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Abstract

In this paper, we contribute to solving a threefold problem: outlier rejection, true
model reasoning and parameter estimation with a unified optimization modeling.
To this end, we first pose this task as a sparse subspace recovering problem, to
search a maximum of independent bases under an over-embedded data space. Then
we convert the objective into a continuous optimization paradigm that estimates
sparse solutions for both bases and errors. Wherein a fast and robust solver is
proposed to accurately estimate the sparse subspace parameters and error entries,
which is implemented by a proximal approximation method under the alternating
optimization framework with the “optimal” sub-gradient descent. Extensive experi-
ments regarding known and unknown model fitting on synthetic and challenging
real datasets have demonstrated the superiority of our method against the state-
of-the-art. We also apply our method to multi-class multi-model fitting and loop
closure detection, and achieve promising results both in accuracy and efficiency.
Code is released at: https://github.com/StaRainJ/DSP.

1 Introduction

Geometric model estimation is a fundamental problem in computer vision, serving as the core of
many high-level tasks including structure-from-motion [28, 39], SLAM [33, 9], and data align-
ment [24, 27]. The models to specific data can be explained as line/ellipse/circle for 2D point
sets, plane/cylinder/sphere for 3D point sets, or fundamental/homography/affine model for point
correspondences extracted from two-view images, etc. Estimating the parameters of a predefined
model from inliers only is well studied [21]. But real-world inputs unavoidably contain severe noises
and outliers, posing great challenges for accurate model estimation. Besides, another key problem
rarely considered is how to recovery the model parameters without knowing the model type.

Recent researches mainly focus on proposing robust estimators to tackle the impact of noise and
outliers, such as regarding it as a Consensus Maximization (CM) problem. This problem can be
well solved with Sample Consensus (SAC) methods, such as RANSAC [19] and its variants[11,
38, 3, 6, 22]. They commonly sample a smallest inlier set, to best fit a given geometry model
following a hypothesize-and-verify strategy [28]. Inside this loop, the model is actually estimated
by Direct Linear Transform (DLT) method with a Least-Square (LS) solution. SAC methods can
provide probabilistic guarantee of hitting an all-inlier subset. However, this scheme succeeds only if
given a predefined model type with sufficient time budget [52]. Another popular strategy is to pose
it in a Global Optimization framework, which formulates the fitting task as a subspace learning
problem [45, 37, 13, 17, 18, 14]. Specifically, the representative method, Dual Principal Component
Pursuit (DPCP) [45], tries to minimize an `1 co-sparse objective on the sphere. This is further applied
to estimate specific models [12, 18], which typically embeds the model as a single hyperplane, or the
intersection of multiple hyperplanes, and optimizes globally. This type of methods are admitted with
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efficient implementations and strong theoretical guarantees, thus arising great research interest in
recent years. Deep Learning has also stimulated numerous methods for geometric model learning,
which extract deep geometric cues from sparse points using multilayer perceptrons [49, 43, 50],
convolutional [51] or graph networks [40]. They can fast output potential inliers once trained, but
still require robust estimator such as RANSAC as postprocess for accurate model estimation.

The above mentioned methods can only work on a fact that: one is certain about the true geometric
models, then uses them to guide the formulation for parameter estimation. But in fact, we can always
fit a model less constrained to obtain higher inlier count [31, 37]. Specifically, for homography data,
estimating a fundamental matrix may return more consensus points, but many are outliers. While
homography estimation can only find the largest plane structure in 3D scene, missing considerable
inliers for full motion data. Fitting an unknown model for heavily contaminated data is much
challenging and is in general NP hard. Existing methods solve it with model selection criteria [1, 42,
44], which first fit all possible models, then select the best one with a geometric verification, such as
widely used GRIC metric [44, 32]. This is what is done in SfM or SLAM pipeline for fundamental
matrix and homography identification [39]. However, such strategy is limited by the greedy selection
strategy thus requiring huge computational burden. In addition, the used insufficient information
would easily cause wrong selection of the true model for constrained motions of camera [37, 31, 32].

In this paper, we will simultaneously solve i) outlier rejection, ii) true model reasoning and iii)
parameter estimation in a unified optimization modeling. To this end, we start with introducing a
common paradigm for exact model fitting, then derive our sparse subspace learning theory, which
makes it possible to estimate the true model without knowing the model type, and robust to outliers.
On this basis, we convert the objective into a continuous optimization paradigm that estimates sparse
solutions for both bases and outlier entries. Wherein a fast and robust solution is proposed, that is
based on superiorities of projected sub-gradient method (PSGM) and alternating optimization strategy.
Finally, the true model and the inliers are directly extracted from our solutions. Contributions: i) We
are the first to propose a continuous optimization modeling for geometric model fitting with unknown
model type and dominant outliers. ii) We propose sparse subspace recovery theory, which is a novel
formulation for model reasoning and fitting. iii) We integrate the proximal approximation strategy
and sub-gradient descent method into the alternating optimization paradigm, which solves our dual
sparsity problem with a convergence rate of O(1/k2). iv) Extensive experiments on known/unknown
model fitting and two visual applications are designed to validate the superiority of our method.

2 Methodology

This paper aims to explore a valid solution for geometric model reasoning and robust fitting. Before
this, we first give a brief review of the widely-used solution for exact model estimation, which helps
to derive our concerned unknown model fitting problem.

2.1 Geometry Preliminaries and New Insights

In the community of model fitting, the objective with geometric error is extremely hard to optimize
due to the highly non-linear nature. In contrast, if the data are properly normalized, using linearized
error (i.e., algebraic error) to construct objective would show great efficiency to find the optimal
solution [18]. For algebraic objective, DLT is known as an efficient method. To be specific, suppose
we are given a set of feature correspondences S = {si = (pi,p

′
i)}Ni=1, where pi = (ui, vi, 1)>

and p′i = (u′i, v
′
i, 1)> are column vectors denoting the homogeneous coordinates of feature points

extracted from two-view images. Our goal is to recover the underlying geometric structure including
Fundamental matrix, Homography and Affine. This two-view problem is essential in 3D vision
applications, and is the main focus of this paper.

Fundamental Matrix F ∈ R3×3 describes the entire epipolar geometry p′>i Fpi = 0. It is suggested
to be represented by single equation living in the polynomial space

ΦF(pi,p
′
i)
>vec(F) = 0, (1)

where
ΦF(pi,p

′
i)
> = (u′iui, u

′
ivi, u

′
i, v
′
iui, v

′
ivi, v

′
i, ui, vi, 1), (2)

is the embedding of correspondence (pi,p
′
i) under epipolar constraint, and vec(F) ∈ R9 is the vector

form of matrix F in row-major order. N ≥ 8 correspondences can uniquely determine F up to scale.

2



Homography H ∈ R3×3 describes the pure rotation or plane projection, which claims that p′i and
Hpi are co-linear, implying [p′i]×Hpi = 0, where [p′i]× is a skew-symmetric matrix. In DLT
solution, it usually converts to the following constraint:

ΦH(pi,p
′
i)
>vec(H) = 0, (3)

where vec(H) ∈ R9, similarly. And ΦH(pi,p
′
i) denotes the homography embedding:

ΦH(pi,p
′
i)
>=

[
ui vi 1 0 0 0 −u′iui −u′ivi −u′i
0 0 0 ui vi 1 −v′iui −v′ivi −v′i

]
. (4)

This constraint suggests that, H can be estimated from given at least 4 correspondences.

Affine Matrix A ∈ R3×3 is the degraded case of H , with the last row of A being [0, 0, 1]. This
model implies a linear transformation p′i = Api. The affine constraint is also represented as:

ΦA(pi,p
′
i)
>vec(A) = 0, (5)

where vec(A) = [a11, a12, a13, a21, a22, a23, 1]>, and

ΦA(pi,p
′
i)
> =

[
ui vi 1 0 0 0 −u′i
0 0 0 ui vi 1 −v′i

]
(6)

is the affine embedding. Using Eq. (5), the solution can be given by at least 3 correspondences.

Given sufficient inliers, DLT method provides an efficient solution for geometric model fitting, which
converts to solving the following minimal least-square problem:

min
θ
‖M>θ‖22, s.t. ‖θ‖2 = 1, (7)

where M is the data embedding matrix for specific modelM , i.e., mi = ΦM(pi,p
′
i) withM ∈

{F,H,A}, as defined in Eqs. (2), (4) and (6). θ = vec(M) ∈ RD indicates the parameter vector
ofM, and ‖θ‖2 = 1 restricts it in a sphere thus avoiding the trivial solution. The optima solution
θ∗ is exactly the right singular vector corresponding to the smallest singular value of M. However,
DLT only works on the outlier-free case, due to the use of `2 norm. Thus, it is usually applied in SAC
paradigm by sampling a clean subset to fit a given model. Another practical formulation is using
latent variable inside (7) to indicate the inlier, or using truncated or `1 loss [18]. In contrast, the `1
objective is easier to optimize due to the convex nature by solving

min
θ
‖M>θ‖1, s.t. ‖θ‖2 = 1. (8)

This is actually a subspace learning problem as introduced in DPCP series [45, 52, 13], which
can be efficiently solved by a projected sub-gradient method (PSGM) [13]. Besides, [18] gives
comprehensive comparisons of above mentioned losses under different model cases. These works
also demonstrate the robust property of (8), which roughly states that, the estimation task can even
tolerate O(m2) outliers (m is the inlier number).

New Insights. Above formulations almost work on knowing the exact information of model type,
such that the embedding matrix M is correct, i.e, choosingM from {F,H,A} to generate ΦM.
Practically, predefining a correct model is much difficult. First, the camera type and motion, or
the scene in shooting is not always known. Besides, we cannot manually define the correct model
for each image pair in large-scale vision tasks. In this regard, this paper tends to simultaneously
seek the true model and robustly estimate the model parameters, by proposing a general continuous
optimization framework with dual sparsity constraints.

2.2 Dual Sparsity Formulation

In this paper, we aim to estimate the model parameters without knowing the model type. That means
we should find a common data embedding Φ̃(·) thus avoiding exact ΦM(·) for each model. Instead it
converts to constructing model embedding Ψ(M), to generate a common constraint as:

Φ̃(pi,p
′
i)
>Ψ(M) = 0, M∈ {F,H,A}. (9)

Eq. (9) can provide great advantages for our model reasoning and fitting task. First, it avoids the
requirement for exact model type to construct ΦM(·) before estimation. Moreover, the solution
would have the form of Ψ(M), which directly guides the identification of different models. Eq. (9)
essentially relies on the following Sparse Subspace Recovery (SSR) theory.
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Figure 1: Illustration of fitting a point model (x = t) . (a) original points, (b) embedding under DLT
solution, (c) embedding under our SSR theory. x∗ or −x∗ is the optimal solution.

Theorem 1 (SSR) Geometric model fitting can be seen as a subspace recovery problem represented
by the intersection of multiple sparse hyperplanes under an over embedded data space.

To better interpret the proposed Theorem 1, we first give an example on 2D point set fitting. Given
a set of clean 2D points S = {si = (xi, yi)}Ni=1 that are sampled from a structure of line (L),
parabola (P) or ellipse (E), i.e., M ∈ {L,P,E}. The model parameters can be estimated by
exact data embedding ΦM(xi, yi) with DLT method (7). For ellipse estimation, ΦE(xi, yi) =
[1, xi, yi, x

2
i , y

2
i ]>, while for a line, ΦL(xi, yi) = [1, xi, yi]

>. But in our sparse theory, with a
higher-order embedding, such as fixing Φ̃(xi, yi) = ΦE(xi, yi), we can obtain a sparse solution
θ = [a, b, c, 0, 0]> for a line model, and θ = [a, b, c, d, 0]> or [a, b, c, 0, e]> for a parabola model.
See Fig. 2, or refer to Append.D and Fig. 6 for details. Thus, the SSR task can be formulated as:

min
x
‖x‖0, s.t. M>x = 0, ‖x‖2 = 1, (10)

where M is the over embedding for input data with mi = Φ̃(xi, yi) = ΦE(xi, yi), and we denote x
as a sparse basis that indicates a hyperplane under SSR theory. The `0 norm in the objective suggests
to use less parameters to fit the given data. Note that, mi can be composed by more polynomials
such as xiyi, x3i , y

3
i or higher-order forms, but it is not necessary for the model pool {L,P,E}.

Problem (10) can be illustrated by a point model fitting x = t as in Fig. 1. The middle plot shows that,
the solution x∗ or −x∗ is ideally vertical to the embedding vector m̃i of inliers. With higher-order
embedding [xi, 1, x

2
i ]
>, the solution would be any vector located in the plane P that is vertical to m̃i

and through the origin. However, with sparsity constraint, the solution reduces to be the intersection
of plane P and one of coordinate planes {πxoy , πxoz ,πyoz}. Since x2i causes higher complexity, the
final solution is exactly P

⋂
πxoy , i.e., x∗ = ±1√

1+t2
[1,−t, 0]>.

Denoting GM = (D, d, r, s) as the geometry relationship for a modelM, where D is the ambient
dimension of embedded data, d is the subspace dimension, r denotes the number of basis to be esti-
mated, while s means the minimum sparsity in each basis (i.e., the least number of zero parameters),
the relations for 2D models are GL = (5, 4, 1, 2), GP = (5, 4, 1, 1), and GE = (5, 4, 1, 0). Next, we
emphatically introduce the new formulation for two-view models, which is outlined in Append.D.

Extending to two-view geometry, our SSR task can directly benefit from (8), which is a special case
in subspace recovery [46, 52, 14], with d = D− 1. In subspace learning theory, the learning problem
is significantly easier when the relative dimension d/D is small [17, 18]. For such purpose, and
together with our sparse theory, we can obtain the following new formulations. First, for F estimation,
since its geometric constraint derives only one single hyperplane living in a 9-dimensional space,
thus Eq. (9) has the same form with Eq. (1). And the geometric relation is clearly GF = (9, 8, 1, 0).

Proposition 1 Given n ≥ 4 clean correspondences conforming to a homography transformation H,
the model estimation can be converted to recovering a subspace with dimension no more than 6, which
consists of 3 sparse hyperplanes with sparsity s ≥ 3 under the 9-D embedding Φ̃ = ΦF (pi,p

′
i).

Proof. Homography model actually derives r = 3 equations, and each of them indicates a sparse
hyperplane with Φ̃(pi,p

′
i)
>Ψ(H) = 0, where Ψ(H) ∈ R9×3 is the embedding of model H, which

consists of three sparse intersected hyperplanes (i.e., orthometric bases) as:

Ψ(H) =

01×3,h
>
3 ,−h>2

−h>3 ,01×3,h
>
1

h>2 ,−h>1 ,01×3

> , (11)
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with H = [h>1 ;h>2 ;h>3 ]. Since Ψ(H) is of rank 3, the dimension of subspace d ≤ 6. And the solution
for each basis would have at least s = 3 zeros, thus the geometric relation is GH = (9, 6, 3, 3). �

Proposition 2 Given n ≥ 3 clean correspondences conforming to an affine transformation A, the
model estimation can be converted to recovering a subspace with dimension no more than 7, which
consists of 2 sparse hyperplanes with sparsity s ≥ 5 under the 9-D embedding Φ̃ = ΦF (pi,p

′
i).

Proof. Eq. (5) derives r = 2 linear equations, and each of them indicates a sparse hyperplane with
Φ̃(pi,p

′
i)
>Ψ(A) = 0, where Ψ(A) ∈ R9×2 is the embedding of model A, which consists of two

sparse intersected hyperplanes as:

Ψ(A) = A′9×2 =

[
0, 0, a11, 0, 0, a12,−1, 0, a13
0, 0, a21, 0, 0, a22, 0,−1, a23

]>
. (12)

Because Ψ(A) is of rank 2, the dimension of subspace is no more than 7. And the solution for each
basis would have at least s = 5 zeros, thus the geometric relation is GA = (9, 7, 2, 5). �

The above two propositions have well interpreted Theorem 1. To be specific, H and A estimation
can be performed as a hyperplane fitting problem with Eq. (3) and Eq. (5). Alternatively, they can
be respectively solved as recovering a 6-dimensional subspace and a 7-dimensional subspace in a
common 9-dimensional data embedding space. For the purpose of our unknown model fitting, the
advantages of this conversion have been explained in Eq. (9). Besides, the low-relative dimension
d/D significantly makes the subspace learning task easier [17, 18]. In the following, we will give a
general formulation for unknown model fitting, then explore its efficient solution.

Formulation for Unknown Model Fitting. With no outliers and noise, unknown model fitting can
convert to finding all r independent sparse bases X = [x1,x2, · · · ,xr] ∈ RD×r by solving

min
X∈RD×r

‖X‖0, s.t. M>X = 0, rank(X) = r, (13)

where M is the over embedding matrix of data with mi = Φ̃(si). Rank r constraint of X asks for r
independent bases. But r is generally unknown in advance, thus its estimation is also necessary.

Proposition 3 Given sufficient inliers with no noise, if the conformed model derives r independent
bases, then the solution of SSR satisfies max(rank(X)) = r.

Proof. Denoting X∗ = [x1,x2, · · · ,xr] ∈ RD×r the optimal solution, any subset of X∗ is also
a feasible solution with rank no more than r. For ∀ xr+1 with ‖xr+1‖2 = 1, (X∗)>xr+1 = 0, we
have M>xr+1 6= 0. Hence, xr+1 is not a valid basis, and we can conclude max(rank(X)) = r. �

Proposition 3 suggests that the target of unknown model fitting can be converted to finding a maximum
number of orthometric bases with sparsity constraint. Considering the outliers and noise, the ideal
constraints can be written as M>X −G − E = 0, where G and E are noise and outlier entries,
respectively. Following a common perception, G is assumed to be Gaussian, which suggests to be
constricted by Frobenius norm ‖G‖F . While outlier matrix E is sparse in row, and any ‖Ei,:‖2 6= 0
indicates that the i-th sample can be considered as an outlier, thus we use `2,0 to constrain this property.
Then our problem is transformed into a multi-objective optimization task, including minimizing the
fitting error, the parameter number, the outlier number, and maximizing the basis number. Hence, the
general formulation for robust model reasoning and fitting can be written as a unified form:

min
X,E,r

1

2
‖G‖2F + λ‖X‖0 + γ‖E‖2,0 − τrank(X),

s.t. M>X−G−E = 0, X>X = Ir×r,

(14)

where I is an identity matrix of size r × r with r = rank(X). It restricts that the bases are
all orthometric. λ, γ, τ > 0 are hyper-parameters to balance different loss items. Problem (14)
ultimately outputs an exact sparse subspace X ∈ RD×r, helping to identify the true modelM with
X ∼ Ψ(M). In the following, we will explore an efficient solution for this multi-objective problem.

2.3 Solution

Problem (14) involves `0 minimization, which is the holy grail of sparse approximation. However, `0
optimization is NP-hard, and the non-linear objective makes it even more difficult. A practical way is
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to use `1 norm as the best convex approximation instead. Thus, Problem (14) can be relaxed into:

min
X,E,r

1

2
‖M>X−E‖2F + λ‖X‖1 + γ‖E‖2,1 − τrank(X),

s.t. ‖xi‖2 = 1, x>i xj = 0, ∀ i, j = 1, 2, ..., r, i 6= j.

(15)

Another troublesome issue is to maximize rank(X). Consider that Problem (15) actually aims
to obtain r orthometric bases [x̂1, x̂2, · · · , x̂r] and a sparse outlier matrix Ê = [ê1, ê2, · · · , êr]
satisfying L(M, x̂i, êi) = 1

2‖M
>x̂i − êi‖22 + λ‖x̂i‖1 + γ‖êi‖1 < τ,∀i ∈ {1, 2, · · · , r}. Thus we

decompose (15) into progressively estimating a new sparse bases orthometric to all given bases up to
L(M, x̂i, êi) < τ not holds. For any given bases {B = (xj)|j = 1, 2, · · · , i− 1} (those have been
estimated), a new sparse basis xi(i > 1) can be estimated by solving

min
x,e
L(M,x, e) =

1

2
‖M>x− e‖22 + λ‖x‖1 + γ‖e‖1, s.t. ‖x‖2 = 1, x>y = 0, ∀y ∈ B. (16)

Since there exist two variables (x, e) to be estimated, it is impractical to optimize them directly with
gradient descent method as used in [52, 13, 17]. A valid way is to alternatively optimize x and e in
an iterative pipeline, which encourages us to compute the closed-form solution for (x, e) in each
iteration. For such purpose, we first calculate the derivatives of objective w.r.t. variables, then make
them equal to zero. In the k-th iteration and for given xk−1, we can easily obtain

ek = M>xk−1 − γsgn(ek) = Tγ(M>xk−1), (17)

where sgn(·) is a sign function. ek is in fact solved by a standard threshold shrinkage operation Tγ
introduced in the Lemma of [47]. (Refer to Append.B for details)

Given ek Update xk. Due to the coexistence of quadratic and sparse constraints, it is hard to directly
optimize. Fortunately, [7] provides efficient solution for such linear inverse problem with theoretical
and practical verification. We exploit its basic idea into our dual sparsity problem, that is to build at
each iteration a regularization of the linearized differentiable function, then obtain

xk = arg min
x

{
L

2
‖x− (xk−1 − 1

L
∇f(xk−1))‖22 + λ‖x‖1

}
, (18)

where the smallest Lipschitz constraint of the gradient ∇f(x) can be calculated by L(f) =
λmax(MM>), and λmax(·) indicates the maximum eigenvalue of a matrix, and we denote

qL(xk−1) = xk−1 − 1

L
∇f(xk−1), (19)

where ∇f(xk−1) = M(M>xk−1 − ek). In this case, Problem (18) is essentially similar to solving
e, and we can obtain the update formula of x with xk = T λ

L
(qL(xk−1)). (Proof is in Append.C)

The above solution for x actually reduces to a subgradient method [26], which converges at a rate
no worse than O(1/k). However, it was proven in [34, 35] that there exists a gradient method with
an O(1/k2) complexity which is an ‘optimal’ first order method for smooth problems [7]. The core
strategy is that the iterative shrinkage operation performs at the point x̃k−1 which uses a specific
linear combination of previous two points (xk−1,xk−2) as x̃k−1 = xk−1 +

(
tk−1−1
tk

)
(xk−1−xk−2)

with tk = 1
2 (1 +

√
1 + 4t2k−1). Then updating x with convergence rate O(1/k2) is (See Fig. 2)

xk = T λ
L

(qL(x̃k−1)). (20)

Next, we further consider constraints of Problem (16). It can be easily solved by a projection
operation [17, 14] in each iteration, including a sphere projection x ← x

‖x‖2 , and an orthogonal
projection x← (I−BB>)x, because the projector of orthogonal complement is I−BB>.

Eqs. (17) and (20) provide iterative optimization for searching sparse solution of x and e, thus we
term the whole algorithm as Dual Sparsity Pursuit (DSP). Repeatedly using DSP, we can successfully
address the general unknown model fitting task, and the whole process is concluded in Append.D.
Note that, in two-view problem, each model has at least r = 1 basis (e.g. F) and at most r = 3 bases
(e.g. H), thus we denote R as the max number of bases to be estimated, with R = 3.
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Figure 2: The optimization procedure of our
DSP for 2D line fitting. x = [a, b, c, d, e]>

and x′ = [a′, b′, c′, d′, e′]> denote the solu-
tions w/o and with acceleration, respectively.

Model Reasoning Analysis. A critical problem
is how to reason out the model type and estimate
the parameters under a general case. Several meth-
ods [44, 41] have been early proposed to use a selec-
tion strategy [33, 31, 32], but it is not always clear
due their ambiguities [37]. This would be well mit-
igated in our DSP. To be specific, for 2D point set
fitting, we can directly distinguish the correct model
from {L,P,E} through the sparsity of estimated x,
as shown in Fig. 2. As for two-view models, we can
also distinguish them via the sparsity and rank of
estimated X, referring to the model embedding Ψ(M) or their geometric relations GM(D, d, r, s).
The following remark may deliver good understanding of this property, which is illustrated in Fig. 4.

Remark 1 If the true model is F, the solution for (x2, e2) would result in a larger fitting error than
(x1, e1), i.e., ‖M>x1‖2 � ‖M>x2‖2. In other words, the number of inliers detected by (x2, e2)
would be much smaller than (x1, e1). Since the second basis is essentially to find a homography or
affine structure. On the contrary, if the true model is H or A, the detected inliers between these two
solutions would have small difference, as the orthometric and sparse bases indeed exist.

3 Experiment

 Optimal  ξ = 1.2

Figure 3: Distribution of
ξ on H data and F data.

Implementation Details: (1) Parameter setting. In DSP, λ and γ are
two hyper-parameters. Based on [44], we set λ = 0.005 log(4N) ×
[1, 1, 0.5, 1, 1, 0.5, 0.5, 0.5, 0.1]> as default (for 2D model, we set λ =
log(2N) × [0.01, 0.1, 0.1, 1, 1]>). In addition, we set γ = 0.06 at the
beginning, then update it with 0.98γ for each twenty iterations, and
constrain γmin = 0.02. Moreover, we set the max iteration as 2k, and
stop it if ε = ‖xk − xk−1‖2 ≤ 1e−6. As for τ , it controls the number
of estimated basis, i.e., r. We set ξ = L(M,xi, ei)/L(M,xi−1, ei−1),
and describe its distribution on all real data as in Fig. 3. Based on the
best ξ, we set τ = 1.2L(M,xi−1, ei−1) during the estimation of xi. (2)
Synthesized Data. We synthesize 300 image pairs for each model, which consist of different outlier
ratio (OR = 20%, 50%, 80%) and noise level (NL = 0.2, 0.5, 0.8, 1.0, 1.5 in pixel). (3) Real Image
Data. 8 public datasets [8, 2] are used, and we divide them into two groups including Fund: kusvod2,
CPC, TUM, KITTI, T&T; and Homo: homogr, EVD, Hpatch. (4) Comparisons. 6 methods are used
for evaluation, including three SAC methods RNASAC [19], USAC [38], and MAGSAC++ [6];
one globally optimized method EAS [18]; and two deep methods OANet [50], SuperGlue [40]. (5)
Metrics. All methods applied the normalized 4-point and 8-point algorithms for H and F estimation
(which are applied as post-process [18] in EAS, DSP and two deep methods with 100 iterations). To
measure the accuracy, we use Geometrical Error (GE, in pixel), which is defined as the re-projection
error and Sampson distance [4, 5] for H and F estimation, respectively. We defined the failed case as
that the GE is larger than 5 pixels, or the model is wrongly identified. To avoid the failed cases for a
dataset, we use the medium value Emed of GE as measurement. (More details are in Append.E).

Table 1: Model reasoning results on syn.
data w.r.t different OR . Each value x indi-
cates that x% models are correctly selected.

Data AIC BIC GRIC DSP (ours)OR Model

20%
F,100 100 62 100 100
H,100 100 98 100 100
A,100 100 96 100 100

50%
F,100 100 0 100 100
H,100 100 95 100 100
A,100 99 97 98 100

80%
F,100 85 0 93 100
H,100 95 96 98 99
A,100 96 92 95 98

all 97.2 70.7 98.4 99.7

Model Reasoning and Robust Fitting Test:
(1) Test on Synthetic Data. In the simulation test, an
advanced robust estimator EAS [18] is used to esti-
mate all possible models first. Then, three widely used
model selection criteria, i.e., AIC [1], BIC [42] and
GRIC [25], are equipped. The accuracy (%) of model
selection are reported in Tab. 1. AIC can achieve good
performance for homography and affine models, but
not for epipolar cases, particularly for high OR. BIC
shows poor performance in fundamental model selec-
tion, since it prefers under-fitting in theory. GRIC fully
considers the properties of vision problem performing
well in most cases. As for our DSP, it can identify the
geometric models with the best accuracy even in case of high outlier ratio.
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Table 2: Results of model reasoning and fitting on real image pairs. All datasets are divided into Fund.
and Homo. based on the model type. Method with * means first estimating all possible models, then
using GRIC to select the “best” one. Bold and underline indicate the best and second, respectively.

Data\Methods RANSAC* USAC* MAGSAC++* EAS* OANet* SuperGlue* DSP (ours)
E_med 0.8478 0.6545 0.6260 0.6900 0.7579 0.8926 0.6017

Fund. Time(s) 0.5666 0.0239 0.3918 0.2037 0.0152 0.0721 0.0551
FR 0.2925 0.1992 0.2077 0.2142 0.2632 0.2709 0.1136

E_med 1.0428 0.8744 0.8978 0.8472 0.8480 0.9392 0.8227
Homo. Time(s) 2.010 0.0550 1.3419 0.4463 0.0342 0.0716 0.2794

FR 0.3021 0.2604 0.1424 0.0972 0.0903 0.1181 0.066
E_med 0.8794 0.6711 0.6383 0.7091 0.7670 0.9026 0.6249

All Time(s) 0.6638 0.0260 0.4558 0.22 0.0130 0.0721 0.0703
FR 0.2932 0.2043 0.2033 0.2064 0.2515 0.2606 0.1123

Figure 4: Detected inliers of DSP for real data:
F(left) and H(right). Top to bottom: input data,
the first (x1, e1), second basis (x2, e2), and refined
results. For visibility, at most 200 random selected
matches are shown (blue = true positive, green =
false negative, red = false positive).

(2) Test on Real Image Data. In this part, those
datasets are divided into Fund and Homo based
on their model type. In fact, during real applica-
tions, it is more urgent to make sure whether
the true model is F or H [41, 33], thus our
used real image data are sufficient to verify the
performance for real cases. In addition, con-
sidering the competitive performance in Tab. 1,
we only use GRIC as comparison in model se-
lection stage. Six representative estimators are
used for comparison. That is, first using those
robust estimators to obtain all possible models,
then using GRIC to select the best one. Quali-
tative results on two representative image pairs
are shown in Fig. 4, which obviously reveal
the mechanism of our DSP as we assumed in
Remark 1. In addition, our algebra results are
somewhat coarse, but they can be well refined
by a post-processing [18]. Quantitative results
are evaluated in Tab. 2, including Emed, Run
Time (Time) and failure rate (FR). From this ta-
ble, we find that the other estimators typically achieve poor model selection even if using the best
criterion GRIC. Three SAC methods get poor model identification, particularly for Homo data, since
many image pairs are from extreme view change with high outlier ratios. OANet and SuperGlue
similarly achieve low model reasoning accuracy, since some datasets are from complicated scenarios,
such as EVD, T&T and CPC, which are not seen by these two deep methods in their training. Their
model fitting performances directly affect the model reasoning accuracy. Overall speaking and
comparing with GRIC, our DSP reasons out the true model directly from its solutions with much
higher accuracy. As for running time, OANet and USAC almost achieve the best efficiency. Because
OANet is a deep model with GPU acceleration (SuperGlue is slower since it takes descriptors as
input to generate matches), and USAC integrates the local optimization and fast model verification
strategy in its universal framework, but sacrifices the accuracy to some extent.

Known Model Estimation Test: Known model estimation is the main focus of current researches,
thus we also test on those real image pairs by giving the priori of model type, and provide extensive
comparisons. The statistic results are shown in Fig. 5, which only contains four challenging datasets,
while others are in Append.E.3. Statistic results show that the performance of SAC-based methods
would heavily degrade with more time consuming and less accuracy on these challenging datasets.
This is because they intrinsically have to sample an outlier-free subset to best fit the given model, this
is much difficult for these datasets. OANet and SuperGlue achieve poor fitting accuracy due to the
same reason particularly for EVD datasets. As for EAS and our DSP, they commonly optimize from
global formulation, thus showing similar top accuracy. However, our DSP performs better comparing
with EAS, due to the specifical modeling to restrain noise and outliers. And it is much faster, because
the use of an acceleration strategy that makes the convergence rate closed to O(1/k2).
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Figure 5: Qualitative statistic results of Geometric Error (top) and Run Time (bottom) for known
model estimation. A point on the curve with coordinate (x, y) denotes that there are 100× x percent
of image pairs which have GE or RT no more than y. The lower the better.

Table 3: Results of Multi-model fitting. The mean and
median values of ME (%), and Running Time (RT, s) are
listed. Bold and underline indicate the best and second.

Tlink RCMSA RPA MCT MLink RFM-SCAN Ours

ME_ave 27.65 10.05 5.28 11.36 6.04 2.63 1.64
ME_med 27.88 6.087 4.35 1.21 4.22 1.20 0
RT(s) 1.95 2.16 10.84 6.44 9.72 0.01 0.18

Applications: (1) Multi-model Fitting.
We first consider the multi-class multi-
model fitting problem. Unlike multi-
model fitting of single type, it would be
more challenging if the data contain mul-
tiple models with unknown model type
and model number. To this end, a pub-
lic benchmark AdelaideRFM is used for
evaluation. Quantitative results are re-
ported in Tab. 3, where Misclassification Error (ME, %) is selected to characterize the performance.
Six algorithms including T-link [29], RCMSA [36], RPA [30], MCT [31], MLink [32] and RFM-
SCAN [23], are used for comparison. The table shows that our DSP can achieve the best accuracy
with low computational burden.

Table 4: Results of LCD. Metric: the recall at
100% precision. Bold indicates the best.

RSAC USAC MSAC++ EAS OANet Ours

K00 0.9112 0.9118 0.9105 0.9086 0.7910 0.9162
K02 0.7632 0.7796 0.7757 0.7664 0.6441 0.7882

(2) Loop Closure Detection. We next exploit
2 sequences from KITTI vision suite [20] (i.e.,
K00, K02) to evaluate our method in the loop
closure detection (LCD) task, i.e., recognizing
re-observations during the navigation of a robot.
These two sequences have enough loop closures.
Because DELG [10] is considered state-of-the-art
for LCD-related tasks such as image retrieval and landmark recognition, we choose it to simultane-
ously extract global and local features of images to perform LCD in a hierarchical way. Specifically,
given a query image, the similarity of global features under L2-metric is first used to select its
candidate frame, followed by performing model fitting between them based on local features. Only
when sufficient matches are preserved would a loop-closing event be triggered. Results are reported
in Tab. 4, which shows that our DSP achieves the best, since our dual sparsity constraints can well
address navigation of the degraded cases such as only going ahead or making a turn.

4 Conclusion

In this paper, we proposed a unified modeling and fast optimization paradigm named DSP for robust
model fitting with unknown model type and heavy outliers. It enables to use as few parameters
as possible to explain the inlier structure, thus achieving true model identification and parameter
estimation. We introduced an alternating optimization strategy together with proximal approximation
method to accurately estimate the sparse model parameters and outlier entries. In addition, our
proposed method is validated to exactly disambiguate the true model on both synthetic and real data.
Limitation: Our proposed method can only perform for single model, but real data often contains
multiple different models, such as point cloud analysis. In the future, we will integrate the multi-model
fitting problem into our modeling, thus achieving a four-fold task in a unified optimization.
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Broader Impact

The proposed method enjoys great potential to improve a wide range of industrial applications
including image registration and retrieval, camera pose estimation and localisation, 3D reconstruction,
etc. To be specific, the proposed method achieves significant accuracy gains of model reasoning and
fitting on challenging matching benchmarks, which strongly indicates that it will directly benefit
many related fields including robotics and autonomous driving, where the geometric model estimation
is the foundation. However, our method does have some unwelcome repercussions like many other
machine learning techniques. The accurate and robust model reasoning and estimation can be illegally
used for a person or property without permission. It may even be weaponized to guide a UAV to
perform self-location then carry out a terrorism attack. But these negative impacts are more related to
the fields of application rather than the technology itself. And we believe, under strict supervision,
that our work will bring more benefits than harms to society.
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Appendices
We provide necessary proof, pseudo code, additional analysis of our method, and more details about
the implementation, the used datasets and additional experimental results.

A Notaions

We denote matrices with bold upper case letters and their elements with double-indexed lower case
letters: X = (xij). We write the vector in bold lowercase as x = (xi). Thus, the matrix can be also
termed as X = (xi) or ([X]i,:), where [X]i,: means the i-th row of matrix X. We also denoteX as the
set-form of matrix X ∈ RM×N , which consists of all column vectors of X, i.e., X = {xj}Nj=1. The
inlier product of two vectors x,y ∈ Rn is denoted as 〈x,y〉 = x>y. For a matrix X, the maximum
eigenvalue is denoted by λmax(X), and its Frobenius norm is defined as ‖X‖F =

√∑
i

∑
j |xij |2.

For a vector x, ‖x‖2 (or ‖x‖) denotes the Euclidean norm ‖x‖2 =
√∑

i |xi|2, and its `0 norm
(i.e., ‖x‖0) is to compute the number of nonzero entries in vector x, while the `1 of x is defined as
‖x‖1 =

∑
i |xi|.

B Threshold Shrinkage Method

Threshold shrinkage method is typically used to solve `1 norm problem, which is introduced by the
Lemma from [47].

Lemma 1 Let q be a given vector, for problem:

min
x

1

2
‖x− q‖22 + λ‖x‖1, (21)

if the optimal solution is x∗, then the i-th element of x∗ can be calculated as:

x∗i = Tλ(qi), (22)

where Tλ(·) is a threshold shrinkage operation and defined as:

Tλ(q) =

{
q − λ, if q > λ,
q + λ, if q < −λ,
0, otherwise.

(23)

C Proof of Solution

To solve the following linear inverse problem [7]:

x̂ = arg min
x

{
1

2
‖M>x− e‖22 + λ‖x‖1

}
, (24)

we can extend it into:
min{F (x) ≡ f(x) + g(x)}, (25)

where f, g are convex functions with satisfying the following assumptions:

• f : Rn → R is a smooth convex function, which is continuously differentiable with
Lipschitz continuous gradient L(f) :

‖∇f(x)−∇f(y)‖ ≤ L(f)‖x− y‖2,∀x,y ∈ Rn, (26)

where L(f) is the Lipschitz constant of∇f(x).

• g : Rn → R is a continuous convex function which is generally nonsmooth, such as a sparse
constraint term for our problem.

• The extended problem (25) is solvable, i.e., x∗ := arg minF 6= ∅.
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Table 5: Outline of the embedding of data and model for the classical DLT, and our DSP formulation
for known and unknown model fitting. For better understanding, we assume to input only N inliers.
For each formulation, the (requirements) including data type, model type, are listed in the
first row. And for each model, we conclude the geometry relationship GM = (D, d, r, s).

Model
DLT DSP for known model fitting DSP for unknown model fitting

(req.) (data & model type:D,d,r) (data & model type:D,d,r) (data type:D)

Fund.

m>i = (u′ip
>
i , v

′
ip
>
i ,p

>
i )1×9 m>i = (u′ip

>
i , v

′
ip
>
i ,p

>
i )1×9 m>i = (u′ip

>
i , v

′
ip
>
i ,p

>
i )1×9

x = vec(F) x = vec(F) x = vec(F)

M>x = 0N×1, G = (9, 8, 1, 0) M>x = 0N×1, G = (9, 8, 1, 0) M>x = 0N×1, G = (9, 8, 1, 0)

Homo.

m>i =

p>i , 01×3,−u′ip
>
i

01×3,p
>
i ,−v

′
ip
>
i


2×9

m>i = (u′ip
>
i , v

′
ip
>
i ,p

>
i )1×9 m>i = (u′ip

>
i , v

′
ip
>
i ,p

>
i )1×9

x = vec(H) X =


01×3,h

>
3 ,−h

>
2

−h>3 , 01×3,h
>
1

h>2 ,−h
>
1 , 01×3


>

X =


01×3,h

>
3 ,−h

>
2

−h>3 , 01×3,h
>
1

h>2 ,−h
>
1 , 01×3


>

M>x = 02N×1, G = (9, 8, 1, 0)M>X = 0N×3, G = (9, 6, 3, 3) M>X = 0N×3, G = (9, 6, 3, 3)

Affine

m>i =

p>i , 01×3,−u′i
01×3,p

>
i ,−v

′
i


2×7

m>i = (ui, vi, u
′
i, v
′
i, 1)1×5 m>i = (u′ip

>
i , v

′
ip
>
i ,p

>
i )1×9

x = vec(A) X =

a11, a12,−1, 0, a13
a21, a22, 0,−1, a23

> X =

0, 0, a11, 0, 0, a12,−1, 0, a13
0, 0, a21, 0, 0, a22, 0,−1, a23

>
M>x = 02N×1, G = (7, 6, 1, 0)M>X = 0N×2, G = (5, 3, 2, 1) M>X = 0N×2, G = (9, 7, 2, 5)

In our subproblem, f(x) = 1
2‖M

>x− e‖22, g(x) = λ‖x‖1. The smallest Lipschitz constraint of
the gradient ∇f(x) can be calculated as

L(f) = λmax(MM>). (27)

For any L > 0, f(x) can be approximated at a given point y with the following form:

f̂(x) ' f(y) + 〈∇f(y),x− y〉+
L

2
‖x− y‖2

=
L

2
‖x− (y − 1

L
∇f(y))‖22 + const.

(28)

By ignoring constant terms related to y, and let y = xk−1, we can obtain the basic step in each
iteration for problem (24):

xk = arg min
x

{
L

2
‖x− (xk−1 − 1

L
∇f(xk−1))‖22 + λ‖x‖1

}
. (29)

where ∇f(xk−1) = M(M>xk−1 − ek).

D Pseudo Code of Our DSP Method

We conclude the pseudo code of the implementation of our DSP method in Alg. 1 and Alg. 2. For
any given data, we can directly reason out the true model from the solution of our DSP. To this end,
the common embedding and formulation is outlined in Tab. 5. If we know the exact information of
true model type, we can also apply our DSP for inlier seeking and model estimation, by giving exact
data embedding and basis number r, as presented in the middle column of Tab. 5.

Take 2D points fitting as example, i.e., the true model is Line, Parabola, and Ellipse, as shown
in Fig. 6. In each case, the inliers are contaminated by noise of 0.01, and the inlier and outlier
number are 300 and 100, respectively. We first construct the common data embedding as Φ̃(xi, yi) =
ΦE(xi, yi) = [1, xi, yi, x

2
i , y

2
i ]>, and the sparse basis or parameter vector is x = [a, b, c, d, e]>.

We set the max basis number R = 1, λ = log(2N) × [0.01, 0.1, 0.1, 1, 1]>. The optimization
procedure and fitting results are shown in Fig. 6. Specifically, the estimation results for these three
cases are x = [−0.0845, 0.7135,−0.6956, 0, 0]>, x = [−0.4219,−0.1068,−0.4291, 0.7915, 0]>

and x = [−0.37825, 0.1498, 0.0641, 0.6513, 0.6373]>, respectively.
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Algorithm 1: Dual Sparsity Pursuit (DSP) Algorithm
Input: Observation data set S, parameters λ, γ, K, B, stop threshold ε
Output: Sparse basis x and inlier set I

1 Construct common embedding matrix M from S with mi = Φ̃(si), and set e0 = 0, t0 = 0 ;
2 Initialize x0 as the right singular vector corresponding to the smallest singular value of M ;
3 Calculate Lipschitz constraint L = λmax(MM>) ;
4 For k = 1, 2, · · · ,K do
5 Update ek using ek = Tγ(M>xk−1) and (23) ;
6 Update the gradient∇f(xk−1) = M(M>xk−1 − ek);
7 Update xk using xk = T λ

L
(qL(x̃k−1)) and (23);

8 Perform sphere and orthogonal projection using x← x
‖x‖2

and x← (I−BB>)x ;
9 If ‖xk − xk−1‖2 < ε, then stop the iteration;

10 Update tk with tk = 1
2
(1 +

√
1 + 4t2k−1), and compute x̃k as x̃k = xk +

(
tk−1
tk

)
(xk − xk−1) ;

11 Set xk = x̃k, then perform sphere and orthogonal projection using x← x
‖x‖2

and x← (I−BB>)x ;
12 end for
13 Return x← xk, and e← ek; I = {j|ej = 0}.

Algorithm 2: Model Reasoning & Fitting with DSP
Input: Observation data S, parameters λ, γ, R, K, stop thresholds ε and ξ
Output: Sparse bases X, inlier set I and model typeM

1 Construct common embedding matrix M from S with mi = Φ̃(si);
2 Initialize X0 as right singular vectors corresponding to the R smallest singular values of M, E0 = 0,

t0 = 0, B = 0D×1, r = 1 ;
3 Estimate (x1, e1) using Alg. 1 to solve problem min

x,e
L(M,x, e) ;

4 For i = 2, · · · R do
5 Construct given bases B← [B,xi−1];
6 Estimate (xi, ei) using Alg. 1 to solve problem min

x,e
L(M,x, e), and set τ = ξ · L(M,xi−1, ei−1) ;

7 If L(M,xi, ei) ≥ τ , then stop the iteration;
8 Set r ← i ;
9 end for

10 Return X = [x1,x2, · · · ,xr], E = [e1, e2, · · · , er];
11 Obtain inliers I = {j | ‖Ej,:‖2 = 0}, and model typeM with X ∼ Ψ(M) .

E Experiment

E.1 Implementation Details

We implement the proposed DSP method with MATLAB code. All comparative methods are im-
plemented with the code provided by their authors. Their parameters are set as the original papers
suggested, or referring to [6]. The experiments of RANSAC [19], EAS [18] 2 and our DSP are
conducted on a desktop with 4.0 GHz Intel Core i7-6700K CPU and 16GB memory. USAC [38] 3,
MAGSAC++ [6] 4, OANet [50] 5 and SuperGlue [40] 6 are performed on a Server and Ubuntu
16.04. And two deep learning methods are accelerated by NVIDIA TITAN V GPUs. In addition,
AIC [1], BIC [42] and GRIC [25] are used for performing unknown model fitting. Since they are
classical model selection criteria, wherein GRIC is still used as a state-of-the-art method in vision
tasks [39, 31, 32]. We perform these three criteria with the core parameters suggested as in [31, 32],
then equip them with robust model estimators to identify true models.

2EAS: https://github.com/AoxiangFan/EifficientDeterministicSearch
3USAC: https://github.com/cr333/usac-cmake
4MAGSAC++: https://github.com/danini/magsac
5OANet: https://github.com/zjhthu/OANet
6SuperGlue: https://github.com/magicleap/SuperGluePretrainedNetwork
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Figure 6: The optimization procedure of our DSP for 2D points fitting. From left to right: model
reasoning for a Line, Parabola, and Ellipse model, respectively. From top to bottom: loss L(M,xi, ei)
value with iteration, and corresponding parameter values.

E.2 Details of Datasets

Synthesized Data. To perform the robustness test and model reasoning comparisons, we synthesize
900 image pairs with different outlier ratios (i.e., OR = 20%, 50%, 80%) and noise levels (i.e., NL
= 0.2, 0.5, 0.8, 1.0, 1.5 in pixel). To be specific, these synthetic image pairs are randomly generated
by two 3 × 4 camera matrices P1 = K1[I3×3|0] and P2 = K2[R2| − R2t2]. Camera P1 is
located in the origin and its image plane is parallel to XY plane. The position of camera P2 is
generated by R2, t2, wherein the position of P2 is at a random point inside a unit-sphere around
P1, thus |t2| ≤ 1. And the orientation R2 = RX,αRY,βRZ,γ is determined by three 3D rotation
matrices rotating around axes X,Y and Z by α, β and γ, respectively (α, β, γ ∈ [−π/3, π/3]). We
set K1 = K2 with focal length fx = fy = 600 and principal points [300, 300]>. To generate
fundamental data, we randomly set R2 and t2, and create ni positions (x, y, z) in real world with
x, y ∈ [−1, 1], z ∈ [3, 8], which are further projected onto the first and second images by P1,P2.
In this case, 20 fundamental image pairs are synthesized for each OR and NL, which creates in
total 300 fundamental image pairs. As for generating homography data, we know that homography
transformation is typically derived from two types of degraded cases, i.e., the target or scene in
shooting is approximated a plane, or the camera is only rotated around optical center without any
translation. Therefore and for the first homography case, we randomly simulate ni positions (x, y, z)
in real world with x, y ∈ [−1, 1], z ∈ [9.95, 10.05]. While for another case, we just set t2 = 03×1
on the basis of synthesizing fundamental data. 10 image data are respectively synthesized for these
two homography types for each OR and NL, which also creates in total 300 image pairs. As for
generating affine data, we directly set the last row of both P1 and P2 as [0, 0, 0, 1], thus making
them satisfy the property of affine camera. For each OR and NL, we similarly synthesize 20 affine
data, which creates in total 300 affine image pairs finally. For each image pair, we set the number of
putative matches as N = ni + no = 1000, that means it consists of ni = 200 inliers and no = 800
outliers if OR = 80%.

Real Image Data. 8 public datasets are used for test, including kusvod2, homogr7, EVD8, Hpatch9,
and the Feature Matching benchmark10 that contains TUM, KITTI, T&T and CPC datasets. The detailed
information is concluded in Tab. 6. In particular, kusvod2, homogr and EVD provide putative matches
and the inlier indexes. While the rest datasets only provide ground truth model parameters, thus

7kusvod2, homogr: http://cmp.felk.cvut.cz/data/geometry2view/index.xhtml
8EVD: http://cmp.felk.cvut.cz/wbs/
9Hpatch: https://github.com/hpatches/hpatches-dataset

10FM benchmark: https://jwbian.net/fm-bench
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Table 6: Details of the used datasets. From left to right: Datasets name, ground truth(GT) Model, the
number of sequences(#Seq), the number of image pairs(#IP), resolution, baseline of the image pair,
the property of imaging scenes, and the average match number(AMN) and average inlier ratio(AIR).
’–’ indicates all image pairs are from different imaging scenes.

Datasets GT Model #Seq. #IP Resolution Baseline Property AMN AIR
Hpatch Homo. 59 295 varying varying wall or ground 3714 0.23
EVD Homo. – 15 329× 278 to 1712× 1712 extreme view wall or ground 328 0.28
homogr Homo. – 16 392× 278 to 1712× 1368 varying varying 873 0.47
kusvod2 Fund. – 16 512× 768 to 1944× 2592 wide outdoor scenes 516 0.74
TUM Fund. 3 1000 480× 640 short indoor scenes 333 0.62
KITTI Fund. 5 1000 370× 1226 short street views 550 0.83
T&T Fund. 3 1000 1080× 2048 or 1080× 1920 wide outdoor scenes 892 0.35
CPC Fund. 1 1000 varying short internet photos 491 0.35

we use VLFEAT toolbox11 to construct SIFT matches with ratio test 1.5, and the inlier matches are
identified as the geometric error less than 2 pixels.

E.3 Additional Results

Quantitative Results of Other Four Datasets. We first give additional results of the known model
fitting on the rest four datasets, including homogr, kusvod2, KITTI and TUM. Details are in Fig. 7,
which show the same trends as in other four datasets (please see the main body), that our proposed
DSP achieves the best fitting accuracy and promising efficiency, followed by EAS and SAC methods.
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Figure 7: Qualitative statistic results of Geometric Error(top) and Run Time (bottom) for known
model estimation. A point on the curve with coordinate (x, y) denotes that there are 100× x percent
of image pairs which have Error or Time no more than y. The lower the better.

E.4 Applications

Multi-class Multi-model Fitting. In this part, we apply our DSP to solving multi-class multimodel
fitting problem. In multi-model fitting of single type, the multiple structures belong to the same
model type, such as being only line or circle, thus making it convenient for predefining the model
type then conducting fitting algorithm. But this would be troublesome if the data contains multiple
geometrical models of different types, such as simultaneously existing line, parabola, and circle,
or both fundamental and homography model in two-view geometry. Existing strategy commonly
borrows selection criterion like GRIC, which usually requires a long runtime [31, 32]. Next, we tend
to demonstrate the superiority of our DSP in terms of simultaneously model reasoning and fitting in
the task of multimodel fitting problem.

We first test DSP on synthesized point data, which consists of three inlier structures including line,
parabola and ellipse together with a large number of outliers. The target is to classify each inlier
structure and identify those outliers. Several manifold subspace clustering and multi-model fitting

11VLFeat: https://www.vlfeat.org/
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(a) SMMC (17.23s) (b) DBSCAN (0.26s) (c) DBSCAN+SSC(26.41s)

(d) DBSCAN+SMMC (10.17s) (e) MultiLink (100.67s) (f) Ours (0.65s)

Figure 8: Multi structure recovering and inlier seeking on synthetic data, which consists of three
inlier structures (including ellipse, parabola and line with noise level 0.05, respectively generated
by 500, 500 and 300 inliers) and randomly generated outliers of number 1000, that means the
total number of points is 2300. SMMC [48], SSC [15], DBSCAN [16], MultiLink [32] and their
combinations are used for comparison. The runtime in second is attached in each sub-figure.

methods are used for comparison, such as spectral clustering on multiple manifolds (SMMC) [48],
sparse subspace clustering (SSC) [15], density-based clustering (DBSCAN) [16], and a recently
published preference-based method termed MultiLink [32] that uses GRIC for model selection.

Figure 9: Multi-model fitting results on real images
of our DSP method. In each scene, different colors
denote different inlier structures, and the head and
tail of each arrow in the motion field correspond to
the positions of feature points in two images. For
visibility, at most 200 randomly selected matches
are presented, and the true negatives are not shown.
Best view in color.

Clustering results are shown in Fig. 8, we can
find that our proposed DSP achieves the best
accuracy by combining with DBSCAN. Since
our DSP is merely designed for unknown sin-
gle model fitting, which encourages us to inte-
grate multi-model problem into our outlier rejec-
tion, model selection and fitting framework and
achieve joint optimization in the future. Multi-
Link can well classify these inlier structures as
well, but several outliers that are closed to inliers
are wrongly classified due to its fixed thresholds.
Since MultiLink asks for repeat estimations for
all possible models, and uses agglomerative clus-
tering as final output, it may consume a huge
runtime (100 seconds for 2300 points). In ad-
dition, DBSCAN can identify several potential
inlier structures and filter out the most outliers
with a short runtime. But the performance of
DBSCAN is much sensitive to its core param-
eters. In other words, a loose parameter would
easily classify neighboring outliers as inlier structure, while a strict setting prefers to classify one
complete structure into several small clusters, as shown in subfigure (b). In theory, SMMC and SSC
can not handle outliers, and failed in clustering the data of a high number of outliers, which can be
seen in subfigure(a). In this regard, we combine the advantages of DBSCAN and some clustering
methods. We find that SMMC can well refine the results of DBSCAN to be more accurate, but SSC
can only work for liner structures such as line or plane, thus fails in our synthesized data.

We also extend our method on real multi-model fitting data, e.g. AdelaideRFM 12. Fig. 9 shows some
qualitative results with three structures and four structures, which demonstrates that our DSP can
accurately cluster the corrupted data into several inlier structures together with an outlier cluster.
Quantitative results are reported in the main body manuscript.

12https://cs.adelaide.edu.au/~hwong/doku.php?id=data
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