack d a)’, ’(pick-up e)’, ’(
stack e a)’]

Failed to validate the plan for problem blocks_instances/instance-463.
pddl

[’(unstack d c)’, ’(put-down d)’, ’(unstack c b)’, ’(put-down c)’, ’(
pick-up d)’, ’(stack d b)’, ’(pick-up c)’, ’(stack c d)’]

Failed to validate the plan for problem blocks_instances/instance-465.
pddl

[’(pick-up c)’, ’(stack c e)’, ’(unstack b a)’, ’(stack b d)’, ’(pick-
up a)’, ’(stack a c)’]

Failed to validate the plan for problem blocks_instances/instance-466.
pddl

[’(pick-up a)’, ’(stack a c)’, ’(unstack e b)’, ’(put-down e)’, ’(
unstack b d)’, ’(put-down b)’, ’(pick-up d)’, ’(stack d e)’, ’(
pick-up b)’, ’(stack b d)’]

Failed to validate the plan for problem blocks_instances/instance-467.
pddl

[’(unstack d e)’, ’(put-down d)’, ’(unstack e b)’, ’(stack e a)’, ’(
unstack b c)’, ’(pick-up c)’, ’(stack c d)’]

Failed to validate the plan for problem blocks_instances/instance-468.
pddl

[’(unstack a e)’, ’(put-down a)’, ’(pick-up e)’, ’(stack e c)’, ’(
unstack b d)’, ’(stack b e)’, ’(pick-up d)’, ’(stack d a)’]

Failed to validate the plan for problem blocks_instances/instance-469.
pddl

[’(unstack e c)’, ’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(
stack a c)’, ’(pick-up d)’, ’(stack d a)’, ’(pick-up b)’, ’(stack
b d)’]

Failed to validate the plan for problem blocks_instances/instance-47.
pddl

[’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(stack a b)’, ’(
pick-up d)’, ’(stack d a)’, ’(pick-up c)’, ’(stack c d)’]

Failed to validate the plan for problem blocks_instances/instance-471.
pddl

[’(unstack d c)’, ’(stack d a)’, ’(pick-up e)’, ’(stack e c)’]
Failed to validate the plan for problem blocks_instances/instance-472.

pddl
[’(unstack a c)’, ’(stack a b)’, ’(unstack c e)’, ’(put-down c)’, ’(

unstack e d)’, ’(stack e c)’, ’(pick-up d)’, ’(stack d a)’]
Failed to validate the plan for problem blocks_instances/instance-475.

pddl
[’(pick-up c)’, ’(stack c e)’, ’(pick-up d)’, ’(stack d c)’, ’(pick-up

a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-478.

pddl
[’(unstack c d)’, ’(unstack d e)’, ’(put-down d)’, ’(unstack e a)’, ’(

put-down e)’, ’(unstack a b)’, ’(stack a d)’, ’(pick-up e)’, ’(
stack e a)’, ’(pick-up b)’, ’(stack b e)’]

Failed to validate the plan for problem blocks_instances/instance-479.
pddl

[’(unstack a e)’, ’(put-down a)’, ’(unstack d c)’, ’(stack d a)’, ’(
pick-up c)’, ’(stack c e)’]

Failed to validate the plan for problem blocks_instances/instance-48.
pddl

[]

141

Failed to validate the plan for problem blocks_instances/instance-480.
pddl

[’(unstack a e)’, ’(put-down a)’, ’(unstack e b)’, ’(stack e a)’, ’(
pick-up d)’, ’(stack d b)’]

Failed to validate the plan for problem blocks_instances/instance-481.
pddl

[’(unstack d a)’, ’(put-down d)’, ’(unstack a b)’, ’(stack a d)’, ’(
unstack b c)’, ’(stack b e)’, ’(pick-up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-482.
pddl

[’(unstack a d)’, ’(unstack e c)’, ’(put-down e)’, ’(pick-up d)’, ’(
stack d e)’, ’(unstack c b)’, ’(pick-up b)’, ’(stack b d)’]

Failed to validate the plan for problem blocks_instances/instance-483.
pddl

[’(unstack b a)’, ’(unstack a c)’, ’(pick-up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-484.

pddl
[’(unstack a e)’, ’(put-down a)’, ’(unstack d c)’, ’(put-down d)’, ’(

pick-up e)’, ’(stack e c)’, ’(pick-up d)’, ’(stack d e)’, ’(pick-
up a)’, ’(stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-485.
pddl

[’(unstack b e)’, ’(put-down b)’, ’(unstack e c)’, ’(stack e a)’, ’(
pick-up c)’, ’(stack c d)’, ’(pick-up b)’, ’(stack b e)’]

Failed to validate the plan for problem blocks_instances/instance-486.
pddl

[’(unstack c b)’, ’(put-down c)’, ’(unstack d a)’, ’(stack d c)’, ’(
unstack a e)’, ’(stack a d)’, ’(pick-up b)’, ’(stack b e)’]

Failed to validate the plan for problem blocks_instances/instance-487.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-489.

pddl
[’(unstack a e)’, ’(put-down a)’, ’(unstack e c)’, ’(stack e b)’, ’(

pick-up c)’, ’(stack c a)’]
Failed to validate the plan for problem blocks_instances/instance-490.

pddl
[’(pick-up a)’, ’(stack a b)’, ’(pick-up d)’, ’(stack d a)’, ’(unstack

e c)’, ’(pick-up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-493.

pddl
[’(unstack b d)’, ’(stack b a)’, ’(unstack e c)’, ’(put-down e)’, ’(

pick-up d)’, ’(stack d c)’, ’(pick-up e)’, ’(stack e d)’]
Failed to validate the plan for problem blocks_instances/instance-494.

pddl
[’(pick-up a)’, ’(stack a e)’, ’(pick-up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-498.

pddl
[’(unstack c d)’, ’(put-down c)’, ’(pick-up a)’, ’(stack a d)’, ’(

unstack e b)’, ’(stack e a)’, ’(pick-up b)’, ’(stack b c)’]
Failed to validate the plan for problem blocks_instances/instance-499.

pddl
[’(unstack d a)’, ’(put-down d)’, ’(unstack a e)’, ’(pick-up d)’, ’(

stack d e)’]
Failed to validate the plan for problem blocks_instances/instance-50.

pddl
[’(unstack b c)’, ’(stack b a)’, ’(pick-up c)’, ’(stack c b)’, ’(pick-

up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-500.

pddl
[’(pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-501.

pddl
[’(pick-up b)’, ’(stack b d)’]

142

Failed to validate the plan for problem blocks_instances/instance-51.
pddl

[’(unstack a c)’, ’(put-down a)’, ’(unstack d b)’, ’(put-down d)’, ’(
pick-up b)’, ’(stack b a)’, ’(pick-up c)’, ’(stack c b)’, ’(pick-
up d)’, ’(stack d c)’]

Failed to validate the plan for problem blocks_instances/instance-52.
pddl

[’(unstack c a)’, ’(put-down c)’, ’(pick-up a)’, ’(stack a c)’, ’(
unstack d b)’, ’(pick-up b)’, ’(stack b a)’]

Failed to validate the plan for problem blocks_instances/instance-53.
pddl

[’(unstack d a)’, ’(put-down d)’, ’(unstack a b)’, ’(put-down a)’, ’(
unstack b c)’, ’(stack b d)’, ’(pick-up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-54.
pddl

[’(unstack d c)’, ’(put-down d)’, ’(pick-up a)’, ’(stack a d)’, ’(pick
-up c)’, ’(stack c a)’, ’(pick-up b)’, ’(stack b c)’]

Failed to validate the plan for problem blocks_instances/instance-55.
pddl

[’(unstack d b)’, ’(put-down d)’, ’(unstack b c)’, ’(put-down b)’, ’(
unstack c a)’, ’(stack c d)’, ’(pick-up a)’, ’(stack a c)’, ’(pick
-up b)’, ’(stack b a)’]

Failed to validate the plan for problem blocks_instances/instance-57.
pddl

[’(unstack c b)’, ’(put-down c)’, ’(unstack b d)’, ’(put-down b)’, ’(
pick-up c)’, ’(stack c b)’, ’(unstack d a)’, ’(put-down d)’, ’(
pick-up a)’, ’(stack a c)’, ’(pick-up d)’, ’(stack d a)’]

Failed to validate the plan for problem blocks_instances/instance-58.
pddl

[’(unstack a b)’, ’(put-down a)’, ’(unstack b d)’, ’(pick-up a)’, ’(
stack a d)’]

Failed to validate the plan for problem blocks_instances/instance-6.
pddl

[’(unstack d a)’, ’(put-down d)’, ’(unstack a c)’, ’(put-down a)’, ’(
unstack c b)’, ’(stack c d)’, ’(pick-up b)’, ’(stack b a)’]

Failed to validate the plan for problem blocks_instances/instance-60.
pddl

[’(unstack d c)’, ’(unstack c a)’, ’(put-down c)’, ’(pick-up a)’, ’(
stack a b)’, ’(pick-up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-61.
pddl

[’(pick-up a)’, ’(stack a c)’, ’(unstack d b)’, ’(stack d a)’]
Failed to validate the plan for problem blocks_instances/instance-62.

pddl
[’(unstack b c)’, ’(put-down b)’, ’(pick-up a)’, ’(stack a b)’, ’(

unstack c d)’, ’(put-down c)’, ’(pick-up d)’, ’(stack d a)’, ’(
pick-up c)’, ’(stack c d)’]

Failed to validate the plan for problem blocks_instances/instance-63.
pddl

[’(unstack a c)’, ’(pick-up c)’, ’(stack c b)’, ’(pick-up d)’, ’(stack
d c)’]

Failed to validate the plan for problem blocks_instances/instance-64.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-65.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-66.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(unstack c d)’, ’(stack c b)’, ’(

pick-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-68.

pddl
[’(unstack d a)’, ’(put-down d)’, ’(unstack a b)’, ’(put-down a)’, ’(

unstack b c)’, ’(stack b d)’, ’(pick-up c)’, ’(stack c a)’]

143

Failed to validate the plan for problem blocks_instances/instance-69.
pddl

[’(unstack a b)’, ’(put-down a)’, ’(unstack b d)’, ’(stack b c)’, ’(
pick-up d)’, ’(stack d a)’]

Failed to validate the plan for problem blocks_instances/instance-7.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(unstack d b)’, ’(unstack b c)’, ’(
pick-up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-70.
pddl

[’(pick-up d)’, ’(stack d c)’]
Failed to validate the plan for problem blocks_instances/instance-71.

pddl
[’(pick-up a)’, ’(stack a d)’]
Failed to validate the plan for problem blocks_instances/instance-72.

pddl
[’(unstack a d)’, ’(pick-up d)’, ’(stack d b)’]
Failed to validate the plan for problem blocks_instances/instance-73.

pddl
[’(unstack d c)’, ’(stack d a)’, ’(pick-up b)’, ’(stack b c)’]
Failed to validate the plan for problem blocks_instances/instance-74.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-75.

pddl
[’(unstack d c)’, ’(put-down d)’, ’(unstack c a)’, ’(put-down c)’, ’(

unstack a b)’, ’(stack a d)’, ’(pick-up c)’, ’(stack c a)’]
Failed to validate the plan for problem blocks_instances/instance-76.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-77.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(unstack c b)’, ’(put-down c)’, ’(

pick-up b)’, ’(stack b a)’, ’(pick-up d)’, ’(stack d b)’, ’(pick-
up c)’, ’(stack c d)’]

Failed to validate the plan for problem blocks_instances/instance-78.
pddl

[’(pick-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-8.

pddl
[’(unstack b c)’, ’(stack b a)’, ’(pick-up d)’, ’(stack d b)’, ’(pick-

up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-82.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(unstack c b)’, ’(stack c d)’, ’(

pick-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-83.

pddl
[’(unstack b c)’, ’(put-down b)’, ’(unstack c a)’, ’(stack c d)’, ’(

pick-up a)’, ’(stack a c)’, ’(pick-up b)’, ’(stack b a)’]
Failed to validate the plan for problem blocks_instances/instance-85.

pddl
[’(unstack b a)’, ’(unstack a c)’, ’(put-down a)’, ’(pick-up c)’, ’(

stack c d)’, ’(pick-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-86.

pddl
[]
Failed to validate the plan for problem blocks_instances/instance-87.

pddl
[’(unstack b a)’, ’(put-down b)’, ’(unstack a c)’, ’(put-down a)’, ’(

unstack c d)’, ’(put-down c)’, ’(pick-up d)’, ’(stack d b)’, ’(
pick-up a)’, ’(stack a d)’, ’(pick-up c)’, ’(stack c a)’]

Failed to validate the plan for problem blocks_instances/instance-88.
pddl

144

[’(unstack d b)’, ’(put-down d)’, ’(unstack b c)’, ’(stack b a)’, ’(
pick-up c)’, ’(stack c d)’]

Failed to validate the plan for problem blocks_instances/instance-89.
pddl

[’(unstack a d)’, ’(put-down a)’, ’(unstack b c)’, ’(stack b a)’, ’(
pick-up c)’, ’(stack c d)’]

Failed to validate the plan for problem blocks_instances/instance-90.
pddl

[]
Failed to validate the plan for problem blocks_instances/instance-91.

pddl
[’(unstack b a)’, ’(put-down b)’, ’(unstack a d)’, ’(put-down a)’, ’(

unstack d c)’, ’(stack d a)’, ’(pick-up c)’, ’(stack c b)’]
Failed to validate the plan for problem blocks_instances/instance-92.

pddl
[’(unstack d c)’, ’(put-down d)’, ’(unstack c b)’, ’(stack c a)’, ’(

pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-93.

pddl
[’(unstack c a)’, ’(put-down c)’, ’(unstack a d)’, ’(put-down a)’, ’(

pick-up c)’, ’(stack c d)’, ’(pick-up a)’, ’(stack a c)’]
Failed to validate the plan for problem blocks_instances/instance-95.

pddl
[’(unstack b d)’, ’(put-down b)’, ’(unstack d a)’, ’(put-down d)’, ’(

unstack a c)’, ’(stack a b)’, ’(pick-up c)’, ’(stack c d)’]
Failed to validate the plan for problem blocks_instances/instance-96.

pddl
[’(unstack a d)’, ’(put-down a)’, ’(pick-up d)’, ’(stack d a)’, ’(

unstack c b)’, ’(pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-97.

pddl
[’(unstack a c)’, ’(put-down a)’, ’(unstack c d)’, ’(stack c a)’, ’(

pick-up b)’, ’(stack b d)’]
Failed to validate the plan for problem blocks_instances/instance-99.

pddl
[’(unstack a d)’, ’(put-down a)’, ’(unstack d b)’, ’(stack d c)’, ’(

pick-up b)’, ’(stack b a)’]
Evaluating the final outcome
Success: 146, failure: 356, total expansions 95968, total generated

283607

9.3 5x5 Crosswords

9.3.1 Deepseek-CoderV2

Listing 36: Without partial successor soundness test

AutoToS prompt:

The task is a 5x5 mini crosswords. A state is a 2D array representing
the current puzzle state, where the initial grid is all "None".
Note that some of the possible answers are not exactly 5 character
long. Given an input of possible answers to horizontal clues and

vertical clues, how is the successor state function defined?
Please first think step by step. Then provide the successor state
function in Python code.

The possible clues for each row and each column are given separately.
Here is an example of possible horizontal and vertical clues:

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds

", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank

", "gears", "turbn", "motor"],

145

["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud
", "vogue", "swank", "luxus"],

["venue", "salle", "forum", "atria", "lobby", "parls", "court
", "malls", "mall", "lobby"],

["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid",
"gibes", "gibed", "flout"]

]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy",
"gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx",
"gnu", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "
plans", "ideas", "plots", "cocks"],

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet
", "vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear",
"sear", "pall", "lack"]

]

where horizontal_answers is a list where element i is a list of
possible answers to clue in row i, and vertical_answers is a list
where element i is a list of possible answers to clue in column i.

Model response:
To define the successor state function for a 5x5 mini crossword puzzle

, we need to consider how to update the puzzle state based on the
given possible answers for horizontal and vertical clues. The goal
is to fill in the puzzle grid such that each row and column

contains one of the provided possible answers.

Step-by-Step Thought Process:

1. **Initialization**: Start with an empty 5x5 grid where each cell is
initialized to ‘None‘.

2. **Selection of Answers**: For each row and each column, select one
of the possible answers. The selection should be such that it does
not conflict with the already placed answers in the grid.

3. **Placement of Answers**: Place the selected answer into the
corresponding row or column of the grid. Ensure that the placement
does not violate the constraints of the crossword (i.e., letters

at intersections must match).
4. **Validation**: After placing an answer, validate the grid to

ensure it remains consistent. If a conflict is detected, backtrack
or try a different answer.

5. **Iteration**: Repeat the process until the grid is fully populated
or until no valid placements can be made.

Successor State Function in Python:

The following Python function ‘get_successor_state‘ takes the current
state of the puzzle, the list of horizontal and vertical possible
answers, and returns the next valid state of the puzzle:

python
‘‘‘
def get_successor_state(current_state, horizontal_answers,

vertical_answers):
def is_valid_placement(state, answer, row_or_col, is_row):

if is_row:
for i in range(len(answer)):

if state[row_or_col][i] is not None and state[
row_or_col][i] != answer[i]:
return False

else:

146

for i in range(len(answer)):
if state[i][row_or_col] is not None and state[i][

row_or_col] != answer[i]:
return False

return True

def place_answer(state, answer, row_or_col, is_row):
if is_row:

for i in range(len(answer)):
state[row_or_col][i] = answer[i]

else:
for i in range(len(answer)):

state[i][row_or_col] = answer[i]

def remove_answer(state, answer, row_or_col, is_row):
if is_row:

for i in range(len(answer)):
state[row_or_col][i] = None

else:
for i in range(len(answer)):

state[i][row_or_col] = None

for row in range(5):
for answer in horizontal_answers[row]:

if is_valid_placement(current_state, answer, row, True):
place_answer(current_state, answer, row, True)
break

for col in range(5):
for answer in vertical_answers[col]:

if is_valid_placement(current_state, answer, col, False):
place_answer(current_state, answer, col, False)
break

return current_state

Example usage:
initial_state = [[None for _ in range(5)] for _ in range(5)]
successor_state = get_successor_state(initial_state,

horizontal_answers, vertical_answers)
print(successor_state)
‘‘‘

Explanation:

- **is_valid_placement**: Checks if placing an answer in a specific
row or column is valid without conflicts.

- **place_answer**: Places the answer in the specified row or column.
- **remove_answer**: Removes the answer from the specified row or

column (useful for backtracking, which is not implemented here but
can be added for a complete solution).

- **get_successor_state**: Iterates through each row and column,
trying to place valid answers from the provided lists.

This function assumes that there is at least one valid answer for each
row and column. If conflicts arise or no valid answer can be

found, additional logic (like backtracking) would be needed to
handle those cases

AutoToS prompt:

Please provide a goal test function in Python ensuring that all cells
are not None, all words horizontally are matching at least one of
the horizontal answers, and all words vertically match at least
one of the vertical answers. The function should receive a state,

147

horizontal_answers, and vertical_answers as before and return True
for a goal state and False otherwise.

Model response:
Certainly! The goal test function will check if the current state of

the puzzle meets the criteria for being a goal state. This
includes ensuring that all cells are filled (not ‘None‘), and that
each row and column contains a word that matches at least one of

the provided possible answers for horizontal and vertical clues,
respectively.

Here’s the Python function ‘is_goal_state‘ that performs this check:

python
‘‘‘
def is_goal_state(state, horizontal_answers, vertical_answers):

Check if all cells are filled
for row in state:

if None in row:
return False

Check if each row matches at least one of the horizontal answers
for i, row in enumerate(state):

row_word = ’’.join(row)
if row_word not in horizontal_answers[i]:

return False

Check if each column matches at least one of the vertical
answers

for j in range(len(state[0])):
col_word = ’’.join(state[i][j] for i in range(len(state)))
if col_word not in vertical_answers[j]:

return False

If all checks pass, the state is a goal state
return True

Example usage:
goal_state = [

["tasks", "motor", "grand", "venue", "jeer"],
["amass", "nilga", "scheme", "spout", "drier"],
Fill in the rest of the rows to match the example provided

]

print(is_goal_state(goal_state, horizontal_answers, vertical_answers))
‘‘‘

Explanation:

1. **Check if all cells are filled**: The function first iterates
through each row of the state. If any cell contains ‘None‘, it
returns ‘False‘ immediately, indicating that the state is not a
goal state.

2. **Check horizontal matches**: For each row, the function constructs
a string (‘row_word‘) from the cells of that row. It then checks

if this string is present in the list of possible horizontal
answers for that row. If not, it returns ‘False‘.

3. **Check vertical matches**: For each column, the function
constructs a string (‘col_word‘) from the cells of that column. It
then checks if this string is present in the list of possible

vertical answers for that column. If not, it returns ‘False‘.

148

4. **Return True if all checks pass**: If all rows and columns pass
the checks, the function returns ‘True‘, indicating that the state
is a goal state.

This function assumes that the state is a valid 5x5 grid and that the
‘horizontal_answers‘ and ‘vertical_answers‘ lists are correctly
formatted as described

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Input state should not change as a result of applying the successor

function.
State before successor function applied: [[None, None, None, None,

None], [None, None, None, None, None], [None, None, None, None,
None], [None, None, None, None, None], [None, None, None, None,
None]]

State after successor function applied: [[’t’, ’a’, ’s’, ’k’, ’s’], [’
m’, ’o’, ’t’, ’o’, ’r’], [’g’, ’r’, ’a’, ’n’, ’d’], [’v’, ’e’, ’n
’, ’u’, ’e’], [’j’, ’e’, ’e’, ’r’, None]]

Let’s think step by step. First, think of the possible reasons why the
input state may change as a result of applying the successor

function, such as the use of shallow copy.
Then, provide the complete Python code for the revised successor

function that returns a list of successor states and ensure it
does not change the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’
works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme
’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr
’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

Model response:
To ensure that the input state does not change as a result of applying

the successor function, we need to make sure that we are working
with a deep copy of the state rather than a shallow copy. A
shallow copy would only copy the references to the lists within
the state, meaning changes to the inner lists would affect the
original state. A deep copy, on the other hand, creates a
completely independent copy of the state, including all nested
structures.

Here’s the revised successor function that returns a list of successor
states without modifying the input state:

python
‘‘‘
import copy

149

def get_successor_state(current_state, horizontal_answers,
vertical_answers):
def is_valid_placement(state, answer, row_or_col, is_row):

if is_row:
for i in range(len(answer)):

if state[row_or_col][i] is not None and state[
row_or_col][i] != answer[i]:
return False

else:
for i in range(len(answer)):

if state[i][row_or_col] is not None and state[i][
row_or_col] != answer[i]:
return False

return True

def place_answer(state, answer, row_or_col, is_row):
new_state = copy.deepcopy(state)
if is_row:

for i in range(len(answer)):
new_state[row_or_col][i] = answer[i]

else:
for i in range(len(answer)):

new_state[i][row_or_col] = answer[i]
return new_state

successor_states = []

for row in range(5):
for answer in horizontal_answers[row]:

if is_valid_placement(current_state, answer, row, True):
new_state = place_answer(current_state, answer, row,

True)
successor_states.append(new_state)

for col in range(5):
for answer in vertical_answers[col]:

if is_valid_placement(current_state, answer, col, False):
new_state = place_answer(current_state, answer, col,

False)
successor_states.append(new_state)

return successor_states

Example usage:
initial_state = [[None for _ in range(5)] for _ in range(5)]
successor_states = get_successor_state(initial_state,

horizontal_answers, vertical_answers)
for state in successor_states:

print(state)
‘‘‘

Explanation:

1. **Deep Copy**: The ‘place_answer‘ function now creates a deep copy
of the state using ‘copy.deepcopy‘ before placing the answer. This
ensures that the original state remains unchanged.

2. **Return List of States**: The function now returns a list of
successor states, each representing a possible next state of the
puzzle.

3. **Validation and Placement**: The ‘is_valid_placement‘ function
checks if placing an answer is valid, and ‘place_answer‘ places
the answer in the deep-copied state.

150

This revised function ensures that the input state is not modified and
returns a list of valid successor states based on the provided

horizontal and vertical clues
Successor Iteration 2

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 9, in is_valid_placement

list index out of range. Please fix this exception in the successor
function.

Model response:
The ‘list index out of range‘ exception occurs when the function tries

to access an index that is beyond the length of the list. This
can happen if the length of the answer (word) being placed is less
than 5 characters, causing an out-of-bounds access when trying to
place it in the 5x5 grid.

To fix this, we need to ensure that the length of the answer being
placed matches the length of the row or column it is being placed
in. If the answer is shorter than 5 characters, it should be
padded with ‘None‘ or another placeholder to match the length of
the grid.

Here’s the revised successor function with the necessary checks and
fixes:

python
‘‘‘
import copy

def get_successor_state(current_state, horizontal_answers,
vertical_answers):
def is_valid_placement(state, answer, row_or_col, is_row):

if is_row:
if len(answer) != len(state[row_or_col]):

return False
for i in range(len(answer)):

if state[row_or_col][i] is not None and state[
row_or_col][i] != answer[i]:
return False

else:
if len(answer) != len(state):

return False
for i in range(len(answer)):

if state[i][row_or_col] is not None and state[i][
row_or_col] != answer[i]:
return False

return True

def place_answer(state, answer, row_or_col, is_row):
new_state = copy.deepcopy(state)
if is_row:

for i in range(len(answer)):
new_state[row_or_col][i] = answer[i]

else:
for i in range(len(answer)):

new_state[i][row_or_col] = answer[i]
return new_state

successor_states = []

for row in range(5):
for answer in horizontal_answers[row]:

151

if is_valid_placement(current_state, answer, row, True):
new_state = place_answer(current_state, answer, row,

True)
successor_states.append(new_state)

for col in range(5):
for answer in vertical_answers[col]:

if is_valid_placement(current_state, answer, col, False):
new_state = place_answer(current_state, answer, col,

False)
successor_states.append(new_state)

return successor_states

Example usage:
initial_state = [[None for _ in range(5)] for _ in range(5)]
successor_states = get_successor_state(initial_state,

horizontal_answers, vertical_answers)
for state in successor_states:

print(state)
‘‘‘

Explanation:

1. **Length Check**: The ‘is_valid_placement‘ function now includes
checks to ensure that the length of the answer matches the length
of the row or column it is being placed in. If the lengths do not
match, the placement is considered invalid.

2. **Deep Copy**: The ‘place_answer‘ function continues to use ‘copy.
deepcopy‘ to create a deep copy of the state before placing the
answer, ensuring that the original state remains unchanged.

3. **Return List of States**: The function returns a list of successor
states, each representing a possible next state of the puzzle.

This revised function should no longer produce the ‘list index out of
range‘ exception and will correctly handle answers of varying
lengths by ensuring they match the dimensions of the 5x5 grid

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 20, failure: 0, total expansions 462616, total generated

3904718

Listing 37: With partial successor soundness test

AutoToS prompt:

The task is a 5x5 mini crosswords. A state is a 2D array representing
the current puzzle state, where the initial grid is all "None".
Note that some of the possible answers are not exactly 5 character
long. Given an input of possible answers to horizontal clues and

vertical clues, how is the successor state function defined?
Please first think step by step. Then provide the successor state
function in Python code.

The possible clues for each row and each column are given separately.
Here is an example of possible horizontal and vertical clues:

horizontal_answers = [

152

["tasks", "goals", "plans", "agend", "chores", "works", "deeds
", "items", "lists", "brief"],

["motor", "power", "drive", "diesel", "steam", "pumps", "crank
", "gears", "turbn", "motor"],

["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud
", "vogue", "swank", "luxus"],

["venue", "salle", "forum", "atria", "lobby", "parls", "court
", "malls", "mall", "lobby"],

["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid",
"gibes", "gibed", "flout"]

]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy",
"gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx",
"gnu", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "
plans", "ideas", "plots", "cocks"],

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet
", "vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear",
"sear", "pall", "lack"]

]

where horizontal_answers is a list where element i is a list of
possible answers to clue in row i, and vertical_answers is a list
where element i is a list of possible answers to clue in column i.

Model response:
To define the successor state function for a 5x5 mini crossword puzzle

, we need to consider how to update the puzzle state based on the
given possible answers for horizontal and vertical clues. The goal
is to fill in the puzzle grid one cell at a time, ensuring that

each cell is filled correctly according to the constraints
provided by the possible answers.

Step-by-Step Approach:

1. **Initialization**: Start with an empty 5x5 grid (all cells set to
‘None‘).

2. **Selection**: Choose a row or column to fill next. This choice can
be made based on the current state of the puzzle, aiming to

minimize conflicts or maximize progress.
3. **Validation**: For the chosen row or column, check each possible

answer to see if it fits within the current state of the puzzle
without conflicts.

4. **Update**: If a valid answer is found, update the corresponding
row or column in the puzzle grid.

5. **Iteration**: Repeat the process until the puzzle is fully solved
or no further progress can be made.

Successor State Function in Python:

The following Python function ‘get_successor_state‘ implements the
successor state logic:

python
‘‘‘
def get_successor_state(current_state, horizontal_answers,

vertical_answers):
def is_valid_placement(state, answer, row_or_col, is_row):

if is_row:
for i in range(len(answer)):

if state[row_or_col][i] is not None and state[
row_or_col][i] != answer[i]:

153

return False
else:

for i in range(len(answer)):
if state[i][row_or_col] is not None and state[i][

row_or_col] != answer[i]:
return False

return True

def place_answer(state, answer, row_or_col, is_row):
if is_row:

for i in range(len(answer)):
state[row_or_col][i] = answer[i]

else:
for i in range(len(answer)):

state[i][row_or_col] = answer[i]

for row in range(5):
for answer in horizontal_answers[row]:

if len(answer) <= 5 and is_valid_placement(current_state,
answer, row, True):
new_state = [row[:] for row in current_state]
place_answer(new_state, answer, row, True)
yield new_state

for col in range(5):
for answer in vertical_answers[col]:

if len(answer) <= 5 and is_valid_placement(current_state,
answer, col, False):
new_state = [row[:] for row in current_state]
place_answer(new_state, answer, col, False)
yield new_state

Example usage:
initial_state = [[None] * 5 for _ in range(5)]
for state in get_successor_state(initial_state, horizontal_answers,

vertical_answers):
for row in state:

print(row)
print("-----")

‘‘‘

Explanation:

1. **is_valid_placement**: This helper function checks if a given
answer can be placed in a specified row or column without
conflicts.

2. **place_answer**: This helper function places a valid answer into
the specified row or column of the puzzle grid.

3. **get_successor_state**: This function iterates over each row and
column, trying to place each possible answer. If a valid placement
is found, it yields the updated state.

This approach ensures that the puzzle is filled incrementally,
respecting the constraints provided by the possible answers for
each row and column

AutoToS prompt:

Please provide a goal test function in Python ensuring that all cells
are not None, all words horizontally are matching at least one of
the horizontal answers, and all words vertically match at least
one of the vertical answers. The function should receive a state,
horizontal_answers, and vertical_answers as before and return True
for a goal state and False otherwise.

154

Model response:
Certainly! Below is the Python function ‘is_goal_state‘ that checks if

a given state of the 5x5 mini crossword puzzle meets the criteria
for being a goal state:

python
‘‘‘
def is_goal_state(state, horizontal_answers, vertical_answers):

Check if all cells are not None
for row in state:

if None in row:
return False

Check if all horizontal words match at least one of the
horizontal answers

for i, row in enumerate(state):
word = ’’.join(row)
if word not in horizontal_answers[i]:

return False

Check if all vertical words match at least one of the vertical
answers

for j in range(5):
word = ’’.join(state[i][j] for i in range(5))
if word not in vertical_answers[j]:

return False

return True

Example usage:
goal_state = [

[’t’, ’a’, ’s’, ’k’, ’s’],
[’m’, ’o’, ’t’, ’o’, ’r’],
[’g’, ’r’, ’a’, ’n’, ’d’],
[’v’, ’e’, ’n’, ’u’, ’e’],
[’j’, ’e’, ’e’, ’r’, ’s’]

]

print(is_goal_state(goal_state, horizontal_answers, vertical_answers))
Should return True

‘‘‘

Explanation:

1. **Check for None Cells**: The function first iterates through each
row of the state to ensure that no cell contains ‘None‘. If any
cell is ‘None‘, it returns ‘False‘.

2. **Check Horizontal Words**: For each row, the function constructs
the word by joining the characters in the row and checks if this
word is present in the corresponding list of horizontal answers.
If any word does not match, it returns ‘False‘.

3. **Check Vertical Words**: For each column, the function constructs
the word by joining the characters in the column and checks if
this word is present in the corresponding list of vertical answers
. If any word does not match, it returns ‘False‘.

4. **Return True**: If all checks pass, the function returns ‘True‘,
indicating that the state is a goal state.

This function ensures that the puzzle is fully solved and that all
words match the given clues for both horizontal and vertical
directions

155

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Successor state has the same number of filled cells as the parent

state.
Let’s think step by step. First, think what you did wrong.
Then, think of in what ways successor state should be different from

the parent state.
Then, provide the complete Python code for the revised successor

function that returns a list of successor states.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Input state: [[None, None, None, None, ’l’], [None, None, None, None,
’a’], [None, None, None, None, ’c’], [None, None, None, None, ’k
’], [None, None, None, None, None]]

Example wrong successor state: [[None, None, None, None, ’l’], [None,
None, None, None, ’a’], [None, None, None, None, ’c’], [None, None
, None, None, ’k’], [None, None, None, None, None]]

Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’
works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme
’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr
’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

Model response:
Step-by-Step Analysis and Revision

What Went Wrong:
The initial successor state function did not ensure that each

successor state had a different number of filled cells compared to
the parent state. This means that the function was not

progressing the state towards a solution but rather generating
states that were identical to the parent state.

How to Make Successor State Different:
To ensure that each successor state is different from the parent state

, we need to:
1. Only attempt to place words in rows or columns that have empty

cells.
2. Ensure that placing a word in a row or column changes the state by

filling in at least one ‘None‘ cell.
3. Avoid generating states that are identical to the parent state.

Revised Successor State Function:
The revised function will focus on filling in the next available ‘None

‘ cell by trying to place valid words from the horizontal and
vertical clues.

python
‘‘‘

156

def get_successor_state(current_state, horizontal_answers,
vertical_answers):
def is_valid_placement(state, answer, row_or_col, is_row):

if is_row:
for i in range(len(answer)):

if state[row_or_col][i] is not None and state[
row_or_col][i] != answer[i]:
return False

else:
for i in range(len(answer)):

if state[i][row_or_col] is not None and state[i][
row_or_col] != answer[i]:
return False

return True

def place_answer(state, answer, row_or_col, is_row):
if is_row:

for i in range(len(answer)):
state[row_or_col][i] = answer[i]

else:
for i in range(len(answer)):

state[i][row_or_col] = answer[i]

successor_states = []

Try to place horizontal answers
for row in range(5):

if None in current_state[row]: # Only attempt to place if
there are None cells
for answer in horizontal_answers[row]:

if len(answer) <= 5 and is_valid_placement(
current_state, answer, row, True):
new_state = [row[:] for row in current_state]
place_answer(new_state, answer, row, True)
if new_state != current_state: # Ensure the state

has changed
successor_states.append(new_state)

Try to place vertical answers
for col in range(5):

if any(current_state[row][col] is None for row in range(5)):
Only attempt to place if there are None cells
for answer in vertical_answers[col]:

if len(answer) <= 5 and is_valid_placement(
current_state, answer, col, False):
new_state = [row[:] for row in current_state]
place_answer(new_state, answer, col, False)
if new_state != current_state: # Ensure the state

has changed
successor_states.append(new_state)

return successor_states

Example usage:
initial_state = [

[None, None, None, None, ’l’],
[None, None, None, None, ’a’],
[None, None, None, None, ’c’],
[None, None, None, None, ’k’],
[None, None, None, None, None]

]

successor_states = get_successor_state(initial_state,
horizontal_answers, vertical_answers)

for state in successor_states:

157

for row in state:
print(row)

print("-----")
‘‘‘

Explanation:
1. **is_valid_placement**: Checks if an answer can be placed in a

specified row or column without conflicts.
2. **place_answer**: Places a valid answer into the specified row or

column of the puzzle grid.
3. **get_successor_state**: Iterates over each row and column, trying

to place each possible answer. It ensures that only rows or
columns with ‘None‘ cells are attempted, and it only adds states
to the successor list if they are different from the current state
.

This revised function ensures that each successor state has a
different number of filled cells compared to the parent state,
progressing the puzzle towards a solution

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 20, failure: 0, total expansions 1587973, total generated

5939765

9.3.2 GPT4-Mini

Listing 38: Without partial successor soundness test

AutoToS prompt:

The task is a 5x5 mini crosswords. A state is a 2D array representing
the current puzzle state, where the initial grid is all "None".
Note that some of the possible answers are not exactly 5 character
long. Given an input of possible answers to horizontal clues and

vertical clues, how is the successor state function defined?
Please first think step by step. Then provide the successor state
function in Python code.

The possible clues for each row and each column are given separately.
Here is an example of possible horizontal and vertical clues:

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds

", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank

", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud

", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court

", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid",

"gibes", "gibed", "flout"]
]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy",
"gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx",
"gnu", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "
plans", "ideas", "plots", "cocks"],

158

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet
", "vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear",
"sear", "pall", "lack"]

]

where horizontal_answers is a list where element i is a list of
possible answers to clue in row i, and vertical_answers is a list
where element i is a list of possible answers to clue in column i.

Model response:
‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

from typing import List, Optional

def is_valid_placement(state: List[List[Optional[str]]], word: str
, row: int, col: int, is_horizontal: bool) -> bool:
length = len(word)
if is_horizontal:

if col + length > len(state[0]) or any(state[row][col + i]
not in {None, word[i]} for i in range(length)):
return False

else:
if row + length > len(state) or any(state[row + i][col]

not in {None, word[i]} for i in range(length)):
return False

return True

def place_word(state: List[List[Optional[str]]], word: str, row:
int, col: int, is_horizontal: bool) -> List[List[Optional[str
]]]:
new_state = [row[:] for row in state]
length = len(word)
if is_horizontal:

for i in range(length):
new_state[row][col + i] = word[i]

else:
for i in range(length):

new_state[row + i][col] = word[i]
return new_state

new_states = []

Try placing each horizontal answer
for row in range(len(horizontal_answers)):

for answer in horizontal_answers[row]:
if is_valid_placement(state, answer, row, 0, True):

new_states.append(place_word(state, answer, row, 0,
True))

Try placing each vertical answer
for col in range(len(vertical_answers)):

for answer in vertical_answers[col]:
if is_valid_placement(state, answer, 0, col, False):

new_states.append(place_word(state, answer, 0, col,
False))

return new_states
‘‘‘

AutoToS prompt:

Please provide a goal test function in Python ensuring that all cells
are not None, all words horizontally are matching at least one of
the horizontal answers, and all words vertically match at least

159

one of the vertical answers. The function should receive a state,
horizontal_answers, and vertical_answers as before and return True
for a goal state and False otherwise.

Model response:
‘‘‘python
def goal_test(state, horizontal_answers, vertical_answers):

from typing import List, Optional

def matches_horizontal(state: List[List[Optional[str]]], row: int)
-> bool:
word = ’’.join(state[row])
return any(word == answer for answer in horizontal_answers[row

])

def matches_vertical(state: List[List[Optional[str]]], col: int)
-> bool:
word = ’’.join(state[row][col] for row in range(len(state)))
return any(word == answer for answer in vertical_answers[col])

Check if all cells are filled
for row in state:

if any(cell is None for cell in row):
return False

Check horizontally
for row in range(len(state)):

if not matches_horizontal(state, row):
return False

Check vertically
for col in range(len(state[0])):

if not matches_vertical(state, col):
return False

return True
‘‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 20, failure: 0, total expansions 1587973, total generated

13705798

Listing 39: With partial successor soundness test

AutoToS prompt:

The task is a 5x5 mini crosswords. A state is a 2D array representing
the current puzzle state, where the initial grid is all "None".
Note that some of the possible answers are not exactly 5 character
long. Given an input of possible answers to horizontal clues and

vertical clues, how is the successor state function defined?
Please first think step by step. Then provide the successor state
function in Python code.

The possible clues for each row and each column are given separately.
Here is an example of possible horizontal and vertical clues:

160

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds

", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank

", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud

", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court

", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid",

"gibes", "gibed", "flout"]
]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy",
"gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx",
"gnu", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "
plans", "ideas", "plots", "cocks"],

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet
", "vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear",
"sear", "pall", "lack"]

]

where horizontal_answers is a list where element i is a list of
possible answers to clue in row i, and vertical_answers is a list
where element i is a list of possible answers to clue in column i.

Model response:
‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

from itertools import product

def is_valid(state, row, col, word, horizontal=True):
if horizontal:

for idx in range(len(word)):
if state[row][col + idx] is not None and state[row][

col + idx] != word[idx]:
return False

return True
else:

for idx in range(len(word)):
if state[row + idx][col] is not None and state[row +

idx][col] != word[idx]:
return False

return True

def place_word(state, row, col, word, horizontal=True):
new_state = [row[:] for row in state]
if horizontal:

for idx in range(len(word)):
new_state[row][col + idx] = word[idx]

else:
for idx in range(len(word)):

new_state[row + idx][col] = word[idx]
return new_state

successors = []
for row, col in product(range(5), range(5)):

if state[row][col] is None: # Only try to place a word if the
cell is empty
for word in horizontal_answers[row]:

if is_valid(state, row, col, word, horizontal=True):

161

new_state = place_word(state, row, col, word,
horizontal=True)

successors.append(new_state)
for word in vertical_answers[col]:

if is_valid(state, row, col, word, horizontal=False):
new_state = place_word(state, row, col, word,

horizontal=False)
successors.append(new_state)

return successors
‘‘‘

AutoToS prompt:

Please provide a goal test function in Python ensuring that all cells
are not None, all words horizontally are matching at least one of
the horizontal answers, and all words vertically match at least
one of the vertical answers. The function should receive a state,
horizontal_answers, and vertical_answers as before and return True
for a goal state and False otherwise.

Model response:
‘‘‘python
def is_goal_state(state, horizontal_answers, vertical_answers):

def word_in_list(word, word_list):
return word in word_list

def check_horizontal(state, row):
word = ’’.join(state[row])
return any(word_in_list(word, answers) for answers in

horizontal_answers[row])

def check_vertical(state, col):
word = ’’.join(state[row][col] for row in range(5))
return any(word_in_list(word, answers) for answers in

vertical_answers[col])

Check if all cells are not None
for row in state:

if any(cell is None for cell in row):
return False

Check horizontal words
for row in range(5):

if not check_horizontal(state, row):
return False

Check vertical words
for col in range(5):

if not check_vertical(state, col):
return False

return True
‘‘‘

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 7, in is_valid

162

list index out of range. Please fix this exception in the successor
function.

Model response:
‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

from itertools import product

def is_valid(state, row, col, word, horizontal=True):
if horizontal:

if col + len(word) > 5: # Check if the word can fit
horizontally
return False

for idx in range(len(word)):
if state[row][col + idx] is not None and state[row][

col + idx] != word[idx]:
return False

return True
else:

if row + len(word) > 5: # Check if the word can fit
vertically
return False

for idx in range(len(word)):
if state[row + idx][col] is not None and state[row +

idx][col] != word[idx]:
return False

return True

def place_word(state, row, col, word, horizontal=True):
new_state = [row[:] for row in state]
if horizontal:

for idx in range(len(word)):
new_state[row][col + idx] = word[idx]

else:
for idx in range(len(word)):

new_state[row + idx][col] = word[idx]
return new_state

successors = []
for row, col in product(range(5), range(5)):

if state[row][col] is None: # Only try to place a word if the
cell is empty
for word in horizontal_answers[row]: # Try to place

horizontal words
if is_valid(state, row, col, word, horizontal=True):

new_state = place_word(state, row, col, word,
horizontal=True)

successors.append(new_state)
for word in vertical_answers[col]: # Try to place

vertical words
if is_valid(state, row, col, word, horizontal=False):

new_state = place_word(state, row, col, word,
horizontal=False)

successors.append(new_state)

return successors
‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 20, failure: 0, total expansions 4514757, total generated

16830232

163

9.3.3 GPT4
Listing 40: Without partial successor soundness test

AutoToS prompt:

The task is a 5x5 mini crosswords. A state is a 2D array representing
the current puzzle state, where the initial grid is all "None".
Note that some of the possible answers are not exactly 5 character
long. Given an input of possible answers to horizontal clues and

vertical clues, how is the successor state function defined?
Please first think step by step. Then provide the successor state
function in Python code.

The possible clues for each row and each column are given separately.
Here is an example of possible horizontal and vertical clues:

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds

", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank

", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud

", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court

", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid",

"gibes", "gibed", "flout"]
]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy",
"gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx",
"gnu", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "
plans", "ideas", "plots", "cocks"],

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet
", "vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear",
"sear", "pall", "lack"]

]

where horizontal_answers is a list where element i is a list of
possible answers to clue in row i, and vertical_answers is a list
where element i is a list of possible answers to clue in column i.

Model response:
To solve this problem step by step, we need to develop a function to

generate a potential successor state of the crossword puzzle given
the current state and possible horizontal and vertical answers.

The function will fill the grid incrementally and generate the
next state.

Here’s the approach we will take:
1. Iterate through each cell in the current crossword grid.
2. For each cell, identify the row and column it belongs to.
3. Check the possible horizontal answers for the row and vertical

answers for the column.
4. Generate potential next states by filling in words that comply with

the given constraints.
5. Return a list of all valid next states.

Let’s include the necessary imports and define the function that
addresses these steps:

164

‘‘‘python
from copy import deepcopy

def get_successor_states(grid, horizontal_answers, vertical_answers):
def validate_word(grid, word, r, c, direction):

if direction == ’horizontal’:
if c + len(word) > len(grid[0]):

return False
for i, char in enumerate(word):

if grid[r][c + i] is not None and grid[r][c + i] !=
char:
return False

elif direction == ’vertical’:
if r + len(word) > len(grid):

return False
for i, char in enumerate(word):

if grid[r + i][c] is not None and grid[r + i][c] !=
char:
return False

return True

def fill_word(grid, word, r, c, direction):
new_grid = deepcopy(grid)
if direction == ’horizontal’:

for i, char in enumerate(word):
new_grid[r][c + i] = char

elif direction == ’vertical’:
for i, char in enumerate(word):

new_grid[r + i][c] = char
return new_grid

n_rows, n_cols = len(grid), len(grid[0])
successor_states = []

for r in range(n_rows):
for c in range(n_cols):

if grid[r][c] is None:
Try horizontal answers for row r
for word in horizontal_answers[r]:

if validate_word(grid, word, r, c, ’horizontal’):
new_state = fill_word(grid, word, r, c, ’

horizontal’)
successor_states.append(new_state)

Try vertical answers for column c
for word in vertical_answers[c]:

if validate_word(grid, word, r, c, ’vertical’):
new_state = fill_word(grid, word, r, c, ’

vertical’)
successor_states.append(new_state)

return successor_states
‘‘‘

This function ‘get_successor_states‘ does the following:
1. Iterates over each cell in the grid.
2. Validates the possible horizontal and vertical words at each

position using ‘validate_word‘.
3. If valid, creates a new grid with the word filled in using ‘

fill_word‘.
4. Collects and returns all possible successor states.

This process should be repeated iteratively to explore all possible
puzzle completions.

165

AutoToS prompt:

Please provide a goal test function in Python ensuring that all cells
are not None, all words horizontally are matching at least one of
the horizontal answers, and all words vertically match at least
one of the vertical answers. The function should receive a state,
horizontal_answers, and vertical_answers as before and return True
for a goal state and False otherwise.

Model response:
To determine if the given state of the crossword puzzle is a goal

state, we need to ensure the following conditions:
1. All cells in the grid are filled (not ‘None‘).
2. Every horizontal word in the grid matches one of the possible

horizontal answers.
3. Every vertical word in the grid matches one of the possible

vertical answers.

Let’s define this goal test function in Python:

‘‘‘python
def is_goal_state(state, horizontal_answers, vertical_answers):

def get_word(state, start_r, start_c, direction):
word = []
if direction == ’horizontal’:

while start_c < len(state[0]) and state[start_r][start_c]
is not None:
word.append(state[start_r][start_c])
start_c += 1

elif direction == ’vertical’:
while start_r < len(state) and state[start_r][start_c] is

not None:
word.append(state[start_r][start_c])
start_r += 1

return ’’.join(word)

def check_all_cells_filled(state):
for row in state:

for cell in row:
if cell is None:

return False
return True

def check_words(state, answers, direction):
n_rows, n_cols = len(state), len(state[0])
if direction == ’horizontal’:

for r in range(n_rows):
c = 0
while c < n_cols:

if state[r][c] is not None:
word = get_word(state, r, c, direction)
if word not in answers[r]:

return False
c += len(word)

else:
c += 1

elif direction == ’vertical’:
for c in range(n_cols):

r = 0
while r < n_rows:

if state[r][c] is not None:
word = get_word(state, r, c, direction)
if word not in answers[c]:

return False
r += len(word)

166

else:
r += 1

return True

return (check_all_cells_filled(state) and
check_words(state, horizontal_answers, ’horizontal’) and
check_words(state, vertical_answers, ’vertical’))

‘‘‘

This function ‘is_goal_state‘ performs the following steps:
1. ‘get_word‘ extracts a word from the grid starting at a specific

position and extending in the given direction (‘horizontal‘ or ‘
vertical‘).

2. ‘check_all_cells_filled‘ checks if all the cells in the grid are
filled (none of them is ‘None‘).

3. ‘check_words‘ validates that each horizontal and vertical word in
the grid matches one of the given answers for the respective rows
or columns.

4. ‘is_goal_state‘ combines these checks and returns ‘True‘ if the
grid is fully filled and all words match the provided answers,
otherwise returns ‘False‘.

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 20, failure: 0, total expansions 4514757, total generated

16830232

Listing 41: With partial successor soundness test

AutoToS prompt:

The task is a 5x5 mini crosswords. A state is a 2D array representing
the current puzzle state, where the initial grid is all "None".
Note that some of the possible answers are not exactly 5 character
long. Given an input of possible answers to horizontal clues and

vertical clues, how is the successor state function defined?
Please first think step by step. Then provide the successor state
function in Python code.

The possible clues for each row and each column are given separately.
Here is an example of possible horizontal and vertical clues:

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds

", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank

", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud

", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court

", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid",

"gibes", "gibed", "flout"]
]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy",
"gathe", "lumps", "mound"],

167

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx",
"gnu", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "
plans", "ideas", "plots", "cocks"],

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet
", "vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear",
"sear", "pall", "lack"]

]

where horizontal_answers is a list where element i is a list of
possible answers to clue in row i, and vertical_answers is a list
where element i is a list of possible answers to clue in column i.

Model response:
To generate the successor state function for a 5x5 mini crossword grid

, you need to consider updating the state gradually by filling in
words from the possible answers for horizontal and vertical clues.
This function will return a list of valid successor states based

on the next possible word for both horizontal and vertical clues.

When implementing this, you shall:
1. Define the initial empty 5x5 grid.
2. Iterate through each possible word for the horizontal clues and

place them in the grid.
3. For each horizontal placement, iterate through each possible word

for the vertical clues and place them in the grid.
4. Ensure that any new word placed must align and be valid with

existing placements.

Here’s the Python function:

‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

import copy

def is_valid_state(state):
for i in range(5):

horizontal_word = ’’.join([state[i][j] if state[i][j] is
not None else ’*’ for j in range(5)])

vertical_word = ’’.join([state[j][i] if state[j][i] is not
None else ’*’ for j in range(5)])

if horizontal_word.strip(’*’) and horizontal_word.strip
(’*’) not in valid_horizontal_words[i]:
return False

if vertical_word.strip(’*’) and vertical_word.strip(’*’)
not in valid_vertical_words[i]:
return False

return True

def generate_successor_states(state, possible_answers,
is_horizontal):
successors = []
for i in range(5):

for word in possible_answers[i]:
new_state = copy.deepcopy(state)
if is_horizontal:

if len(word) <= 5:
for j in range(len(word)):

new_state[i][j] = word[j]
else:

if len(word) <= 5:
for j in range(len(word)):

new_state[j][i] = word[j]

168

if is_valid_state(new_state):
successors.append(new_state)

return successors

valid_horizontal_words = [
set(horizontal_answers[i]) for i in range(5)

]
valid_vertical_words = [

set(vertical_answers[i]) for i in range(5)
]

current_turn_horizontal = all(state[i][j] is None for i in range
(5) for j in range(5))

if current_turn_horizontal:
return generate_successor_states(state, horizontal_answers,

True)
else:

return generate_successor_states(state, vertical_answers,
False)

‘‘‘

Explanation
- **‘is_valid_state‘**: This validates if the current state of the

grid forms valid partial words horizontally and vertically.
- **‘generate_successor_states‘**: This generates successor states by

attempting to place each possible word in the grid for either
horizontal or vertical positions and returns valid new states.

- **Initial Check**: The function determines whether to place
horizontal words first by checking if the state is entirely empty.

This function will proceed to fill the state with valid words step-by-
step for both horizontal and vertical clues while ensuring
intermediate states are valid.

AutoToS prompt:

Please provide a goal test function in Python ensuring that all cells
are not None, all words horizontally are matching at least one of
the horizontal answers, and all words vertically match at least
one of the vertical answers. The function should receive a state,
horizontal_answers, and vertical_answers as before and return True
for a goal state and False otherwise.

Model response:
To implement a goal test function in Python, you need to ensure that:
1. All cells in the state are filled (i.e., not ‘None‘).
2. Each horizontal word matches one of the horizontal answers.
3. Each vertical word matches one of the vertical answers.

Here is the function to achieve this:

‘‘‘python
def is_goal_state(state, horizontal_answers, vertical_answers):

def all_filled(state):
for row in state:

if any(cell is None for cell in row):
return False

return True

def all_horizontal_words_valid(state, horizontal_answers):
for i, row in enumerate(state):

word = ’’.join(row)
if word not in horizontal_answers[i]:

return False

169

return True

def all_vertical_words_valid(state, vertical_answers):
for i in range(5):

word = ’’.join(state[j][i] for j in range(5))
if word not in vertical_answers[i]:

return False
return True

if not all_filled(state):
return False

if not all_horizontal_words_valid(state, horizontal_answers):
return False

if not all_vertical_words_valid(state, vertical_answers):
return False

return True
‘‘‘

Explanation
1. **‘all_filled(state)‘**: Checks that every cell in the 5x5 grid is

filled (no ‘None‘ values).
2. **‘all_horizontal_words_valid(state, horizontal_answers)‘**: Checks

that every horizontal word formed in the state matches one of the
allowed horizontal answers.

3. **‘all_vertical_words_valid(state, vertical_answers)‘**: Checks
that every vertical word formed in the state matches one of the
allowed vertical answers.

The main function ‘is_goal_state‘ aggregates these checks, returning ‘
True‘ only if all conditions are satisfied, otherwise ‘False‘.

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Successor state has the same number of filled cells as the parent

state.
Let’s think step by step. First, think what you did wrong.
Then, think of in what ways successor state should be different from

the parent state.
Then, provide the complete Python code for the revised successor

function that returns a list of successor states.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Input state: [[None, None, None, None, None], [None, None, None, None,
None], [None, None, None, None, None], [None, None, None, None,

None], [None, None, None, None, None]]
Example wrong successor state: [[None, None, None, None, None], [None,

None, None, None, None], [None, None, None, None, None], [None,
None, None, None, None], [None, None, None, None, None]]

Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’
works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme

170

’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr
’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

Model response:
To address the issues with the original approach, let’s think step-by-

step:

1. **Identify the Mistakes**:
- The original function attempted to generate successor states

directly without guaranteeing any new cells were filled.
Therefore, it could return states identical to the input.

- It did not handle the transition from placing horizontal words to
vertical words clearly, which must happen sequentially.

2. **Determine the Required Changes**:
- A successor state should differ from the parent state by having

at least one additional word placed in the grid.
- Generate valid successor states by filling the grid according to

the current phase (placing horizontal or vertical words). Start
with horizontal placement and switch to vertical once all rows
are attempted.

3. **Revised Successor Function**:
- The function must clearly track the filling process and ensure

progression, creating new states with progressively filled
cells.

Here is the revised successor function which ensures that the
successor state has more filled cells than the parent state and
handles the transitions properly:

‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

import copy

def is_valid_state(state):
for i in range(5):

horizontal_word = ’’.join([state[i][j] if state[i][j] is
not None else ’*’ for j in range(5)])

vertical_word = ’’.join([state[j][i] if state[j][i] is not
None else ’*’ for j in range(5)])

if horizontal_word.strip(’*’) and horizontal_word.strip
(’*’) not in valid_horizontal_words[i]:
return False

if vertical_word.strip(’*’) and vertical_word.strip(’*’)
not in valid_vertical_words[i]:
return False

return True

def generate_horizontal_successors(state):
successors = []
for i in range(5):

if all(state[i][j] is None for j in range(5)): # Find the
first completely empty row
for word in horizontal_answers[i]:

if len(word) <= 5:
new_state = copy.deepcopy(state)
for j in range(len(word)):

new_state[i][j] = word[j]

if is_valid_state(new_state):

171

successors.append(new_state)
return successors

return successors

def generate_vertical_successors(state):
successors = []
for i in range(5):

if all(state[j][i] is None for j in range(5)): # Find the
first completely empty column
for word in vertical_answers[i]:

if len(word) <= 5:
new_state = copy.deepcopy(state)
for j in range(len(word)):

new_state[j][i] = word[j]

if is_valid_state(new_state):
successors.append(new_state)

return successors
return successors

valid_horizontal_words = [
set(horizontal_answers[i]) for i in range(5)

]
valid_vertical_words = [

set(vertical_answers[i]) for i in range(5)
]

Determine if the grid has completely empty rows or columns to
decide mode

horizontal_successors = generate_horizontal_successors(state)
if horizontal_successors:

return horizontal_successors

vertical_successors = generate_vertical_successors(state)
if vertical_successors:

return vertical_successors

return []

‘‘‘

Explanation in Detail
1. **‘is_valid_state‘**: Ensures that horizontal and vertical partial

words formed in the grid so far are valid.
2. **‘generate_horizontal_successors‘**: Generates valid successor

states by attempting to fill the first completely empty row with
each possible horizontal word from the clues.

3. **‘generate_vertical_successors‘**: Generates valid successor
states by attempting to fill the first completely empty column
with each possible vertical word from the clues.

4. **Determine Mode**: The function first tries to generate successors
by filling horizontal words. If this is not possible (all rows

are filled), it generates successors by filling vertical words.
5. **Sequential Progression**: Ensures that once all horizontal

placements are attempted, it will move to vertical placements.

This approach ensures a valid progression from the parent to successor
states, and that each new state has more filled cells than its

predecessor.

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 2

172

AutoToS prompt:
Successor function when run on the state [[None, None, ’e’, None, None

], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [None
, None, ’l’, None, None], [None, None, ’e’, None, None]] failed to
produce all successors.

Missing successors are: [[[’a’, ’g’, ’e’, ’n’, ’d’], [’m’, ’o’, ’t’, ’
o’, ’r’], [None, None, ’t’, None, None], [None, None, ’l’, None,
None], [None, None, ’e’, None, None]], [[’d’, ’e’, ’e’, ’d’, ’s’],
[’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [None,

None, ’l’, None, None], [None, None, ’e’, None, None]], [[’i’, ’t
’, ’e’, ’m’, ’s’], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’,
None, None], [None, None, ’l’, None, None], [None, None, ’e’, None
, None]], [[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r
’], [’a’, ’r’, ’t’, ’s’, ’y’], [None, None, ’l’, None, None], [
None, None, ’e’, None, None]], [[None, None, ’e’, None, None], [’m
’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [’s’, ’a’,
’l’, ’l’, ’e’], [None, None, ’e’, None, None]], [[None, None, ’e’,
None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None,

None], [’m’, ’a’, ’l’, ’l’, ’s’], [None, None, ’e’, None, None]],
[[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None,
None, ’t’, None, None], [None, None, ’l’, None, None], [’s’, ’l’,
’e’, ’e’, ’r’]], [[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’
o’, ’r’], [None, None, ’t’, None, None], [None, None, ’l’, None,
None], [’s’, ’n’, ’e’, ’e’, ’r’]], [[’a’, None, ’e’, None, None],
[’m’, ’o’, ’t’, ’o’, ’r’], [’a’, None, ’t’, None, None], [’s’,
None, ’l’, None, None], [’s’, None, ’e’, None, None]], [[None, ’g
’, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, ’r’, ’t’,
None, None], [None, ’a’, ’l’, None, None], [None, ’l’, ’e’, None,
None]], [[None, None, ’e’, ’n’, None], [’m’, ’o’, ’t’, ’o’, ’r’],
[None, None, ’t’, ’s’, None], [None, None, ’l’, ’l’, None], [None,
None, ’e’, ’e’, None]], [[None, None, ’e’, ’m’, None], [’m’, ’o’,
’t’, ’o’, ’r’], [None, None, ’t’, ’u’, None], [None, None, ’l’, ’

t’, None], [None, None, ’e’, ’h’, None]], [[None, None, ’e’, ’n’,
None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, ’s’, None], [
None, None, ’l’, ’t’, None], [None, None, ’e’, ’r’, None]], [[None
, None, ’e’, ’p’, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’
t’, ’r’, None], [None, None, ’l’, ’t’, None], [None, None, ’e’, ’s
’, None]], [[None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r
’], [None, None, ’t’, None, ’i’], [None, None, ’l’, None, ’e’], [
None, None, ’e’, None, ’r’]], [[None, None, ’e’, None, ’d’], [’m’,
’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, ’y’], [None, None, ’

l’, None, ’e’], [None, None, ’e’, None, ’r’]], [[None, None, ’e’,
None, ’w’], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, ’i
’], [None, None, ’l’, None, ’n’], [None, None, ’e’, None, ’g’]],
[[None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r’], [None,
None, ’t’, None, ’e’], [None, None, ’l’, None, ’a’], [None, None,
’e’, None, ’r’]]]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.
Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’

works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme
’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr

173

’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

Model response:
To understand why the successor function failed to produce all

successors, we need to reconsider the scope and exact procedure of
generating successors. The function must generate valid states by
extending the current state through placing valid words in the

next available row or column, one at a time.

Here are the key steps to fix the function:
1. Ensure the function generates successors by filling one empty row

or column at a time.
2. Validate that placing a word in a row or column doesn’t invalidate

the grid.
3. Differentiate between generating horizontal or vertical successors

based on the current state.

Revised Plan
1. Identify the first unfilled row for horizontal successors, and the

first unfilled column for vertical successors.
2. Generate all possible states by filling this row or column with

every possible word from the respective answers.
3. Each state must align with previously filled parts of the grid.

Revised Successor Function
Here is the revised code with enhanced logic to ensure all valid

successors are generated:

‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

import copy

def is_valid_state(state):
for i in range(5):

horizontal_word = ’’.join([state[i][j] if state[i][j] is
not None else ’*’ for j in range(5)])

vertical_word = ’’.join([state[j][i] if state[j][i] is not
None else ’*’ for j in range(5)])

if horizontal_word.strip(’*’) and horizontal_word.strip
(’*’) not in valid_horizontal_words[i]:
return False

if vertical_word.strip(’*’) and vertical_word.strip(’*’)
not in valid_vertical_words[i]:
return False

return True

def generate_horizontal_successors(state):
successors = []
for i in range(5):

if any(state[i][j] is None for j in range(5)):
for word in horizontal_answers[i]:

if len(word) <= 5:
new_state = copy.deepcopy(state)
can_fit = True
for j in range(len(word)):

if state[i][j] is not None and state[i][j]
!= word[j]:
can_fit = False
break

new_state[i][j] = word[j]
if can_fit and is_valid_state(new_state):

successors.append(new_state)

174

break
return successors

def generate_vertical_successors(state):
successors = []
for i in range(5):

if any(state[j][i] is None for j in range(5)):
for word in vertical_answers[i]:

if len(word) <= 5:
new_state = copy.deepcopy(state)
can_fit = True
for j in range(len(word)):

if state[j][i] is not None and state[j][i]
!= word[j]:
can_fit = False
break

new_state[j][i] = word[j]
if can_fit and is_valid_state(new_state):

successors.append(new_state)
break

return successors

valid_horizontal_words = [
set(horizontal_answers[i]) for i in range(5)

]
valid_vertical_words = [

set(vertical_answers[i]) for i in range(5)
]

horizontal_successors = generate_horizontal_successors(state)
if horizontal_successors:

return horizontal_successors

vertical_successors = generate_vertical_successors(state)
if vertical_successors:

return vertical_successors

return []
‘‘‘

Explanation:
1. **‘is_valid_state‘**: Ensures partial words formed so far match the

clues.
2. **‘generate_horizontal_successors‘**:

- Finds the first row with any ‘None‘.
- Tries to place each possible word from the horizontal answers in

that row.
- Checks if the word aligns with any pre-filled cells and if the

resulting state is valid.
3. **‘generate_vertical_successors‘**:

- Similar logic to horizontal successors but for columns.
4. **Generation Control**:

- Tries to generate horizontal successors first. If none are found
(i.e., all rows are filled), then it tries vertical successors.

Conclusion:
This revised function ensures that the successor states progressively

fill unknown cells, thereby generating complete sets of valid
successor states.

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 3

175

AutoToS prompt:
Successor function when run on the state [[None, None, ’e’, None, None

], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [None
, None, ’l’, None, None], [None, None, ’e’, None, None]] failed to
produce all successors.

Missing successors are: [[[’a’, ’g’, ’e’, ’n’, ’d’], [’m’, ’o’, ’t’, ’
o’, ’r’], [None, None, ’t’, None, None], [None, None, ’l’, None,
None], [None, None, ’e’, None, None]], [[’d’, ’e’, ’e’, ’d’, ’s’],
[’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [None,

None, ’l’, None, None], [None, None, ’e’, None, None]], [[’i’, ’t
’, ’e’, ’m’, ’s’], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’,
None, None], [None, None, ’l’, None, None], [None, None, ’e’, None
, None]], [[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r
’], [’a’, ’r’, ’t’, ’s’, ’y’], [None, None, ’l’, None, None], [
None, None, ’e’, None, None]], [[None, None, ’e’, None, None], [’m
’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [’s’, ’a’,
’l’, ’l’, ’e’], [None, None, ’e’, None, None]], [[None, None, ’e’,
None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None,

None], [’m’, ’a’, ’l’, ’l’, ’s’], [None, None, ’e’, None, None]],
[[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None,
None, ’t’, None, None], [None, None, ’l’, None, None], [’s’, ’l’,
’e’, ’e’, ’r’]], [[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’
o’, ’r’], [None, None, ’t’, None, None], [None, None, ’l’, None,
None], [’s’, ’n’, ’e’, ’e’, ’r’]], [[’a’, None, ’e’, None, None],
[’m’, ’o’, ’t’, ’o’, ’r’], [’a’, None, ’t’, None, None], [’s’,
None, ’l’, None, None], [’s’, None, ’e’, None, None]], [[None, ’g
’, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, ’r’, ’t’,
None, None], [None, ’a’, ’l’, None, None], [None, ’l’, ’e’, None,
None]], [[None, None, ’e’, ’n’, None], [’m’, ’o’, ’t’, ’o’, ’r’],
[None, None, ’t’, ’s’, None], [None, None, ’l’, ’l’, None], [None,
None, ’e’, ’e’, None]], [[None, None, ’e’, ’m’, None], [’m’, ’o’,
’t’, ’o’, ’r’], [None, None, ’t’, ’u’, None], [None, None, ’l’, ’

t’, None], [None, None, ’e’, ’h’, None]], [[None, None, ’e’, ’n’,
None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, ’s’, None], [
None, None, ’l’, ’t’, None], [None, None, ’e’, ’r’, None]], [[None
, None, ’e’, ’p’, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’
t’, ’r’, None], [None, None, ’l’, ’t’, None], [None, None, ’e’, ’s
’, None]], [[None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r
’], [None, None, ’t’, None, ’i’], [None, None, ’l’, None, ’e’], [
None, None, ’e’, None, ’r’]], [[None, None, ’e’, None, ’d’], [’m’,
’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, ’y’], [None, None, ’

l’, None, ’e’], [None, None, ’e’, None, ’r’]], [[None, None, ’e’,
None, ’w’], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, ’i
’], [None, None, ’l’, None, ’n’], [None, None, ’e’, None, ’g’]],
[[None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r’], [None,
None, ’t’, None, ’e’], [None, None, ’l’, None, ’a’], [None, None,
’e’, None, ’r’]]]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.
Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’

works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme
’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr

176

’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

Model response:
To understand why the previous successor function failed, let’s

carefully examine our logic:

1. **Current Problems**:
- The previous function did not correctly identify and handle rows

and columns that were partially filled.
- The iteration and placement logic were not robust enough to cover

all cases of partial fillings.

2. **Required Corrections**:
- Identify both fully and partially filled rows/columns correctly.
- Ensure the function correctly places words by matching partially

filled cells.
- Generate all valid successors by placing words in the next

available row or column one at a time.

Revised Successor Function
Here is the corrected and more comprehensive function:

‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

import copy

def is_valid_state(state):
for i in range(5):

Check each horizontal word
horizontal_word = ’’.join([state[i][j] if state[i][j] is

not None else ’*’ for j in range(5)])
if ’*’ in horizontal_word:

horizontal_word = horizontal_word.split(’*’)[0]
if horizontal_word and horizontal_word not in

valid_horizontal_words[i]:
return False

Check each vertical word
vertical_word = ’’.join([state[j][i] if state[j][i] is not

None else ’*’ for j in range(5)])
if ’*’ in vertical_word:

vertical_word = vertical_word.split(’*’)[0]
if vertical_word and vertical_word not in

valid_vertical_words[i]:
return False

return True

def generate_successors(state, possible_answers, is_horizontal):
successors = []
for i in range(5):

indices_to_fill = [None] * 5
valid_row = True
for j in range(5 if is_horizontal else 5):

if is_horizontal:
if state[i][j] is not None:

indices_to_fill[j] = state[i][j]
else:

if state[j][i] is not None:
indices_to_fill[j] = state[j][i]

if all(ch is not None for ch in indices_to_fill): # Skip
fully filled rows/columns
continue

177

for word in possible_answers[i]:
new_state = copy.deepcopy(state)
can_fit = True
for j, ch in enumerate(word):

if indices_to_fill[j] is not None and
indices_to_fill[j] != ch:
can_fit = False
break

if is_horizontal:
new_state[i][j] = ch

else:
new_state[j][i] = ch

if can_fit and is_valid_state(new_state):
successors.append(new_state)

if successors: # If we’re able to generate at least one
valid successor, stop and return
return successors

return []

valid_horizontal_words = [
set(horizontal_answers[i]) for i in range(5)

]
valid_vertical_words = [

set(vertical_answers[i]) for i in range(5)
]

Try to generate horizontal successors first, if no valid
horizontal successors, then vertical.

horizontal_successors = generate_successors(state,
horizontal_answers, True)

if horizontal_successors:
return horizontal_successors

vertical_successors = generate_successors(state, vertical_answers,
False)

if vertical_successors:
return vertical_successors

return []
‘‘‘

Explanation:
- **‘is_valid_state(state)‘**: Checks partial words horizontally and

vertically to ensure they are valid sketched words.
- Horizontal and vertical partial word checks include splitting by

’*’ to handle partially filled cells efficiently.
- **‘generate_successors(state, possible_answers, is_horizontal)‘**:

- Determines whether to generate horizontal or vertical successors
.

- Iterates through each row/column and attempts to place possible
words.

- Ensures any new word placement aligns with the already placed
characters.

- Generates new states only if valid placements align with the
current grid’s state.

- Stops and returns valid successors as soon as they are found,
ensuring efficiency.

This function ensures that all possibilities are considered, and all
valid successors are generated by properly extending the current
state step-by-step.

Successor Iteration 4

178

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 41, in generate_successors

list index out of range. Please fix this exception in the successor
function.

Model response:
It looks like the function may be attempting to access indices that

are out of bounds due to incorrect logic handling both horizontal
and vertical expansions separately. This mistake usually happens
when the function tries to process partially filled rows or
columns with mismatched lengths.

Solution:
1. Ensure correct indexing within the bounds of the 5x5 grid.
2. Split and check each potential word placement to match the exact

indices in the grid.
3. Fix any off-by-one errors by carefully managing the row and column

limits.

Here is the revised function:

‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

import copy

def is_valid_state(state):
for i in range(5):

Check each horizontal word
horizontal_word = ’’.join([state[i][j] if state[i][j] is

not None else ’*’ for j in range(5)])
if ’*’ in horizontal_word:

horizontal_word = horizontal_word.split(’*’)[0]
if horizontal_word and horizontal_word not in

valid_horizontal_words[i]:
return False

Check each vertical word
vertical_word = ’’.join([state[j][i] if state[j][i] is not

None else ’*’ for j in range(5)])
if ’*’ in vertical_word:

vertical_word = vertical_word.split(’*’)[0]
if vertical_word and vertical_word not in

valid_vertical_words[i]:
return False

return True

def generate_successors(state, possible_answers, is_horizontal):
successors = []
for i in range(5):

if is_horizontal:
indices_to_fill = [state[i][j] for j in range(5)]

else:
indices_to_fill = [state[j][i] for j in range(5)]

if all(ch is not None for ch in indices_to_fill): # Skip
fully filled rows/columns
continue

for word in possible_answers[i]:
new_state = copy.deepcopy(state)
can_fit = True

for j, ch in enumerate(word):

179

if (is_horizontal and state[i][j] is not None and
state[i][j] != ch) or (not is_horizontal and
state[j][i] is not None and state[j][i] != ch)
:
can_fit = False
break

if is_horizontal:
new_state[i][j] = ch

else:
new_state[j][i] = ch

if can_fit and is_valid_state(new_state):
successors.append(new_state)

When an unfilled row/column is processed, attempt to
return as soon as successors are found

if successors:
return successors

return []

valid_horizontal_words = [set(horizontal_answers[i]) for i in
range(5)]

valid_vertical_words = [set(vertical_answers[i]) for i in range(5)
]

Check if we should generate horizontal or vertical successors
based on the current fill status.

horizontal_successors = generate_successors(state,
horizontal_answers, True)

if horizontal_successors:
return horizontal_successors

vertical_successors = generate_successors(state, vertical_answers,
False)

if vertical_successors:
return vertical_successors

return []
‘‘‘

Explanation:
1. **‘is_valid_state(state)‘**: Checks the grid to ensure partial and

completed words are valid based on the provided answers. It
handles both horizontal and vertical words using consistent bounds
.

2. **‘generate_successors(state, possible_answers, is_horizontal)‘**:
- Determines whether to fill rows (horizontal) or columns (

vertical).
- Ensures all indices accessed are within bounds (0 to 4) for the

5x5 grid.
- Manages potential word placements and checks if they align with

partially filled states.
- Ensures any new state is valid before adding to the successors

list.

This function maintains better indexing logic and handles both row and
column expansions appropriately, preventing the index out-of-

range error.
Successor Iteration 5

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 37, in generate_successors

180

list index out of range. Please fix this exception in the successor
function.

Model response:
To fix the "list index out of range" error, we need to carefully

handle the bounds and ensure we don’t access indices outside of
the 5x5 grid. Let’s refine the logic to ensure all operations are
within valid indices.

Detailed Steps:

1. **Ensure correct bounds checking**: Make sure we are accessing only
within the valid 5x5 grid.

2. **Correctly handle partially filled rows/columns**: Ensure methods
for checking and placing words align with the grid’s state without
exceeding boundaries.

3. **Refine logic to prevent off-by-one errors**.

Here’s the improved function checking for bounds explicitly:

‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

import copy

def is_valid_state(state):
for i in range(5):

Check each horizontal word
horizontal_word = ’’.join([state[i][j] if state[i][j] is

not None else ’*’ for j in range(5)])
if ’*’ in horizontal_word:

fragments = horizontal_word.split(’*’)
horizontal_word = fragments[0] if fragments[0] else (

fragments[1] if len(fragments) > 1 else ’’)
if horizontal_word and horizontal_word not in

valid_horizontal_words[i]:
return False

Check each vertical word
vertical_word = ’’.join([state[j][i] if state[j][i] is not

None else ’*’ for j in range(5)])
if ’*’ in vertical_word:

fragments = vertical_word.split(’*’)
vertical_word = fragments[0] if fragments[0] else (

fragments[1] if len(fragments) > 1 else ’’)
if vertical_word and vertical_word not in

valid_vertical_words[i]:
return False

return True

def generate_successors(state, possible_answers, is_horizontal):
successors = []
for i in range(5):

indices_to_fill = []
valid_row = True
for j in range(5):

if is_horizontal:
if state[i][j] is not None:

indices_to_fill.append(state[i][j])
else:

indices_to_fill.append(None)
else:

if state[j][i] is not None:
indices_to_fill.append(state[j][i])

else:
indices_to_fill.append(None)

181

if all(ch is not None for ch in indices_to_fill): # Skip
fully filled rows/columns
continue

for word in possible_answers[i]:
new_state = copy.deepcopy(state)
can_fit = True
for j, ch in enumerate(word):

if indices_to_fill[j] is not None and
indices_to_fill[j] != ch:
can_fit = False
break

if is_horizontal:
new_state[i][j] = ch

else:
new_state[j][i] = ch

if can_fit and is_valid_state(new_state):
successors.append(new_state)

if successors:
return successors # Return after first successful row

/column

return []

valid_horizontal_words = [set(horizontal_answers[i]) for i in
range(5)]

valid_vertical_words = [set(vertical_answers[i]) for i in range(5)
]

Try to generate horizontal successors first, if no valid
horizontal successors, then vertical.

horizontal_successors = generate_successors(state,
horizontal_answers, True)

if horizontal_successors:
return horizontal_successors

vertical_successors = generate_successors(state, vertical_answers,
False)

if vertical_successors:
return vertical_successors

return []
‘‘‘

Explanation:
- **Index Safety**: Managed indices through a bounded loop, ensuring

any list access is within bounds (0 to 4).
- **Word Placement**: Added word placement logic that respects the

filled state of each cell.
- **Validation Checks**: Included checks to ensure any modification

stays within valid rows/columns, making sure the state update is
safe.

This approach should prevent "list index out of range" errors by
carefully controlling index access within the 5x5 limits.

Successor Iteration 6

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 47, in generate_successors

182

list index out of range. Please fix this exception in the successor
function.

Model response:
The "list index out of range" error typically arises from trying to

access or iterate beyond the bounds of the list. I will carefully
review the logic to ensure we access indices properly within the 5
x5 grid.

Let’s refine the function to prevent such errors:

1. We need to confirm that for each word we try to place horizontally
or vertically, it doesn’t exceed the bounds of the 5x5 grid.

2. Fix any indexing and bounds checking errors to make sure we stay
within the correct range.

Here is the revised function:

‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

import copy

def is_valid_state(state):
for i in range(5):

Check each horizontal word
horizontal_word = ’’.join([state[i][j] if state[i][j] is

not None else ’*’ for j in range(5)])
if ’*’ in horizontal_word:

fragments = horizontal_word.split(’*’)
horizontal_word = fragments[0] if fragments[0] else (

fragments[1] if len(fragments) > 1 else ’’)
if horizontal_word and horizontal_word not in

valid_horizontal_words[i]:
return False

Check each vertical word
vertical_word = ’’.join([state[j][i] if state[j][i] is not

None else ’*’ for j in range(5)])
if ’*’ in vertical_word:

fragments = vertical_word.split(’*’)
vertical_word = fragments[0] if fragments[0] else (

fragments[1] if len(fragments) > 1 else ’’)
if vertical_word and vertical_word not in

valid_vertical_words[i]:
return False

return True

def generate_successors(state, possible_answers, is_horizontal):
successors = []
for i in range(5):

if is_horizontal:
current_line = [state[i][j] for j in range(5)]

else:
current_line = [state[j][i] for j in range(5)]

if all(ch is not None for ch in current_line): # Skip
fully filled rows/columns
continue

for word in possible_answers[i]:
if len(word) > 5:

continue
new_state = copy.deepcopy(state)
can_fit = True
for j in range(5):

ch = word[j] if j < len(word) else None

183

if current_line[j] is not None and current_line[j]
!= ch:
can_fit = False
break

if is_horizontal and ch is not None:
new_state[i][j] = ch

elif not is_horizontal and ch is not None:
new_state[j][i] = ch

if can_fit and is_valid_state(new_state):
successors.append(new_state)

if successors:
return successors # Return successors after

processing the first row/column with empty cells

return successors

valid_horizontal_words = [set(horizontal_answers[i]) for i in
range(5)]

valid_vertical_words = [set(vertical_answers[i]) for i in range(5)
]

Try to generate horizontal successors first, if no valid
horizontal successors, then vertical.

horizontal_successors = generate_successors(state,
horizontal_answers, True)

if horizontal_successors:
return horizontal_successors

vertical_successors = generate_successors(state, vertical_answers,
False)

if vertical_successors:
return vertical_successors

return []

‘‘‘

Explanation:
1. **‘is_valid_state(state)‘**: Checks whether horizontal and vertical

words formed match the given clues, managing splitting by ‘’*’‘
properly.

2. **‘generate_successors(state, possible_answers, is_horizontal)‘**:
- It identifies whether to work on rows (horizontal) or columns (

vertical).
- It constructs ‘current_line‘ from the grid and guarantees it won’

t exceed the bounds (‘len(word) <= 5‘).
- Logic now carefully ensures word placement does not extend beyond

the 5x5 range.
- After processing the first row/column with empty cells, it

returns the generated successors.

This refined approach should manage indices within the expected range
of the grid and prevent "list index out of range" errors.

Successor Iteration 7

AutoToS prompt:
Successor state has the same number of filled cells as the parent

state.
Let’s think step by step. First, think what you did wrong.
Then, think of in what ways successor state should be different from

the parent state.
Then, provide the complete Python code for the revised successor

function that returns a list of successor states.

184

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: [[None, None, None, None, None], [None, None, None, None,
None], [’l’, ’u’, ’x’, ’u’, ’s’], [’l’, ’o’, ’b’, ’b’, ’y’], [’j

’, ’e’, ’e’, ’r’, None]]
Example wrong successor state: [[None, None, None, None, None], [None,

None, None, None, None], [’l’, ’u’, ’x’, ’u’, ’s’], [’l’, ’o’, ’b
’, ’b’, ’y’], [’j’, ’e’, ’e’, ’r’, None]]

Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’
works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme
’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr
’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

Model response:
To address the issue where the successor state has the same number of

filled cells as the parent state, let’s revise our approach.

Key Points to Fix:
1. **Incremental Filling**: The successor state should have at least

one new cell filled compared to the parent state.
2. **Sequential Filling**: Fill cells row-wise starting with the first

incomplete row and column-wise starting with the first incomplete
column.

3. **Mixed Priority**: Prioritize horizontal filling first, then
vertical.

Steps:
1. **Identify the first empty row for horizontal filling**.
2. **Identify the first empty column for vertical filling**.
3. **Ensure incremental state updates to add at least one new word**.

Revised Successor Function:

‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

import copy

def is_valid_state(state):
for i in range(5):

Check each horizontal word
horizontal_word = ’’.join([state[i][j] if state[i][j] is

not None else ’*’ for j in range(5)])
if ’*’ in horizontal_word:

fragments = horizontal_word.split(’*’)
if fragments[0]:

horizontal_word = fragments[0]
elif len(fragments) > 1:

horizontal_word = fragments[1]
else:

horizontal_word = ’’
if horizontal_word and horizontal_word not in

valid_horizontal_words[i]:

185

return False

Check each vertical word
vertical_word = ’’.join([state[j][i] if state[j][i] is not

None else ’*’ for j in range(5)])
if ’*’ in vertical_word:

fragments = vertical_word.split(’*’)
if fragments[0]:

vertical_word = fragments[0]
elif len(fragments) > 1:

vertical_word = fragments[1]
else:

vertical_word = ’’
if vertical_word and vertical_word not in

valid_vertical_words[i]:
return False

return True

def generate_successors(state, possible_answers, is_horizontal):
successors = []
for i in range(5):

if is_horizontal:
current_line = [state[i][j] for j in range(5)]

else:
current_line = [state[j][i] for j in range(5)]

if all(ch is not None for ch in current_line): # Skip
fully filled rows/columns
continue

for word in possible_answers[i]:
if len(word) > 5:

continue
new_state = copy.deepcopy(state)
can_fit = True

for j in range(5):
ch = word[j] if j < len(word) else None
if current_line[j] is not None and current_line[j]

!= ch:
can_fit = False
break

if is_horizontal and ch is not None:
new_state[i][j] = ch

elif not is_horizontal and ch is not None:
new_state[j][i] = ch

if can_fit and is_valid_state(new_state):
successors.append(new_state)
break # Ensure we only get one valid successor at

a time
if successors:

return successors # Return successors after
processing the first row/column with empty cells

return []

valid_horizontal_words = [set(horizontal_answers[i]) for i in
range(5)]

valid_vertical_words = [set(vertical_answers[i]) for i in range(5)
]

Try to generate horizontal successors first, if no valid
horizontal successors, then vertical.

horizontal_successors = generate_successors(state,
horizontal_answers, True)

186

if horizontal_successors:
return horizontal_successors

vertical_successors = generate_successors(state, vertical_answers,
False)

if vertical_successors:
return vertical_successors

return []
‘‘‘

Explanation:
1. **‘is_valid_state(state)‘**: Checks whether partial words formed

horizontally and vertically are in the valid set.
- Handles separating valid parts of the word via ‘’*’‘.

2. **‘generate_successors(state, possible_answers, is_horizontal)‘**:
- Determines whether to fill rows (horizontal) or columns (vertical

).
- Iterates through each row/column and attempts to place each

possible word.
- It ensures new states have at least one more cell filled by

breaking after finding a valid word for the first row/column
with ‘None‘ cells.

- Manages access within bounds (0 to 4) for the 5x5 grid.
3. **Sequential Filling**: Ensures horizontal successors are attempted

first. If none, vertical successors are attempted next.

This revised function aims to ensure incremental progression in each
successor state, incrementally filling the grid correctly and
ensuring valid placements.

Successor Iteration 8

AutoToS prompt:
Successor state has the same number of filled cells as the parent

state.
Let’s think step by step. First, think what you did wrong.
Then, think of in what ways successor state should be different from

the parent state.
Then, provide the complete Python code for the revised successor

function that returns a list of successor states.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Input state: [[None, None, None, None, None], [None, None, None, None,
None], [’g’, ’r’, ’a’, ’n’, ’d’], [’v’, ’e’, ’n’, ’u’, ’e’], [’j

’, ’e’, ’e’, ’r’, None]]
Example wrong successor state: [[None, None, None, None, None], [None,

None, None, None, None], [’g’, ’r’, ’a’, ’n’, ’d’], [’v’, ’e’, ’n
’, ’u’, ’e’], [’j’, ’e’, ’e’, ’r’, None]]

Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’
works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme
’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr
’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

187

Model response:
First, let’s analyze why our previous implementations did not generate

any successors with a different number of filled cells compared
to the parent state:

1. **Mistake Analysis**: The previous logic might be prioritizing
certain conditions, hence not covering all possible valid
placements. We need to revise how we handle rows and columns to
ensure at least one new entry per successor state.

2. **Criteria for Successor State**: A successor should have more
filled cells than its parent state and should be selected
according to the correct word clues (horizontal or vertical).

Revised Plan
1. **Identify the first row or column with empty cells** and attempt

to fill it.
2. **Generate all valid states from the initial state by filling in

additional words**.
3. **Each successor state must have at least one additional filled

cell** compared to the parent state.
4. **Ensure that word placements do not violate the valid grid state

**.

Here’s the corrected function:

‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

import copy

def is_valid_state(state):
for i in range(5):

horizontal_word = ’’.join([state[i][j] if state[i][j] is
not None else ’*’ for j in range(5)])

vertical_word = ’’.join([state[j][i] if state[j][i] is not
None else ’*’ for j in range(5)])

if ’*’ in horizontal_word:
partials = horizontal_word.split(’*’)
if not all(part == ’’ or part in

valid_horizontal_words[i] for part in partials):
return False

elif horizontal_word and horizontal_word not in
valid_horizontal_words[i]:
return False

if ’*’ in vertical_word:
partials = vertical_word.split(’*’)
if not all(part == ’’ or part in valid_vertical_words[

i] for part in partials):
return False

elif vertical_word and vertical_word not in
valid_vertical_words[i]:
return False

return True

def generate_successors(state, possible_answers, is_horizontal):
successors = []
for i in range(5):

if is_horizontal:
current_line = [state[i][j] for j in range(5)]

else:
current_line = [state[j][i] for j in range(5)]

if all(ch is not None for ch in current_line): # Skip
fully filled rows/columns

188

continue

for word in possible_answers[i]:
if len(word) > 5:

continue

new_state = copy.deepcopy(state)
can_fit = True

for j in range(5):
ch = word[j] if j < len(word) else None
if current_line[j] is not None and current_line[j]

!= ch:
can_fit = False
break

if is_horizontal and ch is not None:
new_state[i][j] = ch

elif not is_horizontal and ch is not None:
new_state[j][i] = ch

if can_fit and is_valid_state(new_state):
successors.append(new_state)

if successors:
return successors # Stop after generating the first

set of valid successors

return []

valid_horizontal_words = [set(horizontal_answers[i]) for i in
range(5)]

valid_vertical_words = [set(vertical_answers[i]) for i in range(5)
]

First try to generate horizontal successors
row_successors = generate_successors(state, horizontal_answers,

True)
if row_successors:

return row_successors

Then try to generate vertical successors
col_successors = generate_successors(state, vertical_answers,

False)
if col_successors:

return col_successors

return []
‘‘‘

Explanation:
1. **‘is_valid_state(state)‘**:

- Checks for valid partial words both horizontally and vertically.
- Splits words by ‘’*’‘ to manage and check partial phrases.

2. **‘generate_successors(state, possible_answers, is_horizontal)‘**:
- Handles both horizontal and vertical filling.
- Tries placing each word in the specified row/column.
- Ensures that successors contain at least one additional filled

cell compared to the parent state.
- Only one row or column is processed to ensure incremental state

filling.

This approach ensures that each successor correctly extends the state
by filling in new words while maintaining validity constraints.

System message:

189

Successor States Soundness Test Passed
Completeness test
Successor Iteration 9

AutoToS prompt:
Successor function when run on the state [[None, None, ’e’, None, None

], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [None
, None, ’l’, None, None], [None, None, ’e’, None, None]] failed to
produce all successors.

Missing successors are: [[[’a’, ’g’, ’e’, ’n’, ’d’], [’m’, ’o’, ’t’, ’
o’, ’r’], [None, None, ’t’, None, None], [None, None, ’l’, None,
None], [None, None, ’e’, None, None]], [[’d’, ’e’, ’e’, ’d’, ’s’],
[’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [None,

None, ’l’, None, None], [None, None, ’e’, None, None]], [[’i’, ’t
’, ’e’, ’m’, ’s’], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’,
None, None], [None, None, ’l’, None, None], [None, None, ’e’, None
, None]], [[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r
’], [’a’, ’r’, ’t’, ’s’, ’y’], [None, None, ’l’, None, None], [
None, None, ’e’, None, None]], [[None, None, ’e’, None, None], [’m
’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [’s’, ’a’,
’l’, ’l’, ’e’], [None, None, ’e’, None, None]], [[None, None, ’e’,
None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None,

None], [’m’, ’a’, ’l’, ’l’, ’s’], [None, None, ’e’, None, None]],
[[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None,
None, ’t’, None, None], [None, None, ’l’, None, None], [’s’, ’l’,
’e’, ’e’, ’r’]], [[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’
o’, ’r’], [None, None, ’t’, None, None], [None, None, ’l’, None,
None], [’s’, ’n’, ’e’, ’e’, ’r’]], [[’a’, None, ’e’, None, None],
[’m’, ’o’, ’t’, ’o’, ’r’], [’a’, None, ’t’, None, None], [’s’,
None, ’l’, None, None], [’s’, None, ’e’, None, None]], [[None, ’g
’, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, ’r’, ’t’,
None, None], [None, ’a’, ’l’, None, None], [None, ’l’, ’e’, None,
None]], [[None, None, ’e’, ’n’, None], [’m’, ’o’, ’t’, ’o’, ’r’],
[None, None, ’t’, ’s’, None], [None, None, ’l’, ’l’, None], [None,
None, ’e’, ’e’, None]], [[None, None, ’e’, ’m’, None], [’m’, ’o’,
’t’, ’o’, ’r’], [None, None, ’t’, ’u’, None], [None, None, ’l’, ’

t’, None], [None, None, ’e’, ’h’, None]], [[None, None, ’e’, ’n’,
None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, ’s’, None], [
None, None, ’l’, ’t’, None], [None, None, ’e’, ’r’, None]], [[None
, None, ’e’, ’p’, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’
t’, ’r’, None], [None, None, ’l’, ’t’, None], [None, None, ’e’, ’s
’, None]], [[None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r
’], [None, None, ’t’, None, ’i’], [None, None, ’l’, None, ’e’], [
None, None, ’e’, None, ’r’]], [[None, None, ’e’, None, ’d’], [’m’,
’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, ’y’], [None, None, ’

l’, None, ’e’], [None, None, ’e’, None, ’r’]], [[None, None, ’e’,
None, ’w’], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, ’i
’], [None, None, ’l’, None, ’n’], [None, None, ’e’, None, ’g’]],
[[None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r’], [None,
None, ’t’, None, ’e’], [None, None, ’l’, None, ’a’], [None, None,
’e’, None, ’r’]]]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.
Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’

works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

190

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme
’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr
’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

Model response:
We need to ensure that the successor function properly fills in

additional cells compared to the parent state, and to produce all
valid successors. Here’s a detailed step-by-step approach to
fixing the function:

1. **Reasons for Failure**:
- The previous function did not sufficiently ensure that new cells

were being filled in each successor.
- It didn’t fully cover all possible word placements for both

horizontal and vertical fillings.

2. **Successor State Requirements**:
- Each successor state should introduce at least one new word in an

incomplete row or column.
- Ensure careful iteration over the grid so that all possible valid

placements are considered.

Revised Plan:

1. **Identify the incomplete rows and columns**.
2. **Generate all possible successor states for each incomplete row/

column**.
3. **Ensure each successor state has at least one more cell filled

compared to the parent state**.

Improved Function:

‘‘‘python
def successor_state(state, horizontal_answers, vertical_answers):

import copy

def is_valid_state(state):
for i in range(5):

Check each horizontal word
horizontal_word = ’’.join([state[i][j] if state[i][j] is

not None else ’*’ for j in range(5)])
if ’*’ in horizontal_word:

partials = horizontal_word.split(’*’)
if not all(part == ’’ or part in

valid_horizontal_words[i] for part in partials):
return False

elif horizontal_word and horizontal_word not in
valid_horizontal_words[i]:
return False

Check each vertical word
vertical_word = ’’.join([state[j][i] if state[j][i] is not

None else ’*’ for j in range(5)])
if ’*’ in vertical_word:

partials = vertical_word.split(’*’)
if not all(part == ’’ or part in valid_vertical_words[

i] for part in partials):
return False

elif vertical_word and vertical_word not in
valid_vertical_words[i]:

191

return False
return True

def generate_successors(state, possible_answers, is_horizontal):
successors = []
for i in range(5):

if is_horizontal:
target_line = [state[i][j] for j in range(5)]

else:
target_line = [state[j][i] for j in range(5)]

if all(ch is not None for ch in target_line): # Skip
fully filled rows/columns
continue

for word in possible_answers[i]:
if len(word) > 5:

continue

new_state = copy.deepcopy(state)
can_fit = True
filled = False

for j in range(len(word)):
ch = word[j]
if target_line[j] is not None and target_line[j]

!= ch:
can_fit = False
break

if is_horizontal:
new_state[i][j] = ch

else:
new_state[j][i] = ch

filled = filled or (target_line[j] is None and ch
is not None)

if can_fit and filled and is_valid_state(new_state):
successors.append(new_state)

if successors:
return successors # Stop after generating the first

set of valid successors

return []

valid_horizontal_words = [set(horizontal_answers[i]) for i in
range(5)]

valid_vertical_words = [set(vertical_answers[i]) for i in range(5)
]

First try to generate horizontal successors
row_successors = generate_successors(state, horizontal_answers,

True)
if row_successors:

return row_successors

Then try to generate vertical successors
col_successors = generate_successors(state, vertical_answers,

False)
if col_successors:

return col_successors

return []
‘‘‘

192

Explanation:
1. **‘is_valid_state(state)‘**: Ensures that partially or fully filled

rows/columns match the provided clues.
2. **‘generate_successors(state, possible_answers, is_horizontal)‘**:

- Iterates through possible words and tries placing each word in
the specified row/column.

- Checks if the word matches the pre-filled cells and if at least
one new cell is filled.

- Adds successors only if they are valid.
3. **Validation**: Ensures that each newly generated state does not

conflict with the existing state and adheres to the constraints
posed by the clues.

This refined function will generate valid successors by ensuring
incremental updates, each with additional filled cells, covering
all potential placements for both horizontal and vertical clues.

System message:
Successor States Soundness Test Passed
Completeness test

System message:
Maximum iterations reached for completeness test. Process stopped.

9.3.4 Llama3.1 70B

Listing 42: Without partial successor soundness test

AutoToS prompt:

The task is a 5x5 mini crosswords. A state is a 2D array representing
the current puzzle state, where the initial grid is all "None".
Note that some of the possible answers are not exactly 5 character
long. Given an input of possible answers to horizontal clues and

vertical clues, how is the successor state function defined?
Please first think step by step. Then provide the successor state
function in Python code.

The possible clues for each row and each column are given separately.
Here is an example of possible horizontal and vertical clues:

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds

", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank

", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud

", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court

", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid",

"gibes", "gibed", "flout"]
]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy",
"gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx",
"gnu", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "
plans", "ideas", "plots", "cocks"],

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet
", "vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear",
"sear", "pall", "lack"]

]

193

where horizontal_answers is a list where element i is a list of
possible answers to clue in row i, and vertical_answers is a list
where element i is a list of possible answers to clue in column i.

Model response:
Defining the Successor State Function
The successor state function generates all possible next states given

a current state. In the context of the 5x5 mini crossword puzzle,
a state is a 2D array representing the current puzzle state. The
successor state function will fill in a single empty cell with a
possible answer.

To implement the successor state function, we need to consider the
following steps:

Iterate over each empty cell in the current state.
For each empty cell, determine the possible answers based on the

horizontal and vertical clues.
For each possible answer, create a new state by filling in the empty

cell with the answer.
Python Implementation
Python
‘‘‘
def successor_state(current_state, horizontal_answers,

vertical_answers):
"""
Generates all possible next states given a current state.

Args:
current_state (list of lists): A 2D array representing the current

puzzle state.
horizontal_answers (list of lists): A list where element i is a

list of possible answers to clue in row i.
vertical_answers (list of lists): A list where element i is a list

of possible answers to clue in column i.

Returns:
list of lists of lists: A list of all possible next states.
"""
next_states = []
for i in range(len(current_state)):

for j in range(len(current_state[i])):
if current_state[i][j] is None:

Determine possible answers based on horizontal clue
if j == 0: # First column, consider all possible

answers
possible_answers_horizontal = horizontal_answers[i

]
else:

possible_answers_horizontal = [answer for answer
in horizontal_answers[i] if answer[j] ==
current_state[i][j - 1]]

Determine possible answers based on vertical clue
if i == 0: # First row, consider all possible answers

possible_answers_vertical = vertical_answers[j]
else:

possible_answers_vertical = [answer for answer in
vertical_answers[j] if answer[i] ==
current_state[i - 1][j]]

Intersection of possible answers from horizontal and
vertical clues

possible_answers = list(set(
possible_answers_horizontal) & set(
possible_answers_vertical))

194

Create new states by filling in the empty cell with
each possible answer

for answer in possible_answers:
new_state = [row[:] for row in current_state]
new_state[i][j] = answer[0] # Fill in the first

character of the answer
next_states.append(new_state)

return next_states
‘‘‘
Example Usage
Python
Initialize an empty puzzle state
current_state = [[None]*5 for _ in range(5)]

Define horizontal and vertical clues
horizontal_answers = [

["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "
items", "lists", "brief"],

["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "
gears", "turbn", "motor"],

["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "
vogue", "swank", "luxus"],

["venue", "salle", "forum", "atria", "lobby", "parls", "court", "
malls", "mall", "lobby"],

["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "
gibes", "gibed", "flout"]

]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy", "
gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu
", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "plans",
"ideas", "plots", "cocks"],

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "
vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear", "
sear", "pall", "lack"]

]

Generate all possible next states
next_states = successor_state(current_state, horizontal_answers,

vertical_answers)

Print the number of next states
print(len(next_states))
Note that the number of next states can be very large, depending on

the number of possible answers for each clue. This implementation
assumes that the puzzle state is a 5x5 grid, but it can be easily
extended to support larger or smaller puzzle sizes.

Generated by Meta Llama 3.1-405

AutoToS prompt:

Please provide a goal test function in Python ensuring that all cells
are not None, all words horizontally are matching at least one of
the horizontal answers, and all words vertically match at least
one of the vertical answers. The function should receive a state,
horizontal_answers, and vertical_answers as before and return True
for a goal state and False otherwise.

Model response:
Goal Test Function

195

The goal test function checks if a given state is a goal state, i.e.,
a valid solution to the crossword puzzle. A state is considered a
goal state if:

All cells are filled (not None).
All horizontal words match at least one of the horizontal answers.
All vertical words match at least one of the vertical answers.
Python Implementation
Python
‘‘‘
def is_goal_state(state, horizontal_answers, vertical_answers):

"""
Checks if a given state is a goal state.

Args:
state (list of lists): A 2D array representing the current puzzle

state.
horizontal_answers (list of lists): A list where element i is a

list of possible answers to clue in row i.
vertical_answers (list of lists): A list where element i is a list

of possible answers to clue in column i.

Returns:
bool: True if the state is a goal state, False otherwise.
"""
Check if all cells are filled
if not all(all(cell is not None for cell in row) for row in state)

:
return False

Check horizontal words
for i, row in enumerate(state):

word = ’’.join(row)
if not any(word == answer for answer in horizontal_answers[i])

:
return False

Check vertical words
for j in range(len(state[0])):

word = ’’.join(state[i][j] for i in range(len(state)))
if not any(word == answer for answer in vertical_answers[j]):

return False

If all checks pass, the state is a goal state
return True

‘‘‘
Example Usage
Python
Define a sample state
state = [

[’t’, ’a’, ’s’, ’k’, ’s’],
[’m’, ’o’, ’t’, ’o’, ’r’],
[’g’, ’r’, ’a’, ’n’, ’d’],
[’v’, ’e’, ’n’, ’u’, ’e’],
[’j’, ’e’, ’e’, ’r’, ’s’]

]

Define horizontal and vertical clues
horizontal_answers = [

["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "
items", "lists", "brief"],

["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "
gears", "turbn", "motor"],

["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "
vogue", "swank", "luxus"],

196

["venue", "salle", "forum", "atria", "lobby", "parls", "court", "
malls", "mall", "lobby"],

["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "
gibes", "gibed", "flout"]

]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy", "
gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu
", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "plans",
"ideas", "plots", "cocks"],

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "
vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear", "
sear", "pall", "lack"]

]

Check if the state is a goal state
if is_goal_state(state, horizontal_answers, vertical_answers):

print("The state is a goal state.")
else:

print("The state is not a goal state.")
In this example, the is_goal_state function checks if the provided

state is a valid solution to the crossword puzzle based on the
given horizontal and vertical answers.

Generated by Meta Llama 3.1-405

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 23, in successor_state

string index out of range. Please fix this exception in the successor
function.

Model response:
The "string index out of range" exception occurs when you try to

access an index in a string that does not exist. In the context of
the successor_state function, this error is likely happening when
checking if a possible answer matches the existing characters in

the row or column.
To fix this issue, we need to ensure that we’re not trying to access

an index that is out of range. Here’s the corrected
successor_state function:

Python
‘‘‘
def successor_state(current_state, horizontal_answers,

vertical_answers):
"""
Generates all possible next states given a current state.

Args:
current_state (list of lists): A 2D array representing the current

puzzle state.
horizontal_answers (list of lists): A list where element i is a

list of possible answers to clue in row i.
vertical_answers (list of lists): A list where element i is a list

of possible answers to clue in column i.

Returns:

197

list of lists of lists: A list of all possible next states.
"""
next_states = []
for i in range(len(current_state)):

for j in range(len(current_state[i])):
if current_state[i][j] is None:

Determine possible answers based on horizontal clue
possible_answers_horizontal = []
for answer in horizontal_answers[i]:

if j == 0 or (j < len(answer) and answer[j] ==
current_state[i][j - 1]):
possible_answers_horizontal.append(answer)

Determine possible answers based on vertical clue
possible_answers_vertical = []
for answer in vertical_answers[j]:

if i == 0 or (i < len(answer) and answer[i] ==
current_state[i - 1][j]):
possible_answers_vertical.append(answer)

Intersection of possible answers from horizontal and
vertical clues

possible_answers = list(set(
possible_answers_horizontal) & set(
possible_answers_vertical))

Create new states by filling in the empty cell with
each possible answer

for answer in possible_answers:
if j < len(answer): # Check if the answer is long

enough
new_state = [row[:] for row in current_state]
new_state[i][j] = answer[j] # Fill in the

correct character of the answer
next_states.append(new_state)

return next_states
‘‘‘
In this corrected version, I’ve added checks to ensure that we’re not

trying to access an index that is out of range when checking if a
possible answer matches the existing characters in the row or
column. I’ve also added a check to ensure that the answer is long
enough before trying to access its characters.

Generated by Meta Llama 3.1-405

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 2

AutoToS prompt:
Successor function when run on the state [[None, None, ’e’, None, None

], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [None
, None, ’l’, None, None], [None, None, ’e’, None, None]] failed to
produce all successors.

Missing successors are: [[[’a’, ’g’, ’e’, ’n’, ’d’], [’m’, ’o’, ’t’, ’
o’, ’r’], [None, None, ’t’, None, None], [None, None, ’l’, None,
None], [None, None, ’e’, None, None]], [[’d’, ’e’, ’e’, ’d’, ’s’],
[’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [None,

None, ’l’, None, None], [None, None, ’e’, None, None]], [[’i’, ’t
’, ’e’, ’m’, ’s’], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’,
None, None], [None, None, ’l’, None, None], [None, None, ’e’, None
, None]], [[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r
’], [’a’, ’r’, ’t’, ’s’, ’y’], [None, None, ’l’, None, None], [
None, None, ’e’, None, None]], [[None, None, ’e’, None, None], [’m

198

’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [’s’, ’a’,
’l’, ’l’, ’e’], [None, None, ’e’, None, None]], [[None, None, ’e’,
None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None,

None], [’m’, ’a’, ’l’, ’l’, ’s’], [None, None, ’e’, None, None]],
[[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None,
None, ’t’, None, None], [None, None, ’l’, None, None], [’s’, ’l’,
’e’, ’e’, ’r’]], [[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’
o’, ’r’], [None, None, ’t’, None, None], [None, None, ’l’, None,
None], [’s’, ’n’, ’e’, ’e’, ’r’]], [[’a’, None, ’e’, None, None],
[’m’, ’o’, ’t’, ’o’, ’r’], [’a’, None, ’t’, None, None], [’s’,
None, ’l’, None, None], [’s’, None, ’e’, None, None]], [[None, ’g
’, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, ’r’, ’t’,
None, None], [None, ’a’, ’l’, None, None], [None, ’l’, ’e’, None,
None]], [[None, None, ’e’, ’n’, None], [’m’, ’o’, ’t’, ’o’, ’r’],
[None, None, ’t’, ’s’, None], [None, None, ’l’, ’l’, None], [None,
None, ’e’, ’e’, None]], [[None, None, ’e’, ’m’, None], [’m’, ’o’,
’t’, ’o’, ’r’], [None, None, ’t’, ’u’, None], [None, None, ’l’, ’

t’, None], [None, None, ’e’, ’h’, None]], [[None, None, ’e’, ’n’,
None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, ’s’, None], [
None, None, ’l’, ’t’, None], [None, None, ’e’, ’r’, None]], [[None
, None, ’e’, ’p’, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’
t’, ’r’, None], [None, None, ’l’, ’t’, None], [None, None, ’e’, ’s
’, None]], [[None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r
’], [None, None, ’t’, None, ’i’], [None, None, ’l’, None, ’e’], [
None, None, ’e’, None, ’r’]], [[None, None, ’e’, None, ’d’], [’m’,
’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, ’y’], [None, None, ’

l’, None, ’e’], [None, None, ’e’, None, ’r’]], [[None, None, ’e’,
None, ’w’], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, ’i
’], [None, None, ’l’, None, ’n’], [None, None, ’e’, None, ’g’]],
[[None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r’], [None,
None, ’t’, None, ’e’], [None, None, ’l’, None, ’a’], [None, None,
’e’, None, ’r’]]]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.
Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’

works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme
’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr
’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

Model response:
The successor function failed to produce all successors of the state

because it only considered filling in the empty cell with the
first character of each possible answer. However, it should
consider filling in the empty cell with any character from the
possible answers that match the existing characters in the row or
column.

Here’s the corrected successor_state function:
Python
‘‘‘

199

def successor_state(current_state, horizontal_answers,
vertical_answers):
"""
Generates all possible next states given a current state.

Args:
current_state (list of lists): A 2D array representing the current

puzzle state.
horizontal_answers (list of lists): A list where element i is a

list of possible answers to clue in row i.
vertical_answers (list of lists): A list where element i is a list

of possible answers to clue in column i.

Returns:
list of lists of lists: A list of all possible next states.
"""
next_states = []
for i in range(len(current_state)):

for j in range(len(current_state[i])):
if current_state[i][j] is None:

Determine possible answers based on horizontal clue
possible_answers_horizontal = []
for answer in horizontal_answers[i]:

if j < len(answer) and (j == 0 or answer[j - 1] ==
current_state[i][j - 1]):
possible_answers_horizontal.append(answer)

Determine possible answers based on vertical clue
possible_answers_vertical = []
for answer in vertical_answers[j]:

if i < len(answer) and (i == 0 or answer[i - 1] ==
current_state[i - 1][j]):
possible_answers_vertical.append(answer)

Intersection of possible answers from horizontal and
vertical clues

possible_answers = list(set(
possible_answers_horizontal) & set(
possible_answers_vertical))

Create new states by filling in the empty cell with
each possible answer

for answer in possible_answers:
if j < len(answer): # Check if the answer is long

enough
new_state = [row[:] for row in current_state]
new_state[i][j] = answer[j] # Fill in the

correct character of the answer
next_states.append(new_state)

Create new states by filling in the empty cell with
each possible character from the possible answers

for answer in possible_answers_horizontal:
if j < len(answer): # Check if the answer is long

enough
new_state = [row[:] for row in current_state]
new_state[i][j] = answer[j] # Fill in the

correct character of the answer
next_states.append(new_state)

for answer in possible_answers_vertical:
if i < len(answer): # Check if the answer is long

enough
new_state = [row[:] for row in current_state]

200

new_state[i][j] = answer[i] # Fill in the
correct character of the answer

next_states.append(new_state)

return next_states
‘‘‘
In this corrected version, we’re considering filling in the empty cell

with any character from the possible answers that match the
existing characters in the row or column. We’re also creating new
states by filling in the empty cell with each possible character
from the possible answers.

However, please note that this approach might produce duplicate states
, which could be inefficient for large puzzles. A more efficient
approach would be to keep track of the possible answers for each
cell and update them as we fill in the cells. This way, we can
avoid generating duplicate states and reduce the search space.

Generated by Meta Llama 3.1-405
Successor Iteration 3

AutoToS prompt:
Timeout occurred during search with the successor function.
Please provide a different implementation of the successor function.
Keep the same function signature.
Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’

works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme
’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr
’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

Model response:
To improve the efficiency of the successor function and avoid timeouts

, we can try to reduce the number of possible next states by only
considering the answers that match the existing characters in the
row or column. Here’s an alternative implementation of the
successor_state function:

Python
‘‘‘
def successor_state(current_state, horizontal_answers,

vertical_answers):
"""
Generates all possible next states given a current state.

Args:
current_state (list of lists): A 2D array representing the current

puzzle state.
horizontal_answers (list of lists): A list where element i is a

list of possible answers to clue in row i.
vertical_answers (list of lists): A list where element i is a list

of possible answers to clue in column i.

Returns:
list of lists of lists: A list of all possible next states.
"""
next_states = []

201

for i in range(len(current_state)):
for j in range(len(current_state[i])):

if current_state[i][j] is None:
Determine possible answers based on horizontal clue
possible_answers_horizontal = [answer for answer in

horizontal_answers[i] if len(answer) > j and all(
answer[k] == current_state[i][k] for k in range(j)
if current_state[i][k] is not None)]

Determine possible answers based on vertical clue
possible_answers_vertical = [answer for answer in

vertical_answers[j] if len(answer) > i and all(
answer[k] == current_state[k][j] for k in range(i)
if current_state[k][j] is not None)]

Intersection of possible answers from horizontal and
vertical clues

possible_answers = list(set(
possible_answers_horizontal) & set(
possible_answers_vertical))

Create new states by filling in the empty cell with
each possible answer

for answer in possible_answers:
new_state = [row[:] for row in current_state]
new_state[i][j] = answer[j] # Fill in the correct

character of the answer
next_states.append(new_state)

return next_states
‘‘‘
In this version, we’re filtering the possible answers based on the

existing characters in the row or column, which should reduce the
number of possible next states and improve the efficiency of the
search.

Additionally, we can consider using a more efficient data structure,
such as a trie or a prefix tree, to store the possible answers and
quickly retrieve the matching answers.

If the search is still too slow, we can consider using a more advanced
search algorithm, such as A* search or iterative deepening depth-

first search, which can take advantage of heuristics to guide the
search towards the most promising areas of the search space.

Generated by Meta Llama 3.1-405

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 4

AutoToS prompt:
Successor function when run on the state [[None, None, ’e’, None, None

], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [None
, None, ’l’, None, None], [None, None, ’e’, None, None]] failed to
produce all successors.

Missing successors are: [[[’a’, ’g’, ’e’, ’n’, ’d’], [’m’, ’o’, ’t’, ’
o’, ’r’], [None, None, ’t’, None, None], [None, None, ’l’, None,
None], [None, None, ’e’, None, None]], [[’d’, ’e’, ’e’, ’d’, ’s’],
[’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [None,

None, ’l’, None, None], [None, None, ’e’, None, None]], [[’i’, ’t
’, ’e’, ’m’, ’s’], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’,
None, None], [None, None, ’l’, None, None], [None, None, ’e’, None
, None]], [[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r
’], [’a’, ’r’, ’t’, ’s’, ’y’], [None, None, ’l’, None, None], [
None, None, ’e’, None, None]], [[None, None, ’e’, None, None], [’m
’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [’s’, ’a’,

202

’l’, ’l’, ’e’], [None, None, ’e’, None, None]], [[None, None, ’e’,
None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None,

None], [’m’, ’a’, ’l’, ’l’, ’s’], [None, None, ’e’, None, None]],
[[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None,
None, ’t’, None, None], [None, None, ’l’, None, None], [’s’, ’l’,
’e’, ’e’, ’r’]], [[None, None, ’e’, None, None], [’m’, ’o’, ’t’, ’
o’, ’r’], [None, None, ’t’, None, None], [None, None, ’l’, None,
None], [’s’, ’n’, ’e’, ’e’, ’r’]], [[’a’, None, ’e’, None, None],
[’m’, ’o’, ’t’, ’o’, ’r’], [’a’, None, ’t’, None, None], [’s’,
None, ’l’, None, None], [’s’, None, ’e’, None, None]], [[None, ’g
’, ’e’, None, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, ’r’, ’t’,
None, None], [None, ’a’, ’l’, None, None], [None, ’l’, ’e’, None,
None]], [[None, None, ’e’, ’n’, None], [’m’, ’o’, ’t’, ’o’, ’r’],
[None, None, ’t’, ’s’, None], [None, None, ’l’, ’l’, None], [None,
None, ’e’, ’e’, None]], [[None, None, ’e’, ’m’, None], [’m’, ’o’,
’t’, ’o’, ’r’], [None, None, ’t’, ’u’, None], [None, None, ’l’, ’

t’, None], [None, None, ’e’, ’h’, None]], [[None, None, ’e’, ’n’,
None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, ’s’, None], [
None, None, ’l’, ’t’, None], [None, None, ’e’, ’r’, None]], [[None
, None, ’e’, ’p’, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’
t’, ’r’, None], [None, None, ’l’, ’t’, None], [None, None, ’e’, ’s
’, None]], [[None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r
’], [None, None, ’t’, None, ’i’], [None, None, ’l’, None, ’e’], [
None, None, ’e’, None, ’r’]], [[None, None, ’e’, None, ’d’], [’m’,
’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, ’y’], [None, None, ’

l’, None, ’e’], [None, None, ’e’, None, ’r’]], [[None, None, ’e’,
None, ’w’], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, ’i
’], [None, None, ’l’, None, ’n’], [None, None, ’e’, None, ’g’]],
[[None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r’], [None,
None, ’t’, None, ’e’], [None, None, ’l’, None, ’a’], [None, None,
’e’, None, ’r’]]]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.
Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’

works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme
’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr
’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

Model response:
The successor function failed to produce all successors of the state

because it only considered filling in the empty cell with the
first character of each possible answer. However, it should
consider filling in the empty cell with any character from the
possible answers that match the existing characters in the row or
column.

To fix this issue, we need to modify the successor function to
consider all possible characters from the possible answers. Here’s
the corrected successor_state function:

Python
‘‘‘

203

def successor_state(current_state, horizontal_answers,
vertical_answers):
"""
Generates all possible next states given a current state.

Args:
current_state (list of lists): A 2D array representing the current

puzzle state.
horizontal_answers (list of lists): A list where element i is a

list of possible answers to clue in row i.
vertical_answers (list of lists): A list where element i is a list

of possible answers to clue in column i.

Returns:
list of lists of lists: A list of all possible next states.
"""
next_states = []
for i in range(len(current_state)):

for j in range(len(current_state[i])):
if current_state[i][j] is None:

Determine possible answers based on horizontal clue
possible_answers_horizontal = [answer for answer in

horizontal_answers[i] if len(answer) > j and all(
answer[k] == current_state[i][k] for k in range(j)
if current_state[i][k] is not None)]

Determine possible answers based on vertical clue
possible_answers_vertical = [answer for answer in

vertical_answers[j] if len(answer) > i and all(
answer[k] == current_state[k][j] for k in range(i)
if current_state[k][j] is not None)]

Create new states by filling in the empty cell with
each possible character from the possible answers

for answer in possible_answers_horizontal:
new_state = [row[:] for row in current_state]
new_state[i][j] = answer[j] # Fill in the correct

character of the answer
next_states.append(new_state)

for answer in possible_answers_vertical:
new_state = [row[:] for row in current_state]
new_state[i][j] = answer[i] # Fill in the correct

character of the answer
next_states.append(new_state)

Create new states by filling in the entire row or
column with each possible answer

for answer in possible_answers_horizontal:
new_state = [row[:] for row in current_state]
for k in range(len(answer)):

new_state[i][k] = answer[k] # Fill in the
entire row with the answer

next_states.append(new_state)

for answer in possible_answers_vertical:
new_state = [row[:] for row in current_state]
for k in range(len(answer)):

new_state[k][j] = answer[k] # Fill in the
entire column with the answer

next_states.append(new_state)

return next_states
‘‘‘

204

In this corrected version, we’re considering filling in the empty cell
with any character from the possible answers that match the

existing characters in the row or column. We’re also creating new
states by filling in the entire row or column with each possible
answer.

However, please note that this approach might produce duplicate states
, which could be inefficient for large puzzles. A more efficient
approach would be to keep track of the possible answers for each
cell and update them as we fill in the cells. This way, we can
avoid generating duplicate states and reduce the search space.

Generated by Meta Llama 3.1-405
Successor Iteration 5

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 40, in successor_state

list assignment index out of range. Please fix this exception in the
successor function.

Model response:
The "list assignment index out of range" exception occurs when you try

to assign a value to an index in a list that does not exist. In
the context of the successor_state function, this error is likely
happening when trying to fill in the entire row or column with
each possible answer.

To fix this issue, we need to ensure that we’re not trying to assign a
value to an index that is out of range. Here’s the corrected

successor_state function:
Python
‘‘‘
def successor_state(current_state, horizontal_answers,

vertical_answers):
"""
Generates all possible next states given a current state.

Args:
current_state (list of lists): A 2D array representing the current

puzzle state.
horizontal_answers (list of lists): A list where element i is a

list of possible answers to clue in row i.
vertical_answers (list of lists): A list where element i is a list

of possible answers to clue in column i.

Returns:
list of lists of lists: A list of all possible next states.
"""
next_states = []
for i in range(len(current_state)):

for j in range(len(current_state[i])):
if current_state[i][j] is None:

Determine possible answers based on horizontal clue
possible_answers_horizontal = [answer for answer in

horizontal_answers[i] if len(answer) > j and all(
answer[k] == current_state[i][k] for k in range(j)
if current_state[i][k] is not None)]

Determine possible answers based on vertical clue
possible_answers_vertical = [answer for answer in

vertical_answers[j] if len(answer) > i and all(
answer[k] == current_state[k][j] for k in range(i)
if current_state[k][j] is not None)]

Create new states by filling in the empty cell with
each possible character from the possible answers

205

for answer in possible_answers_horizontal:
new_state = [row[:] for row in current_state]
new_state[i][j] = answer[j] # Fill in the correct

character of the answer
next_states.append(new_state)

for answer in possible_answers_vertical:
new_state = [row[:] for row in current_state]
new_state[i][j] = answer[i] # Fill in the correct

character of the answer
next_states.append(new_state)

Create new states by filling in the entire row or
column with each possible answer

for answer in possible_answers_horizontal:
new_state = [row[:] for row in current_state]
for k in range(min(len(answer), len(current_state[

i]))):
new_state[i][k] = answer[k] # Fill in the

entire row with the answer
next_states.append(new_state)

for answer in possible_answers_vertical:
new_state = [row[:] for row in current_state]
for k in range(min(len(answer), len(current_state)

)):
new_state[k][j] = answer[k] # Fill in the

entire column with the answer
next_states.append(new_state)

return next_states
‘‘‘
In this corrected version, I’ve added checks to ensure that we’re not

trying to assign a value to an index that is out of range when
filling in the entire row or column with each possible answer. I’
ve used the min function to ensure that we don’t try to access an
index that is out of range.

However, please note that this approach might still produce duplicate
states, which could be inefficient for large puzzles. A more
efficient approach would be to keep track of the possible answers
for each cell and update them as we fill in the cells. This way,
we can avoid generating duplicate states and reduce the search
space.

Generated by Meta Llama 3.1-405

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 20, failure: 0, total expansions 27137742, total generated

118405140

Listing 43: With partial successor soundness test

AutoToS prompt:

The task is a 5x5 mini crosswords. A state is a 2D array representing
the current puzzle state, where the initial grid is all "None".
Note that some of the possible answers are not exactly 5 character
long. Given an input of possible answers to horizontal clues and

vertical clues, how is the successor state function defined?
Please first think step by step. Then provide the successor state
function in Python code.

206

The possible clues for each row and each column are given separately.
Here is an example of possible horizontal and vertical clues:

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds

", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank

", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud

", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court

", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid",

"gibes", "gibed", "flout"]
]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy",
"gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx",
"gnu", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "
plans", "ideas", "plots", "cocks"],

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet
", "vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear",
"sear", "pall", "lack"]

]

where horizontal_answers is a list where element i is a list of
possible answers to clue in row i, and vertical_answers is a list
where element i is a list of possible answers to clue in column i.

Model response:
Here is the successor state function in Python code:
Python
‘‘‘
def successor_state(state, horizontal_answers, vertical_answers):

def is_valid_word(word, row, col):
if len(word) != 5:

return False
for i in range(5):

if state[row][col + i] is not None and state[row][col + i]
!= word[i]:
return False

return True

def is_valid_placement(word, row, col):
for i in range(5):

if col + i >= 5:
return False

if state[row][col + i] is not None and state[row][col + i]
!= word[i]:
return False

return True

def place_word(word, row, col):
new_state = [r[:] for r in state]
for i in range(5):

new_state[row][col + i] = word[i]
return new_state

successors = []
for row in range(5):

for col in range(5):
if state[row][col] is None:

207

for word in horizontal_answers[row]:
if is_valid_placement(word, row, col):

successors.append(place_word(word, row, col))
break

else:
for col in range(5):

for word in vertical_answers[col]:
if is_valid_word(word, row, col):

successors.append(place_word(word, row, col))
return successors

‘‘‘
This function generates all possible successor states by trying to

place each possible word in each empty space in the grid. It
checks if the word can be placed horizontally or vertically
without conflicting with existing letters. If a word can be placed
, it creates a new state with the word placed and adds it to the
list of successors

AutoToS prompt:

Please provide a goal test function in Python ensuring that all cells
are not None, all words horizontally are matching at least one of
the horizontal answers, and all words vertically match at least
one of the vertical answers. The function should receive a state,
horizontal_answers, and vertical_answers as before and return True
for a goal state and False otherwise.

Model response:
Here is the goal test function in Python:
Python
‘‘‘
def goal_test(state, horizontal_answers, vertical_answers):

def is_valid_word(word, answers):
return word in answers

Check all cells are not None
for row in state:

for cell in row:
if cell is None:

return False

Check all horizontal words match at least one answer
for row in range(5):

word = ’’.join(state[row])
if not is_valid_word(word, horizontal_answers[row]):

return False

Check all vertical words match at least one answer
for col in range(5):

word = ’’.join([state[row][col] for row in range(5)])
if not is_valid_word(word, vertical_answers[col]):

return False

return True
‘‘‘
This function first checks if all cells in the state are not None.

Then it checks if each horizontal word in the state matches at
least one of the possible horizontal answers. Finally, it checks
if each vertical word in the state matches at least one of the
possible vertical answers. If all these conditions are met, it
returns True, indicating a goal state; otherwise, it returns False

System message:
Goal Soundness Test Passed
Soundness test

208

Successor Iteration 1

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 23, in place_word

string index out of range. Please fix this exception in the successor
function.

Model response:
The exception "string index out of range" occurs when trying to access

an index in a string that doesn’t exist. In this case, it’s
happening in the place_word function when trying to access word[i
].

This error occurs because the place_word function assumes that the
word has at least 5 characters, but some words in the
horizontal_answers and vertical_answers lists have fewer than 5
characters.

Here’s the corrected successor_state function:
Python
‘‘‘
def successor_state(state, horizontal_answers, vertical_answers):

def is_valid_word(word, row, col):
if len(word) != 5:

return False
for i in range(5):

if state[row][col + i] is not None and state[row][col + i]
!= word[i]:
return False

return True

def is_valid_placement(word, row, col):
if col + len(word) > 5:

return False
for i in range(len(word)):

if col + i >= 5 or (state[row][col + i] is not None and
state[row][col + i] != word[i]):
return False

return True

def place_word(word, row, col):
new_state = [r[:] for r in state]
for i in range(len(word)):

new_state[row][col + i] = word[i]
return new_state

successors = []
for row in range(5):

for col in range(5):
if state[row][col] is None:

for word in horizontal_answers[row]:
if is_valid_placement(word, row, col):

successors.append(place_word(word, row, col))
break

else:
for col in range(5):

for word in vertical_answers[col]:
if is_valid_word(word, row, col):

successors.append(place_word(word, row, col))
return successors

‘‘‘
In the corrected version, I’ve changed the is_valid_placement function

to check if the word fits in the remaining space in the row, and
I’ve also changed the place_word function to iterate over the
length of the word instead of assuming it’s always 5 characters

209

Successor Iteration 2

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 8, in is_valid_word

list index out of range. Please fix this exception in the successor
function.

Model response:
The exception "list index out of range" occurs when trying to access

an index in a list that doesn’t exist. In this case, it’s
happening in the is_valid_word function when trying to access
state[row][col + i].

This error occurs because the is_valid_word function assumes that the
row has at least col + 5 columns, but some rows have fewer columns
.

Here’s the corrected successor_state function:
Python
‘‘‘
def successor_state(state, horizontal_answers, vertical_answers):

def is_valid_word(word, row, col):
if col + len(word) > 5:

return False
for i in range(len(word)):

if col + i >= 5 or (state[row][col + i] is not None and
state[row][col + i] != word[i]):
return False

return True

def is_valid_placement(word, row, col):
if col + len(word) > 5:

return False
for i in range(len(word)):

if col + i >= 5 or (state[row][col + i] is not None and
state[row][col + i] != word[i]):
return False

return True

def place_word(word, row, col):
new_state = [r[:] for r in state]
for i in range(len(word)):

new_state[row][col + i] = word[i]
return new_state

successors = []
for row in range(5):

for col in range(5):
if state[row][col] is None:

for word in horizontal_answers[row]:
if is_valid_placement(word, row, col):

successors.append(place_word(word, row, col))
break

else:
for col in range(5):

for word in vertical_answers[col]:
if is_valid_word(word, row, col):

successors.append(place_word(word, row, col))
return successors

‘‘‘
In the corrected version, I’ve added a check in the is_valid_word

function to ensure that col + len(word) doesn’t exceed the number
of columns in the row. This prevents the "list index out of range"
error

210

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 3

AutoToS prompt:
Successor function when run on the state [[None, None, ’e’, None, None

], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, None], [None
, None, ’l’, None, None], [None, None, ’e’, None, None]] failed to
produce all successors.

Missing successors are: [[[’a’, None, ’e’, None, None], [’m’, ’o’, ’t
’, ’o’, ’r’], [’a’, None, ’t’, None, None], [’s’, None, ’l’, None,
None], [’s’, None, ’e’, None, None]], [[None, ’g’, ’e’, None,

None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, ’r’, ’t’, None, None], [
None, ’a’, ’l’, None, None], [None, ’l’, ’e’, None, None]], [[None
, None, ’e’, ’n’, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’
t’, ’s’, None], [None, None, ’l’, ’l’, None], [None, None, ’e’, ’e
’, None]], [[None, None, ’e’, ’m’, None], [’m’, ’o’, ’t’, ’o’, ’r
’], [None, None, ’t’, ’u’, None], [None, None, ’l’, ’t’, None], [
None, None, ’e’, ’h’, None]], [[None, None, ’e’, ’n’, None], [’m’,
’o’, ’t’, ’o’, ’r’], [None, None, ’t’, ’s’, None], [None, None, ’

l’, ’t’, None], [None, None, ’e’, ’r’, None]], [[None, None, ’e’,
’p’, None], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, ’r’, None
], [None, None, ’l’, ’t’, None], [None, None, ’e’, ’s’, None]], [[
None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r’], [None,
None, ’t’, None, ’i’], [None, None, ’l’, None, ’e’], [None, None,
’e’, None, ’r’]], [[None, None, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’
o’, ’r’], [None, None, ’t’, None, ’y’], [None, None, ’l’, None, ’e
’], [None, None, ’e’, None, ’r’]], [[None, None, ’e’, None, ’w’],
[’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’, None, ’i’], [None,
None, ’l’, None, ’n’], [None, None, ’e’, None, ’g’]], [[None, None
, ’e’, None, ’d’], [’m’, ’o’, ’t’, ’o’, ’r’], [None, None, ’t’,
None, ’e’], [None, None, ’l’, None, ’a’], [None, None, ’e’, None,
’r’]]]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.
Horizontal clues: [[’tasks’, ’goals’, ’plans’, ’agend’, ’chores’, ’

works’, ’deeds’, ’items’, ’lists’, ’brief’], [’motor’, ’power’, ’
drive’, ’diesel’, ’steam’, ’pumps’, ’crank’, ’gears’, ’turbn’, ’
motor’], [’grand’, ’artsy’, ’showy’, ’ornate’, ’fancy’, ’vain’, ’
proud’, ’vogue’, ’swank’, ’luxus’], [’venue’, ’salle’, ’forum’, ’
atria’, ’lobby’, ’parls’, ’court’, ’malls’, ’mall’, ’lobby’], [’
jeer’, ’scoff’, ’sleer’, ’deris’, ’sneer’, ’scorn’, ’derid’, ’
gibes’, ’gibed’, ’flout’]]

Vertical clues: [[’amass’, ’stack’, ’hoard’, ’pile’, ’store’, ’heaps’,
’massy’, ’gathe’, ’lumps’, ’mound’], [’nilga’, ’goral’, ’eland’,

’lepus’, ’gazal’, ’kudu’, ’oryx’, ’gnu’, ’imps’, ’carb’], [’scheme
’, ’design’, ’ettle’, ’nettle’, ’sting’, ’wiles’, ’plans’, ’ideas
’, ’plots’, ’cocks’], [’spout’, ’nosle’, ’snout’, ’mouth’, ’nostr
’, ’ports’, ’inlet’, ’vents’, ’outlt’, ’beaks’], [’drier’, ’arid’,
’sere’, ’parch’, ’dryer’, ’wring’, ’drear’, ’sear’, ’pall’, ’lack

’]]

Model response:
The successor function failed to produce all successors because it

only tries to place words horizontally from left to right and
vertically from top to bottom. It doesn’t try to place words in
other directions or in other positions.

Here’s the corrected successor function:
Python
‘‘‘
def successor_state(state, horizontal_answers, vertical_answers):

211

def is_valid_word(word, row, col, direction):
if direction == ’h’ and col + len(word) > 5:

return False
if direction == ’v’ and row + len(word) > 5:

return False
for i in range(len(word)):

if direction == ’h’ and (state[row][col + i] is not None
and state[row][col + i] != word[i]):
return False

if direction == ’v’ and (state[row + i][col] is not None
and state[row + i][col] != word[i]):
return False

return True

def place_word(word, row, col, direction):
new_state = [r[:] for r in state]
for i in range(len(word)):

if direction == ’h’:
new_state[row][col + i] = word[i]

else:
new_state[row + i][col] = word[i]

return new_state

successors = []
for row in range(5):

for col in range(5):
if state[row][col] is None:

for word in horizontal_answers[row]:
if is_valid_word(word, row, col, ’h’):

successors.append(place_word(word, row, col, ’
h’))

for word in vertical_answers[col]:
if is_valid_word(word, row, col, ’v’):

successors.append(place_word(word, row, col, ’
v’))

return successors
‘‘‘
In the corrected version, I’ve added a direction parameter to the

is_valid_word and place_word functions to handle both horizontal
and vertical word placement. I’ve also added a check to ensure
that the word doesn’t exceed the grid boundaries when placing it
vertically

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 20, failure: 0, total expansions 4514757, total generated

16830232

9.3.5 Llama3.1 405B

Listing 44: Without partial successor soundness test

AutoToS prompt:

The task is a 5x5 mini crosswords. A state is a 2D array representing
the current puzzle state, where the initial grid is all "None".
Note that some of the possible answers are not exactly 5 character
long. Given an input of possible answers to horizontal clues and

vertical clues, how is the successor state function defined?
Please first think step by step. Then provide the successor state
function in Python code.

212

The possible clues for each row and each column are given separately.
Here is an example of possible horizontal and vertical clues:

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds

", "items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank

", "gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud

", "vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court

", "malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid",

"gibes", "gibed", "flout"]
]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy",
"gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx",
"gnu", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "
plans", "ideas", "plots", "cocks"],

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet
", "vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear",
"sear", "pall", "lack"]

]

where horizontal_answers is a list where element i is a list of
possible answers to clue in row i, and vertical_answers is a list
where element i is a list of possible answers to clue in column i.

Model response:
Successor State Function for 5x5 Mini Crosswords
‘‘‘Python
def successor_state(state, horizontal_answers, vertical_answers):

"""
Generates all possible successor states for the given 5x5 mini

crossword state.

Args:
state (list of lists): 2D array representing the current puzzle

state.
horizontal_answers (list of lists): Possible answers to horizontal

clues.
vertical_answers (list of lists): Possible answers to vertical

clues.

Yields:
list of lists: A possible successor state.
"""
def is_valid(state, row, col, answer, direction):

Check if the answer can be placed at the given position
if direction == ’h’:

if col + len(answer) > 5:
return False

for i, char in enumerate(answer):
if state[row][col + i] is not None and state[row][col

+ i] != char:
return False

else:
if row + len(answer) > 5:

return False
for i, char in enumerate(answer):

213

if state[row + i][col] is not None and state[row + i][
col] != char:
return False

return True

def place_answer(state, row, col, answer, direction):
Place the answer at the given position
new_state = [row[:] for row in state]
if direction == ’h’:

for i, char in enumerate(answer):
new_state[row][col + i] = char

else:
for i, char in enumerate(answer):

new_state[row + i][col] = char
return new_state

Generate all possible successor states
for row in range(5):

for col in range(5):
if state[row][col] is None:

Try to place horizontal answers
for answer in horizontal_answers[row]:

if is_valid(state, row, col, answer, ’h’):
yield place_answer(state, row, col, answer, ’h

’)
Try to place vertical answers
for answer in vertical_answers[col]:

if is_valid(state, row, col, answer, ’v’):
yield place_answer(state, row, col, answer, ’v

’)
‘‘‘
This function generates all possible successor states by trying to

place each possible answer at each empty position in the grid. It
checks if the answer can be placed at the given position without
conflicting with existing letters, and if so, yields the resulting
state. The is_valid function checks if an answer can be placed at
a given position, and the place_answer function creates a new

state with the answer placed at the given position.
Generated by Meta Llama 3.1-405B

AutoToS prompt:

Please provide a goal test function in Python ensuring that all cells
are not None, all words horizontally are matching at least one of
the horizontal answers, and all words vertically match at least
one of the vertical answers. The function should receive a state,
horizontal_answers, and vertical_answers as before and return True
for a goal state and False otherwise.

Model response:
Goal Test Function for 5x5 Mini Crosswords
‘‘‘Python
def is_goal_state(state, horizontal_answers, vertical_answers):

"""
Checks if the given state is a goal state.

Args:
state (list of lists): 2D array representing the current puzzle

state.
horizontal_answers (list of lists): Possible answers to horizontal

clues.
vertical_answers (list of lists): Possible answers to vertical

clues.

Returns:

214

bool: True if the state is a goal state, False otherwise.
"""
def is_valid_word(word, answers):

Check if the word matches at least one of the answers
return any(len(word) == len(answer) and all(a == b for a, b in

zip(word, answer)) for answer in answers)

Check if all cells are not None
if any(cell is None for row in state for cell in row):

return False

Check horizontal words
for row in range(5):

word = ’’.join(state[row])
if not is_valid_word(word, horizontal_answers[row]):

return False

Check vertical words
for col in range(5):

word = ’’.join(state[row][col] for row in range(5))
if not is_valid_word(word, vertical_answers[col]):

return False

return True
‘‘‘
This function first checks if all cells in the state are not None.

Then, it checks each horizontal word and each vertical word to
ensure that they match at least one of the corresponding answers.
If all checks pass, it returns True, indicating that the state is
a goal state. Otherwise, it returns False. The is_valid_word
function checks if a word matches at least one of the answers by
comparing the word with each answer.

Generated by Meta Llama 3.1-405B

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 20, failure: 0, total expansions 4514757, total generated

16830232

Listing 45: With partial successor soundness test

AutoToS prompt:

The task is a 5x5 mini crosswords. A state is a 2D array representing
the current puzzle state, where the initial grid is all "None".
Note that some of the possible answers are not exactly 5 character
long. Given an input of possible answers to horizontal clues and

vertical clues, how is the successor state function defined?
Please first think step by step. Then provide the successor state
function in Python code.

The possible clues for each row and each column are given separately.
Here is an example of possible horizontal and vertical clues:

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds

", "items", "lists", "brief"],

215

["motor", "power", "drive", "diesel", "steam", "pumps", "crank
", "gears", "turbn", "motor"],

["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud
", "vogue", "swank", "luxus"],

["venue", "salle", "forum", "atria", "lobby", "parls", "court
", "malls", "mall", "lobby"],

["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid",
"gibes", "gibed", "flout"]

]
vertical_answers = [

["amass", "stack", "hoard", "pile", "store", "heaps", "massy",
"gathe", "lumps", "mound"],

["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx",
"gnu", "imps", "carb"],

["scheme", "design", "ettle", "nettle", "sting", "wiles", "
plans", "ideas", "plots", "cocks"],

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet
", "vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear",
"sear", "pall", "lack"]

]

where horizontal_answers is a list where element i is a list of
possible answers to clue in row i, and vertical_answers is a list
where element i is a list of possible answers to clue in column i.

Model response:
Successor State Function for 5x5 Mini Crosswords
Step-by-Step Thought Process
To define the successor state function, we need to consider the

possible next states given a current state and the possible
answers to horizontal and vertical clues. Here’s a step-by-step
breakdown:

Current State: The current state is a 2D array (5x5 grid) where each
cell can be either None (empty) or a character (part of a word).

Possible Next States: For each empty cell in the current state, we
need to consider all possible characters that can fill that cell
based on the given horizontal and vertical clues.

Horizontal Clues: For each row, we have a list of possible answers. We
need to check which of these answers can be placed in the current
row, considering the already filled cells.

Vertical Clues: Similarly, for each column, we have a list of possible
answers. We need to check which of these answers can be placed in
the current column, considering the already filled cells.

Successor State: A successor state is a new 2D array where one empty
cell is filled with a character based on the possible answers to
horizontal and vertical clues.

Python Code for Successor State Function
Python
‘‘‘
def successor_state(current_state, horizontal_answers,

vertical_answers):
"""
Returns a list of possible successor states given the current

state and possible answers to horizontal and vertical clues.

Args:
current_state (list of lists): 2D array representing the

current puzzle state.
horizontal_answers (list of lists): List of possible answers

to horizontal clues for each row.
vertical_answers (list of lists): List of possible answers to

vertical clues for each column.

Returns:

216

list of lists of lists: List of possible successor states.
"""
successor_states = []
for i in range(5): # Iterate over rows

for j in range(5): # Iterate over columns
if current_state[i][j] is None: # Check if cell is empty

Check horizontal clues
for answer in horizontal_answers[i]:

if len(answer) <= 5 - j: # Check if answer can
fit in the row
new_state = [row[:] for row in current_state]

Create a copy of the current state
for k, char in enumerate(answer):

new_state[i][j + k] = char
successor_states.append(new_state)

Check vertical clues
for answer in vertical_answers[j]:

if len(answer) <= 5 - i: # Check if answer can
fit in the column
new_state = [row[:] for row in current_state]

Create a copy of the current state
for k, char in enumerate(answer):

new_state[i + k][j] = char
successor_states.append(new_state)

return successor_states
‘‘‘
This function returns a list of possible successor states, where each

successor state is a new 2D array with one empty cell filled with
a character based on the possible answers to horizontal and
vertical clues. Note that this implementation assumes that the
input current state, horizontal answers, and vertical answers are
valid and consistent with the problem description.

Generated by Meta Llama 3.1-405

AutoToS prompt:

Please provide a goal test function in Python ensuring that all cells
are not None, all words horizontally are matching at least one of
the horizontal answers, and all words vertically match at least
one of the vertical answers. The function should receive a state,
horizontal_answers, and vertical_answers as before and return True
for a goal state and False otherwise.

Model response:
Goal Test Function for 5x5 Mini Crosswords
Python
‘‘‘
def goal_test(state, horizontal_answers, vertical_answers):

"""
Checks if the given state is a goal state.

A goal state is a state where:
1. All cells are not None.
2. All words horizontally match at least one of the horizontal

answers.
3. All words vertically match at least one of the vertical answers

.

Args:
state (list of lists): 2D array representing the current

puzzle state.
horizontal_answers (list of lists): List of possible answers

to horizontal clues for each row.

217

vertical_answers (list of lists): List of possible answers to
vertical clues for each column.

Returns:
bool: True if the state is a goal state, False otherwise.

"""
Check if all cells are not None
if any(cell is None for row in state for cell in row):

return False

Check horizontal answers
for i, row in enumerate(state):

row_str = ’’.join(row)
if not any(row_str == answer for answer in horizontal_answers[

i]):
return False

Check vertical answers
for j in range(5):

col_str = ’’.join(state[i][j] for i in range(5))
if not any(col_str == answer for answer in vertical_answers[j

]):
return False

If all checks pass, the state is a goal state
return True

‘‘‘
This function first checks if all cells in the state are not None.

Then, it checks if each row matches at least one of the horizontal
answers. Finally, it checks if each column matches at least one

of the vertical answers. If all checks pass, the function returns
True, indicating that the state is a goal state. Otherwise, it
returns False.

You can use this function to test if a given state is a goal state,
like this:

Python
state = [

[’t’, ’a’, ’s’, ’k’, ’s’],
[’m’, ’o’, ’t’, ’o’, ’r’],
[’g’, ’r’, ’a’, ’n’, ’d’],
[’v’, ’e’, ’n’, ’u’, ’e’],
[’j’, ’e’, ’e’, ’r’, ’s’]

]

horizontal_answers = [
["tasks", "goals", "plans", "agend", "chores", "works", "deeds", "

items", "lists", "brief"],
["motor", "power", "drive", "diesel", "steam", "pumps", "crank", "

gears", "turbn", "motor"],
["grand", "artsy", "showy", "ornate", "fancy", "vain", "proud", "

vogue", "swank", "luxus"],
["venue", "salle", "forum", "atria", "lobby", "parls", "court", "

malls", "mall", "lobby"],
["jeer", "scoff", "sleer", "deris", "sneer", "scorn", "derid", "

gibes", "gibed", "flout"]
]

vertical_answers = [
["amass", "stack", "hoard", "pile", "store", "heaps", "massy", "

gathe", "lumps", "mound"],
["nilga", "goral", "eland", "lepus", "gazal", "kudu", "oryx", "gnu

", "imps", "carb"],
["scheme", "design", "ettle", "nettle", "sting", "wiles", "plans",

"ideas", "plots", "cocks"],

218

["spout", "nosle", "snout", "mouth", "nostr", "ports", "inlet", "
vents", "outlt", "beaks"],

["drier", "arid", "sere", "parch", "dryer", "wring", "drear", "
sear", "pall", "lack"]

]

print(goal_test(state, horizontal_answers, vertical_answers)) #
Output: True

Generated by Meta Llama 3.1-405

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Evaluating the final outcome
Success: 20, failure: 0, total expansions 2584134, total generated

6255012

9.4 ProntoQA

9.4.1 Deepseek-CoderV2

Listing 46: Without partial successor soundness test

AutoToS prompt:

Logical deduction is performed by applying rules of the form if X then
Y to our current knowledge about a world, extending our knowledge
with each single rule application.

A rule if X then Y is applicable if we know X. If a state is defined
as our current knowledge of the world, how are successor states
defined, given a collection of rules? Please think step by step.
Then, provide only the Python implementation for the successor
function that receives a state and rules and returns a list of
successor states.

Example initial state: {"integer"}
Example rules: [("integer", "real number"), ("integer", "float")]

Model response:
To define successor states given a collection of rules, we need to

follow these steps:

1. **Identify Applicable Rules**: For each rule ‘if X then Y‘, check
if ‘X‘ is present in the current state.

2. **Generate Successor States**: For each applicable rule, create a
new state by adding ‘Y‘ to the current state.

3. **Ensure Uniqueness**: Each successor state should be unique to
avoid redundant states.

Let’s break down the process step-by-step:

1. **Identify Applicable Rules**:
- Iterate through the list of rules.
- For each rule ‘(X, Y)‘, check if ‘X‘ is in the current state.

2. **Generate Successor States**:
- If ‘X‘ is in the current state, create a new state by copying the

current state and adding ‘Y‘ to it.

3. **Ensure Uniqueness**:

219

- Use a set or a similar data structure to ensure that each
successor state is unique.

Now, let’s implement this in Python:

python
‘‘‘
def successor(state, rules):

successor_states = []
for rule in rules:

X, Y = rule
if X in state:

new_state = state.copy()
new_state.add(Y)
if new_state not in successor_states:

successor_states.append(new_state)
return successor_states

Example usage:
initial_state = {"integer"}
rules = [("integer", "real number"), ("integer", "float")]
print(successor(initial_state, rules))
‘‘‘

Explanation:
- **state**: A set representing the current knowledge of the world.
- **rules**: A list of tuples where each tuple ‘(X, Y)‘ represents a

rule ‘if X then Y‘.
- **successor_states**: A list to store unique successor states.
- **for rule in rules**: Iterate through each rule.
- **if X in state**: Check if ‘X‘ is in the current state.
- **new_state = state.copy()**: Create a copy of the current state.
- **new_state.add(Y)**: Add ‘Y‘ to the new state.
- **if new_state not in successor_states**: Ensure the new state is

unique before adding it to the list of successor states.

This function will return a list of unique successor states based on
the given rules and the current state

AutoToS prompt:

Provide only the Python function for the goal test function that tests
, given a target fact, whether a state is a goal state.

Model response:
python
‘‘‘
def goal_test(state, target_fact):

return target_fact in state
‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 4000, failure: 0, total expansions 85523, total evaluations

244776

Listing 47: With partial successor soundness test

AutoToS prompt:

220

Logical deduction is performed by applying rules of the form if X then
Y to our current knowledge about a world, extending our knowledge
with each single rule application.

A rule if X then Y is applicable if we know X. If a state is defined
as our current knowledge of the world, how are successor states
defined, given a collection of rules? Please think step by step.
Then, provide only the Python implementation for the successor
function that receives a state and rules and returns a list of
successor states.

Example initial state: {"integer"}
Example rules: [("integer", "real number"), ("integer", "float")]

Model response:
To define the successor states given a collection of rules, we need to

follow these steps:

Identify Applicable Rules: For each rule if X then Y, check if X is
present in the current state.

Generate Successor States: For each applicable rule, create a new
state by adding Y to the current state.

Ensure Uniqueness: Each successor state should be unique to avoid
redundant states.

Let’s break down the process step-by-step:

Identify Applicable Rules:

Iterate through the list of rules.

For each rule (X, Y), check if X is in the current state.

Generate Successor States:

If X is in the current state, create a new state by copying the
current state and adding Y to it.

Ensure Uniqueness:

Use a set or a similar data structure to ensure that each successor
state is unique.

Now, let’s implement the successor function in Python:

python
Copy code
‘‘‘
def successor(state, rules):

successor_states = []
for rule in rules:

X, Y = rule
if X in state:

new_state = state.copy()
new_state.add(Y)
if new_state not in successor_states:

successor_states.append(new_state)
return successor_states

Example usage:
initial_state = {"integer"}
rules = [("integer", "real number"), ("integer", "float")]
print(successor(initial_state, rules))

221

‘‘‘
Explanation:
state: A set representing the current knowledge of the world.

rules: A list of tuples where each tuple (X, Y) represents a rule if X
then Y.

successor_states: A list to store the unique successor states.

for rule in rules: Iterate through each rule.

if X in state: Check if X is in the current state.

new_state = state.copy(): Create a copy of the current state.

new_state.add(Y): Add Y to the new state.

if new_state not in successor_states: Ensure the new state is unique
before adding it to the list of successor states.

This function will return a list of unique successor states based on
the given rules and the current state

AutoToS prompt:

Provide only the Python function for the goal test function that tests
, given a target fact, whether a state is a goal state.

Model response:
Here is the Python function for the goal test function:

python
Copy code
‘‘‘
def is_goal_state(state, target_fact):

return target_fact in state

Example usage:
state = {"integer", "real number"}
target_fact = "real number"
print(is_goal_state(state, target_fact)) # Output: True
‘‘‘
This function checks if the target_fact is present in the state and

returns True if it is, indicating that the state is a goal state.
Otherwise, it returns False

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 4000, failure: 0, total expansions 86963, total evaluations

248574

9.4.2 GPT4-Mini

Listing 48: Without partial successor soundness test

AutoToS prompt:

222

Logical deduction is performed by applying rules of the form if X then
Y to our current knowledge about a world, extending our knowledge
with each single rule application.

A rule if X then Y is applicable if we know X. If a state is defined
as our current knowledge of the world, how are successor states
defined, given a collection of rules? Please think step by step.
Then, provide only the Python implementation for the successor
function that receives a state and rules and returns a list of
successor states.

Example initial state: {"integer"}
Example rules: [("integer", "real number"), ("integer", "float")]

Model response:
‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):
successors = set()
for x, y in rules:

if x in state:
successors.add(y)

return successors

return list(apply_rules(state, rules))
‘‘‘

AutoToS prompt:

Provide only the Python function for the goal test function that tests
, given a target fact, whether a state is a goal state.

Model response:
‘‘‘python
def is_goal_state(state, target_fact):

return target_fact in state
‘‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 1

AutoToS prompt:
Successor function when run on the state {’painted lady’} failed to

produce all successors.
Missing successors are: [{’painted lady’, ’butterfly’}]
First think step by step why the successor function failed to produce

all successors of the state.
Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.
Rules: [(’arthropod’, ’protostome’), (’lepidopteran’, ’insect’), (’

painted lady’, ’butterfly’), (’insect’, ’arthropod’), (’
invertebrate’, ’animal’), (’arthropod’, ’not-bony’), (’protostome
’, ’invertebrate’), (’whale’, ’bony’), (’butterfly’, ’lepidopteran
’), (’animal’, ’multicellular’), (’insect’, ’six-legged’)]

Model response:
‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):

223

successors = set(state) # Start with current state in
successors

changes = True

while changes: # Continue until no new successors are found
changes = False
new_successors = set()
for x, y in rules:

if x in successors and y not in successors:
new_successors.add(y)
changes = True

successors.update(new_successors)

return successors

return list(apply_rules(state, rules))
‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 2

AutoToS prompt:
Successor function when run on the state {’painted lady’} failed to

produce all successors.
Missing successors are: [{’painted lady’, ’butterfly’}]
First think step by step why the successor function failed to produce

all successors of the state.
Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.
Rules: [(’arthropod’, ’protostome’), (’lepidopteran’, ’insect’), (’

painted lady’, ’butterfly’), (’insect’, ’arthropod’), (’
invertebrate’, ’animal’), (’arthropod’, ’not-bony’), (’protostome
’, ’invertebrate’), (’whale’, ’bony’), (’butterfly’, ’lepidopteran
’), (’animal’, ’multicellular’), (’insect’, ’six-legged’)]

Model response:
‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):
successors = set(state) # Start with the current state in

successors
changes = True

while changes: # Continue until no new successors are found
changes = False
new_successors = set()
for x, y in rules:

if x in successors and y not in successors:
new_successors.add(y)
changes = True

successors.update(new_successors)

return successors

return [tuple(successor) for successor in apply_rules(state, rules
)]

‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 3

224

AutoToS prompt:
Successor function when run on the state {’painted lady’} failed to

produce all successors.
Missing successors are: [{’painted lady’, ’butterfly’}]
First think step by step why the successor function failed to produce

all successors of the state.
Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.
Rules: [(’arthropod’, ’protostome’), (’lepidopteran’, ’insect’), (’

painted lady’, ’butterfly’), (’insect’, ’arthropod’), (’
invertebrate’, ’animal’), (’arthropod’, ’not-bony’), (’protostome
’, ’invertebrate’), (’whale’, ’bony’), (’butterfly’, ’lepidopteran
’), (’animal’, ’multicellular’), (’insect’, ’six-legged’)]

Model response:
‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):
successors = set(state) # Start with the current state in

successors
changes = True

while changes: # Continue until no new successors are found
changes = False
new_successors = set()
for x, y in rules:

if x in successors and y not in successors:
new_successors.add(y)
changes = True

successors.update(new_successors)

return successors

initial_successors = apply_rules(state, rules)
all_successors = [{*state, s} for s in initial_successors] #

Include all initial states with each successor
return list(all_successors)

‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 4000, failure: 0, total expansions 897073, total evaluations

9156989

Listing 49: With partial successor soundness test

AutoToS prompt:

Logical deduction is performed by applying rules of the form if X then
Y to our current knowledge about a world, extending our knowledge
with each single rule application.

A rule if X then Y is applicable if we know X. If a state is defined
as our current knowledge of the world, how are successor states
defined, given a collection of rules? Please think step by step.
Then, provide only the Python implementation for the successor
function that receives a state and rules and returns a list of
successor states.

Example initial state: {"integer"}
Example rules: [("integer", "real number"), ("integer", "float")]

225

Model response:
‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):
successors = set()
for rule in rules:

if rule[0] in state:
successors.add(rule[1])

return successors

current_successors = apply_rules(state, rules)
return list(current_successors)

‘‘‘

AutoToS prompt:

Provide only the Python function for the goal test function that tests
, given a target fact, whether a state is a goal state.

Model response:
‘‘‘python
def is_goal_state(state, target_fact):

return target_fact in state
‘‘‘

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Invalid transition: length mismatch - the length of a successor must

be one more than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one more than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one more than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: {’painted lady’}
Example wrong successor state: butterfly
Rules: {(’butterfly’, ’lepidopteran’), (’lepidopteran’, ’insect’), (’

arthropod’, ’not-bony’), (’animal’, ’multicellular’), (’whale’, ’
bony’), (’insect’, ’arthropod’), (’invertebrate’, ’animal’), (’
insect’, ’six-legged’), (’painted lady’, ’butterfly’), (’
protostome’, ’invertebrate’), (’arthropod’, ’protostome’)}

Model response:
‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):
successors = set()
for rule in rules:

if rule[0] in state:
successors.add(rule[1])

return successors

current_successors = apply_rules(state, rules)
valid_successors = [s for s in current_successors if len(state) +

1 == len({*state, s})]

return valid_successors
‘‘‘

226

Successor Iteration 2

AutoToS prompt:
Invalid transition: length mismatch - the length of a successor must

be one more than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one more than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one more than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: {’painted lady’}
Example wrong successor state: butterfly
Rules: {(’butterfly’, ’lepidopteran’), (’lepidopteran’, ’insect’), (’

arthropod’, ’not-bony’), (’animal’, ’multicellular’), (’whale’, ’
bony’), (’insect’, ’arthropod’), (’invertebrate’, ’animal’), (’
insect’, ’six-legged’), (’painted lady’, ’butterfly’), (’
protostome’, ’invertebrate’), (’arthropod’, ’protostome’)}

Model response:
‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):
new_successors = set()
for rule in rules:

if rule[0] in state:
new_successors.add(rule[1])

return new_successors

current_successors = apply_rules(state, rules)

valid_successors = []
for successor in current_successors:

if len(state) + 1 == len({*state, successor}):
valid_successors.append(successor)

return valid_successors
‘‘‘
Successor Iteration 3

AutoToS prompt:
Invalid transition: length mismatch - the length of a successor must

be one more than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one more than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one more than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: {’painted lady’}
Example wrong successor state: butterfly
Rules: {(’butterfly’, ’lepidopteran’), (’lepidopteran’, ’insect’), (’

arthropod’, ’not-bony’), (’animal’, ’multicellular’), (’whale’, ’
bony’), (’insect’, ’arthropod’), (’invertebrate’, ’animal’), (’
insect’, ’six-legged’), (’painted lady’, ’butterfly’), (’
protostome’, ’invertebrate’), (’arthropod’, ’protostome’)}

Model response:
‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):

227

new_successors = set()
for rule in rules:

if rule[0] in state:
new_successors.add(rule[1])

return new_successors

current_successors = apply_rules(state, rules)

valid_successors = []
for successor in current_successors:

Check that the successor is a new fact and the length
condition is satisfied

if successor not in state and len(state) + 1 == len(state | {
successor}):
valid_successors.append(successor)

return valid_successors
‘‘‘
Successor Iteration 4

AutoToS prompt:
Invalid transition: length mismatch - the length of a successor must

be one more than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one more than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one more than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: {’painted lady’}
Example wrong successor state: butterfly
Rules: {(’butterfly’, ’lepidopteran’), (’lepidopteran’, ’insect’), (’

arthropod’, ’not-bony’), (’animal’, ’multicellular’), (’whale’, ’
bony’), (’insect’, ’arthropod’), (’invertebrate’, ’animal’), (’
insect’, ’six-legged’), (’painted lady’, ’butterfly’), (’
protostome’, ’invertebrate’), (’arthropod’, ’protostome’)}

Model response:
‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):
new_successors = set()
for rule in rules:

if rule[0] in state:
new_successors.add(rule[1])

return new_successors

current_successors = apply_rules(state, rules)

valid_successors = []
current_state_length = len(state)

for successor in current_successors:
Check that the successor is a new fact and that the

resulting state has the correct length
if successor not in state and len(state | {successor}) ==

current_state_length + 1:
valid_successors.append(successor)

return valid_successors
‘‘‘
Successor Iteration 5

228

AutoToS prompt:
Invalid transition: length mismatch - the length of a successor must

be one more than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one more than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one more than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: {’painted lady’}
Example wrong successor state: butterfly
Rules: {(’butterfly’, ’lepidopteran’), (’lepidopteran’, ’insect’), (’

arthropod’, ’not-bony’), (’animal’, ’multicellular’), (’whale’, ’
bony’), (’insect’, ’arthropod’), (’invertebrate’, ’animal’), (’
insect’, ’six-legged’), (’painted lady’, ’butterfly’), (’
protostome’, ’invertebrate’), (’arthropod’, ’protostome’)}

Model response:
‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):
new_successors = set()
for rule in rules:

if rule[0] in state:
new_successors.add(rule[1])

return new_successors

current_successors = apply_rules(state, rules)

valid_successors = []
current_state_length = len(state)

for successor in current_successors:
Check that the successor is not already in the state
if successor not in state:

Create a potential new state by adding the successor
new_state = state | {successor}
Validate that the new state’s length is exactly one

greater than the current state’s length
if len(new_state) == current_state_length + 1:

valid_successors.append(successor)

return valid_successors
‘‘‘
Successor Iteration 6

AutoToS prompt:
Invalid transition: length mismatch - the length of a successor must

be one more than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one more than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one more than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: {’painted lady’}
Example wrong successor state: butterfly
Rules: {(’butterfly’, ’lepidopteran’), (’lepidopteran’, ’insect’), (’

arthropod’, ’not-bony’), (’animal’, ’multicellular’), (’whale’, ’
bony’), (’insect’, ’arthropod’), (’invertebrate’, ’animal’), (’

229

insect’, ’six-legged’), (’painted lady’, ’butterfly’), (’
protostome’, ’invertebrate’), (’arthropod’, ’protostome’)}

Model response:
‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):
new_successors = set()
for rule in rules:

if rule[0] in state:
new_successors.add(rule[1])

return new_successors

current_successors = apply_rules(state, rules)

valid_successors = []
current_state_length = len(state)

for successor in current_successors:
Check that the successor is not already in the state
if successor not in state:

Create a potential new state by adding the successor
new_state = state | {successor}
Validate that the new state’s length is exactly one

greater than the current state’s length
if len(new_state) == current_state_length + 1:

valid_successors.append(successor)

return valid_successors
‘‘‘
Successor Iteration 7

AutoToS prompt:
Invalid transition: length mismatch - the length of a successor must

be one more than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one more than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one more than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: {’painted lady’}
Example wrong successor state: butterfly
Rules: {(’butterfly’, ’lepidopteran’), (’lepidopteran’, ’insect’), (’

arthropod’, ’not-bony’), (’animal’, ’multicellular’), (’whale’, ’
bony’), (’insect’, ’arthropod’), (’invertebrate’, ’animal’), (’
insect’, ’six-legged’), (’painted lady’, ’butterfly’), (’
protostome’, ’invertebrate’), (’arthropod’, ’protostome’)}

Model response:
The reason the successor function may produce a successor that does

not maintain the required length (one more than the parent state)
is because it might allow for adding a state that is already
present or inadvertently include rules that do not extend the
state by exactly one new fact.

To ensure that the successor state length is exactly one more than the
parent state, we need to implement a stricter check when applying
the rules. Specifically, we will generate a new set that includes
the current state and one additional fact resulting from the

rules.

Here is the corrected code for the successor function:

230

‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):
new_successors = set()
for rule in rules:

if rule[0] in state:
new_successors.add(rule[1])

return new_successors

current_successors = apply_rules(state, rules)

valid_successors = []

for successor in current_successors:
Ensure that the successor is not already in the state
if successor not in state:

Create a potential new state by adding the successor to
the current state

new_state = state | {successor}
Check that the new state’s length is exactly one greater

than the current state’s length
if len(new_state) == len(state) + 1:

valid_successors.append(successor)

return valid_successors
‘‘‘

This revision ensures that any valid successor produced results in a
set whose length is one greater than the original state, thus
fulfilling the required condition.

Successor Iteration 8

AutoToS prompt:
Invalid transition: length mismatch - the length of a successor must

be one more than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one more than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one more than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: {’painted lady’}
Example wrong successor state: butterfly
Rules: {(’butterfly’, ’lepidopteran’), (’lepidopteran’, ’insect’), (’

arthropod’, ’not-bony’), (’animal’, ’multicellular’), (’whale’, ’
bony’), (’insect’, ’arthropod’), (’invertebrate’, ’animal’), (’
insect’, ’six-legged’), (’painted lady’, ’butterfly’), (’
protostome’, ’invertebrate’), (’arthropod’, ’protostome’)}

Model response:
The core issue causing the length mismatch arises when the successor

can potentially introduce facts that are either already contained
within the state or do not create a distinct new state. Our goal
is to ensure that each successor state maintains exactly one more
fact compared to its parent state, hence requiring precise
validation.

Here is the complete Python code for the revised successor function:

‘‘‘python
def successor(state, rules):

def apply_rules(state, rules):

231

new_successors = set()
for rule in rules:

if rule[0] in state:
new_successors.add(rule[1])

return new_successors

current_successors = apply_rules(state, rules)

valid_successors = []

for successor in current_successors:
We must check that the successor is a new fact
if successor not in state:

Create a new set that combines the current state with
the successor

new_state = state | {successor}
Validate that the new state’s length is exactly one more

than the original
if len(new_state) == len(state) + 1:

valid_successors.append(successor)

return valid_successors
‘‘‘

In this function, we apply the rules to find potential successors, and
then we check whether including each successor in the state

results in a new state that is precisely one fact longer than the
original. This ensures compliance with the requirement of the
successor function.

Successor Iteration 9

AutoToS prompt:
Invalid transition: length mismatch - the length of a successor must

be one more than the parent.
Let’s think step by step. First think through in words why the

successor function produced a successor that had a length that was
not exactly one more than the parent. Then provide the complete

Python code for the revised successor function that ensures the
length of a successor is exactly one more than the parent.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: {’painted lady’}
Example wrong successor state: butterfly
Rules: {(’butterfly’, ’lepidopteran’), (’lepidopteran’, ’insect’), (’

arthropod’, ’not-bony’), (’animal’, ’multicellular’), (’whale’, ’
bony’), (’insect’, ’arthropod’), (’invertebrate’, ’animal’), (’
insect’, ’six-legged’), (’painted lady’, ’butterfly’), (’
protostome’, ’invertebrate’), (’arthropod’, ’protostome’)}

Model response:
The requirement for the successor function is that a valid successor

state must have a length exactly one greater than the parent state
. The previous implementations may have produced successors that
were not unique to the state or that did not result in a distinct
increase in the fact count.

To ensure each successor adds exactly one new fact, we should clarify
our filtering by confirming that the successor is contributed by
the rules and that it was not already included in the current
state.

Here’s the revised implementation:

‘‘‘python

232

def successor(state, rules):
def apply_rules(state, rules):

new_successors = set()
for rule in rules:

if rule[0] in state:
new_successors.add(rule[1])

return new_successors

current_successors = apply_rules(state, rules)

valid_successors = []

for successor in current_successors:
Ensure that the successor is not already in the state
if successor not in state:

Create a potential new state by adding the successor
new_state = state | {successor}
Check that the new state’s length is exactly one greater

than the original state’s length
if len(new_state) == len(state) + 1:

valid_successors.append(successor)

return valid_successors
‘‘‘

This version checks that:
1. Each successor generated from the rules is indeed new (not already

part of the original state).
2. The combination of the original state with this new successor

strictly results in a state that is one fact longer.

By enforcing these conditions, we ensure we comply with the length
requirement for the successor states.

System message:
Maximum iterations reached for completeness test. Process stopped.

9.4.3 GPT4

Listing 50: Without partial successor soundness test

AutoToS prompt:

Logical deduction is performed by applying rules of the form if X then
Y to our current knowledge about a world, extending our knowledge
with each single rule application.

A rule if X then Y is applicable if we know X. If a state is defined
as our current knowledge of the world, how are successor states
defined, given a collection of rules? Please think step by step.
Then, provide only the Python implementation for the successor
function that receives a state and rules and returns a list of
successor states.

Example initial state: {"integer"}
Example rules: [("integer", "real number"), ("integer", "float")]

Model response:
Certainly! The successor function needs to apply each applicable rule

to the state to generate new successor states. Below is the
implementation that performs this task.

‘‘‘python
def successor(state, rules):

"""

233

Generate successor states by applying given rules to the current
state.

:param state: A set representing the current knowledge about the
world.

:param rules: A list of tuples representing rules in the form (X,
Y) where if X is known, then Y can be deduced.

:return: A list of sets representing all possible successor states
.

"""
successors = []

for X, Y in rules:
if X in state:

new_state = state.copy()
new_state.add(Y)
if new_state != state: # Make sure the new state is

different from the current state
successors.append(new_state)

return successors
‘‘‘

You can use this function by passing your current state and the list
of rules to it. The function will then return all possible
successor states that can be derived by applying the rules to the
current state.

AutoToS prompt:

Provide only the Python function for the goal test function that
tests, given a target fact, whether a state is a goal state.

Model response:
Certainly! Below is the function for testing if a state is a goal

state given a target fact.

‘‘‘python
def is_goal_state(state, target_fact):

"""
Determine if a given state is a goal state based on the target

fact.

:param state: A set representing the current knowledge about the
world.

:param target_fact: A fact to check for in the state.
:return: True if the target fact is in the state, False otherwise.
"""
return target_fact in state

‘‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 4000, failure: 0, total expansions 88141, total evaluations

176892

Listing 51: With partial successor soundness test

AutoToS prompt:

234

Logical deduction is performed by applying rules of the form if X then
Y to our current knowledge about a world, extending our knowledge
with each single rule application.

A rule if X then Y is applicable if we know X. If a state is defined
as our current knowledge of the world, how are successor states
defined, given a collection of rules? Please think step by step.
Then, provide only the Python implementation for the successor
function that receives a state and rules and returns a list of
successor states.

Example initial state: {"integer"}
Example rules: [("integer", "real number"), ("integer", "float")]

Model response:
‘‘‘python
def successor_states(state, rules):

"""
Generate successor states based on the current state and the

provided rules.

:param state: Set of strings representing the current state.
:param rules: List of tuples where each tuple represents a rule (X

, Y).
:return: List of sets representing all successor states.
"""
successors = []

for X, Y in rules:
if X in state:

new_state = set(state)
new_state.add(Y)
if new_state != state:

successors.append(new_state)

return successors
‘‘‘

AutoToS prompt:

Provide only the Python function for the goal test function that tests
, given a target fact, whether a state is a goal state.

Model response:
‘‘‘python
def is_goal_state(state, target_fact):

"""
Test whether the given state is a goal state containing the target

fact.

:param state: Set of strings representing the current state.
:param target_fact: String representing the target fact.
:return: Boolean indicating whether the state is a goal state.
"""
return target_fact in state

‘‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed

235

Success: 4000, failure: 0, total expansions 85837, total evaluations
169779

9.4.4 Llama3.1 70B

Listing 52: Without partial successor soundness test

AutoToS prompt:

Logical deduction is performed by applying rules of the form if X then
Y to our current knowledge about a world, extending our knowledge
with each single rule application.

A rule if X then Y is applicable if we know X. If a state is defined
as our current knowledge of the world, how are successor states
defined, given a collection of rules? Please think step by step.
Then, provide only the Python implementation for the successor
function that receives a state and rules and returns a list of
successor states.

Example initial state: {"integer"}
Example rules: [("integer", "real number"), ("integer", "float")]

Model response:
Let’s break it down step by step:
Current State: Our current knowledge about the world, represented as a

set of facts. (e.g., {"integer"})
Rules: A collection of if-then rules, where each rule is a pair of

facts (e.g., [("integer", "real number"), ("integer", "float")])
Applicable Rules: A rule is applicable if its "if" part (antecedent)

is present in the current state.
Successor States: For each applicable rule, we create a new state by

adding the "then" part (consequent) of the rule to the current
state.

Here’s the Python implementation for the successor function:
Python
‘‘‘
def get_successor_states(state, rules):

successor_states = []
for rule in rules:

if rule[0] in state:
new_state = state.copy()
new_state.add(rule[1])
successor_states.append(new_state)

return successor_states

Example usage:
initial_state = {"integer"}
rules = [("integer", "real number"), ("integer", "float")]
successor_states = get_successor_states(initial_state, rules)
print(successor_states) # Output: [{’integer’, ’real number’}, {’

integer’, ’float’}]
‘‘‘
This function iterates over each rule, checks if the antecedent is in

the current state, and if so, creates a new state by adding the
consequent to the current state. The resulting list of successor
states is then returned

AutoToS prompt:

Provide only the Python function for the goal test function that tests
, given a target fact, whether a state is a goal state.

Model response:
Here is the Python function for the goal test:
Python

236

‘‘‘
def is_goal_state(state, target_fact):

return target_fact in state
‘‘‘
This function checks if the target fact is present in the given state,

returning True if it is, and False otherwise

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 4000, failure: 0, total expansions 87058, total evaluations

520385

Listing 53: With partial successor soundness test

AutoToS prompt:

Logical deduction is performed by applying rules of the form if X then
Y to our current knowledge about a world, extending our knowledge
with each single rule application.

A rule if X then Y is applicable if we know X. If a state is defined
as our current knowledge of the world, how are successor states
defined, given a collection of rules? Please think step by step.
Then, provide only the Python implementation for the successor
function that receives a state and rules and returns a list of
successor states.

Example initial state: {"integer"}
Example rules: [("integer", "real number"), ("integer", "float")]

Model response:
A successor state is a new state that can be reached by applying a

single rule to the current state. Given a collection of rules, the
successor states are defined as follows:

Initialize an empty list to store the successor states.
For each rule in the collection of rules:
a. Check if the condition (X) of the rule is present in the current

state.
b. If the condition is present, create a new state by adding the

conclusion (Y) of the rule to the current state.
c. Add the new state to the list of successor states.
Return the list of successor states.
Here is the Python implementation for the successor function:
Python
‘‘‘
def successor_states(state, rules):

successor_states = []
for rule in rules:

if rule[0] in state:
new_state = state.copy()
new_state.add(rule[1])
successor_states.append(new_state)

return successor_states
‘‘‘
You can use this function like this:
Python
initial_state = {"integer"}
rules = [("integer", "real number"), ("integer", "float")]
print(successor_states(initial_state, rules))
This will output:

237

Python
[{’integer’, ’real number’}, {’integer’, ’float’}

AutoToS prompt:

Provide only the Python function for the goal test function that tests
, given a target fact, whether a state is a goal state.

Model response:
Here is the Python function for the goal test:
Python
‘‘‘
def goal_test(state, target_fact):

return target_fact in state
‘‘‘
This function takes in a state and a target fact, and returns True if

the target fact is in the state, indicating that the state is a
goal state. Otherwise, it returns False

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 4000, failure: 0, total expansions 87490, total evaluations

523778

9.4.5 Llama3.1 405B

Listing 54: Without partial successor soundness test

AutoToS prompt:

Logical deduction is performed by applying rules of the form if X then
Y to our current knowledge about a world, extending our knowledge
with each single rule application.

A rule if X then Y is applicable if we know X. If a state is defined
as our current knowledge of the world, how are successor states
defined, given a collection of rules? Please think step by step.
Then, provide only the Python implementation for the successor
function that receives a state and rules and returns a list of
successor states.

Example initial state: {"integer"}
Example rules: [("integer", "real number"), ("integer", "float")]

Model response:
Successor States Definition
Given a state and a collection of rules, we define successor states as

follows:
Initialize an empty list to store the successor states.
For each rule of the form "if X then Y":
Check if X is present in the current state.
If X is present, create a new state by adding Y to the current state.
Add the new state to the list of successor states.
Return the list of successor states.
Python Implementation
Python
‘‘‘
def successor_states(state, rules):

"""
Generate successor states by applying rules to the current state.

238

Args:
state (set): Current knowledge of the world.
rules (list): List of rules of the form (X, Y), meaning "if X

then Y".

Returns:
list: List of successor states.

"""
successor_states = []
for rule in rules:

X, Y = rule
if X in state:

new_state = state.copy()
new_state.add(Y)
successor_states.append(new_state)

return successor_states

Example usage
initial_state = {"integer"}
rules = [("integer", "real number"), ("integer", "float")]
successors = successor_states(initial_state, rules)
print(successors)
‘‘‘
This implementation assumes that the state is represented as a set of

strings, and the rules are represented as a list of tuples, where
each tuple contains two strings representing the condition and the
conclusion of the rule. The successor_states function returns a

list of sets, where each set represents a successor state.
Generated by Meta Llama 3.1-405

AutoToS prompt:

Provide only the Python function for the goal test function that tests
, given a target fact, whether a state is a goal state.

Model response:
Goal Test Function
Python
‘‘‘
def is_goal_state(state, target_fact):

"""
Check if a state is a goal state by verifying if it contains the

target fact.

Args:
state (set): Current knowledge of the world.
target_fact: The fact that must be present in the state to

consider it a goal state.

Returns:
bool: True if the state is a goal state, False otherwise.

"""
return target_fact in state

‘‘‘
Generated by Meta Llama 3.1-405

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed

239

Success: 4000, failure: 0, total expansions 87519, total evaluations
523818

Listing 55: With partial successor soundness test

AutoToS prompt:

Logical deduction is performed by applying rules of the form if X then
Y to our current knowledge about a world, extending our knowledge
with each single rule application.

A rule if X then Y is applicable if we know X. If a state is defined
as our current knowledge of the world, how are successor states
defined, given a collection of rules? Please think step by step.
Then, provide only the Python implementation for the successor
function that receives a state and rules and returns a list of
successor states.

Example initial state: {"integer"}
Example rules: [("integer", "real number"), ("integer", "float")]

Model response:
Successor States Definition
Given a state and a collection of rules, a successor state is defined

as the state extended with the application of one rule. In other
words, if we have a state S and a rule if X then Y, a successor
state S’ is created by adding Y to S if X is already in S.

Formally, given a state S and a rule if X then Y, a successor state S’
is defined as:

$S’ = S \cup {Y} if X \in S$
In simpler terms, we create a new state by adding the conclusion of

the rule (Y) to the current state (S) if the premise of the rule (
X) is already known in the current state.

Python Implementation
Here is the Python implementation of the successor function:
Python
‘‘‘
def successor_states(state, rules):

"""
Returns a list of successor states given a state and a collection

of rules.

Args:
state (set): The current state of knowledge.
rules (list of tuples): A list of rules, where each rule is a

tuple (X, Y) meaning "if X then Y".

Returns:
list of sets: A list of successor states.

"""
successor_states = []
for rule in rules:

premise, conclusion = rule
if premise in state:

new_state = state.copy()
new_state.add(conclusion)
successor_states.append(new_state)

return successor_states
‘‘‘
You can use this function like this:
Python
initial_state = {"integer"}
rules = [("integer", "real number"), ("integer", "float")]
successors = successor_states(initial_state, rules)
print(successors) # Output: [{"integer", "real number"}, {"integer",

"float"}]

240

Generated by Meta Llama 3.1-405

AutoToS prompt:

Provide only the Python function for the goal test function that tests
, given a target fact, whether a state is a goal state.

Model response:
Python
‘‘‘
def is_goal_state(state, target_fact):

"""
Tests whether a state is a goal state given a target fact.

Args:
state (set): The current state of knowledge.
target_fact: The target fact to be checked.

Returns:
bool: True if the state is a goal state, False otherwise.

"""
return target_fact in state

‘‘‘
Generated by Meta Llama 3.1-405

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Success: 4000, failure: 0, total expansions 88259, total evaluations

528408

9.5 Sokoban

9.5.1 Deepseek-CoderV2

Listing 56: Without partial successor soundness test

AutoToS prompt:

This domain models the classic Sokoban game, where the robot needs to
move around and push stones to specific locations while adhering
to the constraints defined by the walls in the maze.

The maze is defined by a grid of values 0,1, and 2, where 2 means it
is a goal location for a stone, 1 means the cell is blocked, and
either 0 or 2 means that the cell can be occupied. A cell is clear
if it can be occupied, but is not occupied by either the player

or any stone.

The actions are:

move: This action moves the player in a specified direction. To
perform this action, the target location must be clear and
adjacent to player’s location. Performing this action will result
in the player being at the target location and no longer at the
starting location, meaning the starting location is now clear,
while the target location is now not clear.

push: This action allows the player to push a stone in a specified
direction. To perform this action, the player’s location, the
stone location, and the target location must line up in the same

241

direction, and the target location must be clear. Performing the
action results in player being at the stone’s initial location and
the stone is at the target location. Further, the player’s

previous location is clear, while the target location is not clear
.

Assume that states are defined by a dictionary with keys at-player and
at-stone.

Here is an example of a state
{’at-player’: (4, 4), ’at-stone’: [(2, 2), (3, 3)]}
Here is an example of the grid:
[[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1,

1, 1, 1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0,
1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0,
0, 1], [0, 0, 0, 1, 1, 1, 1, 1]]

Provide a Python implementation of successor states function,
receiving a state and a grid and returning a list of immediate
successor states.

Model response:
python
‘‘‘
def get_successor_states(state, grid):

def is_clear(location):
x, y = location
return grid[x][y] == 0 or grid[x][y] == 2

def is_valid_move(location):
x, y = location
return 0 <= x < len(grid) and 0 <= y < len(grid[0]) and

is_clear(location)

def move_player(direction):
x, y = state[’at-player’]
if direction == ’up’:

new_location = (x - 1, y)
elif direction == ’down’:

new_location = (x + 1, y)
elif direction == ’left’:

new_location = (x, y - 1)
elif direction == ’right’:

new_location = (x, y + 1)
else:

return None

if is_valid_move(new_location):
new_state = state.copy()
new_state[’at-player’] = new_location
return new_state

return None

def push_stone(direction):
x, y = state[’at-player’]
if direction == ’up’:

stone_location = (x - 1, y)
new_stone_location = (x - 2, y)

elif direction == ’down’:
stone_location = (x + 1, y)
new_stone_location = (x + 2, y)

elif direction == ’left’:
stone_location = (x, y - 1)
new_stone_location = (x, y - 2)

elif direction == ’right’:
stone_location = (x, y + 1)

242

new_stone_location = (x, y + 2)
else:

return None

if stone_location in state[’at-stone’] and is_valid_move(
new_stone_location):
new_state = state.copy()
new_state[’at-player’] = stone_location
new_state[’at-stone’] = [new_stone_location if s ==

stone_location else s for s in new_state[’at-stone’]]
return new_state

return None

directions = [’up’, ’down’, ’left’, ’right’]
successor_states = []

for direction in directions:
move_result = move_player(direction)
if move_result:

successor_states.append(move_result)

push_result = push_stone(direction)
if push_result:

successor_states.append(push_result)

return successor_states
‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state for a given goal configuration. Assume that the goal
configuration is provided by the 2-dimensional array as before.
The function should receive a state and the 2-dimensional array
and return True if the state is a goal state and False otherwise.

Model response:
python
‘‘‘
def is_goal_state(state, grid):

for stone in state[’at-stone’]:
x, y = stone
if grid[x][y] != 2:

return False
return True

‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Found solution of length 19, optimal: 49
Found solution of length 9, optimal: 35
Found solution of length 3, optimal: 51
Found solution of length 27, optimal: 107
Found solution of length 1, optimal: 35
Found solution of length 21, optimal: 69
Found solution of length 17, optimal: 95
Found solution of length 16, optimal: 76
Found solution of length 13, optimal: 83
Found solution of length 15, optimal: 92

243

Found solution of length 7, optimal: 429
Total success: 0, failure: 11, total expansions 133465, total

generated 421188

Listing 57: With partial successor soundness test

AutoToS prompt:

This domain models the classic Sokoban game, where the robot needs to
move around and push stones to specific locations while adhering
to the constraints defined by the walls in the maze.

The maze is defined by a grid of values 0,1, and 2, where 2 means it
is a goal location for a stone, 1 means the cell is blocked, and
either 0 or 2 means that the cell can be occupied. A cell is clear
if it can be occupied, but is not occupied by either the player

or any stone.

The actions are:

move: This action moves the player in a specified direction. To
perform this action, the target location must be clear and
adjacent to player’s location. Performing this action will result
in the player being at the target location and no longer at the
starting location, meaning the starting location is now clear,
while the target location is now not clear.

push: This action allows the player to push a stone in a specified
direction. To perform this action, the player’s location, the
stone location, and the target location must line up in the same
direction, and the target location must be clear. Performing the
action results in player being at the stone’s initial location and
the stone is at the target location. Further, the player’s

previous location is clear, while the target location is not clear
.

Assume that states are defined by a dictionary with keys at-player and
at-stone.

Here is an example of a state
{’at-player’: (4, 4), ’at-stone’: [(2, 2), (3, 3)]}
Here is an example of the grid:
[[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1,

1, 1, 1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0,
1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0,
0, 1], [0, 0, 0, 1, 1, 1, 1, 1]]

Provide a Python implementation of successor states function,
receiving a state and a grid and returning a list of immediate
successor states.

Model response:
To implement the successor states function for the Sokoban game, we

need to consider both the ‘move‘ and ‘push‘ actions. The function
will take the current state and the grid as inputs and return a
list of possible successor states based on the allowed actions.

Here’s the Python implementation:

python
‘‘‘
def successor_states(state, grid):

def is_clear(x, y):
return 0 <= x < len(grid) and 0 <= y < len(grid[0]) and grid[x

][y] in [0, 2] and (x, y) not in state[’at-stone’]

def move_player(dx, dy):

244

x, y = state[’at-player’]
new_x, new_y = x + dx, y + dy
if is_clear(new_x, new_y):

new_state = state.copy()
new_state[’at-player’] = (new_x, new_y)
return new_state

return None

def push_stone(dx, dy):
x, y = state[’at-player’]
new_x, new_y = x + dx, y + dy
if (new_x, new_y) in state[’at-stone’]:

stone_new_x, stone_new_y = new_x + dx, new_y + dy
if is_clear(stone_new_x, stone_new_y):

new_state = state.copy()
new_state[’at-player’] = (new_x, new_y)
new_state[’at-stone’] = [(sx, sy) if (sx, sy) != (

new_x, new_y) else (stone_new_x, stone_new_y) for
sx, sy in new_state[’at-stone’]]

return new_state
return None

directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] # Right, Down,
Left, Up

successors = []

for dx, dy in directions:
Try to move the player
new_state = move_player(dx, dy)
if new_state:

successors.append(new_state)

Try to push a stone
new_state = push_stone(dx, dy)
if new_state:

successors.append(new_state)

return successors

Example usage:
state = {’at-player’: (4, 4), ’at-stone’: [(2, 2), (3, 3)]}
grid = [

[1, 1, 1, 1, 0, 0, 0, 0],
[1, 0, 0, 1, 1, 0, 0, 0],
[1, 0, 0, 0, 1, 1, 1, 1],
[1, 0, 0, 0, 1, 0, 0, 1],
[1, 1, 0, 0, 0, 0, 0, 1],
[0, 1, 1, 1, 2, 2, 0, 1],
[0, 0, 0, 1, 0, 1, 0, 1],
[0, 0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 1, 1, 1, 1, 1]

]

successors = successor_states(state, grid)
for s in successors:

print(s)
‘‘‘

This function defines two helper functions, ‘move_player‘ and ‘
push_stone‘, to handle the ‘move‘ and ‘push‘ actions, respectively
. It then iterates over the possible directions and attempts to
perform each action, collecting valid successor states in the ‘
successors‘ list, which is returned at the end

AutoToS prompt:

245

Provide only the python code that tests whether a state is a goal
state for a given goal configuration. Assume that the goal
configuration is provided by the 2-dimensional array as before.
The function should receive a state and the 2-dimensional array
and return True if the state is a goal state and False otherwise.

Model response:
python
‘‘‘
def is_goal_state(state, grid):

for stone in state[’at-stone’]:
if grid[stone[0]][stone[1]] != 2:

return False
return True

Example usage:
state = {’at-player’: (4, 4), ’at-stone’: [(5, 4), (5, 5)]}
grid = [

[1, 1, 1, 1, 0, 0, 0, 0],
[1, 0, 0, 1, 1, 0, 0, 0],
[1, 0, 0, 0, 1, 1, 1, 1],
[1, 0, 0, 0, 1, 0, 0, 1],
[1, 1, 0, 0, 0, 0, 0, 1],
[0, 1, 1, 1, 2, 2, 0, 1],
[0, 0, 0, 1, 0, 1, 0, 1],
[0, 0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 1, 1, 1, 1, 1]

]

print(is_goal_state(state, grid)) # Should return True
‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Total success: 11, failure: 0, total expansions 763076, total

generated 1953949

9.5.2 GPT4-Mini

Listing 58: Without partial successor soundness test

AutoToS prompt:

This domain models the classic Sokoban game, where the robot needs to
move around and push stones to specific locations while adhering
to the constraints defined by the walls in the maze.

The maze is defined by a grid of values 0,1, and 2, where 2 means it
is a goal location for a stone, 1 means the cell is blocked, and
either 0 or 2 means that the cell can be occupied. A cell is clear
if it can be occupied, but is not occupied by either the player

or any stone.

The actions are:

move: This action moves the player in a specified direction. To
perform this action, the target location must be clear and
adjacent to player’s location. Performing this action will result
in the player being at the target location and no longer at the

246

starting location, meaning the starting location is now clear,
while the target location is now not clear.

push: This action allows the player to push a stone in a specified
direction. To perform this action, the player’s location, the
stone location, and the target location must line up in the same
direction, and the target location must be clear. Performing the
action results in player being at the stone’s initial location and
the stone is at the target location. Further, the player’s

previous location is clear, while the target location is not clear
.

Assume that states are defined by a dictionary with keys at-player and
at-stone.

Here is an example of a state
{’at-player’: (4, 4), ’at-stone’: [(2, 2), (3, 3)]}
Here is an example of the grid:
[[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1,

1, 1, 1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0,
1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0,
0, 1], [0, 0, 0, 1, 1, 1, 1, 1]]

Provide a Python implementation of successor states function,
receiving a state and a grid and returning a list of immediate
successor states.

Model response:
‘‘‘python
def successor_states(state, grid):

def is_clear(x, y):
return 0 <= x < len(grid) and 0 <= y < len(grid[0]) and (grid[

x][y] == 0 or grid[x][y] == 2)

def move_player(x, y, new_x, new_y):
return (new_x, new_y), state[’at-stone’]

def push_stone(player_x, player_y, stone_x, stone_y, new_x, new_y)
:
stones = state[’at-stone’][:]
stones.remove((stone_x, stone_y))
stones.append((new_x, new_y))
return (stone_x, stone_y), stones

player_x, player_y = state[’at-player’]
stone_positions = state[’at-stone’]
successor_states = []

directions = {
"up": (-1, 0),
"down": (1, 0),
"left": (0, -1),
"right": (0, 1)

}

for direction, (dx, dy) in directions.items():
new_player_x = player_x + dx
new_player_y = player_y + dy

if is_clear(new_player_x, new_player_y):
successor_states.append(move_player(player_x, player_y,

new_player_x, new_player_y))

for stone_x, stone_y in stone_positions:
if (stone_x, stone_y) == (new_player_x, new_player_y):

target_x = stone_x + dx

247

target_y = stone_y + dy
if is_clear(target_x, target_y):

successor_states.append(push_stone(player_x,
player_y, stone_x, stone_y, target_x, target_y
))

return successor_states
‘‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state for a given goal configuration. Assume that the goal
configuration is provided by the 2-dimensional array as before.
The function should receive a state and the 2-dimensional array
and return True if the state is a goal state and False otherwise.

Model response:
‘‘‘python
def is_goal_state(state, goal_configuration):

def is_goal_position(pos):
return goal_configuration[pos[0]][pos[1]] == 2

stone_positions = state[’at-stone’]

return all(is_goal_position(stone) for stone in stone_positions)
‘‘‘

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
The following exception was produced when testing the successor

function:
File "<string>", line 5, in is_goal_state

tuple indices must be integers or slices, not str. Please fix this
exception in the successor function.

Model response:
‘‘‘python
def successor_states(state, grid):

def is_clear(x, y):
return 0 <= x < len(grid) and 0 <= y < len(grid[0]) and (grid[

x][y] == 0 or grid[x][y] == 2)

def move_player(x, y, new_x, new_y):
return {’at-player’: (new_x, new_y), ’at-stone’: state[’at-

stone’]}

def push_stone(player_x, player_y, stone_x, stone_y, new_x, new_y)
:
stones = state[’at-stone’][:]
stones.remove((stone_x, stone_y))
stones.append((new_x, new_y))
return {’at-player’: (stone_x, stone_y), ’at-stone’: stones}

player_x, player_y = state[’at-player’]
stone_positions = state[’at-stone’]
successor_states = []

directions = {
"up": (-1, 0),
"down": (1, 0),

248

"left": (0, -1),
"right": (0, 1)

}

for direction, (dx, dy) in directions.items():
new_player_x = player_x + dx
new_player_y = player_y + dy

if is_clear(new_player_x, new_player_y):
successor_states.append(move_player(player_x, player_y,

new_player_x, new_player_y))

for stone_x, stone_y in stone_positions:
if (stone_x, stone_y) == (new_player_x, new_player_y):

target_x = stone_x + dx
target_y = stone_y + dy
if is_clear(target_x, target_y):

successor_states.append(push_stone(player_x,
player_y, stone_x, stone_y, target_x, target_y
))

return successor_states
‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Found solution of length 25, optimal: 69
Found solution of length 1, optimal: 35
Found solution of length 21, optimal: 95
Found solution of length 17, optimal: 92
Found solution of length 27, optimal: 49
Found solution of length 7, optimal: 429
Found solution of length 3, optimal: 51
Found solution of length 21, optimal: 83
Found solution of length 17, optimal: 35
Found solution of length 16, optimal: 76
Found solution of length 57, optimal: 107
Total success: 0, failure: 11, total expansions 364051, total

generated 1109339

Listing 59: With partial successor soundness test

AutoToS prompt:

This domain models the classic Sokoban game, where the robot needs to
move around and push stones to specific locations while adhering
to the constraints defined by the walls in the maze.

The maze is defined by a grid of values 0,1, and 2, where 2 means it
is a goal location for a stone, 1 means the cell is blocked, and
either 0 or 2 means that the cell can be occupied. A cell is clear
if it can be occupied, but is not occupied by either the player

or any stone.

The actions are:

move: This action moves the player in a specified direction. To
perform this action, the target location must be clear and
adjacent to player’s location. Performing this action will result
in the player being at the target location and no longer at the
starting location, meaning the starting location is now clear,
while the target location is now not clear.

249

push: This action allows the player to push a stone in a specified
direction. To perform this action, the player’s location, the
stone location, and the target location must line up in the same
direction, and the target location must be clear. Performing the
action results in player being at the stone’s initial location and
the stone is at the target location. Further, the player’s

previous location is clear, while the target location is not clear
.

Assume that states are defined by a dictionary with keys at-player and
at-stone.

Here is an example of a state
{’at-player’: (4, 4), ’at-stone’: [(2, 2), (3, 3)]}
Here is an example of the grid:
[[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1,

1, 1, 1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0,
1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0,
0, 1], [0, 0, 0, 1, 1, 1, 1, 1]]

Provide a Python implementation of successor states function,
receiving a state and a grid and returning a list of immediate
successor states.

Model response:
‘‘‘python
def successor_states(state, grid):

def is_clear(position):
x, y = position
return grid[x][y] in (0, 2)

def move_player(from_pos, to_pos):
return {

’at-player’: to_pos,
’at-stone’: state[’at-stone’]

}

def push_stone(player_pos, stone_pos, target_pos):
return {

’at-player’: stone_pos,
’at-stone’: [target_pos if stone == stone_pos else stone

for stone in state[’at-stone’]]
}

x, y = state[’at-player’]
stones = state[’at-stone’]
directions = {

’up’: (-1, 0),
’down’: (1, 0),
’left’: (0, -1),
’right’: (0, 1)

}

successor_states = []

for direction, (dx, dy) in directions.items():
new_player_pos = (x + dx, y + dy)

if 0 <= new_player_pos[0] < len(grid) and 0 <= new_player_pos
[1] < len(grid[0]):
if is_clear(new_player_pos):

successor_states.append(move_player((x, y),
new_player_pos))

for i, stone_pos in enumerate(stones):
if stone_pos == new_player_pos:

250

target_pos = (stone_pos[0] + dx, stone_pos[1] + dy
)

if 0 <= target_pos[0] < len(grid) and 0 <=
target_pos[1] < len(grid[0]):
if is_clear(target_pos):

successor_states.append(push_stone((x, y),
stone_pos, target_pos))

return successor_states
‘‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state for a given goal configuration. Assume that the goal
configuration is provided by the 2-dimensional array as before
. The function should receive a state and the 2-dimensional
array and return True if the state is a goal state and False
otherwise.

Model response:
‘‘‘python
def is_goal_state(state, goal_grid):

def is_at_goal(stone_pos):
x, y = stone_pos
return goal_grid[x][y] == 2

return all(is_at_goal(stone) for stone in state[’at-stone’])
‘‘‘

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 0, 0, 0, 0], [1,

0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 0,
0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0, 1, 1, 1, 2, 2, 0, 1], [0, 0,
0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 1, 1,

1, 1]]
Invalid transition: a stone and the player are at the same location.
Let’s think step by step. First think through in words why the

successor function produced a successor that has a stone and the
player at the same location. Then provide the complete Python code
for the revised successor function that ensures that in all

successors the player and the stones are at different locations.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Input state: {’at-player’: (4, 3), ’at-stone’: [(2, 2), (3, 3)]}
Example wrong successor state: {’at-player’: (3, 3), ’at-stone’: [(2,

2), (3, 3)]}

Model response:
The issue arises when the successor function allows for the player to

move directly onto a position occupied by a stone without checking
whether the stone is already there. This results in invalid

successor states where both the player and stone occupy the same
location.

To resolve this, we need to ensure that when processing movements and
pushes, we do not create any states where the player’s position
coincides with the position of any stone. We can achieve this by
adding a condition to check if the new player position is not

251

already occupied by a stone before adding it to the list of
successor states.

Here is the revised successor function:

‘‘‘python
def successor_states(state, grid):

def is_clear(position):
x, y = position
return grid[x][y] in (0, 2)

def move_player(from_pos, to_pos):
return {

’at-player’: to_pos,
’at-stone’: state[’at-stone’]

}

def push_stone(player_pos, stone_pos, target_pos):
return {

’at-player’: stone_pos,
’at-stone’: [target_pos if stone == stone_pos else stone

for stone in state[’at-stone’]]
}

x, y = state[’at-player’]
stones = state[’at-stone’]
directions = {

’up’: (-1, 0),
’down’: (1, 0),
’left’: (0, -1),
’right’: (0, 1)

}

successor_states = []

for direction, (dx, dy) in directions.items():
new_player_pos = (x + dx, y + dy)

if 0 <= new_player_pos[0] < len(grid) and 0 <= new_player_pos
[1] < len(grid[0]):
if is_clear(new_player_pos) and new_player_pos not in

stones:
successor_states.append(move_player((x, y),

new_player_pos))

for i, stone_pos in enumerate(stones):
if stone_pos == new_player_pos:

target_pos = (stone_pos[0] + dx, stone_pos[1] + dy
)

if 0 <= target_pos[0] < len(grid) and 0 <=
target_pos[1] < len(grid[0]):
if is_clear(target_pos):

successor_states.append(push_stone((x, y),
stone_pos, target_pos))

return successor_states
‘‘‘
Successor Iteration 2

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 0, 0, 0, 0], [1,

0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 0,
0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0, 1, 1, 1, 2, 2, 0, 1], [0, 0,
0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 1, 1,

1, 1]]

252

Invalid transition: multiple stones at the same location.
Let’s think step by step. First think through in words why the

successor function produced a successor that has two stones at the
same location. Then provide the complete Python code for the

revised successor function that ensures that in all successors all
stones are at different locations.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Input state: {’at-player’: (2, 1), ’at-stone’: [(2, 2), (2, 3)]}
Example wrong successor state: {’at-player’: (2, 2), ’at-stone’: [(2,

3), (2, 3)]}

Model response:
The issue arises when we allow the same stone to be pushed to a target

location that is already occupied by another stone. This can
occur especially if the new position of the stone after the push
coincides with an existing stone’s position in the successor state
.

To avoid this situation, we need to ensure that when we push a stone,
the target position is clear of all other stones. We can do this
by adding a check to see if the target position already contains a
stone in the successor state before proceeding with any push.

Here is the revised successor function with the necessary checks:

‘‘‘python
def successor_states(state, grid):

def is_clear(position):
x, y = position
return grid[x][y] in (0, 2)

def move_player(from_pos, to_pos):
return {

’at-player’: to_pos,
’at-stone’: state[’at-stone’]

}

def push_stone(player_pos, stone_pos, target_pos):
return {

’at-player’: stone_pos,
’at-stone’: [target_pos if stone == stone_pos else stone

for stone in state[’at-stone’]]
}

x, y = state[’at-player’]
stones = state[’at-stone’]
directions = {

’up’: (-1, 0),
’down’: (1, 0),
’left’: (0, -1),
’right’: (0, 1)

}

successor_states = []

for direction, (dx, dy) in directions.items():
new_player_pos = (x + dx, y + dy)

if 0 <= new_player_pos[0] < len(grid) and 0 <= new_player_pos
[1] < len(grid[0]):
if is_clear(new_player_pos) and new_player_pos not in

stones:

253

successor_states.append(move_player((x, y),
new_player_pos))

for stone_pos in stones:
if stone_pos == new_player_pos:

target_pos = (stone_pos[0] + dx, stone_pos[1] + dy
)

if 0 <= target_pos[0] < len(grid) and 0 <=
target_pos[1] < len(grid[0]):
if is_clear(target_pos) and target_pos not in

stones:
successor_states.append(push_stone((x, y),

stone_pos, target_pos))

return successor_states
‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Total success: 11, failure: 0, total expansions 764128, total

generated 1956111

9.5.3 GPT4

Listing 60: Without partial successor soundness test

AutoToS prompt:

This domain models the classic Sokoban game, where the robot needs to
move around and push stones to specific locations while adhering
to the constraints defined by the walls in the maze.

The maze is defined by a grid of values 0,1, and 2, where 2 means it
is a goal location for a stone, 1 means the cell is blocked, and
either 0 or 2 means that the cell can be occupied. A cell is clear
if it can be occupied, but is not occupied by either the player

or any stone.

The actions are:

move: This action moves the player in a specified direction. To
perform this action, the target location must be clear and
adjacent to player’s location. Performing this action will result
in the player being at the target location and no longer at the
starting location, meaning the starting location is now clear,
while the target location is now not clear.

push: This action allows the player to push a stone in a specified
direction. To perform this action, the player’s location, the
stone location, and the target location must line up in the same
direction, and the target location must be clear. Performing the
action results in player being at the stone’s initial location and
the stone is at the target location. Further, the player’s

previous location is clear, while the target location is not clear
.

Assume that states are defined by a dictionary with keys at-player and
at-stone.

Here is an example of a state
{’at-player’: (4, 4), ’at-stone’: [(2, 2), (3, 3)]}
Here is an example of the grid:
[[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1,

1, 1, 1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0,

254

1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0,
0, 1], [0, 0, 0, 1, 1, 1, 1, 1]]

Provide a Python implementation of successor states function,
receiving a state and a grid and returning a list of immediate
successor states.

Model response:
‘‘‘python
def sokoban_successor_states(state, grid):

def is_clear(cell, state, grid):
"""Check if the cell is clear and therefore can be occupied"""
r, c = cell
return grid[r][c] != 1 and cell != state[’at-player’] and cell

not in state[’at-stone’]

def move(player_pos, direction, state, grid):
"""Move the player in the specified direction if the target

cell is clear"""
r, c = player_pos
dr, dc = direction
new_pos = (r + dr, c + dc)
if is_clear(new_pos, state, grid):

new_state = state.copy()
new_state[’at-player’] = new_pos
return new_state

return None

def push(player_pos, direction, state, grid):
"""Push a stone if the conditions are met"""
r, c = player_pos
dr, dc = direction
stone_pos = (r + dr, c + dc)
target_pos = (r + 2 * dr, c + 2 * dc)
if stone_pos in state[’at-stone’] and is_clear(target_pos,

state, grid):
new_state = {

’at-player’: stone_pos,
’at-stone’: [target_pos if pos == stone_pos else pos

for pos in state[’at-stone’]]
}
return new_state

return None

directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
player_pos = state[’at-player’]

successors = []

for direction in directions:
Try moving the player
new_state = move(player_pos, direction, state, grid)
if new_state is not None:

successors.append(new_state)

Try pushing a stone
new_state = push(player_pos, direction, state, grid)
if new_state is not None:

successors.append(new_state)

return successors
‘‘‘

AutoToS prompt:

255

Provide only the python code that tests whether a state is a goal
state for a given goal configuration. Assume that the goal
configuration is provided by the 2-dimensional array as before.
The function should receive a state and the 2-dimensional array
and return True if the state is a goal state and False otherwise.

Model response:
‘‘‘python
def is_goal_state(state, goal_grid):

def is_goal_position(position, goal_grid):
r, c = position
return goal_grid[r][c] == 2

for stone in state[’at-stone’]:
if not is_goal_position(stone, goal_grid):

return False

return True
‘‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Total success: 11, failure: 0, total expansions 764128, total

generated 1956111

Listing 61: With partial successor soundness test

AutoToS prompt:

This domain models the classic Sokoban game, where the robot needs to
move around and push stones to specific locations while adhering
to the constraints defined by the walls in the maze.

The maze is defined by a grid of values 0,1, and 2, where 2 means it
is a goal location for a stone, 1 means the cell is blocked, and
either 0 or 2 means that the cell can be occupied. A cell is clear
if it can be occupied, but is not occupied by either the player

or any stone.

The actions are:

move: This action moves the player in a specified direction. To
perform this action, the target location must be clear and
adjacent to player’s location. Performing this action will result
in the player being at the target location and no longer at the
starting location, meaning the starting location is now clear,
while the target location is now not clear.

push: This action allows the player to push a stone in a specified
direction. To perform this action, the player’s location, the
stone location, and the target location must line up in the same
direction, and the target location must be clear. Performing the
action results in player being at the stone’s initial location and
the stone is at the target location. Further, the player’s

previous location is clear, while the target location is not clear
.

Assume that states are defined by a dictionary with keys at-player and
at-stone.

Here is an example of a state

256

{’at-player’: (4, 4), ’at-stone’: [(2, 2), (3, 3)]}
Here is an example of the grid:
[[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1,

1, 1, 1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0,
1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0,
0, 1], [0, 0, 0, 1, 1, 1, 1, 1]]

Provide a Python implementation of successor states function,
receiving a state and a grid and returning a list of immediate
successor states.

Model response:
‘‘‘python
def successor_states(state, grid):

def is_clear(location):
r, c = location
return (0 <= r < len(grid) and 0 <= c < len(grid[0]) and

grid[r][c] != 1 and
location not in state[’at-stone’] and
location != state[’at-player’])

def move_player(current_state, direction):
deltas = {’up’: (-1, 0), ’down’: (1, 0), ’left’: (0, -1), ’

right’: (0, 1)}
if direction in deltas:

dr, dc = deltas[direction]
r, c = current_state[’at-player’]
new_location = (r + dr, c + dc)
if is_clear(new_location):

new_state = current_state.copy()
new_state[’at-player’] = new_location
return new_state

return None

def push_stone(current_state, direction):
deltas = {’up’: (-1, 0), ’down’: (1, 0), ’left’: (0, -1), ’

right’: (0, 1)}
if direction in deltas:

dr, dc = deltas[direction]
r, c = current_state[’at-player’]
stone_location = (r + dr, c + dc)
if stone_location in current_state[’at-stone’]:

target_location = (stone_location[0] + dr,
stone_location[1] + dc)

if is_clear(target_location):
new_state = current_state.copy()
new_state[’at-player’] = stone_location
new_state[’at-stone’].remove(stone_location)
new_state[’at-stone’].append(target_location)
return new_state

return None

successor_states = []
directions = [’up’, ’down’, ’left’, ’right’]

for direction in directions:
new_state = move_player(state, direction)
if new_state:

successor_states.append(new_state)

new_state = push_stone(state, direction)
if new_state:

successor_states.append(new_state)

return successor_states

257

‘‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state for a given goal configuration. Assume that the goal
configuration is provided by the 2-dimensional array as before
. The function should receive a state and the 2-dimensional
array and return True if the state is a goal state and False
otherwise.

Model response:
‘‘‘python
def is_goal_state(state, goal_grid):

goal_positions = set()
for r in range(len(goal_grid)):

for c in range(len(goal_grid[0])):
if goal_grid[r][c] == 2:

goal_positions.add((r, c))

return set(state[’at-stone’]) == goal_positions
‘‘‘

System message:
Goal Soundness Test Passed
Soundness test
Successor Iteration 1

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 0, 0, 0, 0], [1,

0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 0,
0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0, 1, 1, 1, 2, 2, 0, 1], [0, 0,
0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 1, 1,

1, 1]]
Input state should not change as a result of applying the successor

function.
State before successor function applied: {’at-player’: (4, 3), ’at-

stone’: [(2, 2), (3, 3)]}
State after successor function applied: {’at-player’: (4, 3), ’at-

stone’: [(2, 2), (2, 3)]}
Let’s think step by step. First, think of the possible reasons why the

input state may change as a result of applying the successor
function, such as the use of shallow copy.

Then, provide the complete Python code for the revised successor
function that returns a list of successor states and ensure it
does not change the input state.

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Model response:
‘‘‘python
def successor_states(state, grid):

import copy

def is_clear(location):
r, c = location
return (0 <= r < len(grid) and 0 <= c < len(grid[0]) and

grid[r][c] != 1 and
location not in state[’at-stone’] and
location != state[’at-player’])

def move_player(current_state, direction):
deltas = {’up’: (-1, 0), ’down’: (1, 0), ’left’: (0, -1), ’

right’: (0, 1)}
if direction in deltas:

258

dr, dc = deltas[direction]
r, c = current_state[’at-player’]
new_location = (r + dr, c + dc)
if is_clear(new_location):

new_state = copy.deepcopy(current_state)
new_state[’at-player’] = new_location
return new_state

return None

def push_stone(current_state, direction):
deltas = {’up’: (-1, 0), ’down’: (1, 0), ’left’: (0, -1), ’

right’: (0, 1)}
if direction in deltas:

dr, dc = deltas[direction]
r, c = current_state[’at-player’]
stone_location = (r + dr, c + dc)
if stone_location in current_state[’at-stone’]:

target_location = (stone_location[0] + dr,
stone_location[1] + dc)

if is_clear(target_location):
new_state = copy.deepcopy(current_state)
new_state[’at-player’] = stone_location
new_state[’at-stone’].remove(stone_location)
new_state[’at-stone’].append(target_location)
return new_state

return None

successor_states = []
directions = [’up’, ’down’, ’left’, ’right’]

for direction in directions:
new_state = move_player(state, direction)
if new_state:

successor_states.append(new_state)

new_state = push_stone(state, direction)
if new_state:

successor_states.append(new_state)

return successor_states
‘‘‘

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Total success: 11, failure: 0, total expansions 764128, total

generated 1956111

9.5.4 Llama3.1 70B

Listing 62: Without partial successor soundness test

AutoToS prompt:

This domain models the classic Sokoban game, where the robot needs to
move around and push stones to specific locations while adhering
to the constraints defined by the walls in the maze.

The maze is defined by a grid of values 0,1, and 2, where 2 means it
is a goal location for a stone, 1 means the cell is blocked, and
either 0 or 2 means that the cell can be occupied. A cell is clear
if it can be occupied, but is not occupied by either the player

or any stone.

The actions are:

259

move: This action moves the player in a specified direction. To
perform this action, the target location must be clear and
adjacent to player’s location. Performing this action will result
in the player being at the target location and no longer at the
starting location, meaning the starting location is now clear,
while the target location is now not clear.

push: This action allows the player to push a stone in a specified
direction. To perform this action, the player’s location, the
stone location, and the target location must line up in the same
direction, and the target location must be clear. Performing the
action results in player being at the stone’s initial location and
the stone is at the target location. Further, the player’s

previous location is clear, while the target location is not clear
.

Assume that states are defined by a dictionary with keys at-player and
at-stone.

Here is an example of a state
{’at-player’: (4, 4), ’at-stone’: [(2, 2), (3, 3)]}
Here is an example of the grid:
[[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1,

1, 1, 1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0,
1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0,
0, 1], [0, 0, 0, 1, 1, 1, 1, 1]]

Provide a Python implementation of successor states function,
receiving a state and a grid and returning a list of immediate
successor states.

Model response:
Python
‘‘‘
import copy

def successor_states(state, grid):
def is_clear(location):

return grid[location[0]][location[1]] in [0, 2]

def adjacent_locations(location, direction):
directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
return (location[0] + directions[direction][0], location[1] +

directions[direction][1])

def move(location, direction):
new_location = adjacent_locations(location, direction)
if is_clear(new_location):

return {’at-player’: new_location, ’at-stone’: state[’at-
stone’]}

def push(location, direction):
stone_location = adjacent_locations(location, direction)
if stone_location in state[’at-stone’]:

target_location = adjacent_locations(stone_location,
direction)

if is_clear(target_location):
new_stone_locations = state[’at-stone’].copy()
new_stone_locations.remove(stone_location)
new_stone_locations.append(target_location)
return {’at-player’: stone_location, ’at-stone’:

new_stone_locations}

player_location = state[’at-player’]
successor_states = []

260

for direction in range(4):
new_state = move(player_location, direction)
if new_state:

successor_states.append(new_state)
new_state = push(player_location, direction)
if new_state:

successor_states.append(new_state)

return successor_states
‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state for a given goal configuration. Assume that the goal
configuration is provided by the 2-dimensional array as before.
The function should receive a state and the 2-dimensional array
and return True if the state is a goal state and False otherwise.

Model response:
Python
‘‘‘
def is_goal_state(state, grid):

goal_locations = [(i, j) for i in range(len(grid)) for j in range(
len(grid[0])) if grid[i][j] == 2]

return sorted(state[’at-stone’]) == sorted(goal_locations)
‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Found solution of length 7, optimal: 429
Found solution of length 26, optimal: 95
Found solution of length 3, optimal: 51
Found solution of length 17, optimal: 35
Found solution of length 16, optimal: 76
Found solution of length 17, optimal: 92
Found solution of length 23, optimal: 83
Found solution of length 25, optimal: 69
Found solution of length 30, optimal: 49
Found solution of length 3, optimal: 35
Found solution of length 61, optimal: 107
Total success: 0, failure: 11, total expansions 519757, total

generated 1553561

Listing 63: With partial successor soundness test

AutoToS prompt:

This domain models the classic Sokoban game, where the robot needs to
move around and push stones to specific locations while adhering
to the constraints defined by the walls in the maze.

The maze is defined by a grid of values 0,1, and 2, where 2 means it
is a goal location for a stone, 1 means the cell is blocked, and
either 0 or 2 means that the cell can be occupied. A cell is clear
if it can be occupied, but is not occupied by either the player

or any stone.

The actions are:

261

move: This action moves the player in a specified direction. To
perform this action, the target location must be clear and
adjacent to player’s location. Performing this action will result
in the player being at the target location and no longer at the
starting location, meaning the starting location is now clear,
while the target location is now not clear.

push: This action allows the player to push a stone in a specified
direction. To perform this action, the player’s location, the
stone location, and the target location must line up in the same
direction, and the target location must be clear. Performing the
action results in player being at the stone’s initial location and
the stone is at the target location. Further, the player’s

previous location is clear, while the target location is not clear
.

Assume that states are defined by a dictionary with keys at-player and
at-stone.

Here is an example of a state
{’at-player’: (4, 4), ’at-stone’: [(2, 2), (3, 3)]}
Here is an example of the grid:
[[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1,

1, 1, 1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0,
1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0,
0, 1], [0, 0, 0, 1, 1, 1, 1, 1]]

Provide a Python implementation of successor states function,
receiving a state and a grid and returning a list of immediate
successor states.

Model response:
Python
‘‘‘
import copy

def successor_states(state, grid):
def is_clear(location):

return grid[location[0]][location[1]] != 1 and (location not
in state[’at-stone’] and location != state[’at-player’])

def move(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
if is_clear(new_player_location):

new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
return new_state

def push(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
new_stone_location = (new_player_location[0] + direction[0],

new_player_location[1] + direction[1])
if new_stone_location in state[’at-stone’] and is_clear(

new_stone_location):
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
new_state[’at-stone’].remove(new_stone_location)
new_state[’at-stone’].append((new_stone_location[0] +

direction[0], new_stone_location[1] + direction[1]))
return new_state

directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
successors = []

262

for direction in directions:
move_successor = move(direction)
if move_successor:

successors.append(move_successor)
push_successor = push(direction)
if push_successor:

successors.append(push_successor)
return successors

‘‘

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state for a given goal configuration. Assume that the goal
configuration is provided by the 2-dimensional array as before.
The function should receive a state and the 2-dimensional array
and return True if the state is a goal state and False otherwise.

Model response:
Python
‘‘‘
def is_goal_state(state, grid):

goal_locations = [(i, j) for i in range(len(grid)) for j in range(
len(grid[0])) if grid[i][j] == 2]

return sorted(state[’at-stone’]) == sorted(goal_locations)
‘‘

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 1

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 1, 1], [1, 0, 0,

2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1,
1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]

Successor function when run on the state {’at-player’: (5, 3), ’at-
stone’: [(5, 2), (4, 3)]} failed to produce all successors.

Missing successors are: [{’at-player’: (5, 2), ’at-stone’: [(5, 1),
(4, 3)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The successor function failed to produce all successors because it

didn’t consider the case where the player can push a stone to a
goal location. In the given state, the player can push the stone
at (5, 2) to the goal location (5, 1), but the successor function
missed this case.

Here’s the corrected successor function:
Python
‘‘‘
import copy

def successor_states(state, grid):
def is_clear(location):

return grid[location[0]][location[1]] != 1 and (location not
in state[’at-stone’] and location != state[’at-player’])

263

def move(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
if is_clear(new_player_location):

new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
return new_state

def push(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
new_stone_location = (new_player_location[0] + direction[0],

new_player_location[1] + direction[1])
if new_stone_location in state[’at-stone’] and is_clear(

new_stone_location):
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
new_state[’at-stone’].remove((new_stone_location[0] -

direction[0], new_stone_location[1] - direction[1]))
new_state[’at-stone’].append(new_stone_location)
return new_state

directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
successors = []
for direction in directions:

move_successor = move(direction)
if move_successor:

successors.append(move_successor)
push_successor = push(direction)
if push_successor:

successors.append(push_successor)
return successors

‘‘‘
The fix was in the push function, where I changed new_state[’at-stone

’].append((new_stone_location[0] + direction[0],
new_stone_location[1] + direction[1])) to new_state[’at-stone’].
append(new_stone_location). This correctly updates the stone’s
location after pushing it

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 2

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 1, 1], [1, 0, 0,

2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1,
1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]

Successor function when run on the state {’at-player’: (5, 3), ’at-
stone’: [(5, 2), (4, 3)]} failed to produce all successors.

Missing successors are: [{’at-player’: (5, 2), ’at-stone’: [(5, 1),
(4, 3)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The successor function failed to produce all successors because it

didn’t consider the case where the player can push a stone to a
new location that is not necessarily a goal location. In the given
state, the player can push the stone at (5, 2) to the location

(5, 1), but the successor function missed this case.

264

Here’s the corrected successor function:
Python
‘‘‘
import copy

def successor_states(state, grid):
def is_clear(location):

return grid[location[0]][location[1]] != 1 and (location not
in state[’at-stone’] and location != state[’at-player’])

def move(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
if is_clear(new_player_location):

new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
return new_state

def push(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
new_stone_location = (new_player_location[0] + direction[0],

new_player_location[1] + direction[1])
if new_stone_location in state[’at-stone’] and is_clear(

new_stone_location):
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
stone_index = state[’at-stone’].index((new_stone_location

[0] - direction[0], new_stone_location[1] - direction
[1]))

new_state[’at-stone’][stone_index] = new_stone_location
return new_state

directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
successors = []
for direction in directions:

move_successor = move(direction)
if move_successor:

successors.append(move_successor)
push_successor = push(direction)
if push_successor:

successors.append(push_successor)
return successors

‘‘‘
The fix was in the push function, where I changed new_state[’at-stone

’].remove((new_stone_location[0] - direction[0],
new_stone_location[1] - direction[1])) to stone_index = state[’at-
stone’].index((new_stone_location[0] - direction[0],
new_stone_location[1] - direction[1])) and then new_state[’at-
stone’][stone_index] = new_stone_location. This correctly updates
the stone’s location after pushing it

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 3

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 1, 1], [1, 0, 0,

2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1,
1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]

Successor function when run on the state {’at-player’: (5, 3), ’at-
stone’: [(5, 2), (4, 3)]} failed to produce all successors.

Missing successors are: [{’at-player’: (5, 2), ’at-stone’: [(5, 1),
(4, 3)]}]

265

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The successor function failed to produce all successors because it

didn’t consider the case where the player can push a stone to a
new location that is not necessarily a goal location, and the
stone is not at the edge of the grid. In the given state, the
player can push the stone at (5, 2) to the location (5, 1), but
the successor function missed this case.

Here’s the corrected successor function:
Python
‘‘‘
import copy

def successor_states(state, grid):
def is_clear(location):

return grid[location[0]][location[1]] != 1 and (location not
in state[’at-stone’] and location != state[’at-player’])

def move(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
if is_clear(new_player_location):

new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
return new_state

def push(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
new_stone_location = (new_player_location[0] + direction[0],

new_player_location[1] + direction[1])
if new_stone_location in state[’at-stone’] and is_clear(

new_stone_location):
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
stone_index = state[’at-stone’].index(new_stone_location)
new_state[’at-stone’][stone_index] = (new_stone_location

[0] - direction[0], new_stone_location[1] - direction
[1])

return new_state

directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
successors = []
for direction in directions:

move_successor = move(direction)
if move_successor:

successors.append(move_successor)
push_successor = push(direction)
if push_successor:

successors.append(push_successor)
return successors

‘‘‘
The fix was in the push function, where I changed stone_index = state

[’at-stone’].index((new_stone_location[0] - direction[0],
new_stone_location[1] - direction[1])) to stone_index = state[’at-
stone’].index(new_stone_location). This correctly updates the
stone’s location after pushing it

System message:
Successor States Soundness Test Passed

266

Completeness test
Successor Iteration 4

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 1, 1], [1, 0, 0,

2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1,
1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]

Successor function when run on the state {’at-player’: (5, 3), ’at-
stone’: [(5, 2), (4, 3)]} failed to produce all successors.

Missing successors are: [{’at-player’: (5, 2), ’at-stone’: [(5, 1),
(4, 3)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The successor function failed to produce all successors because it

didn’t correctly handle the case where the player pushes a stone
to a new location. In the given state, the player can push the
stone at (5, 2) to the location (5, 1), but the successor function
missed this case.

Here’s the corrected successor function:
Python
‘‘‘
import copy

def successor_states(state, grid):
def is_clear(location):

return grid[location[0]][location[1]] != 1 and (location not
in state[’at-stone’] and location != state[’at-player’])

def move(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
if is_clear(new_player_location):

new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
return new_state

def push(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
new_stone_location = (new_player_location[0] + direction[0],

new_player_location[1] + direction[1])
if new_stone_location in state[’at-stone’] and is_clear((

new_stone_location[0] + direction[0], new_stone_location
[1] + direction[1])):
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
stone_index = state[’at-stone’].index(new_stone_location)
new_state[’at-stone’][stone_index] = (new_stone_location

[0] + direction[0], new_stone_location[1] + direction
[1])

return new_state

directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
successors = []
for direction in directions:

move_successor = move(direction)
if move_successor:

successors.append(move_successor)
push_successor = push(direction)
if push_successor:

267

successors.append(push_successor)
return successors

‘‘‘
The fix was in the push function, where I changed the condition to

check if the new stone location is clear, and updated the stone’s
location correctly

Successor Iteration 5

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 1, 1], [1, 0, 0,

2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1,
1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]

Invalid transition: a stone and the player are at the same location.
Let’s think step by step. First think through in words why the

successor function produced a successor that has a stone and the
player at the same location. Then provide the complete Python code
for the revised successor function that ensures that in all

successors the player and the stones are at different locations.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Input state: {’at-player’: (5, 3), ’at-stone’: [(3, 3), (4, 3)]}
Example wrong successor state: {’at-player’: (4, 3), ’at-stone’: [(2,

3), (4, 3)]}

Model response:
The successor function produced a successor with a stone and the

player at the same location because it didn’t check if the new
player location is already occupied by a stone when pushing a
stone.

Here’s the revised successor function that ensures the player and
stones are at different locations:

Python
‘‘‘
import copy

def successor_states(state, grid):
def is_clear(location):

return grid[location[0]][location[1]] != 1 and (location not
in state[’at-stone’] and location != state[’at-player’])

def move(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
if is_clear(new_player_location):

new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
return new_state

def push(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
new_stone_location = (new_player_location[0] + direction[0],

new_player_location[1] + direction[1])
if new_stone_location in state[’at-stone’] and is_clear(

new_stone_location) and (new_player_location[0] +
direction[0], new_player_location[1] + direction[1]) not
in state[’at-stone’]:
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
stone_index = state[’at-stone’].index(new_stone_location)
new_state[’at-stone’][stone_index] = (new_stone_location

[0] + direction[0], new_stone_location[1] + direction
[1])

return new_state

268

directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
successors = []
for direction in directions:

move_successor = move(direction)
if move_successor:

successors.append(move_successor)
push_successor = push(direction)
if push_successor:

successors.append(push_successor)
return successors

‘‘‘
The fix was in the push function, where I added an additional

condition to check if the new player location is not already
occupied by a stone

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 6

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 1, 1], [1, 0, 0,

2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1,
1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]

Successor function when run on the state {’at-player’: (5, 3), ’at-
stone’: [(5, 2), (4, 3)]} failed to produce all successors.

Missing successors are: [{’at-player’: (5, 2), ’at-stone’: [(5, 1),
(4, 3)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
The successor function failed to produce all successors because it

didn’t correctly handle the case where the player pushes a stone
to a new location. In the given state, the player can push the
stone at (5, 2) to the location (5, 1), but the successor function
missed this case.

Here’s the corrected successor function:
Python
‘‘‘
import copy

def successor_states(state, grid):
def is_clear(location):

return grid[location[0]][location[1]] != 1 and (location not
in state[’at-stone’] and location != state[’at-player’])

def move(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
if is_clear(new_player_location):

new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
return new_state

def push(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
new_stone_location = (new_player_location[0] + direction[0],

new_player_location[1] + direction[1])

269

if new_stone_location in state[’at-stone’] and is_clear((
new_stone_location[0] + direction[0], new_stone_location
[1] + direction[1])):
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
stone_index = state[’at-stone’].index(new_stone_location)
new_state[’at-stone’][stone_index] = (new_stone_location

[0] + direction[0], new_stone_location[1] + direction
[1])

return new_state
elif (new_player_location in state[’at-stone’] and is_clear((

new_player_location[0] + direction[0], new_player_location
[1] + direction[1]))):
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
stone_index = state[’at-stone’].index(new_player_location)
new_state[’at-stone’][stone_index] = (new_player_location

[0] + direction[0], new_player_location[1] + direction
[1])

return new_state

directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
successors = []
for direction in directions:

move_successor = move(direction)
if move_successor:

successors.append(move_successor)
push_successor = push(direction)
if push_successor:

successors.append(push_successor)
return successors

‘‘‘
The fix was in the push function, where I added an additional

condition to check if the player can push a stone to a new
location when the player is already at the stone’s location

Successor Iteration 7

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 1, 1], [1, 0, 0,

2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1,
1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]

Invalid transition: a stone and the player are at the same location.
Let’s think step by step. First think through in words why the

successor function produced a successor that has a stone and the
player at the same location. Then provide the complete Python code
for the revised successor function that ensures that in all

successors the player and the stones are at different locations.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Input state: {’at-player’: (5, 3), ’at-stone’: [(3, 3), (4, 3)]}
Example wrong successor state: {’at-player’: (4, 3), ’at-stone’: [(2,

3), (4, 3)]}

Model response:
The successor function produced a successor with a stone and the

player at the same location because it didn’t check if the new
player location is already occupied by a stone when pushing a
stone.

Here’s the revised successor function that ensures the player and
stones are at different locations:

Python
‘‘‘
import copy

270

def successor_states(state, grid):
def is_clear(location):

return grid[location[0]][location[1]] != 1 and (location not
in state[’at-stone’] and location != state[’at-player’])

def move(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
if is_clear(new_player_location):

new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
return new_state

def push(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
new_stone_location = (new_player_location[0] + direction[0],

new_player_location[1] + direction[1])
if new_stone_location in state[’at-stone’] and is_clear((

new_stone_location[0] + direction[0], new_stone_location
[1] + direction[1])) and (new_player_location[0] +
direction[0], new_player_location[1] + direction[1]) not
in state[’at-stone’]:
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
stone_index = state[’at-stone’].index(new_stone_location)
new_state[’at-stone’][stone_index] = (new_stone_location

[0] + direction[0], new_stone_location[1] + direction
[1])

return new_state

directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
successors = []
for direction in directions:

move_successor = move(direction)
if move_successor:

successors.append(move_successor)
push_successor = push(direction)
if push_successor and push_successor[’at-player’] not in

push_successor[’at-stone’]:
successors.append(push_successor)

return successors
‘‘‘
The fix was in the push function, where I added an additional

condition to check if the new player location is not already
occupied by a stone. Also, I added a check before appending the
push_successor to successors to ensure the player and stones are
at different locations

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 8

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 1, 1], [1, 0, 0,

2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1,
1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]

Successor function when run on the state {’at-player’: (5, 3), ’at-
stone’: [(5, 2), (4, 3)]} failed to produce all successors.

Missing successors are: [{’at-player’: (5, 2), ’at-stone’: [(5, 1),
(4, 3)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.

271

Remember how you fixed the previous mistakes, if any. Keep the same
function signature.

Model response:
The successor function failed to produce all successors because it

didn’t correctly handle the case where the player pushes a stone
to a new location. In the given state, the player can push the
stone at (5, 2) to the location (5, 1), but the successor function
missed this case.

Here’s the corrected successor function:
Python
‘‘‘
import copy

def successor_states(state, grid):
def is_clear(location):

return grid[location[0]][location[1]] != 1 and (location not
in state[’at-stone’] and location != state[’at-player’])

def move(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
if is_clear(new_player_location):

new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
return new_state

def push(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
new_stone_location = (new_player_location[0] + direction[0],

new_player_location[1] + direction[1])
if new_stone_location in state[’at-stone’] and is_clear((

new_stone_location[0] + direction[0], new_stone_location
[1] + direction[1])):
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
stone_index = state[’at-stone’].index(new_stone_location)
new_state[’at-stone’][stone_index] = (new_stone_location

[0] + direction[0], new_stone_location[1] + direction
[1])

return new_state
elif new_player_location in state[’at-stone’] and is_clear((

new_player_location[0] + direction[0], new_player_location
[1] + direction[1])):
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
stone_index = state[’at-stone’].index(new_player_location)
new_state[’at-stone’][stone_index] = (new_player_location

[0] + direction[0], new_player_location[1] + direction
[1])

return new_state

directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
successors = []
for direction in directions:

move_successor = move(direction)
if move_successor:

successors.append(move_successor)
push_successor = push(direction)
if push_successor:

successors.append(push_successor)
return successors

‘‘‘

272

The fix was in the push function, where I added an additional
condition to check if the player can push a stone to a new
location when the player is already at the stone’s location

Successor Iteration 9

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 1, 1], [1, 0, 0,

2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1,
1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]

Invalid transition: a stone and the player are at the same location.
Let’s think step by step. First think through in words why the

successor function produced a successor that has a stone and the
player at the same location. Then provide the complete Python code
for the revised successor function that ensures that in all

successors the player and the stones are at different locations.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Input state: {’at-player’: (5, 3), ’at-stone’: [(3, 3), (4, 3)]}
Example wrong successor state: {’at-player’: (4, 3), ’at-stone’: [(2,

3), (4, 3)]}

Model response:
The successor function produced a successor with a stone and the

player at the same location because it didn’t check if the new
player location is already occupied by a stone when pushing a
stone.

Here’s the revised successor function that ensures the player and
stones are at different locations:

Python
‘‘‘
import copy

def successor_states(state, grid):
def is_clear(location):

return grid[location[0]][location[1]] != 1 and (location not
in state[’at-stone’] and location != state[’at-player’])

def move(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
if is_clear(new_player_location):

new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
return new_state

def push(direction):
new_player_location = (state[’at-player’][0] + direction[0],

state[’at-player’][1] + direction[1])
new_stone_location = (new_player_location[0] + direction[0],

new_player_location[1] + direction[1])
if new_stone_location in state[’at-stone’] and is_clear((

new_stone_location[0] + direction[0], new_stone_location
[1] + direction[1])) and (new_player_location[0] +
direction[0], new_player_location[1] + direction[1]) not
in state[’at-stone’]:
new_state = copy.deepcopy(state)
new_state[’at-player’] = new_player_location
stone_index = state[’at-stone’].index(new_stone_location)
new_state[’at-stone’][stone_index] = (new_stone_location

[0] + direction[0], new_stone_location[1] + direction
[1])

return new_state

directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]

273

successors = []
for direction in directions:

move_successor = move(direction)
if move_successor:

successors.append(move_successor)
push_successor = push(direction)
if push_successor and push_successor[’at-player’] not in

push_successor[’at-stone’]:
successors.append(push_successor)

return successors
‘‘‘
The fix was in the push function, where I added an additional

condition to check if the new player location is not already
occupied by a stone. Also, I added a check before appending the
push_successor to successors to ensure the player and stones are
at different locations

System message:
Successor States Soundness Test Passed
Completeness test

System message:
Maximum iterations reached for completeness test. Process stopped.

9.5.5 Llama3.1 405B

Listing 64: Without partial successor soundness test

AutoToS prompt:

This domain models the classic Sokoban game, where the robot needs to
move around and push stones to specific locations while adhering
to the constraints defined by the walls in the maze.

The maze is defined by a grid of values 0,1, and 2, where 2 means it
is a goal location for a stone, 1 means the cell is blocked, and
either 0 or 2 means that the cell can be occupied. A cell is clear
if it can be occupied, but is not occupied by either the player

or any stone.

The actions are:

move: This action moves the player in a specified direction. To
perform this action, the target location must be clear and
adjacent to player’s location. Performing this action will result
in the player being at the target location and no longer at the
starting location, meaning the starting location is now clear,
while the target location is now not clear.

push: This action allows the player to push a stone in a specified
direction. To perform this action, the player’s location, the
stone location, and the target location must line up in the same
direction, and the target location must be clear. Performing the
action results in player being at the stone’s initial location and
the stone is at the target location. Further, the player’s

previous location is clear, while the target location is not clear
.

Assume that states are defined by a dictionary with keys at-player and
at-stone.

Here is an example of a state
{’at-player’: (4, 4), ’at-stone’: [(2, 2), (3, 3)]}
Here is an example of the grid:
[[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1,

1, 1, 1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0,

274

1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0,
0, 1], [0, 0, 0, 1, 1, 1, 1, 1]]

Provide a Python implementation of successor states function,
receiving a state and a grid and returning a list of immediate
successor states.

Model response:
Successor States Function
Python
‘‘‘
def successor_states(state, grid):

"""
This function generates all possible successor states for a given

state in the Sokoban game.

Args:
state (dict): A dictionary containing the current state of the

game.
It has two keys: ’at-player’ and ’at-stone’.
’at-player’ is a tuple representing the player’s

location.
’at-stone’ is a list of tuples, each representing a

stone’s location.
grid (list of lists): A 2D list representing the game grid.

It contains 0s (clear cells), 1s (blocked
cells), and 2s (goal locations).

Returns:
list of dicts: A list of dictionaries, each representing a

possible successor state.
"""

Define possible movements (up, down, left, right)
movements = [(0, 1), (0, -1), (1, 0), (-1, 0)]

Function to check if a cell is within the grid boundaries
def is_valid(cell):

return 0 <= cell[0] < len(grid) and 0 <= cell[1] < len(grid
[0])

Function to check if a cell is clear (not blocked and not
occupied by the player or a stone)

def is_clear(cell):
return is_valid(cell) and grid[cell[0]][cell[1]] != 1 and cell

not in state[’at-stone’] and cell != state[’at-player’]

Initialize the list of successor states
successors = []

Check all possible movements from the current player location
for movement in movements:

new_player_location = (state[’at-player’][0] + movement[0],
state[’at-player’][1] + movement[1])

If the new player location is clear, add the new state to
the successors list

if is_clear(new_player_location):
new_state = {’at-player’: new_player_location, ’at-stone’:

state[’at-stone’].copy()}
successors.append(new_state)

Check if the player can push a stone in the current
direction

275

stone_location = (new_player_location[0] + movement[0],
new_player_location[1] + movement[1])

if stone_location in state[’at-stone’]:
new_stone_location = (stone_location[0] + movement[0],

stone_location[1] + movement[1])
if is_clear(new_stone_location):

new_state = {’at-player’: new_player_location, ’at-
stone’: state[’at-stone’].copy()}

new_state[’at-stone’].remove(stone_location)
new_state[’at-stone’].append(new_stone_location)
successors.append(new_state)

return successors
‘‘‘
This function generates all possible successor states for a given

state in the Sokoban game. It checks all possible movements from
the current player location and adds the new states to the
successors list if the new player location is clear. It also
checks if the player can push a stone in the current direction and
adds the new state to the successors list if the new stone

location is clear.
Generated by Meta Llama 3.1-405

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state for a given goal configuration. Assume that the goal
configuration is provided by the 2-dimensional array as before.
The function should receive a state and the 2-dimensional array
and return True if the state is a goal state and False otherwise.

Model response:
Goal Test Function
Python
‘‘‘
def is_goal_state(state, grid):

"""
This function checks if a given state is a goal state.

Args:
state (dict): A dictionary containing the current state of the

game.
It has two keys: ’at-player’ and ’at-stone’.
’at-player’ is a tuple representing the player’s

location.
’at-stone’ is a list of tuples, each representing a

stone’s location.
grid (list of lists): A 2D list representing the game grid.

It contains 0s (clear cells), 1s (blocked
cells), and 2s (goal locations).

Returns:
bool: True if the state is a goal state, False otherwise.
"""
Check if all stones are at goal locations
for stone in state[’at-stone’]:

if grid[stone[0]][stone[1]] != 2:
return False

return True
‘‘‘
Generated by Meta Llama 3.1-405

System message:
Goal Soundness Test Passed

276

Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Iteration 1

AutoToS prompt:
Error occurred for grid configuration: [[1, 1, 1, 1, 1, 1], [1, 0, 0,

2, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 1, 2, 1,
1], [1, 0, 0, 0, 1, 0], [1, 1, 1, 1, 1, 0]]

Successor function when run on the state {’at-player’: (5, 3), ’at-
stone’: [(5, 2), (4, 3)]} failed to produce all successors.

Missing successors are: [{’at-player’: (5, 2), ’at-stone’: [(5, 1),
(4, 3)]}]

First think step by step why the successor function failed to produce
all successors of the state.

Then, fix the successor function.
Remember how you fixed the previous mistakes, if any. Keep the same

function signature.

Model response:
Successor States Function (Updated)
Python
‘‘‘
def successor_states(state, grid):

"""
This function generates all possible successor states for a given

state in the Sokoban game.

Args:
state (dict): A dictionary containing the current state of the

game.
It has two keys: ’at-player’ and ’at-stone’.
’at-player’ is a tuple representing the player’s

location.
’at-stone’ is a list of tuples, each representing a

stone’s location.
grid (list of lists): A 2D list representing the game grid.

It contains 0s (clear cells), 1s (blocked
cells), and 2s (goal locations).

Returns:
list of dicts: A list of dictionaries, each representing a

possible successor state.
"""

Define possible movements (up, down, left, right)
movements = [(0, 1), (0, -1), (1, 0), (-1, 0)]

Function to check if a cell is within the grid boundaries
def is_valid(cell):

return 0 <= cell[0] < len(grid) and 0 <= cell[1] < len(grid
[0])

Function to check if a cell is clear (not blocked and not
occupied by the player or a stone)

def is_clear(cell):
return is_valid(cell) and grid[cell[0]][cell[1]] != 1 and cell

not in state[’at-stone’] and cell != state[’at-player’]

Initialize the list of successor states
successors = []

Check all possible movements from the current player location

277

for movement in movements:
new_player_location = (state[’at-player’][0] + movement[0],

state[’at-player’][1] + movement[1])

If the new player location is clear, add the new state to
the successors list

if is_clear(new_player_location):
new_state = {’at-player’: new_player_location, ’at-stone’:

state[’at-stone’].copy()}
successors.append(new_state)

Check if the player can push a stone in the current
direction

for stone in state[’at-stone’]:
if (stone[0] == new_player_location[0] and stone[1] ==

new_player_location[1]):
new_stone_location = (stone[0] + movement[0], stone[1]

+ movement[1])
if is_clear(new_stone_location):

new_state = {’at-player’: new_player_location, ’at
-stone’: state[’at-stone’].copy()}

new_state[’at-stone’].remove(stone)
new_state[’at-stone’].append(new_stone_location)
successors.append(new_state)

return successors
‘‘‘
The issue was that the previous function was only checking if the

player could push a stone if the stone was in the stone_location
which was calculated based on the new_player_location. However,
this was not considering the case where the stone is already at
the new_player_location. To fix this, we need to check for each
stone in the state[’at-stone’] if it is at the new_player_location
and if the player can push it to the new_stone_location.

Now the function correctly generates all possible successor states for
a given state in the Sokoban game.

Generated by Meta Llama 3.1-405

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Total success: 11, failure: 0, total expansions 763750, total

generated 1955669

Listing 65: With partial successor soundness test

AutoToS prompt:

This domain models the classic Sokoban game, where the robot needs to
move around and push stones to specific locations while adhering
to the constraints defined by the walls in the maze.

The maze is defined by a grid of values 0,1, and 2, where 2 means it
is a goal location for a stone, 1 means the cell is blocked, and
either 0 or 2 means that the cell can be occupied. A cell is clear
if it can be occupied, but is not occupied by either the player

or any stone.

The actions are:

move: This action moves the player in a specified direction. To
perform this action, the target location must be clear and
adjacent to player’s location. Performing this action will result
in the player being at the target location and no longer at the

278

starting location, meaning the starting location is now clear,
while the target location is now not clear.

push: This action allows the player to push a stone in a specified
direction. To perform this action, the player’s location, the
stone location, and the target location must line up in the same
direction, and the target location must be clear. Performing the
action results in player being at the stone’s initial location and
the stone is at the target location. Further, the player’s

previous location is clear, while the target location is not clear
.

Assume that states are defined by a dictionary with keys at-player and
at-stone.

Here is an example of a state
{’at-player’: (4, 4), ’at-stone’: [(2, 2), (3, 3)]}
Here is an example of the grid:
[[1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1,

1, 1, 1], [1, 0, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1], [0,
1, 1, 1, 2, 2, 0, 1], [0, 0, 0, 1, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0,
0, 1], [0, 0, 0, 1, 1, 1, 1, 1]]

Provide a Python implementation of successor states function,
receiving a state and a grid and returning a list of immediate
successor states.

Model response:
Python
‘‘‘
def successor_states(state, grid):

"""
This function generates all possible successor states given a

state and a grid.

Parameters:
state (dict): A dictionary containing the current state of the

game. It has two keys: ’at-player’ and ’at-stone’.
’at-player’ is a tuple representing the current

position of the player.
’at-stone’ is a list of tuples representing the

current positions of the stones.
grid (list): A 2D list representing the game grid. It contains 0s,

1s, and 2s where 0 represents an empty cell,
1 represents a blocked cell, and 2 represents a goal

location.

Returns:
list: A list of dictionaries representing all possible successor

states.
"""

Define all possible movements (up, down, left, right)
movements = [(0, 1), (0, -1), (1, 0), (-1, 0)]

Function to check if a cell is clear
def is_clear(cell):

return grid[cell[0]][cell[1]] != 1 and cell not in state[’at-
stone’] and cell != state[’at-player’]

Function to check if a cell is a valid position for a stone
def is_valid_stone_position(cell):

return grid[cell[0]][cell[1]] in [0, 2]

Initialize the list of successor states
successor_states = []

279

Check all possible movements for the player
for movement in movements:

new_player_position = (state[’at-player’][0] + movement[0],
state[’at-player’][1] + movement[1])

Check if the new position is clear and within the grid
boundaries

if (0 <= new_player_position[0] < len(grid)) and (0 <=
new_player_position[1] < len(grid[0])) and is_clear(
new_player_position):
Create a new state with the updated player position
new_state = {’at-player’: new_player_position, ’at-stone’:

state[’at-stone’].copy()}

Add the new state to the list of successor states
successor_states.append(new_state)

Check if the player can push a stone
for stone in state[’at-stone’]:

Calculate the position of the stone after pushing
new_stone_position = (stone[0] + movement[0], stone[1] +

movement[1])

Check if the stone is adjacent to the player and the new
position is clear and within the grid boundaries

if (stone[0] == state[’at-player’][0] + movement[0] and
stone[1] == state[’at-player’][1] + movement[1] and
(0 <= new_stone_position[0] < len(grid)) and (0 <=

new_stone_position[1] < len(grid[0])) and
is_clear(new_stone_position) and

is_valid_stone_position(new_stone_position)):
Create a new state with the updated player and stone

positions
new_state = {’at-player’: stone, ’at-stone’: state[’at

-stone’].copy()}
new_state[’at-stone’].remove(stone)
new_state[’at-stone’].append(new_stone_position)

Add the new state to the list of successor states
successor_states.append(new_state)

return successor_states
‘‘‘
Generated by Meta Llama 3.1-405

AutoToS prompt:

Provide only the python code that tests whether a state is a goal
state for a given goal configuration. Assume that the goal
configuration is provided by the 2-dimensional array as before.
The function should receive a state and the 2-dimensional array
and return True if the state is a goal state and False otherwise.

Model response:
Python
‘‘‘
def is_goal_state(state, grid):

"""
This function checks if a given state is a goal state.

Parameters:
state (dict): A dictionary containing the current state of the

game. It has two keys: ’at-player’ and ’at-stone’.

280

’at-player’ is a tuple representing the current
position of the player.

’at-stone’ is a list of tuples representing the
current positions of the stones.

grid (list): A 2D list representing the game grid. It contains 0s,
1s, and 2s where 0 represents an empty cell,

1 represents a blocked cell, and 2 represents a goal
location.

Returns:
bool: True if the state is a goal state, False otherwise.
"""
Check if all stones are at goal locations
for stone in state[’at-stone’]:

if grid[stone[0]][stone[1]] != 2:
return False

If all stones are at goal locations, the state is a goal state
return True

‘‘‘
Generated by Meta Llama 3.1-405

System message:
Goal Soundness Test Passed
Soundness test

System message:
Successor States Soundness Test Passed
Completeness test
Successor Completeness Test Passed
Total success: 11, failure: 0, total expansions 763750, total

generated 1955669

281

	Introduction
	Related Works
	Background
	Proposed Approach and Methodology
	System prompt
	Automation, evaluation and validation

	Experiments
	Code Errors Discussion
	Conclusions and Future Work
	Additional data for experimental domains
	24 Game
	Blocksworld
	5x5 Crosswords
	ProntoQA
	Sokoban

	Model Correspondences
	24 Game
	Deepseek-CoderV2
	GPT4-Mini
	GPT4
	Llama3.1 70B
	Llama3.1 405B

	BlocksWorld
	Deepseek-CoderV2
	GPT4-Mini
	GPT4
	Llama3.1 70B
	Llama3.1 405B

	5x5 Crosswords
	Deepseek-CoderV2
	GPT4-Mini
	GPT4
	Llama3.1 70B
	Llama3.1 405B

	ProntoQA
	Deepseek-CoderV2
	GPT4-Mini
	GPT4
	Llama3.1 70B
	Llama3.1 405B

	Sokoban
	Deepseek-CoderV2
	GPT4-Mini
	GPT4
	Llama3.1 70B
	Llama3.1 405B

