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ABSTRACT

Large language models (LLMs) have achieved impressive success in text-formatted
learning problems, and most popular LLMs have been deployed in a black-box
fashion. Meanwhile, fine-tuning is usually necessary for a specific downstream
task to obtain better performance, and this functionality is provided by the owners
of the black-box LLMs. To fine-tune a black-box LLM, labeled data are always
required to adjust the model parameters. However, in many real-world applications,
LLMs can label textual datasets with even better quality than skilled human an-
notators, motivating us to explore the possibility of fine-tuning black-box LLMs
with unlabeled data. In this paper, we propose unsupervised prompt learning for
classification with black-box LLMs, where the learning parameters are the prompt
itself and the pseudo labels of unlabeled data. Specifically, the prompt is modeled
as a sequence of discrete tokens, and every token has its own to-be-learned categor-
ical distribution. On the other hand, for learning the pseudo labels, we are the first
to consider the in-context learning (ICL) capabilities of LLMs: we first identify
reliable pseudo-labeled data using the LLM, and then assign pseudo labels to other
unlabeled data based on the prompt, allowing the pseudo-labeled data to serve as
in-context demonstrations alongside the prompt. Those in-context demonstrations
matter: previously, they are involved when the prompt is used for prediction while
they are not involved when the prompt is trained; thus, taking them into account
during training makes the prompt-learning and prompt-using stages more consis-
tent. Experiments on benchmark datasets show the effectiveness of our proposed
algorithm. After unsupervised prompt learning, we can use the pseudo-labeled
dataset for further fine-tuning by the owners of the black-box LLMs.

1 INTRODUCTION

Large language models (LLMs) have shown impressive performance in various text-formatted
few-shot classification tasks, where the model takes the input text and outputs a corresponding
label (Brown et al., 2020; Ouyang et al., 2022). In recent years, most popular LLMs have continued
to grow in size and are increasingly deployed as black-box models, accessible through commercial
application programming interfaces, such as GPT-3 (Brown et al., 2020). These black-box models
provide promising results for data labeling and require minimal initial investment, as users can deploy
them directly for downstream tasks. Due to their strong performance and low initial investment, the
use of black-box LLMs for classification is gaining popularity in real-world applications.

The performance of LLMs in downstream tasks can be further enhanced by supervised fine-tuning
algorithms (Houlsby et al., 2019; Hu et al., 2021). These methods always rely on labeled data for
downstream tasks, allowing owners of black-box LLMs to fine-tune the model with these labeled
data and deliver a customized version of the black-box LLM after fine-tuning1. In scenarios where
fine-tuning the black-box model is not possible, the learner can employ prompt learning algorithms
designed for black-box LLMs (Sun et al., 2022; Diao et al., 2022) to learn a prompt to label the
specific downstream task, as both the model parameters and the prompt can influence the final
performance. Nevertheless, these algorithms still require labeled data to learn the prompt.

With the continuing advances and successes in LLM research, most popular LLMs can now label
textual datasets in many real-world tasks with quality equal to or better than skilled human annota-

1https://platform.openai.com/docs/guides/fine-tuning
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Figure 1: An illustration of our main idea. We first identify reliable pseudo-labeled data using the LLM and
then learn pseudo labels on other unlabeled data together with the prompt by fine-tuning on these reliable
pseudo-labeled data. In-context demonstrations are a crucial component of our proposal: previously, they are
involved when the prompt is used for prediction while they are not involved when the prompt is trained; thus,
taking them into account during training makes the prompt-learning and prompt-using stages more consistent.

tors (Gilardi et al., 2023; Törnberg, 2023). For example, ChatGPT has been shown to outperform
crowd workers in text annotation tasks (Gilardi et al., 2023). Additionally, LLMs were found to
be inherently highly capable of identifying label errors in natural language datasets (Chong et al.,
2022). ChatGPT-4, in particular, outperforms both experts and crowd workers in annotating political
Twitter messages using zero-shot learning (Törnberg, 2023). These findings motivate us to explore the
possibility of fine-tuning black-box LLMs using unlabeled data, as the LLM can generate high-quality
labels for fine-tuning, eliminating the need for costly human annotation. Our goal is to obtain accurate
pseudo labels for the downstream task and then fine-tune the black-box LLM. A feasible method in-
volves first assigning pseudo labels to the unlabeled data, identifying the reliable pseudo-labeled data,
and then leveraging commercial fine-tuning services with these selected data. This process can be
repeated iteratively, with each iteration adding newly identified reliable pseudo-labeled data, followed
by further fine-tuning of the model by using the commercial fine-tuning services. However, this
iterative process is quite complex, and relying solely on a limited number of reliable pseudo-labeled
data at the beginning of the learning process carries a significant risk of overfitting.

In this paper, we propose unsupervised prompt learning for classification with black-box LLMs, where
we simultaneously learn the prompt itself and the pseudo labels of unlabeled data. The learned pseudo-
labeled dataset can then be used to further fine-tune the black-box LLM using commercial fine-tuning
services. Inspired by recent discrete prompt learning algorithms for black-box LLMs (Deng et al.,
2022; Diao et al., 2022), we assume the prompt is a sequence of discrete tokens, where each token is
sampled from a categorical distribution over the entire vocabulary. We optimize these categorical
distributions throughout the learning process. During inference, we sample each token according to
its categorical distribution to form the prompt. On the other hand, for learning the pseudo labels, we
propose to exploit the in-context learning (ICL) capability of LLMs (Brown et al., 2020; Wei et al.,
2023). We use the pseudo-labeled data as in-context demonstrations to facilitate the simultaneous
learning of pseudo labels and the prompt in the prompt-learning phase. As shown in Figure 1, we first
identify reliable pseudo-labeled data using the LLM, and then learn pseudo labels on other unlabeled
data together with the prompt by fine-tuning on these reliable pseudo-labeled data. Different from
previous prompt learning methods that learn prompts based on labeled data and then use labeled data
as demonstrations only in the prediction stage, we learn prompts and the pseudo labels simultaneously
in the training process. The demonstrations are selected by a specific algorithm and assigned pseudo
labels predicted by the LLM based on the prompt and their corresponding demonstrations.

These in-context demonstrations are important: they are previously only involved when the prompt
is used for prediction, but they are not involved when the prompt is trained; thus, taking them
into account during training makes the prompt-learning and prompt-using phases more consistent.
Moreover, the ICL capability of LLMs allows them to make predictions based on a few labeled data
as demonstrations. Theoretical studies have linked ICL behaviors to gradient descent algorithms,
suggesting that ICL can be viewed as implicitly constructing a model that performs empirical
risk minimization based on demonstrations, and then uses this model to predict unlabeled query
data (Akyürek et al., 2022; Von Oswald et al., 2023). By simultaneously learning both the pseudo
labels and the prompt during the prompt-learning phase, we ensure consistent prediction using
the learned prompt and pseudo-labeled demonstrations during the prompt-using phase, ultimately
generating reliable pseudo labels for the downstream task. We tested the proposed algorithm in
benchmark applications and the results showed the effectiveness of the proposed method.
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2 RELATED WORK

Supervised Fine-tuning with Open-sourced Models. Many parameter-efficient fine-tuning tech-
niques were proposed to fine-tune an open-sourced transformer-based LLM with labeled data in the
downstream task. Adapter-based fine-tuning methods introduce an adapter module into transformer,
allowing for fine-tuning without changing the pre-trained parameters (Houlsby et al., 2019; He et al.,
2021; Lei et al., 2023). Soft prompt fine-tuning algorithms append soft prompts or prefix vectors
to the input embeddings or hidden states during fine-tuning (Li & Liang, 2021; Liu et al., 2023;
Wang et al., 2022). Re-parameterized fine-tuning methods use low-rank transformation to reduce
the number of trainable parameters while allowing operation with pre-trained parameters (Hu et al.,
2021; Zhang et al., 2023; Yang et al., 2024). More recently, Chen et al. (2024) proposed a zero-order
optimizer for large-scale deep neural networks. Malladi et al. (2023) proposed a memory-efficient
zero-order optimizer to alleviate the heavy back-propagation in fine-tuning LLMs. However, all of
these methods require that the open-source LLMs are first duplicated and then fine-tuned with labeled
data in the downstream task, which is not applicable in our setting.

Supervised Prompt Learning with Black-box Models. Another line of work investigated prompt
learning for the black-box LLMs released as commercial application programming interfaces. Sun
et al. (2022) optimized the input prompt for adaptation using derivative-free optimization techniques
such as the evolutionary algorithms. Diao et al. (2022) employed the policy gradient algorithms
to optimize the input prompt to fine-tune the model. While these methods consider the black-box
learning scenario of LLMs, they still require the labeled data to learn the prompt.

Unsupervised Fine-tuning with Open-sourced Models. Several recent studies on large vision-
language models explored model fine-tuning using only leveraging unlabeled data in downstream
tasks. These methods explore the parameters in the vision-language model to obtain class embeddings,
which are then updated to align with the data distribution of the downstream task. For example,
Huang et al. (2022) used the text encoder to generate reliable pseudo labels and then fine-tuned the
model. Shu et al. (2022) augmented the unlabeled image and used the image encoder to generate
reliable pseudo labels and then fine-tuned the model. Tanwisuth et al. (2023) and Ma et al. (2023)
explored the class embeddings inside the LLMs to adapt the downstream tasks. Although these
algorithms only require unlabeled data, they assume an open-source setting where model parameters
are accessible during adaptation.

3 OUR APPROACH

In this section, we first formulate the unsupervised prompt learning problem. Next, we propose a
new prompt learning objective with pseudo-labeled demonstrations that simultaneously learns the
prompt and pseudo labels for the downstream task. Lastly, we introduce the optimization strategy
and provide implementation details.

3.1 PROBLEM FORMULATION

In this part, we first formulate the learning problem and introduce the notations. Let xl ∈ X
be the l-th query in the unlabeled data of size n, where X is the textual space. We denote by
z = [z1, . . . , zi, . . . , zm] = [V [j1], . . . , V [ji], . . . , V [jm]] the discrete prompt of length m, where V
is the vocabulary set containing N tokens, and zi = V [ji] is the i-th token in z, corresponding to the
ji-th token in V . Considering the in-context learning capability of LLMs, we define the black-box
LLM by the function f(·, ·, ·) : (x, z, D) 7→ y, where x is the unlabeled query, y ∈ RC is the logit
vector of length C over a set of label words, z is the prompt, and D = {(xk, ŷk)}Kk=1 is a set of
in-context demonstrations of size K selected from the downstream task. D can be an empty set, e.g.,
f(·, ·, ∅), indicating that the LLM is used directly for prediction without in-context demonstrations.

For each discrete token zi = V [ji], where i = 1, . . . ,m, we assume that it is sampled independently
from the vocabulary set V according to a categorical distribution. Specifically, we sample zi by first
sampling the vocabulary index ji ∼ pi, where pi = [pi,1, . . . , pi,N ] is a categorical distribution
over the vocabulary set, with pi ∈ C and C = {p ∈ RN :

∑N
j=1 pj = 1, pj ≥ 0 for j = 1, . . . , N}.

Since each zi is independently sampled from a categorical distribution for each i, where ji ∼ pi,
the joint probability of the entire discrete prompt is given by Πm

i=1 Pr(zi) = Πm
i=1pi,ji . Given a set
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of unlabeled data for the downstream task and a black-box LLM f , our goal is to learn a prompt z
that minimizes the prediction loss on the downstream tasks. When the in-context demonstrations are
unavailable during inference, we can directly use f(·, ·, ∅) for prediction.

Since the downstream task is unlabeled, we propose to first identify reliable pseudo-labeled data
to learn the prompt. Given the black-box access to LLMs, we rely on the output of the LLM, i.e.,
the logit vector over the label words, to estimate the confidence score of each prediction, selecting
high-confidence predictions as reliable pseudo-labeled data. Specifically, we denote the linguistic con-
fidence of the LLM’s output for xl by Pr[y|xl, z; t] = [f (t)(xl, z, ∅)/

∑C
c=1[f

(t)(xl, z, ∅)]c]y, y =

1, . . . , C, where [·]c refers to the c-th element in the vector [·] and f (t)(·, ·, ·) represents the LLM
with temperature t. Based on this, we can then define the confidence score for the prediction on xl,
denoted as cl ∈ [0, 1]. We first define the average linguistic confidence of a prediction, which is used
to select reliable pseudo-labeled data. We define the average linguistic confidence score as:

cLG
l = max

y∈{1,...,C}

{
1

|T |
∑
t∈T

Pr[y|xl, z; t]

}
,

where T is a set of the temperature candidates.

We also adopt strategies from previous seminal works to compute the confidence score. These
approaches aim to reduce class-specific prior biases by using random text and averaging the estimates
over multiple times (Zhao et al., 2021; Fei et al., 2023). Specifically, we adopt the approach from the
work of Fei et al. (2023) to estimate the output confidence. Let xrand be the random context sampled
from the downstream task corpus. We then define the bias-reduced confidence score as:

cRD
l = max

y∈{1,...,C}

{
Pr[y|xl, z; 0]

1
|T |
∑

t∈T Pr[y|xrand, z; t]

}
.

It is important to note that the confidence estimation mechanism used in our approach is flexible and
not the primary focus of this work. In this paper, we propose a direct confidence score estimation
method by averaging the linguistic confidence, along with a state-of-the-art algorithm (Fei et al.,
2023), to generate confidence scores and identify reliable pseudo-labeled data whose score is higher
than a threshold. Confidence estimation for LLMs has received considerable attention in recent years.
A comprehensive overview can be found in the survey by Geng et al. (2024).

3.2 UNSUPERVISED PROMPT LEARNING WITH PSEUDO-LABELED DEMONSTRATIONS

In this part, we propose the unsupervised prompt learning algorithm. To achieve accurate label
predictions for the downstream task, we propose to learn the prompt and pseudo labels simultaneously,
ensuring consistency between the prompt-learning and prompt-using phases. To predict unlabeled
data in a downstream task, a direct approach is to assign pseudo labels to the unlabeled data, identify
reliable pseudo-labeled data, learn a prompt based on these reliable pseudo labels, and then use the
learned prompt for prediction with these reliable pseudo-labeled data. Specifically, we can learn the
prompt by optimizing the following objective:

argmin
z∈Z

n∑
l=1

1[cl ≥ γ] · ℓ(f(xl, z, ∅), f(xl, ∅, ∅)),

where 1[·] is the indicator function, ℓ(·, ·) is the loss function and γ ∈ [0, 1] is a confidence threshold
for selecting reliable pseudo-labeled data. In this paper, we consider two types of loss functions:
hinge loss and cross entropy.

Although learning prompts with reliable pseudo-labeled data is feasible, the prompt-training and the
prompt-using stages are not consistent, and the number of such reliable data may be limited, and
relying solely on them has a risk of severe overfitting. To handle this problem, we propose to learn
the pseudo labels for the entire unlabeled dataset and the prompt simultaneously, inspired by the ICL
capabilities of LLMs (Brown et al., 2020; Wei et al., 2023). The ICL capabilities allow LLMs to
implicitly learn a classifier from labeled demonstrations and apply it to predict other unlabeled data in
downstream tasks. We illustrate the proposed algorithm in Figure 2. We first reliable pseudo-labeled
data based on the output confidence. We then simultaneously learn the prompt and the pseudo
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Figure 2: An illustration of proposed algorithm. We begin by identifying reliable pseudo-labeled data based
on the output of the LLM, selecting the high-confidence predictions as reliable data. We then construct
demonstrations for each sample, consisting of a set of data from the downstream task, selected by a specific
algorithm and assigned pseudo labels predicted by the LLM, guided by the prompt and their corresponding
demonstrations. After that, we align the predictions based on the demonstrations and prompt with the original
pseudo labels on the reliable data. The prompt is a sequence of tokens sampled from corresponding categorical
distributions over a vocabulary set and updated by the policy gradient descent algorithm.

labels for the unlabeled data by ensuring that, for the reliable pseudo-labeled data, when the LLM is
presented with the prompt and other pseudo-labeled data as in-context demonstrations, its predictions
remain consistent with the original pseudo labels.

In the following, we introduce the main loss in our learning objective, which is defined as follows:

Lmain(z) =

n∑
l=1

1[cl ≥ γ] · ℓ (f(xl, z, Dl), f(xl, ∅, ∅)) , (1)

where Dl is a set of in-context demonstrations for the query xl selected by algorithm A(xl; z), with
the pseudo labels of these demonstrations determined by the prompt z. Specifically, A(xl, z) outputs
a set of pseudo-labeled demonstrations selected from the downstream task:

Dl =
{
(xk, argmax

c
[f(xk, z,Dk)]c)|xk ∈ Sl

}K

k=1
,

where [·]c is the c-th element in the vector [·], indicating the c-th class in the label space. Many
algorithms have been proposed for selecting demonstrations. Following the seminal works on in-
context demonstrations selection (Liu et al., 2022; Min et al., 2022), we select the K-nearest samples
as in-context demonstrations for each sample xl, denoted as Sl. We formulate Sl as follows:

Sl = argmin
{kj}K

j=1⊂{1,...,n}

K∑
j=1

d(xl,xkj
), (2)

where d(·, ·) is a distance measure between two data. We follow the same procedure outlined in
the work of Liu et al. (2022), introducing a sentence encoder θ(·) and defining the distance as
d(xl,xk) = ∥θ(xl)− θ(xk)∥2.

Since we generate the prompt by sampling each discrete token according to a learned categorical
distribution during testing, our goal is to ensure a stable prompt during inference. Specifically, we
measure the Shannon entropy (Shannon, 2001) of the categorical distribution for each i-th token as
follows:

H(pi) = −
N∑
j=1

pi,j log pi,j ,

where pi is the probability distribution. Consequently, we define the loss function for the token
probability p as follows:

L(p) = Ez∼p [Lmain(z)] + α

m∑
i=1

H(pi), (3)

where α ≥ 0 is a hyperparameter.

5
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Algorithm 1 Prompt learning with Pseudo-labeled Demonstrations (PPD)

1: Set vocabulary set V , total number of iterations T and total number of sampling I
2: Initialize categorical probability distribution {pi}mi=1
3: for t = 1 to T do
4: Sample a mini-batch data from the unlabeled dataset
5: for k ≤ I do
6: Sample j

(k)
i ∼ Cat(pt

1), . . . , j
(k)
n ∼ Cat(pt

m)

7: z(k) = [z
(k)
1 , . . . , z

(k)
m ] = [V [j

(k)
1 ], . . . , V [j

(k)
m ]]

8: end for
9: for i ≤ m do

10: Update pi according to Equation (4)
11: end for
12: end for

3.3 IMPLEMENTATION

Here, we introduce the optimization algorithm for unsupervised prompt learning. Given the black-box
setting of the LLMs in our problem, we cannot access training gradients or use back-propagation
to learn the prompt. To handle the challenge of optimizing the discrete prompt, we employ the
variance-reduced policy gradient estimator (VR-PGE) (Williams, 1992; Zhou et al., 2021; Diao et al.,
2022), a well-developed policy gradient algorithm in discrete optimization.

In particular, the VR-PGE algorithm first estimates the gradient for each categorical distribution and
then optimizes it by forward propagation. Specifically, the gradient of the i-th discrete token is

∇pi [L(p)] = ∇pi

[
Ez∼p[Lmain(z)] + α

m∑
i=1

H(pi)

]

=

∫
Pr(z)Lmain(z)∇pi

log Pr(z)dz+ α∇pi
H(pi)

= Ez[Lmain(z)∇pi
log Πm

j=1 Pr(zj)] + α∇pi
H(pi)

= Ez[Lmain(z)∇pi log Pr(zi)] + α∇piH(pi).

The j-th component of ∇pi log Pr(zi) is given by ∇pi,j log Pr(zi) = 1/pi,ji when j = ji,
and ∇pi,j log Pr(zi) = −1/pi,ji when j ̸= ji. The j-th component of ∇piH(pi) is given by
∇pi,jH(pi) = − log pi,j − 1. The estimated gradient is calculated using the VR-PGE, that is,

∇vr
pi
[L(p)] =

1

I − 1

I∑
k=1

(
Lmain(z

(k))− 1

I

I∑
k′=1

Lmain(z
(k′))

)
∇pi log Pr(zi) + α∇piH(pi),

where z(k), k = 1, . . . , I and z(k
′), k′ = 1, . . . , I are sampled independently from p and I is the

sample size.

Then we update the categorical distribution by a projected stochastic gradient descent algorithm:

pi ← projC(pi − η · ∇vr
pi
[L(p)]), i = 1, . . . ,m, (4)

where η > 0 is the learning rate and projC is the projection function onto C.

We summarize the learning procedure in Algorithm 1. We first initialize the categorical distribution
for each token in the prompt. In each round, we sample a batch of unlabeled data and perform I
iterations of sampling to compute the VR-PGE. Specifically, at the k-th iteration, we first sample
the sequence of tokens zi, i = 1, . . . ,m, according to the distribution pi, i = 1, . . . ,m to form the
prompt z, and combine it with the unlabeled query and demonstrations. Then we present [xl, z, D]
to the black-box LLM f(·, ·, ·) and obtain the prediction. We then compute the loss according to
Equation (3) and update the categorical distributions by Equation (4). After learning the prompt and
pseudo labels for the downstream task, we can directly use the pseudo-labeled data for further fine-
tuning of the model by using the commercial fine-tuning service. We can use the learned categorical
distributions to formulate the prompt to predict new unlabeled data.
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We construct the vocabulary V following previous work (Shin et al., 2020; Diao et al., 2022). We
adopt point-wise mutual information (PMI) to construct the vocabulary of candidate prompt tokens
in an unsupervised manner. For each sentence in the downstream task, we compute the PMI by
PMI(x1, x2) = log(Pr(x1, x2)/(Pr(x1) Pr(x2))), where x1 and x2 are two adjacent words in the
sentence, and Pr(x) is the probability of an n-gram x. Therefore, the sentence is segmented based
on the PMI scores. We obtain a list of n-grams V by extracting those consecutive words after
segmentation and with a frequency of at least δ. As for N , we choose N between 50 and 200.

4 EXPERIMENTS

In this section, we evaluate the proposed algorithm with contenders using various benchmark datasets.
Next, we conduct ablation studies to verify the effectiveness of each component in our approach.

4.1 EXPERIMENTAL SETUP

Datasets. We use GLUE datasets (Wang et al., 2018): CoLA, SST-2, QQP, MRPC, MNLI, WNLI,
RTE; and MMLU datasets (Hendrycks et al., 2021): astronomy (AST), high-school-computer-science
(HSCS), high-school-mathematics (HSM), college-mathematics (Cmath), college-computer-science
(CCS), college-medicine (CMed), management (MAN), marketing (MAR), all-random (RND).

Contenders. Since we are the first to investigate the problem of unsupervised prompt learning, there
are no other methods to be directly used to compare with our approach. We compare the proposed
algorithm with four contenders. The first one is Direct, that is, we directly use the LLM to generate the
prediction. We also take two black-box LLM prompt learning algorithms into comparison. Since we
only have unlabeled data in the downstream task, we first select reliable pseudo-labeled data and then
use the black-box LLM prompt learning algorithms to learn the prompt. Specifically, BDPL (Diao
et al., 2022) uses a policy gradient descent method to optimize the categorical distribution of each
token in the prompt. RLprompt (Deng et al., 2022) formulates a parameter-efficient policy network
that generates the optimized discrete prompt after training with reward. We denote by “RD” that
the algorithm uses bias-reduced confidence to generate the reliable pseudo-labeled data, while “LG”
denotes that we use average linguistic confidence to generate the reliable data. We also introduce
the contender ICL (Liu et al., 2022) that use the selected high-confidence pseudo-labeled data as
in-context demonstrations to predict the remaining unlabeled data.

Implementation Details. In all experiments, we used GPT-42 and gpt-4o-mini3, provided by OpenAI,
where gpt-4o-mini is much cheaper than GPT-4. During preprocessing, we used the API to query
the black-box LLM with manual templates as specified in Appendix A.1. Confidence scores were
calculated based on the log probabilities returned during the query. For BDPL, we applied the
original BDPL algorithm (Diao et al., 2022), using pseudo labels as actual labels and setting high
hyperparameters, as specified in Table 4 in Appendix A.2. The same approach was used for the
RLPrompt algorithm and the ICL algorithm.

4.2 PERFORMANCE COMPARISON ON BENCHMARKS

In this part, we compare the proposed algorithm with other contenders on benchmark datasets. To
ensure a fair comparison with supervised prompt-tuning methods, we use the Cross Entropy loss as
the training loss for the BDPL, RLPrompt and PPD algorithms, as it demonstrates relatively better
performance compared to the Hinge loss. For the BDPL and RLPrompt algorithms, we use the default
parameter settings from their original papers. For the ICL algorithm, we apply the same in-context
selection method and the number of demonstrations used in our proposed PPD algorithm. For the
PPD algorithm, we set the number of in-context demonstrations to 5 and α to 2e−5. The confidence
threshold is set to γ = 0.7 in the proposed PPD algorithm, and we report the results using the optimal
confidence threshold for the contenders BDPL, RLPrompt, and ICL algorithms.

We report the comparison results of the proposed PPD algorithm with other contenders on benchmark
datasets in Table 1 and Table 2. Our proposed PPD algorithm outperforms almost all other contenders

2https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
3https://platform.openai.com/docs/models/gpt-4o-mini
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Table 1: Performance comparisons of the proposed PPD algorithm with other contenders on the GLUE dataset.
For each dataset, 5 tests are conducted, and the average accuracy (%) as well as the standard deviation are
presented. The best result of each dataset is emphasized in bold.

Method MNLI QQP SST-2 MRPC CoLA WNLI RTE
Direct 91.6 ± 2.4 71.3 ± 1.1 89.5 ± 1.6 90.8 ± 2.1 69.5 ± 1.8 90.7 ± 1.7 92.8 ± 1.3
ICL (LG) 89.3 ± 1.7 67.5 ± 2.3 87.9 ± 0.6 88.7 ± 2.3 67.6 ± 1.3 88.7 ± 0.7 89.2 ± 0.8
ICL (RD) 90.2 ± 2.1 68.3 ± 2.1 88.3 ± 0.8 89.9 ± 1.6 65.5 ± 2.4 87.2 ± 1.8 88.5 ± 1.1
BDPL (LG) 92.3 ± 1.7 71.7 ± 1.9 91.2 ± 1.8 91.7 ± 1.2 69.8 ± 2.3 90.4 ± 1.3 93.1 ± 1.0
BDPL (RD) 92.5 ± 1.8 72.3 ± 1.7 90.2 ± 2.3 92.1 ± 0.9 67.2 ± 3.1 88.7 ± 2.1 91.8 ± 1.4
RLprompt (LG) 91.9 ± 2.1 69.7 ± 2.9 88.6 ± 2.5 88.9 ± 2.5 70.3 ± 2.2 90.6 ± 1.2 90.1 ± 1.5
RLprompt (RD) 92.5 ± 0.6 69.5 ± 3.2 89.5 ± 2.1 89.8 ± 1.9 69.7 ± 1.4 88.4 ± 1.9 89.9 ± 1.7
PPD (LG) 91.8 ± 2.3 71.5 ± 2.3 92.1 ± 2.4 90.9 ± 1.6 70.3 ± 1.7 91.3 ± 1.9 92.8 ± 2.1
PPD (RD) 92.1 ± 1.9 72.3 ± 2.1 91.5 ± 1.2 89.9 ± 1.8 69.0 ± 1.2 90.7 ± 1.5 92.1 ± 1.7

Table 2: Performance comparisons of the proposed PPD algorithm with other contenders on the MMLU dataset.
For each dataset, 5 evolutions are conducted, and the average accuracy (%) as well as the standard deviation are
presented. The best result of each dataset is emphasized in bold.

Method MAR MAN HSM HCS CMed CMath CCS AST RND
Direct 90.4 ± 2.1 76.6 ± 1.5 50.7 ± 3.1 90.6 ± 2.9 61.7 ± 1.8 40.5 ± 4.3 68.2 ± 2.5 89.5 ± 2.7 68.6 ± 1.2
ICL (LG) 87.9 ± 2.3 75.1 ± 1.2 45.9 ± 3.8 87.5 ± 1.5 58.6 ± 4.3 37.4 ± 3.3 68.3 ± 2.5 88.9 ± 1.7 67.9 ± 1.5
ICL (RD) 88.5 ± 1.8 76.3 ± 0.9 47.2 ± 2.4 88.9 ± 2.2 58.2 ± 3.5 39.9 ± 2.6 69.3 ± 1.4 86.3 ± 2.4 68.1 ± 1.3
BDPL (LG) 90.1 ± 1.6 78.3 ± 1.5 51.6 ± 2.8 90.4 ± 3.0 62.1 ± 2.2 42.7 ± 3.3 70.1 ± 1.3 88.7 ± 2.2 70.1 ± 2.4
BDPL (RD) 90.7 ± 2.0 79.2 ± 1.1 53.1 ± 1.9 92.3 ± 2.2 61.5 ± 1.8 44.1 ± 2.9 71.5 ± 1.9 85.3 ± 3.8 70.5 ± 1.9
RLprompt (LG) 90.3 ± 2.5 77.3 ± 1.8 51.2 ± 2.5 89.6 ± 2.4 60.7 ± 2.3 40.7 ± 2.9 69.5 ± 2.4 89.3 ± 2.2 70.3 ± 1.9
RLprompt (RD) 91.1 ± 0.7 78.5 ± 0.8 54.3 ± 1.2 91.1 ± 2.3 59.5 ± 3.1 43.0 ± 1.4 70.9 ± 1.7 87.7 ± 2.9 70.6 ± 1.5
PPD (LG) 91.5 ± 1.3 78.4 ± 2.1 52.6 ± 2.4 91.6 ± 2.8 61.9 ± 2.9 43.5 ± 2.6 70.6 ± 2.1 88.8 ± 2.6 71.9 ± 2.5
PPD (RD) 91.9 ± 0.6 79.8 ± 1.5 53.5 ± 1.7 92.9 ± 1.5 61.4 ± 2.5 44.9 ± 1.7 72.8 ± 1.1 86.1 ± 1.6 72.5 ± 2.1

across the benchmark datasets. Compared with the Direct algorithm, our approach achieved superior
performance on nearly all datasets, demonstrating our success in leveraging unlabeled data to learn an
effective prompt for the downstream task and obtain more accurate predictions. The ICL algorithm
even underperforms the Direct algorithm, indicating the need to explore other unlabeled data in
the learning phase. Furthermore, our algorithm outperforms the BDPL and RLPrompt algorithms,
highlighting the importance of introducing in-context demonstrations during the learning phase, as
we further utilize pseudo-labeled data in the downstream tasks for prompt learning.

4.3 IN-CONTEXT DEMONSTRATIONS SELECTION

In this part, we evaluate the impact of varying the number of in-context demonstrations and the
training loss used in our proposed algorithm. For in-context demonstrations selection, we select the
K-nearest samples for each instance, following the distance measurement used by Liu et al. (2022).

We learn the prompt using different numbers of in-context demonstrations and loss functions, and
present the comparison results in Table 3. It can be observed that all versions of the PPD algorithm,
regardless of the number of in-context demonstrations, outperform the Direct algorithm and the
ICL algorithm with different K, highlighting the benefit of leveraging pseudo-labeled data for
unsupervised prompt learning in the downstream task. Among all tested values of K, setting K to 5
and using the Cross Entropy loss yields the most satisfactory performance.

4.4 ABLATION STUDIES

In this part, we analyze several aspects of the proposed PPD algorithm. Specifically, we investigate
the effect of different mechanisms for generating reliable pseudo-labeled data, the effect of the
entropy minimization term in the optimization process, and the influence of the hyperparameters in
the proposed PPD algorithm.

Reliable Pseudo-labeled Data Selection. We first investigate different mechanisms for generating
reliable pseudo-labeled data and the effect of different confidence thresholds γ. We perform the
experiments on the two datasets GLUE and MMLU with the average accuracy measurement and
report the experimental results in Figure 3(a). We can observe that using RD and setting the
confidence threshold to 0.7 gives the best performance across all experiments. A small confidence
threshold will introduce incorrect pseudo-labels and thus affect the performance. A relatively high
confidence threshold will limit the size of the selected pseudo-labeled data and also cause performance
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Table 3: Performance comparisons for different number of in-context demonstrations used unsupervised prompt
learning on benchmark datasets. For each dataset, 5 evolutions are conducted, and the average accuracy (%) as
well as the standard deviation are presented. The best result of each dataset is emphasized in bold.

Method MNLI QQP SST-2 MRPC CoLA WNLI RTE RND
Direct 91.6 ± 2.4 71.3 ± 1.1 89.5 ± 1.6 90.8 ± 2.1 69.5 ± 1.8 90.7 ± 1.7 92.8 ± 1.3 68.6 ± 1.2
ICL (k = 3) 89.3 ± 1.9 68.5 ± 2.1 88.9 ± 2.4 88.3 ± 1.7 66.4 ± 2.3 87.5 ± 1.7 88.3 ± 1.2 67.5 ± 1.5
ICL (k = 5) 90.5 ± 0.8 67.3 ± 1.8 88.4 ± 1.8 89.2 ± 2.1 67.2 ± 1.7 88.4 ± 1.1 88.9 ± 0.9 68.1 ± 1.7
PPD (k = 3) 91.5 ± 2.1 71.5 ± 2.1 90.3 ± 1.7 89.3 ± 1.8 68.8 ± 1.5 90.5 ± 1.7 92.1 ± 2.0 71.5 ± 2.6
PPD (k = 5) 92.3 ± 1.7 72.1 ± 1.9 92.1 ± 2.2 90.2 ± 1.9 70.5 ± 1.1 91.2 ± 1.3 92.6 ± 1.8 72.7 ± 2.2
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Figure 3: Ablation studies for several aspects of the proposed PPD algorithm.

degradation. Therefore, it is suggested to use the bias-reduced confidence to generate the initial
reliable pseudo-labeled data and set the confidence threshold to 0.7 in practice.

Effect of Entropy Minimization. We then examine the effect of the entropy minimization term
with various α during inference on the SST-2 dataset. Since each discrete token is sampled from a
corresponding categorical distribution to form the prompt, the proposed entropy minimization term
aims to generate a more stable prompt during inference.

We report the experimental results in Figure 3(b). We can observe that, with the increasing of α,
the variance is reducing. This is because if we do not use the entropy minimization term during
optimization, the learned category distributions can even be flatten, making a random generation of
certain tokens in the prompts during inference time. Therefore, we introduce the entropy minimization
term for a stable prompt generation during inference and thus the variance is reduced.

Different black-box LLMs. Finally, we evaluate the performance of the proposed algorithm with
different black-box LLMs. Experiments are conducted on three datasets: GLUE, MMLU, using
average accuracy as the metric. We report the results for GPT-4 and GPT-4o-mini in Figure 3(c). For
a fair comparison, we set the number of demonstrations to 5 and use the Cross Entropy loss.

We compare these results with those of the Direct algorithm. The proposed PPD algorithm outper-
forms the Direct algorithm with both GPT-4 and GPT-4o-mini, demonstrating the general applicability
of our approach across different popular LLMs.

5 CONCLUSION

In this paper, we investigate unsupervised prompt learning for classification with black-box LLMs,
where we learn the prompt itself and the pseudo labels of unlabeled data simultaneously. After
first identifying initial reliable pseudo-labeled data using the LLM, we propose a novel learning
objective where we assign pseudo labels to other unlabeled data based on the prompt, allowing the
pseudo-labeled data to serve as in-context demonstrations alongside the prompt. These in-context
demonstrations are important: they are previously involved when the prompt is used for prediction,
while they are not involved when the prompt is trained; thus, taking them into account during training
makes the prompt-learning and prompt-using phases more consistent. Experiments on benchmark
datasets demonstrate the effectiveness of our proposed algorithm. After unsupervised prompt learning
and obtaining learned pseudo labels for the downstream task, we can then use the pseudo-labeled
dataset for further fine-tuning by the owners of the black-box LLMs.
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A APPENDIX

A.1 MANUAL TEMPLATES

The manual templates for each dataset are listed as follows. These manual templates follow the
prompt and demonstrations.

SST-2:

Review : { s e n t e n c e } , O p t i o n s : { o p t i o n s } . Answer :

COLA:

S e n t e n c e : { s e n t e n c e } O p t i o n s : { o p t i o n s } . Answer :

MNLI:

P remise : { p r e m i s e } \ n H y p o t h e s i s : { h y p o t h e s i s } \ n O p t io n s : {
o p t i o n s } . Answer :

QQP:

Q u e s t i o n 1 : { q u e s t i o n 1 } \ n Q u e s t i o n 2 : { q u e s t i o n 2 } \ n O p t i o ns : {
o p t i o n s } . Answer :

MRPC:

S e n t e n c e 1 : { s e n t e n c e 1 } \ n S e n t e n c e 2 : { s e n t e n c e 2 } \ n O p t i on s : {
o p t i o n s } . Answer :

RTE:

P remise : { s e n t e n c e 1 } \ n H y p o t h e s i s : { s e n t e n c e 2 } \ n O p t io n s : {
o p t i o n s } . Answer :

WNLI:

S e n t e n c e 1 : { s e n t e n c e 1 } \ n S e n t e n c e 2 : { s e n t e n c e 2 } \ n O p t i on s : {
o p t i o n s } . Answer :

CAIS/MMLU:

Q u e s t i o n : { q u e s t i o n } , O p t i o n s : { o p t i o n s } . Answer :

A.2 HYPERPARAMETERS SETTING

Table 4: Hyper Parameters for Each Dataset

Dataset MNLI QQP SST-2 MRPC CoLA WNLI RTE MMLU

Prompt Length 20 50 50 40 50 50 50 50

Learning Rate 2e-4 1e-4 4e-4 1e-4 2e-4 1e-4 1e-4 2e-5

# of Demonstrations 4 3 3 4 5 5 5 5
Table 5: Datasets with corresponding prompt lengths and learning rates.
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