
MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

LOBSTUR: A Local Bootstrap Framework for
Tuning Unsupervised Representations

in Graph Neural Networks
So Won Jeong

The University of Chicago
Chicago, Illinois, USA

sowonjeong@chicagobooth.edu

Claire Donnat
The University of Chicago
Chicago, Illinois, USA
cdonnat@uchicago.edu

ABSTRACT
Graph Neural Networks (GNNs) are increasingly used in conjunc-
tion with unsupervised learning techniques to learn powerful node
representations, but their deployment is hindered by their high
sensitivity to hyperparameter tuning and the absence of estab-
lished methodologies for selecting the optimal models. To address
these challenges, we propose LOBSTUR-GNN (Local Bootstrap for
Tuning Unsupervised Representations in GNNs) i), a novel frame-
work designed to adapt bootstrapping techniques for unsupervised
graph representation learning. LOBSTUR-GNN tackles two main
challenges: (a) adapting the bootstrap edge and feature resampling
process to account for local graph dependencies in creating alterna-
tive versions of the same graph, and (b) establishing robust metrics
for evaluating learned representations without ground-truth labels.
Using locally bootstrapped resampling and leveraging Canonical
Correlation Analysis (CCA) to assess embedding consistency, LOB-
STUR provides a principled approach for hyperparameter tuning
in unsupervised GNNs. We validate the e!ectiveness and e"ciency
of our proposed method through extensive experiments on estab-
lished academic datasets, showing an 65.9% improvement in the
classi#cation accuracy compared to an uninformed selection of hy-
perparameters. Finally, we deploy our framework on a real-world
application, thereby demonstrating its validity and practical utility
in various settings.

CCS CONCEPTS
• Computing methodologies → Cross-validation; Learning
latent representations; Unsupervised learning; Neural net-
works.

KEYWORDS
Graph Neural Network, Hyperparameter Tuning, Unsupervised
Representations, Bootstrap, Cross-validation

ACM Reference Format:
SoWon Jeong and Claire Donnat. 2025. LOBSTUR: A Local Bootstrap Frame-
work for Tuning Unsupervised Representations in Graph Neural Networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro#t or commercial advantage and that copies bear this notice and the full citation
on the #rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci#c permission
and/or a fee. Request permissions from permissions@acm.org.
MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.48550/arXiv.2505.14867

In Proceedings of Machine Learning on Graphs in the Era of Arti!cial Gen-
eral Intelligence (MLoG-GenAI@KDD). ACM, New York, NY, USA, 38 pages.
https://doi.org/10.48550/arXiv.2505.14867

1 INTRODUCTION
With the expanding availability of network and spatial data in
the sciences, Graph Neural Networks (GNNs) have emerged as a
compelling approach to identify interaction patterns within com-
plex systems. Examples include spatial transcriptomics [Dong and
Zhang 2022; Zhu et al. 2018], where graph-based neural networks
are used to learn representations of cell neighborhoods that can be
correlatedwith cancer outcomes, andmicrobiome studies [Lamurias
et al. 2022; Le et al. 2020] where they are used for genome assembly
or to predict metabolite information from microbes. In many of
these applications, scientists are increasingly interested in using
GNNs in conjunction with unsupervised learning techniques for
learning informative representations, due to the paucity of available
labeled data, or as a way of automatically detecting structure or
patterns [Dong and Zhang 2022; Lamurias et al. 2022; Le et al. 2020;
Zhu et al. 2018]. Consequently, the last few years have seen the
development of a number of unsupervised GNN methods for the
sciences [Hu et al. 2021; Ishiai et al. 2024; Li et al. 2021; Partel and
Wählby 2021; Zhang et al. 2020], usually adapting known methods
for Euclidean data such as tSNE [van der Maaten and Hinton 2008],
k-Means clustering, or UMAP [McInnes et al. 2018] to accommodate
graph data and GNNs. These methods typically involve few hyper-
parameters, but their scope of application is typically con#ned to a
speci#c data type or use case.

Within the methods community, on the other hand, recent ad-
vances in unsupervised node representation learning seem to have
primarily been driven by contrastive learning [Stokes et al. 2020;
You et al. 2021; Zhang et al. 2021]. This popular self-supervised learn-
ing framework has indeed demonstrated impressive performance
for learning rich and versatile data representations across various
domains. However, in the graph-setting, despite their impressive
performance and promising results on academic benchmarks, these
methods are not tuning-free, making them di"cult to deploy in
real-world applications. In fact, they rely heavily on selecting ap-
propriate values for several of their hyperparameters, but incorrect
hyperparameter values can lead to severely distorted data repre-
sentations. We illustrate this e!ect in Figure 1 by showing how
di!erent choices of hyperparameters can decrease the accuracy of
a linear classi#er (trained on the learned node embeddings of a
toy benchmark) from 73% to 30%, thus indicating a severe loss in
embedding quality.

https://doi.org/10.48550/arXiv.2505.14867
https://doi.org/10.48550/arXiv.2505.14867

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

Figure 1: Cora. Evaluation of the CCA-SSG embeddings [Zhang et al. 2021], an unsupervised learning method, for each
combination of the hyperparameters (loss parameter 𝐿, edge drop rate (EDR), feature mask rate (FMR)). Each entry denotes the
mean and standard deviation of the node classi!cation accuracy of a linear classi!er trained on the learned representations
(averaged over 20 experiments).

Despite the empirical importance of hyperparameter tuning,
there is currently no valid hyperparameter selection procedure
for unsupervised GNN representation learning. In the methods
community, new unsupervised learning approaches are commonly
tested on established benchmark datasets, with hyperparameters
selected based on performance in a downstream node classi#cation
task. However, this procedure essentially converts the problem into
a supervised learning setting, making it unsuitable for genuinely
unsupervised, real-world use cases.

Hyperparameter tuning in unsupervised settings is made dif-
#cult by two main challenges: (a) the absence of a clear ground
truth or statistical framework for unsupervised learning, and (b) the
lack of an established metric to evaluate the learned embeddings.
To our knowledge, the only study that attempts to measure the
quality of latent representations is that of Tsitsulin et al., which
empirically evaluates various metrics. Yet, without a proper infer-
ence framework, pinpointing a suitable metric remains a signi#cant
challenge.
Contributions. In this paper, we propose the #rst bootstrapped-
based method for selecting hyperparameters for unsupervised GNN
representation learning. Hyperparameters can be broadly catego-
rized into two types: (1) those that require tuning within a speci#c
model (e.g. parameters in the loss function) and (2) those that in-
volve tuning across a family of models (e.g. di!erent GNN archi-
tectures or sizes). In this paper, we aim to tackle both, as both are
essential to self-supervised learning. More speci#cally,

(1) We cast the learning of representations as an estimation prob-
lem: we posit that the learned representations correspond to
a learned low-dimensional manifold, which must therefore
be consistent under a noise model, as explicited in Section 2.

(2) To generate independent copies of the same graph, we pro-
pose a bootstrap procedure based on nonparametric model-
ing of the graph as a graphon [Su et al. 2020] (Section 3).

(3) To evaluate the quality of the embeddings learned on inde-
pendent copies of the same graph in the absence of labels,
we suggest using Canonical Correlation Analysis [Hotelling
1936] as a translation- and rotation-invariant tool to quantify
the stability of the learned embedding spaces (Section 4).

2 PROBLEM FORMALIZATION
Establishing a framework for hyperparameter tuning in unsuper-
vised learning requires us to address two fundamental questions:

what are we aiming to estimate, and where does the randomness
come from?

In the graph setting, the data is presented in two modalities: a
feature matrix, and an adjacency matrix. Unsupervised learning
can be framed as learning what information is shared across modal-
ities, and what information is speci#c to each one in a condensed
format. This approach is typically described in the data-integration
literature using a latent variable space model [Bishop 1998; Ho!
et al. 2002], which we adapt here for the graph domain.

Inference setting. We consider a graph𝑀 on𝑁 nodes with features
𝑂 ↑ R𝐿↓𝑀 , and denote by 𝑃 ↑ {0, 1}𝐿↓𝐿 its corresponding (binary)
adjacency matrix. We assume the graph is sampled from a graphon
𝑄 (see for instance Gao et al.) — a non-parametric random graph
model–, and that node features are a noisy transformation of the
latent variable𝑅𝑁 :

↔𝑆 ↑ [𝑁], 𝑅𝑁 ↗ Unif([0, 1]),
↔𝑇 ↑ [𝑁], 𝑃𝑁 𝑂 ↗ Bernoulli(𝑄 (𝑅𝑁 ,𝑅 𝑂)),

𝑂𝑁 ↗ 𝑈(𝑅𝑁) + 𝑉𝑁 ,

(1)

where𝑄 (𝑅𝑁 ,𝑅 𝑂) denotes the graphon function evaluated at the
latent positions𝑅𝑁 and𝑅 𝑂 , and 𝑉𝑁 denotes some independent, mean-
zero noise. This model allows us to reason on the randomness of the
generation procedure without making assumptions on the speci#cs
of the graph generation process. While graphons are known to
generate dense graphs, their output can be sparsi#ed by scaling
𝑄 by a sparsity factor that tends to 0 as 𝑁 → ↘, e.g. 𝑊𝐿 = log(𝐿)

𝐿
[Davison and Austern 2023; Gaucher and Klopp 2021].

Learning Conditional or Marginal Representations. In the unsuper-
vised context, we di!erentiate between two main scenarios based
on whether the goal is to learn representations conditioned on the
realized𝑅𝑁 or not.
(a) Learning marginal data representations that do not depend
on the realized𝑅𝑁 s : In some applications, embeddings are assumed
to capture clusters or predict speci#c outcomes [Hu et al. 2021; Wu
et al. 2022]. In these cases, the learned embeddings serve as a way
to extract inherent structure from the data — such as clusters, an
underlying manifold, or more generally, functions of the graphon
𝑄 — that should be consistent across datasets of the same type. For
example, in single-cell transcriptomics studies (e.g. Wu et al. [2022]
and Hu et al. [2021]), GNNs are employed to learn embeddings
that capture patterns in cell-neighborhood interactions. Here, the

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

assumption is that the clusters derived from one dataset should be
reproducible on another dataset drawn from the same distribution.
An oracle data generation procedure would therefore generate un-
seen data using the full model in (1), resampling latent variables𝑅𝑁
to generate new nodes and edges.

(b) Learning conditional data representations, i.e. conditional
on the realized 𝑅𝑁 s: However, in other applications, these assump-
tions do not hold: there might not necessarily be an obvious notion
of “another similar graph”. In citation networks, for example, where
nodes represent users, the focus shifts to learning properties speci#c
to individual nodes. In this case, data generation procedures must
accommodate another type of randomness, this time conditioned
on𝑅𝑁 : randomness arises solely in sampling the edges and features,
as per the last two lines of (1).

In both settings, however, the quality of the learned embeddings
might be evaluated based on their reproducibility, or the align-
ment between the latent structure stemming from representations
learned on one dataset to those learned on another. Devising a cri-
terion leveraging this notion would require two main components:
(a) a data generation procedure, to create independent draws of the
same datasets (Section 3), and (b) a metric to measure the alignment
between representations (Section 4).

3 A LOCAL GRAPH BOOTSTRAPPING
PROCEDURE

In the GNN literature, data splitting and resampling are usually
done in one of two ways: by resampling the nodes or by resam-
pling the edges. However, in the unsupervised setting, these two
sampling procedures are not necessarily suitable for two reasons.
First, this type of sampling can considerably disrupt the structure
of the graph (by thinning nodes or edges, respectively), as re$ected
in Figure 2, Table 6 and Figure 8 in the Appendix — an indication
that the stochastic process underpinning the graph creation is not
correctly simulated. Second, these procedures require the speci#ca-
tion of the node (respectively edge) drop rate. However, without
any theoretical underpinning, it is di"cult to set these correctly,
as the distance between the original graph and the thinned ones
increases monotonously with the drop rate.

Relationship with existing literature. Relatively few studies have
been conducted on extending bootstrapping to network data [Chen
and Lei 2018; Ho! 2007; Levin and Levina 2021; Li et al. 2020]. Most
of these works assume a speci#c distribution for the graph, also
typically assuming latent variables for each node (e.g. a random
product graph [Levin and Levina 2021]). The edges are assumed to
be drawn from a Bernoulli distribution with probability 𝑋 (𝑅𝑁 ,𝑅 𝑂),
where 𝑋 is a parametric function. For instance, in the random dot
product graph [Levin and Levina 2021]), edges are assumed to be
sampled as 𝑃𝑁 𝑂 ↗ Bernoulli(𝑅≃

𝑁 𝑅 𝑂). However, these works (a) rely
on strong parametric assumptions about the graph’s nature, which,
if unveri#ed, can lead to resampled graphs that di!er substantially
from the original; (b) usually do not address the challenge of si-
multaneously resampling both edges and node features; and (c)
typically generate new graphs conditioned on the imputed latent
variables, but are not easily extendable to the marginal case, which
would require resampling the node representations𝑅𝑁 ’s themselves.

By contrast, we propose a nonparametric technique for resam-
pling graphs based on the model detailed in (1), thus requiring
minimal assumptions about the underlying graph structure.

3.1 The Oracle Case
We begin by assuming that, for each latent variable 𝑅𝑁 , we have
oracle knowledge of its 𝑌-nearest neighbors. We denote the result-
ing directed 𝑌-nearest neighbor graph as G𝑃𝐿𝐿 . Under su"ciently
smooth functions𝑄 and 𝑈 (as de#ned in the next paragraphs), for a
given node 𝑆 , its neighbors in G𝑃𝐿𝐿 have similar distributions, and
can thus be viewed as alternative realizations of the same underly-
ing stochastic process (conditioned on𝑅).

We leverage this observation to propose a bootstrap procedure
conditioned on the realized𝑅𝑁 :

(1) Feature resampling: we resample the features of each node
by drawing at random a feature vector from one of 𝑌-nearest
neighbors. This ensures preserving the covariance between
features by sampling full vectors.

(2) Edge rewiring: let N𝑄 (𝑆) denote the 𝑍𝑅𝑆 closest neighbor
of node 𝑆 according to the oracle graph G𝑃𝐿𝐿 . For each
pair of node (𝑆, 𝑇), sample an edge with probability 𝑎𝑁 𝑂 =
1
𝑃
∑𝑃
𝑄=1𝑃N𝐿 (𝑁), 𝑂 , e!ectively estimating the underlying prob-

ability P[𝑃𝑁 𝑂 = 1|𝑅𝑁 ,𝑅 𝑂]. An e"cient procedure for resam-
pling is presented in Algorithm 2.

To extend this procedure to generate marginally-resampled graphs,
we propose simply sampling with replacement nodes (which e!ec-
tively implies resampling the𝑅𝑁), and applying the same procedure
as above. The whole procedure is described in more detail in Al-
gorithm 3. In either case (marginally or conditionally on 𝑅), this
framework preserves local latent-space similarities while generat-
ing plausible bootstrap replicates of the graph.

Algorithm 1 Non-parametric Resampling of Node Features

1: Input: Graph 𝑀 with node features {𝑂𝑁 }𝐿𝑁=1, G𝑃𝐿𝐿 𝑌-nearest
neighbor graph on𝑅 .

2: for each node 𝑆 ↑ [𝑁] do
3: Identify the set of neighboring nodes 𝑏 (𝑆) = { 𝑇 : 𝑇 ↗ 𝑆} in

the graph G𝑃𝐿𝐿 ,
4: Construct the candidate set for resampling: 𝑐𝑁 = {𝑂𝑁 } ⇐

{𝑂 𝑂 } 𝑂↑𝑇 (𝑁) .
5: Resample the feature vector for node 𝑆 by selecting a vector

uniformly from 𝑐𝑁 : 𝑂new
𝑁 ↗ Unif(𝑐𝑁).

6: end for
7: Output: Resampled node features {𝑂new

𝑁 }
𝐿
𝑁=1.

The following theorem characterizes the consistency of the pro-
cedure in deriving nodes with similar features.

Theorem 3.1. Assume that G𝑃𝐿𝐿 , the directed 𝑌- nearest neighbor
graph induced by the latent variable {𝑅𝑁 }

𝐿
𝑁=1 is known, with 𝑌 such

that lim𝐿→↘
𝑃
𝐿 = 0. Suppose 𝑈 is an 𝑑-Hölder-continuous function

on the interval [0, 1], so that there exists a constant 𝑐 such that:
|𝑈(𝑅𝑁) ⇒ 𝑈(𝑅 𝑂) | ⇑ 𝑐 |𝑅𝑁 ⇒𝑅 𝑂 |

𝑈 for 𝑑 > 0.
Let X denote the domain of the features (so that for each node 𝑆 ,

its features are denoted 𝑂𝑁 ↑ X). Then, the procedure described in

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

Figure 2: Illustration of di"erent techniques for generating new copies of a simple graph (left-most image). The original graph
has a distinctive community structure. Note that node sampling or edge sampling randomly removes either nodes or edges,
disrupting the original graph structure.

Algorithm 1 is asymptotically consistent in that for any set A ↑ X:

↔𝑇 ↑ N𝑃𝐿𝐿 (𝑆), lim𝐿→↘

""P(𝑂 𝑂 ↑ A|𝑅 𝑂) ⇒ P(𝑂𝑁 ↑ A|𝑅𝑁)
"" = 0,

where N𝑃𝐿𝐿 (𝑆) denotes any of the 𝑌-nearest neighbors of 𝑆 .

P!""#. Under (1), ↔𝑆, 𝑂𝑁 = 𝑈(𝑅𝑁) +𝑉𝑁 , where 𝑉𝑁 is independent,
identically distributed centered noise, and 𝑈(𝑅𝑁) is the expectation
of 𝑂 given the latent 𝑅𝑁 . Since the 𝑉 are assumed to be i.i.d, we can
write for any nodes 𝑆 and 𝑇 :

𝑂𝑁
𝑉= 𝑈(𝑅𝑁) + 𝑉 𝑂 = 𝑈(𝑅𝑁) + 𝑂 𝑂 ⇒ 𝑈(𝑅 𝑂) .

The quantity 𝑈(𝑅𝑁) ⇒𝑈(𝑅 𝑂) represents the bias in using the expecta-
tion𝑂 𝑂 to approximate the distribution of𝑂𝑁 , and since𝑈 is assumed
to be Hölder-continuous: ⇓𝑈(𝑅𝑁) ⇒ 𝑈(𝑅 𝑂)⇓ ⇑ 𝑒 |𝑅𝑁 ⇒𝑅 𝑂 |

𝑈 .
Consider now 𝑇 to be chosen to be one of the 𝑌-nearest neighbors

of node 𝑆 . |𝑅𝑁⇒𝑅 𝑂 |
𝑈 is a monotonously decreasing function of𝑁, and

with high probability (over the distribution of𝑅1, · · · ,𝑅𝐿), we have
|𝑅𝑁 ⇒ 𝑅 𝑂 | ⇑ 𝑒0

𝑃
𝐿 , for all 𝑇 ↑ N(𝑅𝑁), and a constant 𝑒0. Therefore,

⇓𝑈(𝑅𝑁)⇒𝑈(𝑅 𝑂)⇓ tends to 0 (in probability) as 𝑁 goes to↘. Therefore,

by Slutsky’s lemma, as𝑁 goes to↘, {𝑂 𝑂 |𝑅 𝑂 } 𝑂↑N𝑀𝑁𝑁 (𝑁)
𝑉
→ 𝑂𝑁 |𝑅𝑁 . ⊋

The following theorem highlights the consistency of the edge
rewiring procedure.

Theorem 3.2. Suppose that the 𝑌𝐿-nearest neighbor graph G𝑃𝐿𝐿
induced by the latent variables {𝑅𝑁 }

𝐿
𝑁=1 is known, where 𝑌𝐿 is such

that lim𝐿→↘
𝑃𝑁
𝐿 = 0, and lim𝐿→↘ 𝑌𝐿 = 0. Suppose that𝑄 is an

𝑑-Hölder graphon function [Gao et al. 2015] (see de!nition A.1 in the
Appendix) with 𝑑 ↑ (0, 1].

Then, the quantity 𝑎𝑁 𝑂 = 1
𝑃𝑁

∑𝑃𝑁
𝑄=1𝑃N𝐿 (𝑁), 𝑂 is a consistent esti-

mator of 𝑎𝑁 𝑂 in the sense that:

lim
𝐿→↘

𝑎𝑁 𝑂 = P[𝑃𝑁 𝑂 |𝑅𝑁 ,𝑅 𝑂] .

P!""#. The proof follows a similar argument to the previous
theorem and is deferred to Appendix A.2. ⊋

Remark 3.3. We note that the noise 𝑉𝑁 on the features does not
need to be globally identically distributed for the previous con-
struction to hold. Instead, since the procedure only relies on the
𝑌-nearest neighborhood of each node, it su"ces to assume that
these properties hold locally.

Algorithm 2 Non-parametric Resampling of Edges

1: Input: Graph 𝑀 = (V, E) with 𝑁 = |V| nodes; $attened list of
edge stems

𝑓 = {𝑔 | 𝑔 ↑ [:, 0]} ⇐ {𝑖 | 𝑖 ↑ [:, 1]},

where ↑ R | E |↓2, and 𝑌-nearest neighbor graph Gknn on𝑅 .
2: Initialize an empty graph 𝑀 ⇔ with 𝑁 nodes.
3: while len(𝑓) > 0 do
4: Sample a source node 𝑔 uniformly at random from 𝑓 and

remove it: 𝑔 ↖ pop(𝑓).
5: Sample a target node 𝑖 from

𝑖 ↗ 𝑓 ↙

(
𝑃⋃

𝑄=1
N𝑊

(
N

knn
𝑄 (𝑔)

))
,

where N𝑊 (𝑆) denotes the set of neighbors of node 𝑆 in 𝑀 ,
and N

knn
𝑄 (𝑔) denotes the𝑍-th nearest neighbor of node 𝑔

in Gknn.
6: Remove the selected node 𝑖 from 𝑓.
7: Add an undirected edge between 𝑔 and 𝑖 in 𝑀 ⇔.
8: end while
9: Output: Resampled edge structure {𝑃new

𝑁 𝑂 }
𝐿
𝑁, 𝑂=1.

3.2 The Noisy Setting
The resampling procedure highlighted in the previous paragraph
requires oracle knowledge of the 𝑌-NN graph on the latent 𝑅 . In
practice, the graph G𝑃𝐿𝐿 has to be estimated from the data. To this
end, we suggest two strategies:

Solution 1: Constructing 2 kNN graphs based on features and topol-
ogy, respectively. The theorems established earlier ensure the con-
sistency of our resampling procedure, provided that the kNN graph
is constructed independently of the data. Therefore, one approach
is to build a kNN graph based on a notion of graph distance (e.g.,
shortest-path, shared -neighbors, or Jaccard similarity, depending
on what metric is adapted for the graph), which can then be used
for resampling the node features, while using a kNN graph based
on feature similarity for resampling the edges. This approach is
expected to perform well as long as the graph distance chosen is
re$ective of the underlying distance (e.g. shortest-path distance for
homophilic graphs, or shared neighbors for more general classes of

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

graphs), and the features are su"ciently informative.

Solution 2: Using solely the kNN Graph from the adjacency matrix.
In practice, while solution 1 may work well for feature-based re-
sampling, the kNN induced by the features (and used to resample
edges) might not be as reliable as the one induced by the edges
(see Table 5 in the Appendix). This is because, in high-dimensional
feature spaces, kNN su!ers from the curse of dimensionality, mak-
ing it di"cult to ensure the consistency of the kNN graph. As an
alternative, one can de#ne the kNN graph solely based on the graph
structure for all components of the algorithm. While this approach
does not guarantee theoretical consistency in estimating the rel-
evant quantities, it exhibits promising empirical performance, as
shown in the experiments.

3.3 Validation of Bootstrap Samples
To evaluate the quality of bootstrapped samples, we propose boot-
strapping di!erent graphs (synthetic and real), and to compare key
graph statistics—including node and edge counts, average degree,
and degree distribution—, against those of the original graph.

Table 1 summarizes these comparisons for a synthetic graphon
function and three well-established graph benchmarks. Additional
results for more datasets and graphon settings, including the ef-
fect of the choice of 𝑌 , are provided in Appendix F.2. While not
exhaustive, these comparisons help assess whether the structural
properties of the original graph are preserved in the bootstrapped
samples. In particular, we note that our approach typically pro-
duces graphs with a closer average degree and edge count than
other methods (see for instance Table 6 and Figure 8 in the Ap-
pendix). When the underlying graph is a graphon, our model is in
fact very good at reproducing graphs with the similar statistics (see
Table 7, 8, 9, 10). On real datasets, our method seems to produce
reasonable copies of the same graph as well, as re$ected by similar
average degrees and number of connected components (Table 11
and 12). However, the graphon assumption upon which our method
relies seems to hit a limit in the ability of the method to reproduce
a graph with as many triangles (see results Cora in Table 1).

4 EVALUATION METRICS
If the generation of independent copies of the same graph poses a
signi#cant challenge, determining an appropriate evaluation metric
in the absence of known labels poses another. While contrastive
learning is based on the idea of turning unsupervised learning into a
supervised problem by learning to recognize positive pairs, we note
that we cannot use this objective as our hyperparameter tuning
criterion. First, the loss function is designed to optimize the model’s
internal objective, which may not necessarily re$ect meaningful
patterns or structures in the data. For example, minimizing the
loss in contrastive learning could lead to trivial solutions [Hua
et al. 2021; Tsitsulin et al. 2023] that satisfy the objective but fail
to capture important relationships in the graph, or the model may
over#t to spurious correlations in the data, such as background
features in images or noise in graphs [Chen et al. 2020]. Second, the
scale of the loss function can vary with di!erent hyperparameters
(particularly for those who directly impact the loss function, as for
the composite loss used in Zhang et al. [2021]), complicating direct

comparisons even within the same model architecture. To ensure
robust evaluation, it is essential to employ a separate, universal
metric that directly evaluates the learned embeddings to assess
model performance.

However, due to the nonconvexity of the method, we do not
expect the learned embeddings to be close, even when #tted by the
same algorithm on the same dataset. Scale and location can in fact
vary greatly from one run to the next. To remedy these issues, we
propose here using a procedure based on Canonical Correlation
Analysis (CCA) [Hotelling 1936]. Canonical correlation analysis
is a classical method for #nding the correspondence between two
datasets on the same samples by #nding linear transformations of
𝑂 and 𝑗 that maximizes their correlation. The CCA objective can
be written as a prediction problem:

𝑅 ,𝑘 ↑ argmin
𝑋 ↑R𝑂1↓𝑃 ,𝑌 ↑R𝑂2↓𝑃

⇓𝑂𝑅 ⇒ 𝑗𝑘 ⇓
2
𝑍

subject to 𝑅𝑎 ω𝑏𝑅 = 𝑙𝑐 , 𝑘𝑎 ω𝑑𝑘 = 𝑙𝑐 .
(2)

where ω𝑏 and ω𝑑 denote the covariance matrices of 𝑂 and 𝑗 re-
spectively.

Remark 4.1. We emphasize that the normalization 𝑅𝑎 ω𝑏𝑅 =
𝑘𝑎 ω𝑑𝑘 = 𝑙𝑐 is here indispensable to ensure that the learned map-
pings between representations remain independent of the varying
scales introduced by di!erent GNN representations.

Remark 4.2. We argue that the linear nature of mappings learned
by CCA is not overly restrictive. While deep variants of CCA could
be employed, self-supervised embeddings are often used with sim-
ple linear models (e.g. the outputs are processed with a simple
linear classi#er to produce labels). Thus, restricting our objective
to consider linear mappings seems reasonable.

4.1 CCA for Aligning Representations
Aswe seek to evaluate unsupervised representations, in this section,
we assume that we have generated 3𝑁𝑒 independent versions of
the dataset with the procedure described in Section 3. For each
𝑆 ↑ [2𝑁𝑒], we learn an unsupervised representation of the nodes:
𝑚𝑁 = 𝑀𝑏𝑏𝑁 (𝑀𝑁 , 𝑛), where 𝑛 indicates the tunable hyperparameters.
We propose evaluating the quality of the learned representation by
comparing the alignment of the embeddings learned by di!erent
models on replicas of the same dataset as per (2).

The solution to the CCA problem (2) has a closed-form expres-
sion. Let 𝑅0,𝑘0 be the left and right singular vectors of the cross-
covariance matrix:

corr(𝑚𝑁 ,𝑚 𝑂) = ω̂⇒1/2𝑓𝑄
ω̂𝑓𝑄𝑓 𝑅 ω̂

⇒1/2
𝑓 𝑅

= 𝑅0ε0𝑘
≃
0 ,

where ω̂𝑓𝑄 is the empirical covariance of embeddings from dataset
𝑆 , and ω̂𝑓𝑄𝑓 𝑅 is the empirical cross-covariance of embeddings from
datasets 𝑆 and 𝑇 . The solutions to (2) are

𝑅 (𝑆, 𝑇) = ω̂⇒1/2𝑓𝑄
𝑅0, 𝑘 (𝑆, 𝑇) = ω̂⇒1/2𝑓 𝑅

𝑘0 . (3)

and we can compute the alignment between versions of the dataset
as:

alignment = ⇓𝑚𝑁𝑅 (𝑆, 𝑇) ⇒ 𝑚 𝑂𝑘 (𝑆, 𝑇)⇓𝑍 ,

where the alignment is evaluated and aggregated over the boot-
strapped samples 𝑆, 𝑇 ↑ [𝑁𝑒], 𝑆 ω 𝑇 .

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

Statistic Graphon (n = 500) Cora Citeseer Twitch

True Ours True Ours True Ours True Ours

|V| 500 500±0 2708 2708±0 3327 3327±0 1912 1912±0
|E | 769 757.9±2.5 5278 5171.78±7.34 4552 4127.78±10.93 31299 31082.05±22.83
Avg. Degree 3.08 3.03±0.01 3.90 3.82±0.01 2.74 2.48±0.01 32.74 32.51±0.02
Density 0.01 0.01±0 0.00 0.00±0 0.00 0.00±0 0.02 0.02±0
Clustering Coe"cient 0.01 0.01±0 0.24 0.05±0 0.14 0.03±0 0.32 0.17±0
Connected Components 29.00 31±2 78 67.91±6.70 438 635.09±11.87 1.00 1.14±0.39
Giant Component Size 471.00 467±3 2485 2620.80±10.80 2120 2418.12±35.69 1912 1911.72±0.77
Assortativity -0.04 -0.08±0.03 -0.07 -0.07±0 0.05 -0.08±0 -0.23 -0.29±0
PageRank Sum 249.5 249.5±0 1353.50 1353±0 1663 1663±0 955.50 955.5±0
Transitivity 0.01 0.01±0 0.09 0.03±0 0.13 0.04±0 0.13 0.08±0
Number of Triangles 7 5±2.3 1630 471±27 1167 304.6±19.59 173510 105534.51±1904.54
Table 1: Graph statistics for synthetic graphon data, citation networks (Cora, Citeseer), and a social network (Twitch) [Huang
et al. 2023]. We generated 500 bootstrap samples and report the mean and standard deviation. The size of the neighborhood
(𝑌) used for sample generation is !xed at 20. Results for additional datasets and di"erent graphon settings are included in
Appendix F.2.

4.2 Validation of the Evaluation Metric
Weevaluate the validity of ourmetric (2) on three biological datasets:
the spleen dataset [Goltsev et al. 2018], the MIBI-TOF breast cancer
dataset [Keren et al. 2018], and the colorectal cancer (CRC) dataset
[Schürch et al. 2020]. Each dataset comprises multiple graphs, al-
lowing us to assess the validity of our proposed metric (2) inde-
pendently of the graph bootstrapping procedure. For instance, the
spleen dataset includes samples from 3 mice, while the CRC dataset
contains data from 31 patients. Table 2 presents both the evalua-
tion of our metric along with the downstream task performance.
In addition, visualizations provided in Appendix Figure 7 further
support the utility of our metric in guiding the hyperparameter
selection (e.g., 𝐿), e!ectively recovering biologically meaningful
cell microenvironments. Detailed descriptions of the datasets and
downstream tasks are provided in Appendix F.1.1.

4.3 Proposed Hyperparameter Tuning
Framework

We now describe the full procedure, which we call LOBSTUR (Local
Bootstrap forTuningUnsupervisedRepresentations in GNNs). The
previous two sections have described the two core components of
our procedure. We now detail an additional step to safeguard our
pipeline against degeneracies.

Adjustment for Dimensional Collapse. Our proposed alignment
metric is grounded in a straightforward statistical method, Canoni-
cal Correlation Analysis (CCA). The strength of this method lies in
its assessment of correlations between representations. However,
because it accounts for di!erent variances, this method may strug-
gle to accurately re$ect the quality of embeddings in the presence
of dimensional collapse [Hua et al. 2021]. Dimensional collapse,
a phenomenon common in self-supervised representation learn-
ing, occurs when the learned representations are con#ned to a
low-dimensional manifold. For example, when training a model
with an embedding dimension of 𝑎 = 2, dimensional collapse may

result in embeddings that lie along a single line (reduced to a one-
dimensional representation) or form a blob. In such cases, although
the embeddings lack informative structure, their alignment across
di!erent samples may still be high, leading to an over-in$ated
metric.

The StableRankmetric [Tsitsulin et al. 2023] is de#ned as
∑
𝑁 𝑜

2
𝑁 /𝑜

2
1 ,

where 𝑜𝑁 are the singular values of the embeddings 𝑚 ↑ R𝐿↓𝑀 in
descending order, and assesses the numerical rank of the embed-
ding space. We will use this metric to #lter out embeddings that
are clearly suboptimal [Jing et al. 2022] before applying our CCA-
based metric to tune hyperparameters. An alternative choice for
the threshold metric could be RankMe proposed by Garrido et al.
[2023].

Our full procedure is highlighted in Algorithm 3.

5 EXPERIMENTS
Benchmark Datasets.We demonstrate the validity of our entire
framework on GNN benchmark datasets such as Cora, Citeseer,
and Pubmed. We show that hyperparameter and model selection
using our suggested framework results in robust, high downstream
task performance on benchmark datasets, thereby indicating em-
beddings of good quality. More speci#cally, we consider the task
of learning unsupervised GNN embeddings using four di!erent
methods (CCA-SSG, BGRL, DGI, and GRACE, see Appendix B),
and choosing the correct set of hyperparameters in each method.
Note that we do not look at the classi!cation accuracy ahead of time
and use them for choosing the model and hyperparameters. Instead,
we only report them after choosing the model to validate the ap-
proach, re$ecting a more practical scenario to apply unsupervised
GNNs on real datasets. In Table 3, we report the downstream task
performance (classi#cation or regression) of the model chosen by
our framework (Algorithm 3) and metrics proposed in Tsitsulin
et al. [2023]. Our method shows a robust performance and achieves

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

Spleen TNBC CRC

𝐿 ACC Mean SD AUC Mean SD AUC Mean SD

0.000001 0.4114 56,955 23,032 0.7566 4,765 3,617 0.8039 26,385 3,812
0.00001 0.4135 58,398 30,425 0.7487 5,217 4,284 0.8039 26,699 3,746
0.0001 0.4146 40,017 12,422 0.7249 4,734 3,348 0.8170 25,972 5,934
0.001 0.4128 21,741 5,732 0.7513 3,781 1,782 0.7974 8,844 1,893
0.01 0.3691 42,336 1,970 0.7328 3,425 1,566 0.8431 6,425 1,319
0.1 0.3986 50,351 2,550 0.8757 3,149 1,111 0.9412 5,940 1,538
1 0.3914 55,264 2,788 0.8307 3,516 1,309 0.9346 5,543 889
10 0.3184 61,804 2,339 0.8704 3,689 1,443 0.8627 5,951 1,301

Table 2: For each dataset, the !rst column reports the downstream task performance, while the second and third columns
present the mean and standard deviation of the evaluation metric de!ned in Equation 2. We adopt the architecture from Zhang
et al. [2021] and !x all hyperparameters except for 𝐿 in the CCA-SSG loss (Equation 8). Using Algorithm 3, the minimum
average distances are achieved at 𝐿MS = 0.001 for the mouse spleen dataset [Goltsev et al. 2018], 𝐿TNBC = 0.1 for Triple Negative
Breast Cancer (TNBC) [Keren et al. 2018], and 𝐿CRC = 1.0 for colorectal cancer (CRC) [Schürch et al. 2020]. Notably, strong
downstream performance coincides with improved embedding alignment, as indicated by lower average distances reported in
the second column for each dataset.

Dataset Default Ours 𝑑-ReQ pseudo-𝑝 RankME NESum SelfCluster Stable Rank Coherence

Classi!cation tasks

Cora 0.36 0.65 0.66 0.54 0.63 0.63 0.69 0.59 0.47
PubMed 0.62 0.81 0.75 0.75 0.75 0.75 0.82 0.75 0.76
Citeseer 0.32 0.51 0.51 0.51 0.51 0.51 0.48 0.51 0.22
CS 0.47 0.79 0.86 0.72 0.86 0.86 0.86 0.86 0.76
Photo 0.29 0.73 0.79 0.79 0.79 0.79 0.57 0.81 0.69
Computers 0.37 0.57 0.45 0.57 0.45 0.39 0.39 0.57 0.65

Regression tasks

Chicago 0.39 0.34 0.35 0.35 0.35 0.35 0.35 0.29 0.40
Anaheim 0.13 0.23 0.12 0.18 0.18 0.12 0.23 0.18 0.12
Twitch 0.47 0.52 0.15 0.15 0.15 0.15 0.46 0.15 0.48
Education 0.23 0.26 0.33 0.33 0.33 0.33 0.33 0.33 0.26

Avg clf 0.41 0.68 0.67 0.65 0.66 0.65 0.63 0.68 0.59
Avg reg 0.30 0.34 0.24 0.25 0.25 0.24 0.34 0.24 0.32
Table 3: Downstream task (classi!cation or regression) performance of the best model and hyperparameters chosen by each
criterion. The best value is bolded and the second best is underlined. We compare to the BGRL [Thakoor et al. 2021] with
default hyperparameters (fmr = 0.5, edr = 0.25, 𝐿 = 10⇒2) in the left-most column.

either the best or the second best performance compared to the ex-
isting metrics for 7 out of 10 datasets, and achieving the best overall
accuracy. A similar table reporting the performance by di!erent
GNN architectures [Thakoor et al. 2021; Zhang et al. 2021; Zhu et al.
2020] is presented in Table 13, 14, 15 in the Appendix.
Choice of the Threshold. We turn to the problem of selecting
a stable-rank threshold. We suggest using the reasonable lower
bound for the latent (e!ective) dimension as su"cient. For Tables 3
and 16, we set the threshold to 𝑞 = 2. This choice ensures that the

embeddings retain a minimum e!ective dimensionality, prevent-
ing collapse to a single line. Consequently, our alignment metric
accurately measures meaningful signal alignment rather than triv-
ial, collapsed patterns. It is important to highlight the trade-o!
associated with this threshold: setting a higher threshold enhances
robustness but may inadvertently exclude bene#cial models, while
a lower threshold allows greater model diversity but risks increased
variability and potential collapse of representations.

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

Algorithm 3 Hyperparameter Tuning Procedure
1: Input: An input graph𝑀 and a set of hyperparameters ϑ from

which to choose an optimal value.
2: Create 3𝑁𝑒 bootstrap samples of the graph, denoted as {𝑀𝑁 }

3𝐿𝑆
𝑁=1

(Algorithm 1 , 2).
3: for each value 𝑛 ↑ ϑ do
4: for 𝑆 = 1, . . . , 2𝑁𝑒 do
5: Train an unsupervised GNN, 𝑋𝑁 (·, 𝑛) on 𝑀𝑁 .
6: end for
7: for each pair of models 𝑋𝑁 (·, 𝑛) and 𝑋𝑁+𝐿𝑆 (·, 𝑛) with 𝑆 ↑

{1, · · · ,𝑁𝑒 } do
8: Compute the distance between embeddings from models

𝑋𝑁 and 𝑋𝑁+𝐿𝑆 on the test graph 𝑀𝑁+2𝐿𝑆 :

𝑟𝑁 (𝑛) = 𝑠
(
𝑋𝑁 (𝑀𝑁+2𝐿𝑆 , 𝑛), 𝑋𝑁+𝐿𝑆 (𝑀𝑁+2𝐿𝑆 , 𝑛)

)
,

where 𝑠 (·) is some metric, like the one we proposed in
Section 4.

9: end for
10: end for
11: Choose the optimal hyperparameters: 𝑛 =

argmin
𝑔 ↑ϑ,StableRank∝𝑅

𝑟 (𝑛), where 𝑟 (𝑛) is the average dis-

tance across 𝑆 ↑ [𝑁𝑒], and 𝑞 is the StableRank threshold.

6 CONCLUSION
Hyperparameter tuning for unsupervised GNNs presents two pri-
mary challenges – the complexity of generating multiple samples
out of one observed graph and the di"culty in evaluating model
performance without labeled data. In this paper, we propose a novel
method for performing bootstrapping speci#cally tailored for unsu-
pervised GNNs, facilitating both hyperparameter tuning and model
selection. Although our validation is primarily empirical, we believe
that this study highlights a more systematic approach for tuning
graph neural networks and machine learning models in general,
encouraging further exploration in this direction. Notably, our ap-
proach is applicable to graphs of moderate size (a few thousand
nodes), but may not scale directly to larger graphs. A potential
solution is to partition the graph and bootstrap within blocks. We
present preliminary results in the appendix (see Appendix C.4, D)
suggesting the promise of this approach, though adapting the pro-
cedure for large-scale graphs remains an open question for future
research.

ACKNOWLEDGMENTS
This work was completed in part with resources provided by the
University of Chicago Research Computing Center, and was sup-
ported in part through the computational resources and sta! con-
tributions provided for the Mercury high performance computing
cluster at The University of Chicago Booth School of Business
which is supported by the O"ce of the Dean.

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

REFERENCES
Stephen Bates, Trevor Hastie, and Robert Tibshirani. 2024. Cross-Validation: What

Does It Estimate and HowWell Does It Do It? J. Amer. Statist. Assoc. 119, 546 (2024),
1434–1445. https://doi.org/10.1080/01621459.2023.2197686

Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral techniques
for embedding and clustering. Advances in neural information processing systems
14 (2001).

Christopher M Bishop. 1998. Latent variable models. In Learning in graphical models.
Springer, 371–403.

Sergio Castillo-Páez, Rubén Fernández-Casal, and Pilar García-Soidán. 2019. A non-
parametric bootstrap method for spatial data. Computational Statistics & Data
Analysis 137 (2019), 1–15. https://doi.org/10.1016/j.csda.2019.01.017

Kehui Chen and Jing Lei. 2018. Network Cross-Validation for Determin-
ing the Number of Communities in Network Data. J. Amer. Statist. As-
soc. 113, 521 (2018), 241–251. https://doi.org/10.1080/01621459.2016.1246365
arXiv:https://doi.org/10.1080/01621459.2016.1246365

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geo!rey Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations.
arXiv:2002.05709 [cs.LG] https://arxiv.org/abs/2002.05709

Andrew Davison and Morgane Austern. 2023. Asymptotics of network embeddings
learned via subsampling. Journal of Machine Learning Research 24, 138 (2023),
1–120.

Kangning Dong and Shihua Zhang. 2022. Deciphering spatial domains from spatially
resolved transcriptomics with an adaptive graph attention auto-encoder. Nature
communications 13, 1 (2022), 1739.

B. Efron. 1979. Bootstrap Methods: Another Look at the Jackknife. The Annals of
Statistics 7, 1 (1979), 1 – 26. https://doi.org/10.1214/aos/1176344552

Bradley Efron. 2012. Bayesian inference and the parametric bootstrap. The annals of
applied statistics 6, 4 (2012), 1971.

Wei Fu and Patrick O. Perry. 2017. Estimating the number of clusters using cross-
validation. arXiv:1702.02658 [stat.ME]

Chao Gao, Yu Lu, and Harrison H Zhou. 2015. Rate-optimal graphon estimation.
(2015).

Quentin Garrido, Randall Balestriero, Laurent Najman, and Yann Lecun. 2023. RankMe:
Assessing the downstream performance of pretrained self-supervised representa-
tions by their rank. arXiv:2210.02885 [cs.LG] https://arxiv.org/abs/2210.02885

Solenne Gaucher and Olga Klopp. 2021. Maximum likelihood estimation of sparse
networks with missing observations. Journal of Statistical Planning and Inference
215 (2021), 299–329.

Yury Goltsev, Nikolay Samusik, Julia Kennedy-Darling, Salil Bhate, Matthew Hale,
Gustavo Vazquez, Sarah Black, and Garry P Nolan. 2018. Deep pro#ling of mouse
splenic architecture with CODEX multiplexed imaging. Cell 174, 4 (2018), 968–981.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of Statistical
Learning. Springer New York Inc., New York, NY, USA.

Peter D. Ho!. 2007. Modeling homophily and stochastic equivalence in symmetric
relational data. arXiv:0711.1146 [stat.ME]

Peter D Ho!, Adrian E Raftery, and Mark S Handcock. 2002. Latent space approaches
to social network analysis. Journal of the american Statistical association 97, 460
(2002), 1090–1098.

Joel L Horowitz. 2019. Bootstrap methods in econometrics. Annual Review of Economics
11, 1 (2019), 193–224.

Harold Hotelling. 1936. Relations between two sets of variates. In Biometrika.
Biometrika, 28(3/4), 321–337.

Jian Hu, Xiangjie Li, Kyle Coleman, Amelia Schroeder, Nan Ma, David J Irwin, Ed-
ward B Lee, Russell T Shinohara, and Mingyao Li. 2021. SpaGCN: Integrating gene
expression, spatial location and histology to identify spatial domains and spatially
variable genes by graph convolutional network. Nature methods 18, 11 (2021),
1342–1351.

Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao.
2021. On feature decorrelation in self-supervised learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision. 9598–9608.

Kexin Huang, Ying Jin, Emmanuel Candes, and Jure Leskovec. 2023. Uncertainty
quanti#cation over graph with conformalized graph neural networks. NeurIPS
(2023).

L. Hubert and P. Arabie. 1985. Comparing partitions. Journal of classi!cation 2,
1 (1985), 193–218. http://scholar.google.de/scholar.bib?q=info:IkrWWF2JxwoJ:
scholar.google.com/&output=citation&hl=de&ct=citation&cd=0

Satoki Ishiai, Ikki Yasuda, Katsuhiro Endo, and Kenji Yasuoka. 2024. Graph-Neural-
Network-Based Unsupervised Learning of the Temporal Similarity of Structural
Features Observed in Molecular Dynamics Simulations. Journal of Chemical Theory
and Computation (2024).

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. 2022. Understanding Dimen-
sional Collapse in Contrastive Self-supervised Learning. arXiv:2110.09348 [cs.CV]
https://arxiv.org/abs/2110.09348

Leeat Keren, Marc Bosse, Diana Marquez, Roshan Angoshtari, Samir Jain, Sushama
Varma, Soo-Ryum Yang, Allison Kurian, David Van Valen, Robert West, et al. 2018.
A structured tumor-immune microenvironment in triple negative breast cancer

revealed by multiplexed ion beam imaging. Cell 174, 6 (2018), 1373–1387.
Thomas N Kipf and MaxWelling. 2016. Variational graph auto-encoders. arXiv preprint

arXiv:1611.07308 (2016).
Andre Lamurias, Alessandro Tibo, Katja Hose, Mads Albertsen, and Thomas Dyhre

Nielsen. 2022. Graph Neural Networks for Microbial Genome Recovery. arXiv
preprint arXiv:2204.12270 (2022).

Vuong Le, Thomas P Quinn, Truyen Tran, and Svetha Venkatesh. 2020. Deep in the
bowel: highly interpretable neural encoder-decoder networks predict gut metabo-
lites from gut microbiome. BMC genomics 21, 4 (2020), 1–15.

James Leiner and Aaditya Ramdas. 2024. Graph #ssion and cross-validation.
arXiv:2401.15063 [stat.ME]

Keith Levin and Elizaveta Levina. 2021. Bootstrapping Networks with Latent Space
Structure. arXiv:1907.10821 [math.ST]

Junyi Li, Wei Jiang, Henry Han, Jing Liu, Bo Liu, and Yadong Wang. 2021. ScGSLC: an
unsupervised graph similarity learning framework for single-cell RNA-seq data
clustering. Computational Biology and Chemistry 90 (2021), 107415.

Tianxi Li, Elizaveta Levina, and Ji Zhu. 2020. Network cross-validation by edge
sampling. arXiv:1612.04717 [stat.ME]

Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform manifold ap-
proximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426
(2018).

Anna Neufeld, Ameer Dharamshi, Lucy L. Gao, and Daniela Witten. 2023. Data
thinning for convolution-closed distributions. arXiv:2301.07276 [stat.ME]

Gabriele Partel and Carolina Wählby. 2021. Spage2vec: Unsupervised representation
of localized spatial gene expression signatures. The FEBS Journal 288, 6 (2021),
1859–1870.

Patrick O. Perry. 2009. Cross-Validation for Unsupervised Learning.
arXiv:0909.3052 [stat.ME]

Dimitris N. Politis and Joseph P. Romano. 1994. The Stationary Bootstrap. J. Amer.
Statist. Assoc. 89, 428 (1994), 1303–1313. http://www.jstor.org/stable/2290993

Olivier Roy and Martin Vetterli. 2007. The e!ective rank: A measure of e!ective
dimensionality. In 2007 15th European signal processing conference. IEEE, 606–610.

Donald B Rubin. 1981. The bayesian bootstrap. The annals of statistics (1981), 130–134.
Christian M Schürch, Salil S Bhate, Graham L Barlow, Darci J Phillips, Luca Noti,

Inti Zlobec, Pauline Chu, Sarah Black, Janos Demeter, David R McIlwain, et al.
2020. Coordinated cellular neighborhoods orchestrate antitumoral immunity at
the colorectal cancer invasive front. Cell 182, 5 (2020), 1341–1359.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz,
Nina M Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-
Ackermann, et al. 2020. A deep learning approach to antibiotic discovery. Cell 180,
4 (2020), 688–702.

Yi Su, Raymond KW Wong, and Thomas CM Lee. 2020. Network estimation via
graphon with node features. IEEE Transactions on Network Science and Engineering
7, 3 (2020), 2078–2089.

Shantanu Thakoor et al. 2021. Large-Scale Representation Learning on Graphs via
Bootstrapping. arXiv preprint arXiv:2102.06514 (2021).

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou,
Eva L. Dyer, Rémi Munos, Petar Veli%kovi&, and Michal Valko. 2023. Large-Scale
Representation Learning on Graphs via Bootstrapping. arXiv:2102.06514 [cs.LG]

Robert Tibshirani and Guenther Walther. 2005. Cluster Validation by
Prediction Strength. Journal of Computational and Graphical Statis-
tics 14, 3 (2005), 511–528. https://doi.org/10.1198/106186005X59243
arXiv:https://doi.org/10.1198/106186005X59243

Anton Tsitsulin, Marina Munkhoeva, and Bryan Perozzi. 2023. Unsupervised embed-
ding quality evaluation. In Topological, Algebraic and Geometric Learning Workshops
2023. PMLR, 169–188.

Laurens van der Maaten and Geo!rey Hinton. 2008. Visualizing Data using t-SNE.
Journal of Machine Learning Research 9, 86 (2008), 2579–2605. http://jmlr.org/
papers/v9/vandermaaten08a.html

Zhenqin Wu, Alexandro E Trevino, Eric Wu, Kyle Swanson, Honesty J Kim, H Blaize
D’Angio, Ryan Preska, Gregory W Charville, Piero D Dalerba, Ann Marie Eglo!,
et al. 2022. SPACE-GM: geometric deep learning of disease-associated microenvi-
ronments from multiplex spatial protein pro#les. bioRxiv (2022), 2022–05.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, ZhangyangWang, and Yang Shen.
2021. Graph Contrastive Learning with Augmentations. arXiv:2010.13902 [cs.LG]
https://arxiv.org/abs/2010.13902

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S. Yu. 2021. From
Canonical Correlation Analysis to Self-supervised Graph Neural Networks.
arXiv:2106.12484 [cs.LG]

Ruochi Zhang, Jianzhu Ma, and Jian Ma. 2020. DANGO: Predicting higher-order
genetic interactions. bioRxiv (2020), 2020–11.

Qian Zhu, Sheel Shah, RubenDries, Long Cai, andGuo-Cheng Yuan. 2018. Identi#cation
of spatially associated subpopulations by combining scRNAseq and sequential
$uorescence in situ hybridization data. Nature biotechnology 36, 12 (2018), 1183–
1190.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020. Deep
graph contrastive representation learning. arXiv preprint arXiv:2006.04131 (2020).

https://doi.org/10.1080/01621459.2023.2197686
https://doi.org/10.1016/j.csda.2019.01.017
https://doi.org/10.1080/01621459.2016.1246365
https://arxiv.org/abs/https://doi.org/10.1080/01621459.2016.1246365
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://doi.org/10.1214/aos/1176344552
https://arxiv.org/abs/1702.02658
https://arxiv.org/abs/2210.02885
https://arxiv.org/abs/2210.02885
https://arxiv.org/abs/0711.1146
http://scholar.google.de/scholar.bib?q=info:IkrWWF2JxwoJ:scholar.google.com/&output=citation&hl=de&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:IkrWWF2JxwoJ:scholar.google.com/&output=citation&hl=de&ct=citation&cd=0
https://arxiv.org/abs/2110.09348
https://arxiv.org/abs/2110.09348
https://arxiv.org/abs/2401.15063
https://arxiv.org/abs/1907.10821
https://arxiv.org/abs/1612.04717
https://arxiv.org/abs/2301.07276
https://arxiv.org/abs/0909.3052
http://www.jstor.org/stable/2290993
https://arxiv.org/abs/2102.06514
https://doi.org/10.1198/106186005X59243
https://arxiv.org/abs/https://doi.org/10.1198/106186005X59243
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/2010.13902
https://arxiv.org/abs/2010.13902
https://arxiv.org/abs/2106.12484

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

A ADDITIONAL DEFINITIONS AND PROOFS
A.1 De!nitions
Throughout this manuscript, we assume the same conventions as in the general literature on graphon estimation (see, for instance, Gao et al.
[2015]; Gaucher and Klopp [2021]).

In particular, for a function 𝑋 : [0, 1] ↓ [0, 1] → [0, 1], the derivative operator is de#ned by

′𝑂𝑃 𝑋 (𝑡,𝑢) =
𝑣 𝑂+𝑃

(𝑣𝑡) 𝑂 (𝑣𝑢)𝑃
𝑋 (𝑡,𝑢),

and we adopt the convention ′00 𝑋 (𝑡,𝑢) = 𝑋 (𝑡,𝑢).

De!nition A.1 (Hölder class for Graphon functions (from Gao et al. [2015])). The Hölder norm is de#ned as

⇓ 𝑋 ⇓H𝑇
= max

𝑂+𝑃⇑∞𝑈 ∈
sup

,𝑖↑D

""′𝑂𝑃 𝑋 (𝑡,𝑢)
""

+ max
𝑂+𝑃=∞𝑈 ∈

sup
(,𝑖)ω(⇔,𝑖⇔)↑D

""′𝑂𝑃 𝑋 (𝑡,𝑢) ⇒ ′𝑂𝑃 𝑋 (𝑡
⇔,𝑢⇔)

""
(|𝑡 ⇒ 𝑡 ⇔ | + |𝑢 ⇒ 𝑢⇔ |)𝑈⇒∞𝑈 ∈

.

The Hölder class is de#ned by
H𝑈 (𝑤) =

{
⇓ 𝑋 ⇓H𝑇

⇑ 𝑤 : 𝑋 (𝑡,𝑢) = 𝑋 (𝑢, 𝑡) for 𝑡 ∝ 𝑢
}
,

where 𝑑 > 0 is the smoothness parameter and𝑤 > 0 is the size of the class, which is assumed to be a constant.

De!nition A.2 (Distance Measures). For nodes 𝑆, 𝑇 ↑ [𝑁]:

𝑟𝑗 (𝑆, 𝑇) = |𝑅𝑁 ⇒𝑅 𝑂 | (Latent distance)
𝑟𝑍 (𝑆, 𝑇) = ⇓𝑂𝑁 ⇒ 𝑂 𝑂 ⇓2 (Feature distance)
𝑟𝑘 (𝑆, 𝑇) = length of shortest path from 𝑆 to 𝑇 (Graph distance)

Note that in the actual implementation, other graph distances are available as an option, but for the analysis purpose, we assume 𝑥𝑘 (·, ·)
is a shortest-path distance.

De!nition A.3 (k-NN Neighborhoods). For node 𝑆:

N
𝑋
𝑃 (𝑆) = { 𝑇 : 𝑅 𝑂 is among k-nearest neighbors of𝑅𝑁 }

N
𝑏
𝑃 (𝑆) = { 𝑇 : 𝑂 𝑂 is among k-nearest neighbors of 𝑂𝑁 }

N
𝑘
𝑃 (𝑆) = { 𝑇 : node 𝑇 is among k-nearest neighbors of node 𝑆}

where 𝑂𝑁 = 𝑈(𝑅𝑁) + 𝑉𝑁 , and 𝑅𝑁 ↗ Unif[0, 1]. The neighborhood is determined by corresponding distance. For example, the neighborhood in
the latent space is determined by latent distance.

A.2 Proof of Theorem 3.2
P!""#. Letting N𝑃 (𝑆) denote the 𝑌𝑅𝑆 closest neighbor of node 𝑆 according to the oracle graph G𝑃𝐿𝐿 .
For any pair of nodes (𝑆, 𝑇), as we are resampling, we are e!ectively replacing the underlying connection probability P[𝑃𝑁 𝑂 = 1|𝑅𝑁 ,𝑅 𝑂] by:

𝑎𝑁 𝑂 =
1
𝑦

𝑙∑
𝑃=1

𝑃N𝑀 (𝑁), 𝑂

We decompose the risk of this estimator as:

E
[(
P[𝑃𝑁 𝑂 = 1|𝑅𝑁 ,𝑅 𝑂] ⇒ 𝑎𝑁 𝑂

)2] = Bias2 + Variance

where
Bias = P[𝑃𝑁 𝑂 = 1|𝑅𝑁 ,𝑅 𝑂] ⇒ E[𝑎𝑁 𝑂]

=
1
𝑌

𝑃∑
𝑄=1

(
P[𝑃𝑁 𝑂 = 1|𝑅𝑁 ,𝑅 𝑂] ⇒ P[𝑗N𝐿 (𝑁), 𝑂 = 1|𝑅N𝐿 (𝑁) ,𝑅 𝑂]

)

Variance = E

(
1
𝑌

𝑃∑
𝑄=1

(P[𝑗N𝐿 (𝑁), 𝑂 = 1|𝑅N𝐿 (𝑁) ,𝑅 𝑂] ⇒𝑃N𝐿 (𝑁), 𝑂)

)2

(4)

By assumption, since𝑄 is assumed to be 𝑑-Hölder, as emphasized in Gao et al. [2015], when 𝑑 ↑ (0, 1], a function 𝑋 ↑ H𝑈 (𝑤) satis#es the
Lipschitz condition

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

""𝑋 (𝑡,𝑢) ⇒ 𝑋
(
𝑡 ⇔,𝑢⇔

) "" ⇑ 𝑤
(""𝑡 ⇒ 𝑡 ⇔

"" + ""𝑢 ⇒ 𝑢⇔
"")𝑈 , (5)

Therefore, we have:

|Bias| =

"""""P[𝑃𝑁 𝑂 = 1|𝑅𝑁 ,𝑅 𝑂] ⇒
1
𝑌

𝑃∑
𝑄=1

P[𝑗N𝐿 (𝑁), 𝑂 = 1|𝑅N𝐿 (𝑁) ,𝑅 𝑂]

"""""
⇑

1
𝑌

𝑃∑
𝑄=1

𝑤 |𝑅𝑁 ⇒𝑅N𝐿 (𝑁) |
𝑈 .

(6)

The quantity |𝑅𝑁 ⇒ 𝑅𝑄 |
𝑈 (with 𝑍 a 𝑌-nearest neighbor of 𝑆) is a monotonously decreasing function of 𝑁, and with high probability

(over the distribution of 𝑅1, · · · ,𝑅𝐿), we have |𝑅𝑁 ⇒ 𝑅𝑄 |2 ⇑ 𝑒0
𝑃
𝐿 , for all𝑍 ↑ N(𝑅𝑁), and a constant 𝑒0. Therefore, as 𝑁 goes to in#nity,

lim𝐿→↘ |Bias| = 0.
Similarly, for the variance:

Variance = E

(
1
𝑌

𝑃∑
𝑄=1

(P[𝑗N𝐿 (𝑁), 𝑂 = 1|𝑅N𝐿 (𝑁) ,𝑅 𝑂] ⇒𝑃N𝐿 (𝑁), 𝑂)

)2
=

1
𝑌2

𝑃∑
𝑄=1

P[𝑗N𝐿 (𝑁), 𝑂 = 1|𝑅N𝐿 (𝑁) ,𝑅 𝑂] (1 ⇒ P[𝑗N𝐿 (𝑁), 𝑂 = 1|𝑅N𝐿 (𝑁) ,𝑅 𝑂])

⇑
1
𝑌
.

(7)

As 𝑌 → ↘, this converges to 0.
This shows that 𝑎𝑁 𝑂 is a consistent estimator of 𝑎𝑁 𝑂 .

⊋

B SUMMARY OF SELECTED UNSUPERVISED GNNS
CCA-SSG: CCA-SSG [Zhang et al. 2021] is inspired by statistical canonical correlation analysis(CCA) that constructs the loss on the
feature-level rather than instance-level discrimination, which is typical in contrastive methods. They augment the original graph in a random
fashion by dropping edges or masking the node features to make a pair of graphs for learning.

L = ⇓𝑧𝑊 ⇒ 𝑧𝑚 ⇓
2⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌

invariance term

+𝐿 ⇓𝑧≃

𝑊𝑧𝑊 ⇒ 𝑙 ⇓2𝑍 + ⇓𝑧≃

𝑚 𝑧𝑚 ⇒ 𝑙 ⇓2𝑍⨌⨌
decorrelation term

(8)

Although their model structure is relatively simple and does not require a parametrized mutual information estimator or additional
projection network, they still have the issue of choosing hyperparameters(e.g. 𝐿) which has a non-negligible impact on the model performance.

GRACE: Contrastive learning or self-supervised method has gotten increasing attention as they do not require label availability as supervised
GNN does. Deep Graph Contrastive Representation Learning(GRACE) [Zhu et al. 2020] is one of the popular graph constrastive learning
methods.

(1) For each iteration, GRACE generates two graph views,𝑀1,𝑀2, by either randomly removing edges or randomly masking node features.
(2) Let 𝑅 = 𝑋 (𝑂1,𝑃1),𝑘 = 𝑋 (𝑂2,𝑃2) be the embedded representation of two graph views, and their corresponding node features and

adjacency matrices.
(3) Positive samples: For any node 𝑖𝑁 , its corresponding representation in another view 𝑔𝑁 is treated as natural positive pair.
(4) Negative samples: For given node 𝑖𝑁 , any nodes in another view 𝑔𝑃ω𝑁 are treated as negative pair.
(5) Node-wise objective:

𝑠 (𝑔𝑁 , 𝑖𝑁) = log
𝛥𝑔 (𝑛𝑄 ,𝑜𝑄)/𝑝

𝛥𝑔 (𝑛𝑄 ,𝑜𝑄)/𝑝⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌
the positive pair

+

𝑇∑
𝑃=1

𝑃ω𝑁𝛥
𝑔 (𝑛𝑄 ,𝑜𝑀)/𝑝

⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌
inter-view negative pairs

+

𝑇∑
𝑃=1

𝑃ω𝑁𝛥
𝑔 (𝑛𝑄 ,𝑛𝑀)/𝑝

⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌⨌
intra-view negative pairs

(6) Overall loss function: 𝑠 = 1
2𝑇

∑𝑇
𝑁=1

𝑠 (𝑔𝑁 , 𝑖𝑁) + 𝑠 (𝑖𝑁 ,𝑔𝑁)

(7) Optimization: apply stochastic gradient descent.

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

DGI: Deep Graph Infomax [Stokes et al. 2020] is another option for the unsupervised graph representation learning. DGI optimizes the
mutual information between the local patch representation of the graph and the overall high-level summaries.

L =
1

𝑏 +𝑤

(𝑇∑
𝑁=1

E(𝑏 ,𝑊) [𝛩𝛬𝑈D(∋𝛯𝑁 , ∋𝛱)] +
𝑞∑
𝑂=1

E(𝑏 ,𝑊) [𝛩𝛬𝑈(1 ⇒D(
∋̃𝛯𝑁 , ∋̃𝛱]

)

BGRL: Large-Scale Representation Learning on Graphs via Bootstrapping(BGRL) [Thakoor et al. 2023] similar to CCA-SSG, BGRL uses node
and feature masking to augment the original graph. At the core of BGRL is a bootstrapping mechanism that updates the target representations
gradually, borrowing ideas from consistency regularization and contrastive learning. Unlike contrastive learning methods that require
negative samples, BGRL avoids the computational overhead associated with negative sampling by using a bootstrapping approach. This
involves maintaining two networks: an online network that is updated using gradients and a target network that is slowly updated with the
parameters of the online network. This setup encourages the embeddings to become more stable and consistent over iterations.

(1) Update the online encoder:

𝑠 (𝑛 ,𝛴) = ⇒
2
𝑏

𝑇⇒1∑
𝑁=0

𝑧 (1,𝑁)�̃�
≃

(2,𝑁)

⇓𝑧 (1,𝑁) ⇓⇓�̃�
≃

(2,𝑁) ⇓

(2) Update the target encoder: 𝑛 ↖ 𝛶𝛴 + (1 ⇒ 𝛶)𝑛

GCA: Graph Contrastive Learning with Augmentations (GCA) [You et al. 2021] introduces a contrastive learning framework designed
speci#cally for graph data. GCA applies data augmentation techniques on both the node features and graph structure, creating di!erent
views of the same node. The central idea is to maximize the agreement between the representations of the same node in di!erent augmented
views, while ensuring that the representations of di!erent nodes remain distinguishable.

The contrastive loss is designed to encourage the representations of di!erent views, 𝛷 and 𝛹 of the same node 𝑆 , with temperature scaling
𝛶 .

LGCA =
1
𝑏

𝑇∑
𝑁=1

⇒ log
exp(sim(z𝑟𝑁 , z

𝑒
𝑁)/𝛶)∑𝑇

𝑂=1 exp(sim(z𝑟𝑁 , z
𝑒
𝑂)/𝛶)

where sim(𝛺𝑁 , 𝛺 𝑂) = 𝛺𝑎𝑁 𝛺 𝑂/(⇓𝛺𝑁 ⇓ · ⇓𝛺 𝑂 ⇓) is a cosine similarity.
VGAE: Variational Graph Autoencoder (VGAE) [Kipf and Welling 2016] is a framework designed for learning graph embeddings through
variational inference. It is a probabilistic approach that leverages both graph structure and node features to infer latent node representations.
VGAE aims to model the underlying distribution of the graph data, capturing the uncertainty in the embeddings by using a variational
autoencoder architecture. This setup allows VGAE to generate robust embeddings that generalize well to unseen nodes or links. The model
consists of an encoder that approximates the posterior distribution over latent variables and a decoder that reconstructs the graph from
these variables.

The loss function comprises two components: a reconstruction loss that encourages the model to accurately predict the adjacency matrix,
and a regularization term in the form of the KL-divergence, which ensures the latent variables follow the prior distribution.

(1) Update the encoder by maximizing the evidence lower bound (ELBO):

L = E𝑠 (𝑡 |𝑏 ,𝑊) [log 𝑎 (𝑃|𝑧)] ⇒ 𝑦𝑓(𝛻(𝑧 |𝑂 ,𝑃) | |𝑎 (𝑧))

(2) The prior over the latent variables 𝑧 is typically set to a standard Gaussian: 𝑎 (𝑧) = N(0, 𝑙).

C ADDITIONAL LITERATURE REVIEW
C.1 Cross-Validation
In the supervised learning literature, cross-validation (CV) [Hastie et al. 2001; Tibshirani and Walther 2005] stands as a fundamental strategy
for selecting hyperparameters and evaluating models. In the usual (Euclidean) setting, this technique involves partitioning the dataset
into distinct subsets: a "training set" for model training and a "test set" for its evaluation. The partitioning is justi#ed by the independence
between observations, which implies that the subsamples still follow the same distribution as the original data. A commonly used method is
𝑦-fold cross-validation, where the dataset is divided into 𝑦 subsets or folds. For simplicity, we assume there are 𝑁 samples, and each fold has
𝑍 data points so that 𝑁 = 𝑦 ↓𝑍. We denote a set of index for the 𝑌-th fold as 𝑙𝑃 . The model is trained 𝑦 times, each time using 𝑦 ⇒ 1 folds
for training and the remaining fold for validation. Evaluation of the validation set is performed through an appropriate evaluation function
𝑠 (·) measuring the discrepancy between the observations 𝑢𝑁 and their predicted values 𝑢𝑁 = 𝑋 (𝑡𝑁 , 𝑛). This loss is usually taken to be the
mean squared error(MSE) in the regression case, (MSE𝑃 = 1

𝑄
∑
𝑁↑𝑢𝑀 (𝑢𝑁 ⇒𝑢𝑁)2), or to be the classi#cation accuracy in the classi#cation setting.

By averaging this metric over all 𝑌 folds, cross-validation provides a reliable estimate of the model’s prediction error on unseen data.
While the implementation and practice of cross-validation is simple and straightforward, its interpretation has only recently been

investigated in work by Bates et al. [2024]. The authors’ key #nding is that the cross-validation does not estimate the prediction error for the

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

model trained on a speci#c dataset but rather the “average" prediction error across all possible training datasets from the same distribution.

𝛼𝛼 (𝑣𝑌)
=

1
𝑁

𝐿∑
𝑁=1

𝛥𝑁 =
1
𝑦

𝑙∑
𝑃=1

1
𝑍

∑
𝑁↑𝑢𝑀

𝑠 (𝑋 (𝑡𝑁 , 𝑛
(⇒𝑃)

),𝑢𝑁). (9)

The intuition is the inner summation in Equation 9 estimates the prediction error of the model at hand, and the outer summation calculates
the empirical average over all possible training sets of the same size. In the previous equation, 𝑛 (⇒𝑃) denotes the parameters of the model
#tted on all but the 𝑌𝑅𝑆 fold, and 𝑋 (𝑡𝑁 , 𝑛 (⇒𝑃)) indicates the estimator of 𝑢.

C.2 Cross-Validation for Unsupervised Learning
Despite the popularity and simplicity of the cross-validation procedure, its application in unsupervised learning has been relatively
underexplored, largely due to the absence of clear evaluation metrics. Perry [2009] addressed this gap by examining cross-validation in
unsupervised settings and proposing several solutions, with a focus on methods utilizing Singular Value Decomposition (SVD). Among
the strategies reviewed, two are particularly relevant for this discussion. The #rst is a traditional hold-out method, where a portion of
the data is set aside for validation, and the second involves treating random elements of the dataset as "missing values." For a detailed
explanation of these methods, refer to Perry [2009], Chapter 5. However, it is important to note that these methods were originally designed
for conventional, independent, tabular data for unsupervised tasks. In this study, we build on Perry’s framework, focusing on its connection
to graph neural networks (GNNs) and extending its use to evaluate unsupervised learning methods in the context of GNNs in Section 4.

For the hold-out method, we randomly partition the data 𝑧 ↑ R𝐿↓𝑀 into

𝑧1
𝑧2

, where 𝑧1 ↑ R𝐿1↓𝑀 is a training set, 𝑧2 ↑ R𝐿2↓𝑀 is a test

set, and 𝑁1 + 𝑁2 = 𝑁. We want to approximate the test data by projecting it onto the principal spaces of the training data. To do so, one can
calculate the k-dimensional reduced SVD of 𝑧1, where 𝑧1 (𝑌) =

(𝑁)𝑅1�̂�1 (𝑌)𝑘1. Project the test set onto the principal space of 𝑧1.

𝑧2 (𝑌) = 𝑧2𝑧1 (𝑌)
≃
(𝑧1 (𝑌)𝑧1 (𝑌)

≃
)
†𝑧1 (𝑌) = 𝑧2𝑘1𝑘

≃
1 .

𝑂 † denotes the pseudo-inverse of 𝑂 . The performance ban be evaluated using 𝑠2 loss, ⇓𝑧2 ⇒ 𝑧2 (𝑌)⇓2𝑍 . Although this method cannot be used
in practice because the loss is a decreasing function with 𝑌 , the idea of using projection to compute the projection error for unsupervised
tasks was insightful.

The second is called either missing value strategy or Wold hold-outs. Instead of simply splitting the data, one could randomly select the

indices 𝑙 ↑ I, which denote the missing elements. Then, 𝑧𝑢 =
{ 𝑧𝑁 𝑆 ↑ 𝑙

△ o.w ; similarly, 𝑧𝑢 =
{ 𝑧𝑁 𝑆 ε 𝑙

△ o.w . Apply k-rank missing value

SVD algorithm to #nd the decomposition of 𝑧𝑢 (𝑌) = 𝑅𝑃𝑥𝑃𝑘
≃

𝑃 . There are many options[] including the one proposed by Perry [2009]. The
performance can again be evaluated using ⇓𝑅𝑃𝑥𝑃𝑘

≃

𝑃 ⇒ 𝑧𝑢 ⇓2𝑍 ,𝑢
The last method is basically to convert the unsupervised task into the supervised task, and called Gabriele hold-outs. Given the data, we

could randomly permute the row and column so that we have the following decomposition 𝛽≃𝑧𝛾 =

𝑧11 𝑧12
𝑧21 𝑧22

, where 𝛽 and 𝛾 are the

permutation matrices.
There is continuing work on applying this hold-out approach (especially Gabriele’s hold-out on clustering analysis [Fu and Perry 2017].

C.3 Cross Validation for Network Analysis
There have been relatively few studies [Chen and Lei 2018; Ho! 2007; Li et al. 2020] on the cross-validation of network data. In Li et al.
[2020], the key assumption for the entire analysis is that the edge is the realization of independent Bernoulli random variables, and the
probability of connection𝑤 , which is realized by the observed adjacency matrix 𝑃, is approximately of low rank. The edge cross-validation
proposed in this study is di!erent from traditional node-splitting methods in that the random dropping applies to the connected pair of
nodes. The model by Chen and Lei [2018] is particularly designed for determining the number of communities within the network data, as
well as choosing between the regular stochastic block model and the degree-corrected stochastic block model(DCSBM). The core idea is a
block-wise node-pair splitting, which is then combined with an integrated step of community recovery using sub-blocks of the adjacency
matrix.

Leiner and Ramdas [2024] introduces another cross-validation method for graphs but approaches the problem from a di!erent angle. The
study applies data thinning to data following convolution-closed distributions by Neufeld et al. [2023]. This procedure creates data folds that
maintain the same distribution as the original data, are independent of each other, and sum to the original random variable. A canonical
example of it is a normal variable. Given data 𝑂 ↗ (𝛿,𝑜2), with unknown parameter of interest 𝛿. Through data thinning algorithm, we
could thin 𝑂 into 𝑂 (1)

↗ 𝑏 (𝑉𝛿, 𝑉2𝑜2) and 𝑂 (2)
↗ 𝑏 ((1 ⇒ 𝑉)𝛿, (1 ⇒ 𝑉)2𝑜2), where these two thinned variables are independent to each other.

Leiner and Ramdas [2024] is an extension of this concept to graph data, applying data thinning to node features while treating the adjacency
matrix as #xed.

However, all these statistical methods heavily rely on the certain generation mechanism of underlying networks, such as the stochastic
block model [Chen and Lei 2018] or low-rank structure of expected value of adjacency matrix [Li et al. 2020]. The assumptions of the

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

aforementioned approaches on which part of the graph is a random component are also di!erent. Leiner and Ramdas [2024] treats the graph
structural component (𝑘 ,) as non-random and the node feature as random; however, [Li et al. 2020] treats edge as then random realization
based on statistical graph generation model, such as stochastic block model.

C.4 Bootstrap
The bootstrap [Efron 1979] has been widely used as a non-parametric method for estimating the distribution of a statistic through resampling
with replacement. This method is useful because it does not rely on assumptions about the underlying distribution, making it applicable
across various #elds where such assumptions are challenging. The validity of the bootstrap is supported by its consistency [Horowitz 2019]
under mild assumptions, where the bootstrap distribution converges to the true sampling distribution as the sample size increases. However,
the validity of the bootstrap relies on having access to independent samples, an assumption violated in the graph case. We thus consider two
distinct scenarios, depending on the nature of the graph at hand:

• For graphs with short-range dependencies, such as for instance, spatial graphs: we propose to apply a graph-based block bootstrap
method, inspired by its use in time series and spatial statistics [Castillo-Páez et al. 2019; Politis and Romano 1994]. The block
bootstrap is based on the assumption that the dependency structure is well contained within the small neighborhood that we could
assume independence among these neighborhoods. We extend the application of the block bootstrap to the graph case here by
splitting the graph into smaller (non-overlapping) neighborhoods of size 𝜀, and creating new graphs based on replacing each of
these neighborhoods by sampling with replacement from the total set of possible neighborhoods (see Algorithm 4). Similar to the
spatial setting [Castillo-Páez et al. 2019], the size of the blocks is crucial to the success of the procedure. To guide the choice of the
neighborhood, we propose using descriptive graph statistics (see next section) to generate graphs with similar characteristics.

• For graphs with long-range dependencies, For non-spatial and homophilic graphs, we propose to use an extension of network bootstrap
by Levin and Levina [2021]. In this work, Levin and Levina [2021] consider random dot product graphs (RDPG) where the edge
connectivity is determined by the inner product of the latent positions 𝑚 of two nodes: for each edge 𝑃𝑁 𝑂 between node 𝑆 and 𝑇 ,
𝑃𝑁 𝑂 ↗ Bernouilli(𝑚𝑎

𝑁 𝑚 𝑂). The crux of this method is that by converting an observed network into its latent positions, we can leverage
the independence among its latent variables. In our setting, we propose to extend this setting to larger classes of graphs by learning
node representations 𝑚𝑁 = 𝑀𝑏𝑏 (𝑂 ,𝑃) of the graph (see Algorithm 5).

Algorithm 4 Resample Graphs through Block Bootstrap

1: Input: Spatial coordinates 𝑡_𝑒𝛬𝛬𝛼𝑟 , 𝑢_𝑒𝛬𝛬𝛼𝑟 , 𝑈𝛼𝑆𝑟_𝛱𝑆𝛺𝛥 , 𝑁_𝛱𝛷𝑍𝑎𝛩𝛥𝛱 .
2: Output: Block bootstrapped graphs 𝛱𝛷𝑍𝑎𝛩𝛥𝛱 .
3: for 𝑆 = 1 to 𝑁_𝛱𝛷𝑍𝑎𝛩𝛥𝛱 do
4: Step 1: Shu"le Data Points
5: Create a grid over the spatial domain using coordinates 𝑡_𝑒𝛬𝛬𝛼𝑟 and 𝑢_𝑒𝛬𝛬𝛼𝑟 .
6: Shu’e the grids to create new patched data, 𝛱𝛯𝑔𝑋 𝑋 𝛩𝛥𝑟_𝑟𝛷𝑞𝛷.
7: Step 2: Convert Shu"led Data to Graphs
8: Convert 𝛱𝛯𝑔𝑋 𝑋 𝛩𝛥𝑟_𝑟𝛷𝑞𝛷 into a graph by the method of choice (e.g. k-NN or radius graph)
9: Store the graph 𝛱𝛷𝑍𝑎𝛩𝛥𝛱 [𝑆] = 𝑀
10: end for

Algorithm 5 Resample Graphs through Network Bootstrap

1: Input: Graph 𝑀 , embedding dimension 𝑟 , 𝑁_𝛱𝛷𝑍𝑎𝛩𝛥𝛱 , neighborhood size 𝑌
2: Output: Bootstrapped graph samples 𝛱𝛷𝑍𝑎𝛩𝛥𝛱
3: Generate spectral embedding 𝑚 of adjacency matrix using top 𝑟 eigenvectors
4: for 𝑆 = 1 to 𝑁_𝛱𝛷𝑍𝑎𝛩𝛥𝛱 do
5: Sample indices 𝛹𝛬𝛬𝑞𝛱𝑞𝛼𝛷𝑎_𝑆𝑟𝑡 from 𝑚 with replacement
6: Generate new graph 𝑃 from bootstrapped latent positions
7: Initialize node features 𝑡 as zeros in the new graph 𝑀
8: for each node 𝑆 in 𝑀 do
9: Calculate distances from node 𝑆 to all other nodes in 𝑚
10: Sort distances and #nd nearest neighbors (based on neighborhood size 𝑌)
11: Randomly select a neighbor and assign its features to node 𝑆
12: end for
13: Store the generated graph 𝑀 in the sample set 𝛱𝛷𝑍𝑎𝛩𝛥𝛱
14: end for

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

Bayesian Bootstrap. Rubin [1981] introduces the Bayesian bootstrap (BB) as a nonparametric alternative to traditional Bayesian inference,
sidestepping the need for explicit likelihood functions. Unlike the frequentist bootstrap, which resamples data with replacement, the Bayesian
bootstrap assigns Dirichlet-distributed random weights to observed data points, generating a posterior distribution for parameters of interest.
Speci#cally, for a dataset 𝑂 = {𝑡1, 𝑡2, ..., 𝑡𝐿}, instead of sampling with replacement as in the frequentist bootstrap, the Bayesian bootstrap
draws a random probability vector 𝑎 = (𝑎1, 𝑎2, ..., 𝑎𝐿) from a 𝑥𝑆𝛼 (1, 1, . . . , 1) distribution, ensuring that

∑𝐿
𝑁=1 𝑎𝑁 = 1 and 𝑎𝑁 > 0. This

randomized weighting serves as a Bayesian nonparametric prior, e!ectively treating the empirical distribution of the data as the prior
distribution.

Efron [2012] explores the relationship between Bayesian inference and the parametric bootstrap, demonstrating how frequentist resampling
techniques can be adapted to estimate posterior distributions. The key insight of this work is that the parametric bootstrap, traditionally
used to approximate sampling distributions, can serve as an e"cient computational tool for Bayesian inference when paired with importance
sampling. Efron [2012] shows that bootstrap reweighting can be used to transform frequentist con#dence intervals into Bayesian credible
intervals. This approach provides a bridge between the two paradigms, enabling frequentist methods to yield posterior distributions without
relying on Markov Chain Monte Carlo (MCMC) techniques.

The Bayesian bootstrap provides a perspective for interpreting the proposed nonparametric graph rewiring, particularly when edge
resampling is guided by shared neighborhood structure. Just as the BB assigns Dirichlet-distributed weights to data points to construct a
posterior distribution, the graph rewiring process can be seen as assigning probabilistic weights to edges based on local graph structure,
thereby producing alternative realizations of the same graph. In this context, the neighborhood-weighted resampling in LOBSTUR aligns
with Bayesian importance sampling, where the rewired edges represent a form of pseudo-posterior distribution over network structures.

Extended VGAE Approach. Inspired by Kipf and Welling [2016], we tried using the Variational Graph Autoencoder(VGAE) as a new graph
sampler. The extension was needed as the original method only reconstructed the adjacency matrix. The proposed loss function includes a
feature reconstruction component alongside the edge reconstruction and KL divergence losses. With the edge decoder designed by the
original work, the feature decoder generates reconstructed node features, and the reconstruction loss for features is based on the sum of
squared di!erences between the original and reconstructed features.

The total loss used for training consists of three parts: the KL divergence loss regularizing the latent variables, the edge reconstruction
loss, and the feature reconstruction loss, scaled by a regularization parameter 𝐿. The overall objective is:

Total Loss =
KL
𝑁

+ loss𝑊 + 𝐿 ↓ loss𝑏

In our implementation, the parameter 𝐿 controls the weight of the feature reconstruction in the loss. This allows the model to focus primarily
on learning the graph structure while still incorporating node feature information.

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

Figure 3: Block Bootstrap for Mouse Spleen data. Distribution of graph statistics of bootstrapped graphs. The principle is to see
if the graph statistics of the original graph is within the extremity of the distribution of generated samples. The red dotted
line indicates the statistics computed on the original graph. Most of the graph statistics do not lie at the extremity of the
distribution of graph statistics by bootstrapped samples.

Figure 4: Block Bootstrap forMouse Spleen data. Distribution of node-level statistics of bootstrapped graphs. The orange-colored
distribution represents the JS divergence between the bootstrapped samples and the original graph, and the blue-colored
distribution represents among bootstrapped samples divergence. The more the two distributions overlap, the bootstrapped
samples ‘mimic’ the original graph well in terms of node-level statistics.

C.4.1 Experiments: Block Bootstrap.

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

C.5 Evaluating Embedding Qualities
In Section 4, we propose a stability metric. There are few works proposing metrics to evaluate the quality of unsupervised embeddings,
although they are not intended for hyperparameter tuning.

Alignment-based metrics. Our #rst family of metrics focuses on measuring how well two embeddings align with each other. Suppose
we have two embeddings, 𝑚𝑁 and 𝑚 𝑂 , produced by the same learning procedure but on di!erent graph folds. We propose two discretized
versions of (2), measuring how much two embeddings align with each other.

(1) Label Matching: The #rst thing we can think of is to make the label from the embedding from each fold, which follows the “converting
to the supervised task” convention.

(a) Determine the clusters on embeddings using simple clustering algorithm such K-Nearest Neighbor or GaussianMixtureModel(GMM)
(b) Use widely used clustering evaluation metrics, such as Adjusted Rand Index(ARI) by Hubert and Arabie [1985] or Normalized

Mutual Index(NMI), to see the labels from 𝑚𝑁 and 𝑚 𝑂 agree to each other.
(2) NeighborhoodMatching: If the model is able to extract enough of the latent structure of data, the model trained on the di!erent folds

of a graph should be similar. With this reasoning, we can evaluate the model by how much of the neighborhoods in the embedding
agree with each other. To avoid the usage of data twice, we will evaluate the neighborhood from 𝑚𝑁 and 𝑚 𝑂 and report the ratio of
overlapping neighbors. To construct the neighborhood in the embedding space, we will use the simple k-Nearest algorithm with
varying sizes of k. For each node on output embeddings, 𝑚𝑁 and 𝑚 𝑂 , we #rst #nd the m-nearest neighbors. Then for node-level
neighbor-kept ratio is de#ned as 𝑏𝑁 (𝑍) = # of overlapped neighbors/𝑍, where𝑍 ⇑ 𝑌 is the neighbor size. Graph-level ratio can be
calculated by simply averaging over the nodes, 𝑏 (𝑍) =

∑
𝑁 𝑏𝑁 (𝑍).

Direct Embedding Quality Metrics. Beyond measuring alignment between two embeddings, one can also evaluate an embedding’s internal
quality or degree of collapse. These methods o!er a complementary view: even if two embeddings align with each other, they could both be
su!ering from dimension collapse or poor distribution of singular vectors.

(1) RankMe: Garrido et al. [2023] proposes RankMe a metric to measure the e!ective dimension of embeddings to quantify the embedding
collapse in self-supervised learning. To overcome the numerical instability of the exact rank computation, for example, due to round-o!
error, they propose an alternative to use Shannon entropy of normalized singular values. The formula was originally proposed by Roy
and Vetterli [2007] and then applied to dimension collapse context by Garrido et al. [2023]. Formally,

RankMe(𝑚) = exp

⇒

min(𝐿,𝑀)∑
𝑃=1

𝑎𝑃 log𝑎𝑃

D
, with 𝑎𝑃 =

𝑜𝑃 (𝑚)

⇓𝑜 (𝑚)⇓1
+ 𝑉 .

(2) Metrics proposed in Tsitsulin et al. [2023]: Tsitsulin et al. [2023] further extended the approaches and proposed four di!erent
metrics to evaluate the embedding quality in terms of embedding collapse and stability perspective. The key di!erences between their
experiment setting and ours are, #rst, Tsitsulin et al. [2023] only consider the graph structure, not the node features, and second, they
do not change the model parameters but change the level of perturbation on the structure (edge dropping or node masking). Let
𝑚 ↑ R𝐿↓𝑀 be an embedding obtained from the trained unsupervised model of choice.

(a) Coherence: The coherence metric measures how concentrated the rows of the singular vector matrix 𝑅 are. A low coherence
indicates that the energy is spread more uniformly across all rows (good for compressed sensing), while a high coherence suggests
that the energy is concentrated in a few rows, which can indicate a poorly distributed set of singular vectors.

Coherence(𝑚) =
max𝑁 ⇓𝑅𝑁 ⇓

2
2 · 𝑁

𝑎
,

where𝑅 ↑ R𝐿↓𝑀 is reduced left singular matrix of 𝑚 ↑ R𝐿↓𝑀 .
(b) Stable Rank: It is the quantity called a ‘numerical rank” (or e!ective rank) in numerical analysis.

Stable Rank(𝑚) =
⇓𝑚 ⇓

2
𝑍

⇓𝑚 ⇓22
,

where ⇓𝑚 ⇓𝑍 denotes the Frobenius norm, ⇓𝑚 ⇓
2
𝑍 =

∑
𝑜2𝑁 , and ⇓𝑚 ⇓2 = 𝑜1, where 𝑜1 ∝ 𝑜2 ∝ · · · ∝ 𝑜𝐿 denotes the singular values of

𝑚 .
(c) Pseudo-condition number: Let SVD of the embedding 𝑚 be 𝑚 = 𝑅 ω𝑘≃.

𝑝𝑀 (𝑚) = ⇓𝑚 ⇓𝑀 ⇓𝑚
†
⇓𝑀

𝑀=2
=

𝑜1
𝑜𝐿

(d) SelfCluster: The idea is to estimate how much the embeddings are clustered in the embedding space compared to random
distribution on a sphere. Let �̃� ↑ R𝐿↓𝑀 be the normalized embeddings.

SelfCluster(𝑚) =
⇓�̃��̃�≃

⇓𝑍 ⇒ 𝑁 ⇒ 𝑁 ↓ (𝑁 ⇒ 1)/𝑟
𝑁2 ⇒ 𝑁 ⇒ 𝑁 ↓ (𝑁 ⇒ 1)/𝑟

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

D SCALABILITY
While our framework performs well on graphs of moderate size (up to 19k nodes, e.g., the Pubmed citation network), scalability remains a
challenge. The bootstrapping procedure and CCA-based evaluation introduce signi#cant additional computation, which can limit applicability
to larger graphs. In particular, when applying our method to the OGBN-Arxiv dataset (over 170k nodes), we encountered substantial runtime
challenges that made the process very time-consuming.

The main limitation, however, stems from the need to train multiple graph neural networks (GNNs) during the bootstrapping process.
This requirement signi#cantly increases the computational cost, but it is essential to ensure robust hyperparameter selection, especially in
high-precision applications such as #nance or biomedical domains, where reliability and unbiased evaluation are critical.

To address scalability challenges, we have begun exploring two strategies (1) block bootstrapping where the graph is partitioned into
smaller subgraphs and bootstrapping is applied within blocks; and (2) approximate rewiring schemes to reduce computational overhead
during resampling. Preliminary results for block bootstrapping, presented in C.4, suggest that this direction holds promise.

D.1 Alternative Algorithm for Scalability

Algorithm 6 Approximate Edge Rewiring via 𝑃2

1: Input: Graph 𝑀 = (V, E) with 𝑁 = |V| nodes, $attened list of edge stems 𝑓 = {𝑔 | 𝑔 ↑ [:, 0]} ⇐ {𝑖 | 𝑖 ↑ [:, 1]}, where ↑ R | E |↓2,
and the squared adjacency matrix 𝑃2 representing 2-hop connectivity strengths between nodes.

2: Initialize an empty graph 𝑀 ⇔ = (V, E⇔
) with 𝑁 nodes.

3: Compute the sparse adjacency matrix 𝑃 of 𝑀 and symmetrize it to ensure it is undirected.
4: Compute the matrix product 𝑃2 = 𝑃 ↓𝑃, remove self-loops by setting the diagonal of 𝑃2 to zero, and eliminate any zero entries.
5: while len(𝑓) > 0 do
6: Sample a source node 𝑔 uniformly at random from the list 𝑓, and remove it from 𝑓.
7: Retrieve the set of candidate nodes 𝑖 for 𝑔, where each candidate 𝑖 satis#es 𝑃2

𝑛𝑜 > 0 and 𝑖 ω 𝑔, and where 𝑖 ↑ 𝑓.
8: If no such candidate exists, discard 𝑔 and continue to the next iteration.
9: Otherwise, sample a target node 𝑖 from the set of candidates according to the normalized weights given by 𝑃2

𝑛𝑜 .
10: Remove the sampled node 𝑖 from the list 𝑓.
11: Add an undirected edge between 𝑔 and 𝑖 in the graph 𝑀 ⇔.
12: end while
13: Output: Bootstrapped graph 𝑀 ⇔ with resampled edge structure.

The original edge rewiring algorithm (Algorithm 2 explores a node’s local 1-hop neighborhood at each iteration. For a randomly selected
node 𝑔, it #rst identi#es its 𝑌-nearest neighbors based on some graph-based distance, then for each 𝑌-nearest neighbor𝑍, it retrieves all
direct neighbors N𝑊 (𝑍) in the original graph. The node 𝑔 samples a new connection 𝑖 from this dynamically built candidate set, with
probabilities weighted by the frequency of appearance across di!erent𝑍. This ensures that edge resampling captures local neighborhood
information around each node. However, this procedure incurs high computational cost because it needs to explore multiple neighborhoods
at every rewiring step.

The approximate algorithm (Algorithm 6) instead precomputes the 2-hop neighborhood connectivity of the graph by squaring the
adjacency matrix, yielding 𝑃2. Here, 𝑃 ↑ R𝐿↓𝐿 is the (symmetric) adjacency matrix of the graph, and 𝑃2

𝑁 𝑂 counts the number of distinct
2-hop paths between nodes 𝑆 and 𝑇 . In this setting, each node 𝑔 directly samples a target node 𝑖 from the 2-hop neighbors based on their
weighted connection strength given by 𝑃2

𝑛𝑜 . The sampling probability is proportional to the number of 2-hop paths between 𝑔 and 𝑖 , i.e.,

𝛽 (𝑖 |𝑔) =
𝑃2
𝑛𝑜∑

𝑜⇔ ↑C(𝑛) 𝑃
2
𝑛𝑜⇔

,

where C(𝑔) is the set of candidates for node 𝑔 with positive 2-hop connectivity and available stems. If no candidates are found, the algorithm
discards 𝑔 and continues.

The relationship between Algorithm 2 and the approximate method (Algorithm 6) depends on the degree of each node and the choice of 𝑌
for the 𝑌-nearest neighbor graph. Speci#cally, whether the candidate set in the original method is larger or smaller than the set of direct
neighbors depends on the comparison between a node’s degree and the size of 𝑌 . If a node 𝑔 has a low degree, meaning it is connected
to only a few nodes in the original graph, then the 𝑌-nearest neighbor (k-NN) graph will forcefully connect it to 𝑌 other nodes based on
feature similarity or graph distance, even if 𝑔 does not have that many direct connections. In this case, the 𝑌-NN set can be larger than the
direct 1-hop neighbor set. The original algorithm supplements the missing local structure by adding neighbors based on external feature
similarity rather than existing edges. Consequently, when deg(𝑔) < 𝑌 , the original rewiring may result in a broader candidate set than the
direct neighborhood.

On the other hand, if a node 𝑔 has a high degree, meaning it is already connected to many nodes in the adjacency graph, then the 𝑌-nearest
neighbor graph selects only a subset of its many neighbors. Here, 𝑌-NN acts as a #lter, choosing the most “important” or closest 𝑌 neighbors,

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

possibly ignoring others. In this case, because 𝑌 is smaller than the degree, the 𝑌-NN candidate set becomes smaller than the full direct
neighborhood. When deg(𝑔) ∝ 𝑌 , the original algorithm is thus more restrictive compared to simply traversing all direct neighbors.

Therefore, the original algorithm is not always narrower or broader by default; it depends on the relative size of a node’s degree and 𝑌 .
This behavior is di!erent from the approximate method using 𝑃2, where no such #ltering exists. The approximate method (Algorithm 6)
uses all nodes that are reachable in exactly two hops, without considering feature space distances or 𝑌-nearest neighbor constraints. As a
result, the approximate method includes any node with a 2-hop path from a node 𝑔, potentially adding candidates that would never have
been explored in the original method, especially when the node’s degree is small and the 𝑌-NN graph must reach out to faraway nodes.

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

E GNN EXPERIMENT DETAILS
We use benchmark datasets for node classi#cation, including Cora, Pubmed, and Citeseer, and test our framework on node regression
datasets from [Huang et al. 2023]. We summarize the datasets used to demonstrate the entire hyperparameter tuning procedure in Table 4.

We consider various benchmark datasets for node classi#cation tasks, including Cora, Pubmed, Citeseer. Additionally, we have tested our
framework on a few datasets for the node regression by [Huang et al. 2023]. To demonstrate our full framework for hyperparameter tuning,
we used the following datasets, and their details are summarized in Table 4.

Dataset Num Nodes Num Edges Num Classes Description Source

Cora 2708 5429 7 Citation network PyTorch Geometric
Citeseer 3327 4732 6 Citation network PyTorch Geometri
Pubmed 19717 44338 3 Citation network PyTorch Geometric

Amazon Photo 7650 119081 8 Product co-purchasing network PyTorch Geometric
Amazon Computers 13752 245861 10 Product co-purchasing network PyTorch Geometric

Coauthor CS 18333 81894 15 Coauthorship network PyTorch Geometric
Anaheim 914 3881 – Graph of transportation networks Conformalized GNN [Huang et al. 2023]

ChicagoSketch 2176 15104 – Urban tra"c network (sketch) Conformalized GNN [Huang et al. 2023]
County Education 3234 12717 – County-level education metrics (2012) Conformalized GNN [Huang et al. 2023]

Twitch PTBR 1912 3170 – Brazilian Twitch interactions Conformalized GNN [Huang et al. 2023]

Table 4: Summary of benchmark datasets used for the experiments, including both classi!cation and regression datasets.

The followings are tested combinations of hyperparameters, including di!erent types of unsupervised GNN models.

• model: {CCA-SSG, DGI, BGRL, GRACE}
• feature masking rate (FMR): {0.05, 0.25, 0.5, 0.75}
• edge dropping rate (EDR): {0.05, 0.25, 0.5, 0.75}
• 𝐿 (CCA-SSG, BGRL) or 𝛶 (GRACE): {10⇒5, 10⇒4, 10⇒3, 10⇒2, 10⇒1, 1.0, 10.0}
• number of layers: 2
• hidden dimension: 256
• output dimension (𝑎): 8
• learning rate: 10⇒3
• epochs: 500
• number of simulations for each dataset (𝑁𝑒): 20

E.1 Computer Resources Used
The experiments in this study were conducted using a combination of personal and institutional computational resources. Preliminary
analyses and prototyping were performed on a MacBook Pro with an Intel Core i7 processor and 16GB of RAM. For larger-scale experiments,
including graph bootstrapping and downstream evaluations, we used high-performance computing resources provided by the institution’s
research cluster, which includes access to multi-core CPUs and GPU-enabled nodes. While execution time varied by dataset and task, typical
runs for clustering and evaluation completed within a few hours. Detailed resource speci#cations and runtime pro#les are available upon
request to support reproducibility.

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

F ADDITIONAL TABLES AND FIGURES

Figure 5: Citeseer: Model trained by di"erent hyperparameters. 2D Visualization through PCA. The learned representations
vary by the choice of hyperparameters.

F.1 Validation of Metrics
Synthetic Datasets. The motivation for using synthetic data is that we know the exact data-generating process (DGP), enabling us to

replicate the dataset and focus on validating our metric. By controlling the DGP, we remove confounding factors related to real-world data
and can better isolate and evaluate the performance of algorithms and metrics.

In this synthetic dataset generation, we create spatially structured data using a simple Gaussian blob. We #rst de#ne 𝑁 cluster centers
and standard deviations to simulate spatial groupings in a 2D space, which belong to distinct clusters. For each point, we generate a
32-dimensional feature vector, with features generated from Laplacian eigenmap by [Belkin and Niyogi 2001]. The #nal dataset includes 2D
spatial coordinates, cluster labels, and 32-dimensional feature vectors. We generated 15 copies of graphs following the same (and known)
data-generating process. We run the procedure (Algorithm 3) and compute the metrics’ average and prediction accuracy (Figure 6). Our
proposed metric matches the clustering alignments (NMI, ARI) and shows a strong negative correlation with accuracy.

(a) (b)

Figure 6: Summary of synthetic dataset and experiment results. The proposed metric and prediction accuracy show a strong
negative Spearman rank correlation (-0.71).

F.1.1 Application to Spatial Single-Cell Datasets. There is a growing demand for robust computational tools that can extract biologically
meaningful representations across heterogeneous samples. In such applications, it is crucial to obtain consistent and high-quality embeddings
that generalize across samples while preserving #ne-grained spatial structure. Our proposed metric is particularly well-suited for this goal,
as it evaluates the stability and informativeness of unsupervised embeddings without requiring labeled data. When annotations are available,

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

we further demonstrate that our method aligns closely with manual labels, exhibiting strong spatial continuity and biological interpretability
across a range of datasets.

Mouse Spleen (CODEX). We apply our procedure to a high-resolution spatial proteomics dataset of the mouse spleen from Goltsev et al.
[2018]. This dataset, generated using CO-Detection by Indexing (CODEX), provides single-cell spatial and phenotypic pro#les of immune
cells across intact spleen tissue. With over 30 measured protein markers, it enables precise mapping of cell types, functional states, and
spatial interactions at sub-tissue resolution. The dataset preserves key anatomical compartments—including T cell zones, B cell follicles, and
red and white pulp—and highlights how spatial arrangement corresponds to immune function, such as structured lymphocyte zones and
compartmentalized myeloid populations. We also have an access to the expert annotated lables, which we report the accuracy against it in
Table 2. Figure 7 also refelects varying quality of learned embeddings by the choice of 𝐿.

Figure 7: Visualizations of mouse spleen CODEX data based on the output of CCA-SSG model with di"erent 𝐿 settings. We
can observe that depending on the choice of 𝐿, the quality of expression varies a lot. When 𝐿 becomes too large, the learned
representation fail to recover the underlying cell environments. See Section 4.2 for the setup.

Triple Negative Breast Cancer Dataset. The dataset from Keren et al. [2018] comprises MIBI-TOF imaging data from 41 TNBC patients,
capturing the spatial expression of 36 proteins across tumor, immune, and regulatory markers at subcellular resolution. Tumors are
classi#ed into three immune architectures—cold, mixed, and compartmentalized—based on spatial patterns of immune in#ltration, cell
type organization, and marker expression. Compartmentalized tumors are linked to the best survival outcomes. Mixed tumors, featuring
intermingled tumor and immune cells with high CD8+ T cell and checkpoint marker expression, may bene#t from immunotherapy. Cold
tumors show sparse immune presence and poor prognosis. Among these, the mixed and compartmentalized tumor microenvironments
(TMEs) represent favorable immune architectures that the authors aim to recover, as they are identi#ed through a combination of cell type
composition, spatial organization, and marker expression pro#les. We predict such group (mixed vs. comparatmentalized) based on the
learned embeddings. The AUC for the prediction is reported in Table 2.

Colorectal Cancer Dataset. The colorectal cancer (CRC) dataset from Schürch et al. [2020] includes 140 tissue regions from 35 advanced-
stage CRC patients, pro#led using FFPE-CODEX imaging with 56 protein markers to identify diverse cell populations within the tumor
microenvironment (TME). The study identi#ed nine distinct cellular neighborhoods (CNs) through unsupervised clustering of spatial
co-occurrence patterns, revealing how the spatial organization of immune and stromal cells shapes immune responses. Two major immune
architectures emerged (1) Crohn’s-like reaction (CLR), associated with structured immune in#ltration and favorable outcomes, and (2) di!use
in$ammatory in#ltration (DII), marked by disorganized immune presence and poor prognosis. These TMEs, distinguished by di!erences in
cell types, spatial arrangements, and marker expression, represent the patterns the authors aim to recover, as they re$ect clinically relevant
immune organization associated with patient survival. The AUC for the predicting such group (CLR vs. DII) is reported in Table 2.

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

F.2 Validation of Bootstrap Samples

True Solution 1 Solution 2 (graph k-NN)

Number of Nodes 2708 2708±0 2708±0
Number of Edges 5278 5200.54±9 5171.78±7.34
Average Degree 3.8980 3.84±0.01 3.82±0.01

Density 0.0014 0±0 0±0
Avg Clustering Coe"cient 0.2407 0.01±0 0.05±0
Avg Connected Component 78 13.16±3.26 67.91±6.7

Giant Component Size 2485 2684.28±6.51 2620.38±10.78
Assortativity -0.0659 -0.06±0 -0.07±0
PageRank 1353.5 1353.5±0 1353.5±0
Transitivity 0.0935 0.01±0 0.03±0

Number of Triangles 1630 133.96±11.62 471.48±27.11
Table 5: Graph statistics for Cora illustrating the two solutions suggested in Section 3.2. We see the clear deviation on graph
statistics, especially the average connected component and the number of triangles when we follow the Solution 1.

Figure 8: Visualization of the statistics obtained by di"erent methods. The left most plot in each row corresponds to a
visualization of the graphon function𝑄 (𝑡,𝑢) = 𝑊 △ (1 + cos(𝜁𝜂 · (𝑡 ⇒ 𝑢)))/2, for 𝑊 = 0.01 and di"erent values of 𝜁. Each row
presents a visualization of 10 instances of a resampling of a graphon generated according to𝑄 using di"erent methods.

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

True Edge Drop Node Drop Ours NB VAE

Scenario 1

Assortativity -0.0345 0±0 0±0 0±0 0±0 -0.44±0.05
Avg ClusterCoe"cient 0 0±0 0±0 0±0 0±0 0.12±0.01

Avg Degree 0.12 0.12±0 0.1±0.01 0.08±0 0.04±0.02 2.63±0.47
Density 0.0002 0±0 0±0 0±0 0±0 0.01±0

Giant Component Size 3 2.93±0.26 2.53±0.5 2.79±0.4 4.12±1.36 90.08±8.22
Num Connected Components 470 471.13±0.87 380.72±2.44 480±1.15 492.81±3.52 410.89±8.21

Num Edges 30 28.87±0.87 19.28±2.44 20±1.15 8.82±5.12 657.73±118.12
Num Nodes 500 500±0 400±0 500±0 500±0 500±0

Num Triangles 0 0±0 0±0 0±0 1.48±2.22 3060.65±1108.48
PageRank 249.5 249.5±0 199.5±0 249.5±0 249.5±0 249.5±0
Transitivity 0 0±0 0±0 0±0 0.33±0.31 0.47±0.05

Scenario 2

Assortativity -0.0227 -0.02±0.01 -0.02±0.04 -0.02±0.03 0.01±0.04 0.04±0.04
Avg ClusterCoe"cient 0.0064 0.01±0 0.01±0 0.01±0 0.02±0.01 0.16±0.01

Avg Degree 3.224 3.1±0.02 2.58±0.07 3.2±0.01 3.68±0.29 3.13±0.09
Density 0.0065 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 479 475.02±2.21 360.97±6.3 481.21±2.64 407.42±11.16 70.91±7.09
Num Connected Components 18 21.41±1.81 33.23±4.71 17.89±1.25 91.93±10.74 391.57±4.03

Num Edges 806 774.11±4.42 515.92±13.17 801.17±1.81 921±71.47 782.12±21.59
Num Nodes 500 500±0 400±0 500±0 500±0 500±0

Num Triangles 7 6.16±0.89 3.59±1.35 5.42±2.36 68.31±21.3 4469.92±189.99
PageRank 249.5 249.5±0 199.5±0 249.5±0 249.5±0 249.5±0
Transitivity 0.0083 0.01±0 0.01±0 0.01±0 0.04±0.01 0.69±0.01

Scenario 3

Assortativity -0.0227 -0.02±0.01 -0.02±0.04 -0.01±0.03 0.01±0.04 -0.58±0.06
Avg ClusterCoe"cient 0.0064 0.01±0 0.01±0 0.01±0 0.02±0.01 0.11±0.02

Avg Degree 3.224 3.1±0.02 2.58±0.07 3.21±0.01 3.68±0.29 1.28±0.18
Density 0.0065 0.01±0 0.01±0 0.01±0 0.01±0 0±0

Giant Component Size 479 475.02±2.21 360.97±6.3 481.2±2.77 407.42±11.16 49.52±10.72
Num Connected Components 18 21.41±1.81 33.23±4.71 17.84±1.28 91.93±10.74 421.24±11.14

Num Edges 806 774.11±4.42 515.92±13.17 801.7±1.61 921±71.47 321.11±45.67
Num Nodes 500 500±0 400±0 500±0 500±0 500±0

Num Triangles 7 6.16±0.89 3.59±1.35 5.74±2.34 68.31±21.3 798.48±165.04
PageRank 249.5 249.5±0 199.5±0 249.5±0 249.5±0 249.5±0
Transitivity 0.0083 0.01±0 0.01±0 0.01±0 0.04±0.01 0.46±0.06

Scenario 4

Assortativity -0.0833 0±0 0±0 0±0 0±0 -0.02±0.11
Avg ClusteringCoe"cient 0 0±0 0±0 0±0 0±0.01 0.23±0.01

Avg Degree 0.104 0.1±0 0.08±0.01 0.07±0.01 0.04±0.02 7.39±0.37
Density 0.0002 0±0 0±0 0±0 0±0 0.01±0

Giant Component Size 3 3±0.06 2.77±0.42 2.58±0.49 4.28±1.43 81.19±7.89
Num Connected Components 474 475.1±0.82 383.45±2.4 482.85±1.29 492.15±3.75 350.19±9.04

Num Edges 26 24.9±0.82 16.55±2.4 17.15±1.29 9.68±5.66 1847.28±91.84
Num Nodes 500 500±0 400±0 500±0 500±0 500±0

Num Triangles 0 0±0 0±0 0±0 1.75±2.65 19727.09±959.62
PageRank 249.5 249.5±0 199.5±0 249.5±0 249.5±0 249.5±0
Transitivity 0 0±0 0±0 0±0 0.34±0.32 0.75±0.02

Table 6: Comparison of all sampling methods on graphon model as posited in Equation 1. The ground truth graphon is
generated with n = 500, p = 150, k = 20. For each methods, 500 (bootstrap) samples are generated. For edge and node drop,
we randomly remove 20% of edges or nodes (and corresponding edges). Our proposed nonparametric bootstrap consistently
achieves signi!cant similarities with the ground truth graph under di"erent scenarios.

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

We analyze four scenarios (each in Table 7, 8, 9, and 10) of recovering the underlying dependency by our proposed nonparametric bootstrap
method either through graph-knn or feature-knn. The graph is generated by the model posited in Equation 1 with varying graphon function
𝑄 and feature generator 𝑈.

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

graph-kNN feature-kNN

Original k = 5 k=20 k=50 k = 5 k=20 k=50

n= 100

Assortativity 0±0 0±0 0±0

Avg ClusterCoe"cient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.02 0±0 0±0 0±0 0±0 0±0 0±0

Density 0.0002 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 2 1±0 1±0 1±0 1±0 1±0 1±0

Num Connected Components 99 100±0 100±0 100±0 100±0 100±0 100±0

Num Edges 1 0±0 0±0 0±0 0±0 0±0 0±0

Num Nodes 100 100±0 100±0 100±0 100±0 100±0 100±0

Num Triangles 0 0±0 0±0 0±0 0±0 0±0 0±0

PageRank 49.5 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0±0 0±0

n=500

Assortativity -0.0345 0±0 0±0 0±0 0±0 0±0 0±0

Avg ClusterCoe"cient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.12 0±0 0.01±0 0.02±0 0.04±0.01 0.08±0 0.11±0

Density 0.0002 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 3 2.04±0.82 2.32±0.47 2.34±0.47 2±0 2.79±0.4 2.94±0.24

Num Connected Components 470 498.96±0.82 497.07±0.82 495.4±0.96 489.19±1.61 480±1.15 472.94±0.86

Num Edges 30 1.04±0.82 2.93±0.82 4.6±0.96 10.81±1.61 20±1.15 27.06±0.86

Num Nodes 500 500±0 500±0 500±0 500±0 500±0 500±0

Num Triangles 0 0±0 0±0 0±0 0±0 0±0 0±0

PageRank 249.5 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0±0 0±0

n=1000

Assortativity -0.112 -0.39±0.15 -0.36±0.14 -0.33±0.13 0±0 -0.01±0.11 -0.02±0.08

Avg ClusterCoe"cient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.182 0.03±0.01 0.03±0.01 0.04±0.01 0.09±0.01 0.14±0 0.17±0

Density 0.0002 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 4 3.45±0.5 3.42±0.49 3.46±0.51 3.37±0.49 4.06±0.6 4.23±0.48

Num Connected Components 909 984.21±2.87 983.32±2.82 980.71±2.92 955.1±2.99 928.42±2.25 916.2±1.51

Num Edges 91 15.79±2.87 16.68±2.82 19.29±2.92 44.9±2.99 71.6±2.24 83.81±1.51

Num Nodes 1000 1000±0 1000±0 1000±0 1000±0 1000±0 1000±0

Num Triangles 0 0±0 0±0 0±0 0±0 0.02±0.13 0±0.06

PageRank 499.5 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0.01±0.04 0±0.01

Table 7: Scenario 1: the graph structure is highly localized (𝑄 (𝑔, 𝑖) = 1{|𝑔 ⇒ 𝑖 | < 0.01}), leading to disconnected components and
the failure of graph-based kNN, while features (N(5𝑔, 0.01)) exhibit a strong correlation with the latent variable 𝑔, enabling
feature-based kNN success. The greyed-out cells indicate values that are unavailable.

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

graph-kNN feature-kNN

Original k = 5 k=20 k=50 k = 5 k=20 k=50

n= 100

Assortativity 0.2884 -0.24±0.16 -0.12±0.18 -0.13±0.17 -0.01±0.19 -0.11±0.17 -0.1±0.17

Avg ClusterCoe"cient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.66 0.37±0.03 0.49±0.03 0.6±0.02 0.53±0.03 0.63±0.02 0.65±0.01

Density 0.0067 0±0 0±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 8 6.15±1.21 6.36±1.4 5.97±1.23 5.22±1.26 5.86±1.25 6.09±1.39

Num Connected Components 67 81.9±1.59 75.54±1.45 70.24±1.24 73.58±1.56 68.5±0.79 67.6±0.56

Num Edges 33 18.27±1.57 24.54±1.44 29.78±1.24 26.44±1.55 31.52±0.79 32.41±0.55

Num Nodes 100 100±0 100±0 100±0 100±0 100±0 100±0

Num Triangles 0 0±0 0.02±0.15 0.02±0.13 0.01±0.12 0.01±0.12 0.01±0.12

PageRank 49.5 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0

Transitivity 0 0±0 0.01±0.03 0±0.03 0±0.03 0±0.02 0±0.02

n=500

Assortativity -0.0359 -0.12±0.03 -0.08±0.03 -0.08±0.03 -0.04±0.03 -0.02±0.03 -0.01±0.04

Avg ClusterCoe"cient 0.0052 0±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Avg Degree 3.076 2.91±0.02 3.03±0.01 3.02±0.01 2.96±0.02 3.06±0.01 3.07±0

Density 0.0062 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 471 463.59±3.66 466.91±3.48 468.15±3.02 466.85±3.11 469.38±2.64 469.54±2.58

Num Connected Components 29 34.37±2.24 31.73±1.94 31.15±1.79 32.07±1.91 29.84±1.27 29.66±1.23

Num Edges 769 727.53±5.05 757.88±2.53 756.11±2.92 740.32±4.78 764.09±1.75 767.16±1.04

Num Nodes 500 500±0 500±0 500±0 500±0 500±0 500±0

Num Triangles 7 4.08±2.01 5.03±2.33 5.09±2.33 4.54±2.05 5.37±2.38 5.48±2.33

PageRank 249.5 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0.0087 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

n=1000

Assortativity 0.0122 -0.05±0.02 -0.03±0.02 -0.04±0.02 -0.01±0.02 0±0.02 0±0.02

Avg ClusterCoe"cient 0.0078 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Avg Degree 6.594 6.37±0.02 6.56±0.01 6.59±0 6.5±0.01 6.58±0 6.59±0

Density 0.0066 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 999 998.74±0.5 998.98±0.13 999±0.06 998.94±0.26 998.99±0.08 998.99±0.15

Num Connected Components 2 2.25±0.5 2.02±0.13 2±0.06 2.06±0.25 2.01±0.08 2.01±0.1

Num Edges 3297 3185.15±9.77 3281.22±3.6 3293.46±1.6 3248.4±6.06 3289.46±2.37 3294.19±1.49

Num Nodes 1000 1000±0 1000±0 1000±0 1000±0 1000±0 1000±0

Num Triangles 50 40.6±6.86 47.34±6.66 48.53±6.7 46.97±6.8 50.03±7.75 50.54±7.07

PageRank 499.5 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0

Transitivity 0.0069 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Table 8: Scenario 2 has a well-structured graph (𝑄 (𝑔, 𝑖) = 1⇒ |𝑔 ⇒ 𝑖 |), ensuring graph kNN success, but highly oscillatory features
(sin(10𝑔) + N (0, 0.1)) disrupt feature-based kNN.

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

graph-kNN feature-kNN

Original k = 5 k=20 k=50 k = 5 k=20 k=50

n= 100

Assortativity -0.0344 -0.15±0.14 -0.08±0.15 -0.06±0.14 -0.05±0.15 -0.09±0.16 -0.08±0.15

Avg ClusterCoe"cient 0 0±0 0±0.01 0±0.01 0±0.01 0±0.01 0±0.01

Avg Degree 0.78 0.56±0.03 0.66±0.03 0.74±0.02 0.65±0.03 0.75±0.01 0.77±0.01

Density 0.0079 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 13 10.37±2.03 10.83±3.2 13.93±3.78 10.35±3.12 13.05±3.86 13.88±3.95

Num Connected Components 62 72.71±1.53 67.23±1.49 63.09±1.09 67.71±1.65 62.69±0.85 61.78±0.7

Num Edges 39 27.91±1.45 32.95±1.43 37.19±1 32.46±1.63 37.52±0.73 38.46±0.56

Num Nodes 100 100±0 100±0 100±0 100±0 100±0 100±0

Num Triangles 0 0.01±0.09 0.1±0.31 0.12±0.34 0.09±0.31 0.1±0.3 0.11±0.32

PageRank 49.5 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0

Transitivity 0 0±0.01 0.01±0.04 0.01±0.03 0.01±0.04 0.01±0.03 0.01±0.03

n=500

Assortativity -0.009 -0.09±0.03 -0.09±0.03 -0.11±0.03 -0.05±0.03 -0.02±0.04 -0.02±0.03

Avg ClusterCoe"cient 0.00575685 0±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Avg Degree 3.228 3.07±0.02 3.19±0.01 3.19±0.01 3.15±0.01 3.21±0.01 3.22±0

Density 0.0065 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 479 473.05±3 474.67±2.97 476.17±2.19 476.13±2.16 476.77±2.06 476.69±2.09

Num Connected Components 22 26.44±2 24.65±1.57 23.92±1.34 23.9±1.29 23.14±0.99 23.14±1.01

Num Edges 807 766.71±5.09 796.85±2.43 796.3±2.54 787.46±3.64 802.61±1.64 805.05±1.07

Num Nodes 500 500±0 500±0 500±0 500±0 500±0 500±0

Num Triangles 8 4.08±2.03 5.18±2.31 5.23±2.25 4.94±2.15 5.97±2.44 6.02±2.59

PageRank 249.5 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0.0094 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

n=1000

Assortativity 0.0014 -0.06±0.02 -0.03±0.02 -0.06±0.02 0±0.02 0.01±0.02 0.01±0.02

Avg ClusterCoe"cient 0.0077 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Avg Degree 6.584 6.36±0.02 6.55±0.01 6.58±0 6.53±0.01 6.57±0 6.58±0

Density 0.0066 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Giant Component Size 997 996.68±0.63 996.94±0.31 996.99±0.15 996.97±0.19 996.96±0.28 996.98±0.2

Num Connected Components 4 4.3±0.57 4.04±0.19 4.01±0.1 4.03±0.19 4.02±0.15 4.01±0.11

Num Edges 3292 3179.28±10.22 3276.36±3.69 3288.4±1.53 3262.62±4.73 3285.76±2.2 3289.42±1.38

Num Nodes 1000 1000±0 1000±0 1000±0 1000±0 1000±0 1000±0

Num Triangles 60 47.84±7.03 49.11±7.17 50.94±7.08 50.74±6.88 55.12±6.99 55.54±7.53

PageRank 499.5 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0

Transitivity 0.0082 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0

Table 9: Scenario 3 maintains a structured graph (𝑄 (𝑔, 𝑖) = 1 ⇒ |𝑔 ⇒ 𝑖 |) and smooth feature variation (N(5𝑔, 0.01)), leading to the
success of both methods.

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

graph-kNN feature-kNN

Original k = 5 k=20 k=50 k = 5 k=20 k=50

n= 100

Assortativity 0±0 0±0 0±0

Avg ClusterCoe"cient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.02 0±0 0±0 0±0 0±0 0±0 0±0

Density 0.00020202 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 2 1±0 1±0 1±0 1±0 1±0 1±0

Num Connected Components 99 100±0 100±0 100±0 100±0 100±0 100±0

Num Edges 1 0±0 0±0 0±0 0±0 0±0 0±0

Num Nodes 100 100±0 100±0 100±0 100±0 100±0 100±0

Num Triangles 0 0±0 0±0 0±0 0±0 0±0 0±0

PageRank 49.5 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0 49.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0±0 0±0

n=500

Assortativity -0.2 0±0 -0.34±0.19 0±0 0±0 0±0 -0.15±0.1

Avg ClusterCoe"cient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.12 0.02±0.01 0.03±0.01 0.04±0.01 0.04±0.01 0.08±0.01 0.11±0

Density 0.00024048 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 3 2.89±0.31 3.11±0.32 3.07±0.26 2.8±0.4 3±0.04 3.16±0.37

Num Connected Components 470 494.14±1.63 491.73±1.63 489.81±1.48 489.6±1.66 480.53±1.37 472.85±1.03

Num Edges 30 5.86±1.63 8.27±1.63 10.19±1.48 10.4±1.66 19.47±1.37 27.15±1.03

Num Nodes 500 500±0 500±0 500±0 500±0 500±0 500±0

Num Triangles 0 0±0 0±0 0±0 0±0 0±0 0±0

PageRank 249.5 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0 249.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0±0 0±0

n=1000

Assortativity 0.14150943 -0.15±0.16 -0.08±0.15 -0.06±0.13 -0.09±0.08 0±0.1 0±0.1

Avg ClusterCoe"cient 0 0±0 0±0 0±0 0±0 0±0 0±0

Avg Degree 0.208 0.05±0.01 0.05±0.01 0.06±0.01 0.09±0.01 0.17±0 0.19±0

Density 0.00020821 0±0 0±0 0±0 0±0 0±0 0±0

Giant Component Size 7 6.31±0.8 6.18±0.86 6.21±0.86 3.39±0.6 4.58±0.75 5.22±0.98

Num Connected Components 896 976.5±2.95 975.11±2.75 970.02±2.58 953.18±3.15 916.91±2.48 904±1.75

Num Edges 104 23.71±2.94 25.15±2.76 30.18±2.55 46.82±3.15 83.11±2.48 96.01±1.74

Num Nodes 1000 1000±0 1000±0 1000±0 1000±0 1000±0 1000±0

Num Triangles 0 0±0 0±0 0±0 0±0 0.02±0.13 0.01±0.09

PageRank 499.5 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0 499.5±0

Transitivity 0 0±0 0±0 0±0 0±0 0±0.03 0±0.01

Table 10: Scenario 4 combines a fragmented graph (𝑄 (𝑔, 𝑖) = 1{|𝑔 ⇒ 𝑖 | < 0.01}) with oscillatory features (sin(10𝑔) + N (0, 0.1)),
making the problem hard for both graph- and feature-based kNN. The greyed-out cells indicate values that are unavailable.

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

Statistic Original k=3 k=5 k=7 k=10 k=15 k=20 k=50

Cora

Number of Nodes 2708 2708±0 2708±0 2708±0 2708±0 2708±0 2708±0 2708±0
Number of Edges 5278 4793.52±14.73 4962.71±13.23 5035.19±12.52 5087.69±10.33 5154.92±9.11 5171.78±7.34 5196.15±7.42
Average Degree 3.90 3.54±0.01 3.67±0.01 3.72±0.01 3.76±0.01 3.81±0.01 3.82±0.01 3.84±0.01

Density 0.00 0±0 0±0 0±0 0±0 0±0 0±0 0±0
Avg Clustering Coe"cient 0.24 0.1±0.01 0.09±0 0.08±0 0.07±0 0.06±0 0.05±0 0.03±0
Avg Connected Component 78 136.32±6.99 114.71±6.76 97.29±7.3 97.52±7 62.44±6.95 67.91±6.7 42.54±6.08

Giant Component Size 2485 2479.92±19.9 2530.81±21.35 2571.64±18.39 2580.51±14.08 2625.44±11.64 2620.38±10.78 2652.33±9.41
Assortativity -0.07 -0.09±0 -0.09±0 -0.08±0 -0.08±0 -0.08±0 -0.07±0 -0.08±0
PageRank 1353 1353.5±0 1353.5±0 1353.5±0 1353.5±0 1353.5±0 1353.5±0 1353.5±0
Transitivity 0.09 0.04±0 0.04±0 0.04±0 0.03±0 0.03±0 0.03±0 0.02±0

Number of Triangles 1630 716.03±32.22 664.18±29.42 623.48±29.33 575.85±29.4 512.85±27.32 471.48±27.11 319.15±21.65

Citeseer

Number of Nodes 3327 3327±0 3327±0 3327±0 3327±0 3327±0 3327±0 3327±0
Number of Edges 4552 3846.33±15.1 3951.45±13.58 3997.51±13.36 4031.65±12.6 4059.15±11.71 4127.78±10.93 4150.58±11.39
Average Degree 2.74 2.31±0.01 2.38±0.01 2.4±0.01 2.42±0.01 2.44±0.01 2.48±0.01 2.5±0.01

Density 0.00 0±0 0±0 0±0 0±0 0±0 0±0 0±0
Avg Clustering Coe"cient 0.14 0.05±0 0.05±0 0.04±0 0.04±0 0.04±0 0.03±0 0.03±0
Avg Connected Component 438 868.13±12.49 848.01±10.31 840.08±11.44 830.07±10.87 795.53±10.75 635.09±11.87 570.92±13.67

Giant Component Size 2120 1934.25±42.19 2010.02±32.77 2043.56±31.79 2063.28±31.07 2098.62±36.32 2418.12±35.69 2585.67±23.96
Assortativity 0.05 -0.02±0.01 -0.01±0.01 -0.01±0.01 0±0.01 0.01±0.01 -0.08±0 -0.1±0
PageRank 1663 1663±0 1663±0 1663±0 1663±0 1663±0 1663±0 1663±0
Transitivity 0.13 0.07±0 0.07±0 0.06±0 0.05±0 0.05±0 0.04±0 0.03±0

Number of Triangles 1167 574.04±29.17 550.58±28.97 520.69±27.43 462.24±27.24 431.58±25.85 304.6±19.59 227.62±16.37

ChicagoSketch

Number of Nodes 2176 2176±0 2176±0 2176±0 2176±0 2176±0 2176±0 2176±0
Number of Edges 15104 14505.33±22.7 14811.91±17.53 14914.4±14.51 14956.5±12.89 14999.55±11.49 15014.23±10.28 15066.34±5.57
Average Degree 13.88 13.33±0.02 13.61±0.02 13.71±0.01 13.75±0.01 13.79±0.01 13.8±0.01 13.85±0.01

Density 0.01 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0
Avg Clustering Coe"cient 0.57 0.19±0 0.17±0 0.16±0 0.14±0 0.13±0 0.12±0 0.08±0
Avg Connected Component 1 1±0 1±0 1±0 1±0 1±0 1±0 1±0

Giant Component Size 2176 2176±0 2176±0 2176±0 2176±0 2176±0 2176±0 2176±0
Assortativity 0.65 0.31±0.01 0.3±0.01 0.3±0.01 0.31±0.01 0.31±0.01 0.29±0.01 0.13±0.01
PageRank 1087 1087.5±0 1087.5±0 1087.5±0 1087.5±0 1087.5±0 1087.5±0 1087.5±0
Transitivity 0.56 0.19±0 0.17±0 0.16±0 0.14±0 0.13±0 0.12±0 0.08±0

Number of Triangles 38240 11919.95±119.57 11097.95±105.45 10402.11±108.83 9577.65±106.85 8637.74±102.45 8006.58±95.13 5592.24±76.04

Twitch_PTBR

Number of Nodes 1912 1912±0 1912±0 1912±0 1912±0 1912±0 1912±0 1912±0
Number of Edges 31299 30803.01±27.13 30985.09±25.09 31049.84±24.48 31076.91±23.3 31084.55±23.33 31082.05±22.83 31058.76±25.23
Average Degree 32.74 32.22±0.03 32.41±0.03 32.48±0.03 32.51±0.02 32.52±0.02 32.51±0.02 32.49±0.03

Density 0.02 0.02±0 0.02±0 0.02±0 0.02±0 0.02±0 0.02±0 0.02±0
Avg Clustering Coe"cient 0.32 0.17±0 0.17±0 0.17±0 0.17±0 0.17±0 0.17±0 0.17±0
Avg Connected Component 1.00 1.33±0.55 1.17±0.4 1.2±0.44 1.26±0.5 1.19±0.44 1.14±0.39 1.07±0.25

Giant Component Size 1912 1911.31±1.19 1911.64±0.84 1911.59±0.9 1911.47±1.01 1911.61±0.88 1911.72±0.77 1911.87±0.5
Assortativity -0.23 -0.31±0 -0.3±0 -0.3±0 -0.3±0 -0.29±0 -0.29±0 -0.28±0
PageRank 955 955.5±0 955.5±0 955.5±0 955.5±0 955.5±0 955.5±0 955.5±0
Transitivity 0.13 0.08±0 0.08±0 0.08±0 0.08±0 0.08±0 0.08±0 0.08±0

Number of Triangles 173510 103368.74±1614.98 102572.23±1741.49 103379.78±1759.64 104007.92±1678.98 105301.1±1862.01 105534.51±1904.54 106230.23±1900.76

Education

Number of Nodes 3234 3234±0 3234±0 3234±0 3234±0 3234±0 3234±0 3234±0
Number of Edges 12717 12449.4±13.31 12567.43±9.6 12593.18±8.39 12606.58±8.34 12616.48±7.7 12615.12±7.79 12608.38±8.42
Average Degree 7.86 7.7±0.01 7.77±0.01 7.79±0.01 7.8±0.01 7.8±0 7.8±0 7.8±0.01

Density 0.00 0±0 0±0 0±0 0±0 0±0 0±0 0±0
Avg Clustering Coe"cient 0.43 0.19±0 0.17±0 0.15±0 0.14±0 0.12±0 0.12±0 0.12±0
Avg Connected Component 17.00 2.24±0.5 1.2±0.44 1.13±0.37 1.14±0.36 1.27±0.55 1.64±0.79 4.14±1.56

Giant Component Size 3109 3155.56±2.16 3228.04±20.42 3233.87±0.37 3233.86±0.36 3233.73±0.55 3233.36±0.79 3230.86±1.56
Assortativity 0.14 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.02±0.01 0.03±0.01 0.04±0.01
PageRank 1616.50 1616.5±0 1616.5±0 1616.5±0 1616.5±0 1616.5±0 1616.5±0 1616.5±0
Transitivity 0.39 0.19±0 0.16±0 0.15±0 0.13±0 0.12±0 0.12±0 0.11±0

Number of Triangles 6490 5402.03±65.45 4712.47±56.84 4356.54±57.62 3980.89±58.92 3569.63±54.37 3486.89±53.63 3346.53±48.62

Anaheim

Number of Nodes 914 914±0 914±0 914±0 914±0 914±0 914±0 914±0
Number of Edges 3881 3557.23±17.18 3744.01±10.86 3804.45±8.77 3845.48±5.53 3855.53±4.2 3858.74±4.21 3855.93±4.51
Average Degree 8.49 7.78±0.04 8.19±0.02 8.32±0.02 8.41±0.01 8.44±0.01 8.44±0.01 8.44±0.01

Density 0.01 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0 0.01±0
Avg Clustering Coe"cient 0.55 0.19±0.01 0.16±0.01 0.14±0 0.12±0 0.11±0 0.09±0 0.05±0
Avg Connected Component 1.00 1.17±0.42 1.1±0.33 1.09±0.29 1.05±0.22 1.02±0.15 1.01±0.1 1.01±0.08

Giant Component Size 914 913.82±0.44 913.89±0.35 913.9±0.36 913.95±0.25 913.98±0.15 913.99±0.1 913.99±0.08
Assortativity 0.71 0.51±0.01 0.45±0.01 0.41±0.01 0.39±0.01 0.39±0.01 0.39±0.01 0.15±0.01
PageRank 456 456.5±0 456.5±0 456.5±0 456.5±0 456.5±0 456.5±0 456.5±0
Transitivity 0.60 0.2±0 0.16±0 0.14±0 0.12±0 0.11±0 0.1±0 0.06±0

Number of Triangles 7162 1968.36±46.38 1779.38±43.05 1575.97±39.58 1438.32±38.23 1270.53±35.34 1163.42±32.96 768.93±28.73

Table 11: Graph statistics of bootstrapped samples generated by Algorithm 2 with varying neighborhood size (𝑌).

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

Original Edge Drop Node Drop Ours Network Bootstrap VAE

Assortativity -0.07 -0.07 ± 0 -0.07 ± 0.01 -0.07±0 -0.03 ± 0.03 -0.43 ± 0
Avg Clustering Coe"cient 0.24 0.22 ± 0 0.17 ± 0.01 0.05±0 0.02 ± 0.01 0.5 ± 0

Avg Degree 3.90 3.74 ± 0.01 2.63 ± 0.07 3.82±0.01 2.11 ± 0.18 10.04 ± 0.05
Density 0.00 0 ± 0 0 ± 0 0±0 0 ± 0 0 ± 0

Giant Component Size 2485 2457.77 ± 9.09 1819.98 ± 30.29 2620.38±10.78 1090.22 ± 41.05 1931.32 ± 9.06
Num Connected Components 78 100.12 ± 4.7 587.49 ± 16.74 67.91±6.7 1595.93 ± 38.78 777.68 ± 9.06

Num Edges 5278 5066.1 ± 11.78 3382.72 ± 87.72 5171.78±7.34 2857.55 ± 244.83 13598.31 ± 67.26
Num Nodes 2708 2708 ± 0 2569.6 ± 9.32 2708±0 2708 ± 0 2708 ± 0

Num Triangles 1630.00 1441.03 ± 20.11 835.13 ± 63.84 471.48±27.11 801.19 ± 338.24 78345.91 ± 643.03
Pagerank 1353.50 1353.5 ± 0 1294.43 ± 4.23 1353.5±0 1353.5 ± 0 1353.5 ± 0

Cora

Transitivity 0.09 0.09 ± 0 0.09 ± 0.01 0.03±0 0.07 ± 0.01 0.12 ± 0

Assortativity -0.23 -0.23±0 -0.23±0.01 -0.29±0 0±0 -0.45±0
Avg Clustering Coe"cient 0.32 0.25±0 0.26±0.01 0.17±0 0±0 0.41±0

Avg Degree 32.74 26.19±0 21.87±0.84 32.51±0.02 0±0 19.89±0.04
Density 0.02 0.01±0 0.01±0 0.02±0 0±0 0.01±0

Giant Component Size 1912 1883.96±4.76 1506±5.9 1911.72±0.77 1±0 893.77±7.03
Num Connected Components 1.00 28.12±4.49 325.55±8.23 1.14±0.39 1912±0 1016.37±6.87

Num Edges 31299 25039±0 20029.75±776.17 31082.05±22.83 0±0 19010.87±40.09
Num Nodes 1912 1912±0 1831.36±7.18 1912±0 1912±0 1912±0

Num Triangles 173510 88756.59±980.58 89048.18±9052.57 105534.51±1904.54 0±0 332319.47±623.05
Pagerank 955.50 955.5±0 921.8±3.18 955.5±0 955.5±0 955.5±0

TwitchPTBR

Transitivity 0.13 0.1±0 0.13±0 0.08±0 0±0 0.31±0

Assortativity 0.65 456.5 ± 0 441.21 ± 2.15 0.29±0.01 456.5 ± 0 456.5 ± 0
Avg Clustering Coe"cient 0.57 0 ± 0 0 ± 0 0.12±0 0 ± 0 0 ± 0

Avg Degree 13.88 0.48 ± 0 0.6 ± 0.01 13.8±0.01 0 ± 0 0.59 ± 0.01
Density 0.01 0 ± 0 0 ± 0 0.01±0 0 ± 0 0 ± 0

Giant Component Size 2176 2175.97 ± 0.18 1739.89 ± 0.44 2176±0 1 ± 0 703.59 ± 6.77
Num Connected Components 1.00 1.03 ± 0.16 349.83 ± 7.54 1±0 2176 ± 0 1473.41 ± 6.77

Num Edges 15104 12083 ± 0 9658.73 ± 46.97 15014.23±10.28 0 ± 0 9156.6 ± 85.77
Num Nodes 2176 2176 ± 0 2088.77 ± 7.54 2176±0 2176 ± 0 2176 ± 0

Num Triangles 38240 19576.4 ± 101.57 19554 ± 325.13 8006.58±95.13 0 ± 0 83059.43 ± 1685.2
Pagerank 1087.50 1087.5 ± 0 1051.19 ± 3.29 1087.5±0 1087.5 ± 0 1087.5 ± 0

ChicagoSketch

Transitivity 0.56 0.45 ± 0 0.56 ± 0 0.12±0 0 ± 0 0.51 ± 0

Assortativity 0.14 0.11 ± 0.01 0.33 ± 0.02 0.03±0.01 0 ± 0 -0.24 ± 0
Avg Clustering Coe"cient 0.43 0.34 ± 0 0.36 ± 0 0.12±0 0 ± 0 0.37 ± 0

Avg Degree 7.86 6.29 ± 0 5.58 ± 0.02 7.8±0 0 ± 0 16.63 ± 0.07
Density 0.00 0 ± 0 0 ± 0 0±0 0 ± 0 0.01 ± 0

Giant Component Size 3109 3103.63 ± 2.38 2478.84 ± 8.39 3233.36±0.79 2.34 ± 0.94 1826.67 ± 7.86
Num Connected Components 17 25.11 ± 2.6 539.85 ± 8.69 1.64±0.79 3231.81 ± 1.71 1408.33 ± 7.86

Num Edges 12717 10173 ± 0 8654.72 ± 30.07 12615.12±7.79 2.94 ± 2.91 26887.73 ± 118.84
Num Nodes 3234 3234 ± 0 3104.69 ± 8.44 3234±0 3234 ± 0 3234 ± 0

Num Triangles 6490 3321.39 ± 32.58 3321.02 ± 37.46 3486.89±53.63 0.96 ± 2.18 257887.78 ± 2061.14
Pagerank 1616.50 1616.5 ± 0 1562.58 ± 3.73 1616.5±0 1616.5 ± 0 1616.5 ± 0

Eduation

Transitivity 0.39 0.32 ± 0 0.39 ± 0 0.12±0 0.36 ± 0.48 0.35 ± 0

Assortativity 0.71 0.6 ± 0.01 0.69 ± 0.02 0.39±0.01 -0.15 ± 0.02
Avg Clustering Coe"cient 0.55 0.44 ± 0.01 0.46 ± 0.01 0.09±0 0.22 ± 0

Avg Degree 8.49 6.79 ± 0 5.66 ± 0.08 8.44±0.01 5.06 ± 0.07
Density 0.01 0 ± 0 0 ± 0 0.01±0 0 ± 0

Giant Component Size 914 0.01 ± 0 0.01 ± 0 913.99±0.1 0.01 ± 0
Num Connected Components 1.00 0 ± 0 0 ± 0 1.01±0.1 0 ± 0

Num Edges 3881 911.49 ± 2.43 727.17 ± 3.63 3858.74±4.21 121.87 ± 13.67
Num Nodes 914 2.8 ± 1.45 149.32 ± 5.24 914±0 645.81 ± 5.49

Num Triangles 7162 3104 ± 0 2483.09 ± 37.24 1163.42±32.96 2311.09 ± 32.23
Pagerank 456.50 914 ± 0 877.31 ± 4.94 456.5±0 914 ± 0

Anaheim

transitivity 0.60 3661.41 ± 51.07 3667.47 ± 152.92 0.1±0 14770.14 ± 386.77

Table 12: Graph statistics of bootstrapped samples generated by Algorithm 2 with 𝑌 = 20, simple generation with Edge or Node
Drop (with 𝑎 = 0.2), and network bootstrap (NB) [Levin and Levina 2021] and the extended VAE approach in Appendix-C.4.
The best values among our method, NB and VAE are bolded, and the second best values are underlined. The simple split
methods largely distort the original connectivity structure, re#ected in the Giant Component Size or the Number of Connected
Components. Our proposed local bootstrap consistently mimics the original graph in terms of the reported graph statistics.
The greyed-out cells indicate values that are unavailable due to instability encountered during training.

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

Remark F.1. When the graph structure is su"ciently informative for the underlying latent variable distribution (see the di!erences in
Table 7 and Table 9 for the graph-kNN case), the bootstrapped graphs show noticeable robustness to the choice of 𝑌 (the number of nearest
neighbors). For example, with 500 nodes and k=20, the bootstrapped graph retains about 98% of the original edges and recovers approximately
70% of its triangles (see Table 8 for detailed statistics). Increasing k produces progressively denser graphs with more edges and higher average
degrees, but it also tends to lower the clustering coe"cient and reduce the number of triangles. Conversely, using a very small k leads to
sparser graphs that may preserve more local structure—re$ected by higher clustering coe"cients and relatively more triangles per edge—but
can underrepresent global connectivity, often resulting in many small components. On real datasets, setting 𝑌 = 20 typically recovers an edge
count close to that of the original graph, though it still underestimates the original triangle count (see Table 11). Nonetheless, our proposed
method produces graphs whose triangle counts more closely match the original than those generated by other methods (see Table 12).

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

F.3 Validation of the Entire Framework (Algorithm 3)

(a) Our CCA-based metrics discussed in Section 4.

(b) RankMe metric by Garrido et al. [2023]

(c) SelfCluster by Tsitsulin et al. [2023]

(d) Coherence by Tsitsulin et al. [2023]

Figure 9: Visualizations of metrics value and classi!cation accuracy on Cora. The CCA-SSG [Zhang et al. 2021] model is trained
on set of hyperparameter combinations including 𝐿, edge drop rate (EDR), and feature masking rate (FMR). Each point denotes
the each combination of hyperparameters. The color denotes the edge dropping rate with blue dots referring small value
(𝛥𝑟𝛼 = 0.05) whereas the red dot referring to the large value (𝛥𝑟𝛼 = 0.75). In this dataset, a clear negative correlation is noted for
our metrics across all combinations of hyperparameters.

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

Dataset Default Ours 𝑑-ReQ pseudo-𝑝 RankME NESum SelfCluster Stable Rank Coherence

Cora 0.36 0.4 0.4 0.57 0.55 0.4 0.4 0.57 0.54

PubMed 0.62 0.68 0.67 0.74 0.67 0.67 0.69 0.74 0.74

Citeseer 0.32 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

CS 0.47 0.71 0.82 0.75 0.75 0.82 0.82 0.75 0.82

Chicago 0.39 0.34 0.35 0.35 0.35 0.35 0.35 0.29 0.4

Anaheim 0.13 0.23 0.12 0.18 0.18 0.12 0.23 0.18 0.12

Education 0.23 0.26 0.18 0.17 0.18 0.16 0.18 0.26 0.21

Avg_clf 0.44 0.55 0.58 0.62 0.60 0.58 0.58 0.62 0.63

Avg_reg 0.25 0.28 0.22 0.23 0.24 0.21 0.25 0.24 0.24
Table 13: Downstream task (classi!cation or regression) performance of the BGRLwith hyperparameters chosen by each criteria.
We compare to the BGRL [Thakoor et al. 2021] with the default parameters in the left-most column, fmr = 0.5, edr = 0.25, 𝐿 = 10⇒2.
The best value is bolded and the second best is underlined.

Dataset Default Ours 𝑑-ReQ pseudo-𝑝 RankME NESum SelfCluster Stable Rank Coherence

Cora 0.35 0.65 0.66 0.67 0.63 0.63 0.69 0.59 0.47

PubMed 0.49 0.81 0.82 0.56 0.56 0.56 0.82 0.82 0.76

Citeseer 0.38 0.51 0.53 0.51 0.53 0.53 0.53 0.51 0.22

CS 0.65 0.79 0.86 0.86 0.86 0.86 0.86 0.86 0.76

Photo 0.32 0.73 0.58 0.53 0.53 0.73 0.73 0.73 0.69

Computers 0.42 0.57 0.66 0.57 0.66 0.66 0.66 0.57 0.65

Anaheim 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38

Twitch 0.47 0.52 0.15 0.15 0.15 0.15 0.46 0.15 0.48

Education 0.29 0.26 0.33 0.33 0.33 0.33 0.33 0.33 0.26

Avg_clf 0.44 0.68 0.69 0.62 0.63 0.66 0.72 0.68 0.59

Avg_reg 0.38 0.39 0.29 0.29 0.29 0.29 0.39 0.29 0.37
Table 14: Downstream task (classi!cation or regression) performance of the CCA-SSG with hyperparameters chosen by each
criteria. We compare to the CCA-SSG [Zhang et al. 2021] with the default parameters in the left-most column, fmr = 0.5, edr =
0.25, 𝐿 = 10⇒4. The best value is bolded and the second best is underlined.

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

Dataset Default Ours 𝑑-ReQ pseudo-𝑝 RankME NESum SelfCluster Stable Rank Coherence

Cora 0.64 0.68 0.54 0.54 0.54 0.54 0.5 0.54 0.42

PubMed 0.78 0.75 0.75 0.75 0.75 0.75 0.75 0.79

Citeseer 0.53 0.55 0.51 0.51 0.51 0.51 0.48 0.51 0.44

CS 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.61

Photo 0.71 0.83 0.79 0.79 0.79 0.79 0.57 0.81 0.41

Computers 0.45 0.45 0.45 0.45 0.39 0.39 0.39 0.39

Avg_clf 0.63 0.67 0.63 0.63 0.63 0.62 0.57 0.62 0.50
Table 15: Downstream task (classi!cation or regression) performance of the GRACE with hyperparameters chosen by each
criteria. We compare to the GRACE [Zhu et al. 2020] with the default parameters in the left-most column, fmr = 0.5, edr =
0.25, 𝛶 = 1. The best value is bolded and the second best is underlined. The greyed-out cells indicate values that are unavailable
due to instability encountered during training.

Ours Literature Tsitsulin et al. [2023]

CCA dist (▽) 𝑑-ReQ (▽) pseudo-𝑝 (̸) RankMe (̸) NEsum (̸) SelfCluster (▽) Stable Rank (̸) Coherence (▽)

Cora -0.6596 -0.2414 0.2036 0.1998 0.2738 0.017 0.1146 0.2914

PubMed -0.7702 -0.2379 0.1422 0.2048 0.4854 -0.0103 0.0532 0.127

Citeseer -0.2014 -0.3183 0.2842 0.2781 0.2518 -0.3156 0.0609 -0.295

CS 0.1875 -0.5459 0.5356 0.5577 0.5608 -0.4376 0.1899 -0.3776

Photo -0.3797 -0.2886 0.274 0.3155 0.2698 -0.5009 0.4722 -0.3782

Computers -0.2433 -0.1943 0.0777 0.2498 0.2875 -0.0714 0.3322 -0.283

Chicago -0.1225 0.6618 -0.6887 -0.6667 -0.3284 0.3701 -0.451 0.1446

Anaheim -0.1528 0.352 -0.3273 -0.3091 -0.1757 0.2337 -0.0864 -0.0543

Twitch -0.5858 0.6246 -0.4868 -0.5414 -0.4852 0.3034 -0.2921 0.2839

Education -0.3464 0.4286 -0.4315 -0.3548 -0.0065 0.0171 0.0917 -0.1247

Avg_clf -0.3445 -0.3044 0.2529 0.3010 0.3549 -0.2198 0.2038 -0.1526

Avg_reg -0.3019 0.5168 -0.4836 -0.4680 -0.2490 0.2311 -0.1845 0.0624

Table 16: Spearman correlation between eachmetric and the node classi!cation accuracy (𝜃2 if the predicted value is continuous)
across di"erent models and sets of hyperparameters. The higher the absolute value is, the better with the sign aligning with
the arrow. We note that many other metrics lose their intended direction for some dataset. For example, the high StableRank
should indicate the better performance but the real relationship turns out to be reversed for Chicago, Aneheim and Twitch
dataset.

Received 2 May 2025

MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada Jeong and Donnat

LOBSTUR: Local Bootstrap for Tuning Unsupervised GNNs MLoG-GenAI@KDD, August 03–07, 2025, Toronto, Canada

	Abstract
	1 Introduction
	2 Problem Formalization
	3 A Local Graph Bootstrapping Procedure
	3.1 The Oracle Case
	3.2 The Noisy Setting
	3.3 Validation of Bootstrap Samples

	4 Evaluation Metrics
	4.1 CCA for Aligning Representations
	4.2 Validation of the Evaluation Metric
	4.3 Proposed Hyperparameter Tuning Framework

	5 Experiments
	6 Conclusion
	Acknowledgments
	References
	A Additional definitions and proofs
	A.1 Definitions
	A.2 Proof of Theorem 3.2

	B Summary of Selected Unsupervised GNNs
	C Additional Literature Review
	C.1 Cross-Validation
	C.2 Cross-Validation for Unsupervised Learning
	C.3 Cross Validation for Network Analysis
	C.4 Bootstrap
	C.5 Evaluating Embedding Qualities

	D Scalability
	D.1 Alternative Algorithm for Scalability

	E GNN Experiment Details
	E.1 Computer Resources Used

	F Additional Tables and Figures
	F.1 Validation of Metrics
	F.2 Validation of Bootstrap Samples
	F.3 Validation of the Entire Framework (Algorithm 3)

