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Abstract
Subgraph representation learning based on Graph
Neural Network (GNN) has exhibited broad ap-
plications in scientific advancements, such as pre-
dictions of molecular structure–property relation-
ships and collective cellular function. In particu-
lar, graph augmentation techniques have shown
promising results in improving graph-based and
node-based classification tasks. Still, they have
rarely been explored in the existing GNN-based
subgraph representation learning studies. In this
study, we develop a novel multi-view augmenta-
tion mechanism to improve subgraph represen-
tation learning models and thus the accuracy of
downstream prediction tasks. Our augmentation
technique creates multiple variants of subgraphs
and embeds these variants into the original graph
to achieve highly improved training efficiency,
scalability, and accuracy. Benchmark experiments
on several real-world biological and physiologi-
cal datasets demonstrate the superiority of our
proposed multi-view augmentation techniques in
subgraph representation learning.

1. Introduction
Subgraph representation learning using Graph Neural Net-
works (GNNs) has been widely applied to essential scien-
tific areas, including chemistry, biology, pharmaceutics, and
materials science. For example, a PPI (Protein–Protein In-
teraction) network (Zitnik et al., 2018) represents proteins
as nodes and their interactions as edges. Typically, a set
of proteins and their interactions collaboratively determine
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biological processes or cellular functions. This set of pro-
teins and their interactions correspond to subgraphs in the
PPI networks. As another example, in a large molecular
aggregate, single atoms and chemical bonds can be viewed
as nodes and edges, respectively, and any single molecule
in the aggregate can be treated as a subgraph of the system.

Although several subgraph-based GNNs have been pro-
posed to learn subgraph representations for subgraph-related
tasks (Alsentzer et al., 2020; Kim & Oh, 2022; Wang &
Zhang, 2021), none of them have implemented graph aug-
mentation techniques to improve their accuracy. Specifically,
graph augmentation approaches have shown great potential
in promoting the expressive power of GNNs on graph-level
and node-level tasks. To name a few, GraphCL (Graph
Contrastive Learning) (You et al., 2020) drops nodes to
build perturbed graphs for contrastive representation learn-
ing. MPNN (Message Passing Neural Networks) (Gilmer
et al., 2017) promotes the graph message passing by insert-
ing a supernode into the existing graph. DropEdge (Rong
et al., 2020) drops random edges to avoid over-fitting and
relieve over-smoothing (You et al., 2020; 2021; Zhu et al.,
2020). NeuralSparse (Zheng et al., 2020) introduces a graph
sparsification strategy to augment graph data. To the best
of our knowledge, existing graph augmentation approaches
are designed to improve representation learning for nodes
or graphs instead of subgraphs.

This work addresses a fundamental question: can graph aug-
mentation strategies boost subgraph representation learn-
ing? To answer the question, we apply general graph aug-
mentation techniques such as dropping nodes to existing
subgraph-based GNNs and observe surprisingly significant
accuracy degradation. We see that the micro-F1 perfor-
mance of GLASS (GNN with LAbeling trickS for Sub-
graph) (Wang & Zhang, 2021) on HPO-METAB (Human
Phenotype Ontology-Metabolism) (Splinter et al., 2018;
Hartley et al., 2020) drops by 1.2% when applying the
DropEdge on the whole graph and by 12.5% when apply-
ing the DropEdge directly on subgraphs. This motivates us
to develop subgraph-specific augmentation techniques to
improve the subgraph representation learning model.

To this end, we present a novel multi-view approach to aug-
ment subgraph representation learning. We hypothesis that
the accuracy drop from DropEdge is because DropEdge
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changes the original connections in subgraphs and the repre-
sentation learned on augmented subgraphs only is less useful
for downstream tasks. Our basic idea is to not only create
perturbations of the original subgraphs (i.e., augmented sub-
graphs), but also preserve the original view of the subgraphs
(i.e., original subgraphs) during training. Generating sepa-
rate graphs to include different views of the same subgraph
is not scalable because the size of the augmented graph will
grow linearly with the number of subgraphs and the number
of views. We address the scalability issue by embedding
augmented subgraphs in the original graph, significantly
decreasing the demand for GPU resources. We obtain the
embeddings of both the original and augmented subgraphs
by feeding them to subgraph-based GNNs and generate
subgraph embeddings by applying a pooling function.

In summary, this work makes the following contributions:

• This work proposes a novel multi-view augmentation
strategy to improve the accuracy of subgraph-based
learning tasks. This study is the first to explore the
benefits of graph augmentation techniques in subgraph
representation learning.

• The proposed multi-view augmentation strategy dy-
namically binds augmented subgraph views to the
whole graph to drop exaggerated GPU resource con-
sumption in order to achieve highly-improved training
efficiency and task accuracy.

• Empirical evaluations on three subgraph datasets
demonstrate that our augmentation approach can im-
prove existing subgraph representation learning by
0.1%–1.6% in accuracy, which is 4.6% in average
higher than general graph augmentation techniques
DropEdge and DropNode.

2. Related Works
Subgraph Representation Learning Subgraph represen-
tation learning using GNNs has gained substantial attention
these years (Meng et al., 2018) due to its broad applications
in scientific domains. Outstanding examples include Sub-
GNN (SubGraph Neural Network) (Alsentzer et al., 2020),
which routes messages for internal and border properties
within sub-channels of each channel, including neighbor-
hood, structure, and position. After that, the anchor patch
is sampled and the features of the anchor patch are aggre-
gated to the connected components of the subgraph through
six sub-channels. GLASS (Wang & Zhang, 2021) employs
a labeling trick (Zhang et al., 2021) and labels nodes be-
longing to any subgraph to boost plain GNNs on subgraph
tasks. S2N (Subgraph-To-Node) (Kim & Oh, 2022) trans-
lates subgraphs into nodes and thus reduces the scale of the
input graph. These approaches focus on developing novel

subgraph-based GNNs to improve task accuracy, but they
have never implemented graph augmentation techniques.

Graph Augmentation Many general graph augmentation
techniques have been proposed to improve task accuracy
recently. DGI (Deep Graph Infomax) (Veličković et al.,
2019) perturbs the nodes by performing a row-wise swap
of the input feature matrix while the adjacency matrix re-
mains unchanged, generating negative samples for com-
parison learning and maximizing the mutual information
of input and output. GAug-M (Zhao et al., 2021) gener-
ates and removes edges of the graph by training an edge
predictor to finally achieve the effect of high connectivity
between nodes within the same class and low connectivity
between nodes from different classes. NeuralSparse (Neural
Sparsification) (Zheng et al., 2020) proposes a supervised
graph sparsification technique that improves generalization
by learning to remove potentially task-irrelevant edges from
the input graph. GraphCL (You et al., 2020) points out
that different data augmentation techniques introduce differ-
ent advantages in graph learning tasks in different domains.
For example, edge perturbation can enhance learning in
social network graphs, but can be counterproductive in com-
pound graphs learning by destroying the original informa-
tion. SUBG-CON (SUBGraph CONtrast) (Jiao et al., 2020)
samples a series of subgraphs containing regional neigh-
bors from the original graph as training data to serve as an
augmented node representation. Although these methods
show promising results for augmenting graphs for node- and
graph-based downstream tasks, they are not designed for
augmenting subgraphs for subgraph-based tasks.

Multi-view Graph Learning Multi-view representation
learning on graphs has attracted significant attention because
they capture different properties on the same graph. Hassani
et al. (Hassani & Khasahmadi, 2020) introduce a multi-
view graph learning manner to perform contrastive learning.
O2MAC (One2Multi graph AutoenCoder) (Fan et al., 2020)
proposes a multi-view-based auto-encoder to promote self-
supervised learning. MV-GNN (Multi-View Graph Neu-
ral Network) (Ma et al., 2020) utilizes two MPNNs to en-
code atom and bond information respectively via multi-view
graph construction. They construct multi-view graphs to
express different levels of information in a graph, which is
an intuitive and efficient way of building augmented graphs.
Our work also leverages multi-view–based augmentation
but focuses on subgraph-based tasks.

3. Method
3.1. Preliminaries

Let G = (V, E ,X) denote a graph, where V = {1, 2, .., N}
represents the node set, E ⊆ V × V represents the edge
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Figure 1. Overview of our proposed subgraph augmentation approach. The two subgraphs in the original graph are colored in gree and
orange. We first generate multi-subgraph views via stochastic augmentation. Following that we connect the augmented subgraph to the
remaining part of the original graph, by adding edges that link the augmented subgraph and the whole graph. After feeding forward the
whole graph into subgraph-specific GNNs, we extract the subgraph embeddings of different views, respectively (triangles and squares).
Ultimately, we fuse the embeddings of different views by a pooling function and obtain the augmented subgraph embeddings (diamonds).

sets, and X represents the corresponding node feature. Xi,
the ith row of X, represents the features associated with the
ith node and the adjacency matrix A ∈ {0, 1}N×N , where
aij = 1 denotes that (vi, vj) ∈ E .

GS = (VS , ES ,XS) denotes a subgraph of G, where VS ⊆
V , ES ⊆ E ∩ (VS × V)S , and XS stacks the rows of X
belonging to VS . The adjacency matrix of a subgraph GS is
AS .

Given the subgraphs S = (GS1
, GS2

, .., GSn
) and their la-

bels T = {tS1
, tS2

, ..., tSn
}, the goal of subgraph property

prediction is to learn a representation embedding hSi
for

each subgraph GSi to predict the corresponding tSi .

3.2. Proposed Multi-View Augmentation

This section presents our proposed multi-view augmentation
approach (Figure 1). At each forward step, we first gener-
ate augmented views of subgraphs by perturbing original
subgraphs randomly with dropping nodes. After that, we
add the augmented subgraphs into the original graph and
feed the new graph into a subgraph-specific neural network.
Here, we obtain subgraph embeddings of both the original
subgraph and the augmented subgraph. These embeddings
are fed into a pooling function to generate a single subgraph
embedding for each subgraph, which is used for downstream
subgraph-based tasks.

3.2.1. DROPNODE

DropNode is a graph data pertubation strategy that randomly
drops nodes in a graph (You et al., 2020). We apply DropN-
ode for each subgraph to generate an augmented subgraph.
For each subgraph, we generate a stochastic boolean mask
Mp ∈ Rm×m, where m is the number of nodes in the sub-
graph and p represents the rate of dropping nodes. We use

the boolean mask to set the corresponding value of the adja-
cency matrix of the subgraph to zero if Mp ̸= 1. The new
adjacency matrix becomes

A′
S = AS −Mp ⊙AS (1)

where ⊙ means element-wise product.

3.2.2. AUGMENTING THE ORIGINAL GRAPH

After subgraph augmentation, we obtain an augmented sub-
graph G′

S = (V ′
S , E ′

S ,X
′
S). We enrich the original graph

to include both the augmented subgraph and the original
subgraph. The enriched graph is thus called a Multi-View
Graph.

Mathematically, the multi-view graph G′ = (V ′, E ′,X′)
where V ′ = V ∪ V ′

S . The consequent adjacency matrix
becomes

A′ =

[
A A[:,V ′

S ]
A[V ′

S , :] AS

]
. (2)

Feeding forward the multi-view graph into subgraph-
specific neural networks, we can get the embeddings of
both the augmented subgraph and the original subgraph. We
fuse different subgraph embeddings into one embedding by
applying a pooling function (e.g., MaxPool or AvgPool):

hS = Pool(GNN(G′)). (3)

With the learned subgraph embeddings, we can predict the
subgraph properties by applying a Multi-Layer Perception
(MLP):

tS = MLP (hS). (4)
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Table 1. Statistics of three real-world datasets.
DATASET # NODES # EDGES # SUBGRAPHS

PPI-BP 17,080 316,951 1,591
HPO-METAB 14,587 3,238,174 2,400
EM-USER 57,333 4,573,417 324

4. Experiments
In this section, we evaluate the efficacy of our proposed aug-
mentation technique by comparing it with several baselines
from real-world datasets.

4.1. Experiment Settings

Datasets Table 1 summarizes the subgraph structure re-
lated statistics of the datasets obtained from SubGNN
(Alsentzer et al., 2020). Specifically, PPI-BP (Zitnik et al.,
2018) aims to predict the collective cellular function of a
given set of genes known to be associated with specific
biological processes in common. The graph shows the cor-
relation of the human PPI (protein-protein interaction) net-
work where nodes represent proteins and edges represent
the interaction between proteins. A subgraph is defined
by the collaboration of proteins and labeled according to
cellular functions from six categories (metabolism, devel-
opment, signal transduction, stress/death, cell organization,
and transport).

HPO-METAB (Splinter et al., 2018; Hartley et al., 2020)
simulates rare disease diagnosis with the task of predicting
subcategories of metabolic disorders that are the most con-
sistent with these phenotypes. The graph is a knowledge
graph containing phenotypic and genotypic information for
rare diseases. A subgraph consists of a collection of phe-
notypes associated with rare monogenic diseases. HPO-
METAB subgraphs are labeled according to the type of
metabolic disease.

The task of the EM-USER dataset (Ni et al., 2019) is to pre-
dict the characteristics of a user in social fitness networks.
In the network, nodes represent workouts and edges exist
between workouts completed by multiple users. Each sub-
graph is represented by a sub-network that constitutes a
user’s workout history and is labeled with features about the
user.

Models The proposed augmentation technique is compati-
ble with many subgraph-based GNNs and can be integrated
on top of them because it does not alter the GNN model. In
the evaluation, we select GLASS (Wang & Zhang, 2021),
the current state-of-the-art subgraph representation learning
model to integrate our subgraph augmentation approach.
We refer to our approach as GLASS w/ Multi-View.

For baselines, we compare our model with four differ-

ent approaches that apply DropNode and DropEdge to
GLASS, GLASS w/ DropNode, GLASS w/ DropNode
sub, GLASS w/ DropEdge, GLASS w/ DropEdge sub,
several other subgraph-based GNN models (Sub2Vec (Ad-
hikari et al., 2018) and SubGNN (Alsentzer et al., 2020)),
and general GNN baselines (MLP (Multi-Layer Perceptron)
and GBDT (Gradient Boosting Decision Tree) (Chen &
Guestrin, 2016)). GLASS w/ DropNode and GLASS w/
DropEdge apply DropNode (You et al., 2020) and DropE-
dge (Rong et al., 2020), respectively, to the entire graph
while GLASS w/ DropNode sub and GLASS w/ DropE-
dge sub apply DropNode and DropEdge to subgraphs only,
respectively.

Implementation Details The hyperparameters in GLASS
w/ Multi-View include the probability of dropping nodes
and the number of augmented views. We use grid search
to optimize the hyperparameters. The dropping node prob-
ability is 0.15 for PPI-BP and HPO-METAB and 0.3 for
EM-USER. We find one augmented view is sufficient and
adding more augmented views do not increase task accu-
racy, which echos the findings by Hassani et al. (Hassani &
Khasahmadi, 2020).

We first train the model in an unsupervised manner as is
performed in GLASS (Wang & Zhang, 2021), and then use
supervision from downstream tasks to fine-tune the model
parameters. We perform 10 different training and validation
processes with 10 distinct random seeds.

4.2. Results

The empirical performance is summarized in Table 2. Our
proposed subgraph augmentation improves task accuracy
across all three datasets. It consistently performs better
than all the baseline approaches, mainly because it inhibits
over-smoothing and over-fitting. Specifically, our approach
improves the Micro-F1 scores by 0.1%–1.6%, 2.4%–8.8%,
and 12.5%–23.5% compared to plain GLASS, SubGNN,
and Sub2Vec, respectively, which are state-of-the-art ap-
proaches for subgraph representation learning. The results
also demonstrate the superiority of subgraph-based GNNs
over general graph representation learning approaches.

We also observe a significant accuracy drop after applying
DropEdge to GLASS. The accuracy drop of GLASS w/
DropEdge sub is more significant than GLASS w/ DropE-
dge, which applies DropEdge to the entire graph instead of
subgraphs. It implies that the accuracy drop from DropEdge
comes from the fact that DropEdge removes some of the
internal connections of a subgraph. The subgraph repre-
sentation using only the augmented subgraph is thus less
useful than integrating the original subgraph. This result
demonstrates the necessity to keep at least one view of the
original subgraph structure.
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Table 2. Mean Micro-F1 scores with standard deviations of the mean on three real-world datasets. Results are provided from runs with 10
random seeds.

METHOD PPI-BP HPO-METAB EM-USER

GBDT 0.446± 0.000 0.404± 0.000 0.694± 0.000
MLP 0.445± 0.003 0.386± 0.011 0.524± 0.019
SUB2VEC 0.388± 0.001 0.472± 0.010 0.779± 0.003
SUBGNN 0.599± 0.008 0.537± 0.008 0.816± 0.013
GLASS W/ DROPEDGE 0.593± 0.007 0.602± 0.090 0.814± 0.032
GLASS W/ DROPEDGE SUB 0.575± 0.007 0.490± 0.020 0.808± 0.026
GLASS W/ DROPNODE 0.601± 0.009 0.612± 0.011 0.796± 0.055
GLASS W/ DROPNODE SUB 0.577± 0.016 0.453± 0.025 0.816± 0.228
GLASS 0.613± 0.007 0.614± 0.005 0.888± 0.006
GLASS w/ Multi-View (this work) 0.623± 0.008 0.615± 0.010 0.904± 0.006

5. Conclusion
This paper presents a novel multi-view augmentation tech-
nique to improve subgraph representation learning. The
augmentation randomly perturbs the subgraph components
in an input graph and generates multi-views of this subgraph.
Existing subgraph-based GNNs can be used to produce em-
beddings for each view of the subgraph. The embeddings are
fused by a pooling function to create a final representation
of the subgraph. We evaluate the augmentation technique on
top of GLASS, a state-of-the-art subgraph-based GNN, and
the experimental results on three subgraph datasets demon-
strate that the augmentation can effectively improve the
accuracy of the GNN.
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