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Abstract

Foundation models have achieved remarkable success across image and language1

domains. By scaling up the parameter count and data, these models acquire gener-2

alizable world knowledge and often surpass task-specific approaches. However,3

such progress has yet to extend to the domain of physics simulation. A primary4

bottleneck is data scarcity: while millions of images, videos, and textual resources5

are available on the internet, the largest physics simulation datasets contain only6

tens of thousands of samples. This data limitation hinders the use of large models,7

as overfitting becomes a major concern. As a result, physics applications typically8

rely on small models, which struggle with long-range prediction due to limited9

context understanding. Additionally, unlike other modalities that often exhibit fixed10

granularity, physics datasets vary drastically in scale, amplifying the challenges11

of scaling up multitask training. We introduce PhysiX, one of the first large-scale12

foundation models for physics simulation. PhysiX is a 4.5B parameter autoregres-13

sive generative model. It uses a discrete tokenizer to encode physical processes at14

different scales into a sequence of discrete tokens, and employs an autoregressive15

next-token prediction objective to model such processes in the token space. To16

mitigate the rounding error in the discretization process, PhysiX incorporates a17

specialized refinement module. Through extensive experiments, we show that18

PhysiX effectively addresses the data bottleneck, outperforming task-specific base-19

lines under comparable settings as well as the previous absolute state-of-the-art20

approaches on The Well benchmark. Our results indicate that knowledge learned21

from natural videos can be successfully transferred to physics simulation, and that22

joint training across diverse simulation tasks enables synergistic learning.23

1 Introduction24

Simulating physical systems governed by partial differential equations (PDEs) is a cornerstone of25

modern science and engineering. From modeling fluid dynamics to understanding galaxy formation,26

PDE-based simulations enable us to predict, control, and optimize complex natural phenomena [13,27

5, 6, 37, 12, 29]. Traditionally, physics simulations have relied on numerical solvers that discretize28

and integrate governing equations over space and time. While highly accurate, such methods are29

computationally intensive, often requiring specialized hardware and expert-tuned software [16]. This30

high cost has led to growing interest in machine learning (ML)-based surrogates, which aim to31

approximate simulation outputs at a fraction of the expense [52, 55, 19]. Recent work has shown32

that deep neural networks can learn surrogate models for a range of PDE-driven systems, enabling33

orders-of-magnitude reductions in inference time [56, 49, 11, 50, 17].34

Despite these promising advances, current ML-based surrogates remain largely task-specific. Most35

methods are designed for a single physical system and trained from scratch using individual datasets.36

These models typically struggle to adapt when simulation parameters change, such as domain geome-37

try, boundary conditions, or physical constants, and often require significant retraining or architectural38
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Figure 1: PhysiX versus the baselines in 8 tasks of the Well benchmark. We report VRMSE (lower is
better) averaged across different physical properties and lead time between 9-26 frames for each task.

modification to maintain accuracy [14, 62, 38, 18]. Moreover, since they are trained separately for39

each task, they fail to capture shared inductive biases across domains, such as spatiotemporal locality,40

symmetry, or conservation laws. To address similar limitations of task-specific models in other41

domains, researchers have increasingly adopted the foundation model paradigm, where a large model42

is first pretrained on a large set of diverse data, before being finetuned for specific tasks [9, 7].43

The success of foundation models raises a natural question: can we build a foundation model for44

physical simulations? Unlike text or images, physics simulations pose unique challenges. First,45

simulation data is expensive to generate and inherently limited in volume. Even the largest public46

datasets contain only tens of thousands of spatiotemporal examples [40], orders of magnitude smaller47

than the text or video corpora used to train large language and vision models. In addition, physical48

systems exhibit substantial diversity, varying in resolution, dimensionality, underlying equations, and49

physical domains – from turbulent fluids to elastic solids and chemical reaction-diffusion systems.50

Modeling such heterogeneity requires a flexible architecture and a training strategy capable of51

learning shared representations across domains while preserving task-specific fidelity. Together, these52

challenges make it non-trivial to scale the foundation model paradigm to physical simulations.53

In this work, we introduce PhysiX, the first large-scale autoregressive foundation model for physical54

simulations. PhysiX comprises three main components: a universal discrete tokenizer, a 4.5B55

parameter autoregressive transformer, and a refinement module. We first train the tokenizer jointly on56

a diverse collection of physics simulation datasets to compress continuous spatiotemporal fields at57

different scales into sequences of discrete tokens, allowing the model to capture shared structural58

and dynamical patterns across domains. This discrete representation enables effective data fusion59

across heterogeneous sources and allows training on a unified token space analogous to language60

modeling. Building on this representation, we then train a large-scale autoregressive transformer61

using a next-token prediction objective over the combined tokenized corpus. To further improve62

generalization and mitigate data scarcity, we initialize both the tokenizer and the autoregressive model63

from pretrained checkpoints of high-capacity video generation models, enabling PhysiX to leverage64

strong spatiotemporal priors learned from natural videos. Finally, to address the quantization error65

introduced by tokenization and improve output fidelity, PhysiX incorporates a lightweight refinement66

module that reconstructs fine-scale details from predicted token sequences.67

Empirically, PhysiX significantly outperforms task-specific baselines and previous state-of-the-art68

models on The Well benchmark [40], demonstrating improved long-range prediction and better69

generalization across tasks. Figure 1 highlights these results. Our experiments show that PhysiX can70

effectively transfer knowledge from natural video pretraining to physics simulations, and that joint71

training across multiple simulation datasets enables synergistic learning. These results demonstrate72
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compelling evidence that foundation models can serve as unified surrogates for diverse physical73

systems, bringing us closer to general-purpose, scalable, and efficient tools for scientific computing.74

2 Related Works75

Physics Simulation Traditional simulation modeling typically relies on numerical methods, such76

as finite element methods, finite difference methods, and finite volume methods, to approximate77

solutions to differential equations governing physical laws. While effective, these approaches often78

require significant computational resources, especially for high-resolution simulations or long-term79

predictions, limiting their scalability and real-time applicability.80

Advances in machine learning have offered promising alternatives to accelerate or supplement tradi-81

tional PDE solvers [51, 22]. Physics-informed neural networks (PINNs) incorporate prior knowledge82

of governing equations into the loss function [46]. These methods require little observational data,83

as physical constraints guide the learning process. This provides the benefit of interpretable and84

improved physical plausibility, but makes PINNs an unsuitable choice when the underlying physical85

laws are unknown or only partially understood.86

Concurrently, data-driven surrogate modeling methods have also seen success in this area, shifting87

from explicitly modeling physical laws towards implicitly learning system dynamics through ob-88

served data [34]. Early work utilized CNNs, particularly U-Net architectures [48, 63], to model89

spatiotemporal relationships between physical fields. More recently, neural operator frameworks90

have emerged, which aim to learn mappings between infinite-dimensional function spaces [28, 35].91

These include Fourier Neural Operators (FNOs) [32], which leverage Fast Fourier Transforms for92

efficient global convolution, and various Transformer-based architectures [30, 25] that utilize attention93

mechanisms to capture long-range dependencies. To handle complex geometries where methods94

like FNOs may struggle, Graph Neural Network (GNN) based operators have also been developed,95

capable of operating directly on unstructured meshes [31, 8]. These operator learning frameworks96

enable generalization to different initial conditions, boundary conditions, and spatial resolutions97

without explicit retraining.98

Despite these advancements, current neural network-based physics simulators face limitations. They99

often struggle with long-range predictions [33], and many models are typically trained and optimized100

for a specific physical system, a narrow range of parameters, or a particular set of governing equations.101

Current neural network approaches can generalize within a physical domain, but perform poorly102

across distinct physical domains without substantial retraining or architectural modifications.103

Video Generation Video generation models have achieved considerable progress in recent years.104

[57, 27, 41, 2]. These models achieve high-fidelity video generation by pre-training on web-scale105

video data [1, 3]. The most common approach for video generation employs diffusion models [21, 4,106

60], which model videos in a continuous latent space. Several works also explored autoregressive107

video modeling [26, 15], which convert videos into sequences of discrete tokens using a discrete108

tokenizer and apply the next-token prediction objective. Most notably, Emu3 [59] demonstrated that109

autoregressive models can achieve competitive performance with diffusion models at scale. There110

are several dedicated lines of work focusing on specific design choices of video generative models,111

including video tokenizer [61, 58], model architecture [44], and learning objective [53].112

Foundation Models The concept of foundation models first emerged in the context of transfer113

learning [64], where a model trained on large-scale data in one domain can be easily fine-tuned to114

perform many tasks in adjacent domains. Notable early examples include self-supervised learning on115

ImageNet-1K, a dataset of natural images [10, 20, 42]. These pre-trained vision models proved to be116

versatile for a wide range of downstream applications such as medical imaging [23]. More recent117

works shifted the training paradigm to vision-language alignment. Models like CLIP [45] are pre-118

trained on large amounts of image-text pairs and have demonstrated strong zero-shot generalization119

capabilities to a wide range of downstream tasks across multiple domains. Most recently, several120

works have focused on building foundation models for domain-specific use cases such as remote121

sensing [47], weather forecasting [39], and material design [54]. Most notably, Cosmos [2] builds122

a foundation world model for physical AI by pre-training on large amounts of video documenting123

physical applications using the video modeling objective. Its training data covers a wide range of124

physical applications such as robotic manipulation and self-driving. In this work, we investigate if125

similar approaches can be adapted to build a foundation model for physics simulations.126
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Figure 2: The overall design of PhysiX. PhysiX consists of a video tokenizer, an autoregressive
model, and a refinement network. Given input frames x1, . . . , xN , the tokenizer discretizes each
frame into a sequence of discrete tokens, where the jth token of frame i is denoted as {zji }. The
autoregressive model then generates predictions in this discrete token space, which are converted
back to pixel-level predictions x̂ by the de-tokenizer. A refinement module is incorporated to mitigate
artifacts caused by the discretization error, such as blocky, pixelated outputs (visualized in yellow
boxes), and produce the final sharper and more detailed output ŷ.

3 Method127

PhysiX consists of three components: a discrete tokenizer, an autoregressive generation model, and a128

refinement module. Given k input frames x1, x2, . . . , xk as the historical context, we first convert129

them into sequences of k̂ latent discrete tokens z1, z2, . . . , zk̂, where each zi = [z1i , z
2
i , . . . , z

L
i ]130

consists of L tokens. We then concatenate these sequences into a single sequence, and use it as131

the input for the autoregressive model. The autoregressive model then predicts discrete tokens,132

zk̂+1, zk̂+2, zk̂+T̂ where T̂ is the maximum lead time measured in latent frames (corresponding to133

T pixel frames). These tokens are decoded back to pixel space to obtain the coarse AR prediction134

x̂k+1, x̂k+2, x̂k+T . We employ a refinement module to further improve the prediction. It refines x̂j ,135

the prediction of the AR model at time step j, to obtain a refined prediction ŷj . We incorporate the136

refinement module as we observe that the discretization process of the tokenizer introduces small137

rounding errors and leads to information loss. The refinement module, which has access to the138

historical context in pixel space, can mitigate such error by correcting the AR predictions based on139

the pixel values of the context. This process is visualized in Figure 2.140

3.1 Universal Tokenizer141

We adopt the discrete tokenizer architecture from the Cosmos framework [2], which transforms input142

videos into sequences of compact discrete tokens while preserving spatiotemporal structure. The143

tokenizer follows an encoder-decoder design. The encoder processes an input sequence of video144

frames using temporally causal convolution and attention layers to produce a compressed latent145

representation. This representation is then quantized using Finite-Scalar Quantization (FSQ) [36],146

resulting in discrete token sequences. The decoder reconstructs the original video frames from these147
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tokens. A key design choice of the Cosmos tokenizer architecture is its temporal causality, where each148

stage observes only past and present frames, making it well-suited for downstream autoregressive149

modeling. In PhysiX, we train a tokenizer with 8× spatial and 4× temporal compression. Given an150

input sequence of frames x1:M , where M = k + T and each frame has a size H ×W , the tokenizer151

then compresses them into M̂ = k+T
4 latent frames, each containing L = HW

82 discrete tokens. We152

concatenate the sequences to obtain a 1D sequence z.153

To enable cross-task generalization, we train a single universal tokenizer across all available simulation154

datasets. This setting poses unique challenges due to the heterogeneity of the data: different datasets155

vary in channel dimensionality, spatial resolution, and physical semantics. We address this in two156

ways. First, we modify the first embedding layer of the encoder to accept a fixed union of all possible157

channels observed across datasets. When a data point lacks certain channels, we pad the missing158

entries with learnable 2D tensors specific to each channel type. This design allows the model to159

flexibly process any subset of channels within a unified architecture. Second, while the encoder is160

shared across datasets to enforce a shared embedding space, we train a separate decoder for each161

dataset to improve reconstruction quality and accommodate dataset-specific output distributions.162

To ensure balanced representation across datasets during training, we replicate samples from datasets163

with fewer training examples so that each dataset contributes an equal number of sequences to the164

training process. We initialize the universal tokenizer from a pre-trained Cosmos checkpoint, which165

we found significantly accelerates convergence and improves reconstruction performance compared166

to training from scratch. This pre-trained initialization also facilitates better transfer to the physics167

domain by leveraging learned priors from natural video data.168

3.2 Autoregressive Generative Models169

After training the universal tokenizer, we train a large-scale autoregressive model to simulate physics170

in the discrete latent space. We adopt the autoregressive architecture introduced in the Cosmos171

framework [2], which is a decoder-only transformer trained using a next-token prediction objective.172

Given a sequence of discrete tokens produced by the tokenizer for the past k input frames, the173

transformer predicts the tokens corresponding to the next T frames autoregressively. The model174

minimizes the negative log-likelihood of the correct token at each position, conditioned on all previous175

tokens. Formally, the training objective is176

LAR = −
M̂∑
i=1

L∑
j=1

Ez

[
log p(zji |{z

n
m|m < i or m = i, n < j})

]
, (1)

where L = HW
82 is the length of each latent frame zi, and M̂ = k+T

4 since each latent frame177

represents four pixel frames.178

The autoregressive model incorporates 3D rotary position embeddings (RoPE) to capture relative179

spatiotemporal relationships across the token sequence. A key distinction from prior work is our180

support for variable spatial resolutions during training. Since simulation datasets differ in shape, we181

adjust the positional encodings dynamically: rather than resizing inputs or interpolating embeddings,182

we simply truncate the 3D RoPE frequencies along the height and width dimensions to match the size183

of the current input. This approach, implemented with minimal modification to the original RoPE184

module, allows seamless handling of mixed-resolution data without sacrificing performance. We185

found this simple strategy worked equally well as more advanced interpolation techniques [43, 65].186

We initialize the autoregressive model from the 4.5B parameter Cosmos checkpoint187

(NVIDIA/COSMOS-1.0-AUTOREGRESSIVE-4B), enabling it to inherit strong spatiotemporal priors188

learned from large-scale natural video datasets. Similar to tokenizer training, we oversample smaller189

datasets to match the size of the largest one.190

3.3 Refinement Module191

The refinement module is a convolutional neural network that aims to refine the output of AR models192

by removing the artifacts caused by the discretization process. We show one such example in Figure 2.193

We observe that the output of the AR model (middle) x̂ exhibits a pattern that is similar to quantization194

noise in the center, whereas the ground truth data (bottom) x is noise-free. The refinement module is195

able to successfully remove such noise, as shown in its output (top) ŷ. This noise is introduced due to196
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the inherent limitation of the discrete tokenization process, which was initially designed for natural197

videos. When generating natural videos such as characters or scenery, this noise is often negligible198

and does not affect the overall fidelity of generated videos. However, it can significantly hurt the199

performance in physical simulation tasks, where precision is required.200

We train our refinement module as a post-processing step for the AR model. After the AR model201

is trained, we autoregressively generate predictions for each sample in the training split to produce202

training data for the refinement module. The ground truth frames are used as the refinement target.203

Notably, we decode the outputs of the AR model before passing them into the refinement model,204

so the model learns to improve AR generations in pixel space. We adopt the same architecture as205

ConvNeXt-U-Net baseline of the Well benchmark for our refinement model and utilize MSE loss206

during the training process. The primary difference with the baseline is the learning objective, as207

the refinement model learns to refine the AR output instead of predicting a new frame itself. Just208

as our universal tokenizer employs different decoder layers for different datasets, we train separate209

refinement modules for each dataset. We provide more details in the appendix.210

4 Experiments211

We train and evaluate PhysiX across eight simulation tasks from the Well benchmark [40], as shown212

in Tables 1 and 2. Following the benchmark protocol, we report the Variance-Weighted Root Mean213

Squared Error (VRMSE), averaged over all physical channels for each dataset. For datasets such214

as helmholtz_staircase and acoustic_scattering (maze), we exclude channels that remain215

constant across time steps from the evaluation. We compare PhysiX against four baselines provided by216

the Well benchmark: Fourier Neural Operator (FNO), Tucker-Factorized FNO (TFNO), U-Net, and U-217

Net with ConvNeXt blocks (C-U-Net), considering both next-frame and long-horizon rollout settings.218

In addition, we conduct extensive ablation studies to assess the impact of various architectural and219

training design choices in PhysiX. We also study the ability of PhysiX to adapt to unseen simulations,220

the impact of using video-pretrained models, scaling results, and qualitative results in Appendix G.221

4.1 Next-frame Prediction222

In the next-frame prediction benchmark, PhysiX outperforms the baselines on 5 out of 8 datasets,223

demonstrating strong generalization across diverse physical systems. In addition, PhysiX achieves the224

best average rank across the 8 tasks, with a score of 1.62 compared to 2.38 for the best-performing225

baseline. Importantly, PhysiX achieves this performance using a single model checkpoint shared226

across all tasks, whereas the baseline results are obtained from separate models trained specifically227

for each dataset. This highlights the ability of PhysiX to act as a general-purpose simulator. The228

performance gain is especially significant on the shear_flow and rayleigh_benard datasets,229

where PhysiX reduces the VRMSE by 91% and 78% respectively relative to the best baseline.230

Table 1: Next-frame prediction performance across 8 datasets on the Well benchmark. We
report VRMSE (lower is better) averaged across different fields for each dataset.

Dataset Baseline Ours

FNO TFNO U-Net C-U-Net PhysiX

shear_flow 1.189 1.472 3.447 0.8080 0.0700
rayleigh_benard 0.8395 0.6566 1.4860 0.6699 0.1470
acoustic_scattering (maze) 0.5062 0.5057 0.0351 0.0153 0.0960
active_matter 0.3691 0.3598 0.2489 0.1034 0.0904
turbulent_radiative_layer_2D 0.5001 0.5016 0.2418 0.1956 0.2098
viscoelastic_instability 0.7212 0.7102 0.4185 0.2499 0.2370
gray_scott_reaction_diffusion 0.1365 0.3633 0.2252 0.1761 0.0210
helmholtz_staircase 0.00046 0.00346 0.01931 0.02758 0.0180

Average Rank (↓) 3.62 3.75 3.62 2.38 1.62
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Table 2: Long-horizon prediction performance across 8 datasets on the Well benchmark. We
report VRMSE (lower is better) averaged across different fields for each dataset. We report averaged
results over different ranges of lead time: 2-8, 9-26 and 27-56 frames.

Dataset ∆t =2:8 ∆t =9:26 ∆t =27:56

Baseline PhysiX Baseline PhysiX Baseline PhysiX

shear_flow 2.330 0.077 >10 0.153 >10 0.236
rayleigh_benard >10 1.067 >10 0.741 >10 0.847
acoustic_scattering (maze) 0.560 0.158 0.920 1.246 1.341 2.189
active_matter 2.110 0.415 2.710 0.974 1.635 1.320
turbulent_radiative_layer_2D 0.660 0.363 1.040 0.693 1.331 0.953
gray_scott_reaction_diffusion 0.290 0.037 7.620 1.984 12.714 12.643
viscoelastic_instability 0.520 0.387 — — — —
helmholtz_staircase 0.002 0.022 0.003 0.071 — —
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Figure 3: Long-horizon prediction performance. We visualize VRMSE (lower is better) across
different lead time on shear_flow,active_matter, and turbulent_radiative_layer datasets.

4.2 Long-horizon Prediction231

While PhysiX already performs competitively in next-frame prediction, its true strength lies in long-232

horizon simulation. As shown in Table 2, PhysiX achieves state-of-the-art performance on 18/21233

evaluation points across different forecasting windows. The improvements are not only consistent234

but also significant in various tasks. For example, on shear_flow, PhysiX reduces VRMSE by235

over 97% at the 6:12 horizon compared to the best-performing baseline (from 2.33 to 0.077). On236

rayleigh_benard, PhysiX achieves more than 90% lower error across all rollout windows. Similar237

results are observed in active_matter, where PhysiX consistently achieves better performance at238

every forecast horizon, underscoring its robustness and adaptability across domains.239

Figure 3 further illustrates the long-term behavior of PhysiX compared to the best baseline model in240

each dataset. In the early stages of the rollout, both models exhibit similar performance. However, as241

the lead time increases, the performance of the baseline models degrades rapidly due to compounding242

prediction errors. In contrast, PhysiX maintains low VRMSE across time steps, demonstrating much243

greater stability. This stability stems from the autoregressive nature of PhysiX, which allows the244

model to learn from full sequences of simulations rather than focusing solely on short-term prediction.245

This enables it to maintain stability and accuracy over extended rollouts, making it particularly246

well-suited for challenging multi-step prediction tasks.247

4.3 Ablation Studies248

To study the effectiveness of our design, we conducted a series of thorough ablation studies. In249

the main paper, we explored the performance of universal (multi-task) models versus single-task250

models, and the effectiveness of the refinement module. We provide additional ablation studies, such251

as training the model from scratch versus initializing the model with weights pre-trained on natural252

videos in the appendix.253
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Table 3: Comparison of multi- and single-task models. We report next-frame and long-horizon
prediction results on the Well benchmark for the multi-task and single-task models.

Dataset ∆t =1 ∆t =2:8 ∆t =9:26 ∆t =27:56

Spec. Univ. Spec. Univ. Spec. Univ. Spec. Univ.

shear_flow 0.0689 0.070 0.236 0.118 0.378 0.281 0.452 0.397
rayleigh_benard 0.137 0.147 0.436 1.090 0.522 0.704 0.724 0.646
turbulent_radiative_layer 0.359 0.343 0.565 0.357 0.792 0.710 1.014 0.998
active_matter 0.150 0.090 0.844 0.477 1.177 1.396 1.352 1.381
gray_scott_reaction 0.0418 0.0210 1.487 0.0375 15.965 0.390 62.484 0.895
viscoelastic_instability 0.251 0.237 0.764 0.406 — — — —
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Figure 4: Effect of refinement module. We apply refinement module to both the multi-
task and single-task AR model and study its effect on predication errors. We report VRMSE
and MSE (lower is better) over prediction windows ranging from 1 frame to 8 frames on the
gray_scott_reaction_diffusion dataset.

General Model vs Task Specific Models We compare the performance of our multi-task model254

and single-task models on both one-frame prediction and long-horizon prediction tasks. For the255

task-specific model, we followed the same setup as the universal model, including the model size,256

model architecture, and training hyperparameters. The only difference is the training data. We257

report VRMSE across 8 datasets and different lead times in Table 3. Experiment results show that258

the universal model outperforms task-specific models, achieving lower VRMSE on the majority of259

datasets across different lead times. Our results show that joint multi-task training improves the260

performance of individual tasks, as the model may learn some common patterns and mechanisms261

across different physical processes.262

Effectiveness of Refinement Module We compare PhysiX with and without the refinement module.263

We show such differences for both the multi-task AR model and the single-task AR model at different264

prediction windows in Figure 4. The refinement model reduces MSE and VRMSE metrics for both265

models on all prediction windows of the gray_scott_reaction_diffusion dataset, highlighting266

the effectiveness of the proposed refinement process. Most notably, with the help of refinement267

model, the 8-frame prediction error (0.07) of our multi-task model, measured by VRMSE, is lower268

than the 1-frame prediction error of the best performing baseline on the Well benchmark (0.14).269

5 Conclusion270

PhysiX introduces a unified foundational model designed for general-purpose physical simulation271

across a diverse range of systems. PhysiX uses a universal tokenizer for shared discrete representa-272

tions, a large-scale autoregressive transformer for modeling temporal relationships, and a refinement273

network to improve output fidelity. Our joint training approach enabled PhysiX to capture shared spa-274

tiotemporal patterns and adapt to varying resolutions, channel configurations, and physical semantics.275

We show a single universally trained model significantly outperforms task-specific baselines on a wide276

variety of physical domains. PhysiX demonstrates superior performance on single timestep prediction277

and significantly outperforms baseline methods on long-horizon rollouts, while maintaining stability278

and accuracy. The success of PhysiX highlights the potential of foundation models in accelerating279

scientific discovery by providing generalizable tools to model complex physical phenomena.280
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A Limitations474

Despite the promising success of PhysiX, we acknowledge that it has several key limitations.475

Generalization. Existing foundation models typically have zero-shot generalization capabilities.476

For example, CLIP [45], which was pretrained on a large set of vision-language data, can perform477

zero-shot classification on images for domain-specific applications. While PhysiX is trained on478

multiple datasets, generalizing to novel physical processes requires fine-tuning, as they may have479

unseen input channels or represent a drastically different dynamic system from those seen during480

training. We leave this to future work.481

Discretization Error. The tokenization process introduces quantization errors, and while the482

refinement module helps mitigate this, residual errors can still affect the precision of long-term483

simulations. This is especially significant for datasets with low spatial or temporal variance which are484

much more sensitive to small perturbations. Exploring alternative tokenization schemes or end-to-end485

training of the tokenizer and autoregressive model could help minimize this error.486

Data Diversity. PhysiX was only trained on 2D datasets, due to the architecture of the video tokenizer.487

This limits its direct applicability to 3D physical systems or systems with significantly different488

spatial structures. Future work could explore more flexible tokenization architectures that enable the489

compression of higher spatial dimensions, and include data from outside The Well.490

B Experimental settings491

Refinement Module For each trajectory in the raw training data, we randomly sample a starting492

timestamp and run autoregressive generation to obtain the training data for the refinement module.493

We adopted MSE loss. We use a global batch size of 64 frames, a learning rate of 5e− 3 and a cosine494

decay learning rate scheduler. We trained each refinement model for 500 epochs on its respective495

data. Unlike the base model, which is trained in bfloat16 precision, we observe that using float32496

precision is crucial to achieve high-quality outputs, especially for datasets with low spatial variance.497

Tokenizer We trained the universal tokenizer on the 8 datasets in Table 1 for 1000 epochs with an498

effective batch size of 32. We optimize the models using AdamW [24] with a base learning rate of499

1e− 3, using a 10-epoch linear warmup, followed by a cosine decay schedule for the remaining 990500

epochs. For model selection, we average the validation loss across all datasets after each training501

epoch and use the model with the lowest validation loss as the final tokenizer checkpoint.502

AR Model For the autoregressive (AR) model, we trained for 10000 steps with an effective batch size503

of 32. We used Adam as the optimizer with a learning rate schedule similar to the tokenizer, where504

the number of warmup steps is set to 1000. We validated the model after every 100 training steps and505

used the best checkpoint for testing. For both tokenizer and AR training, we upsampled the smaller506

datasets to match the size of the largest one, ensuring the model learns from each dataset uniformly.507

Evaluation After training, we tested the model on the held-out test set provided by the Well [40].508

For the one-step setting, we evaluated the model on random sliding windows sampled from the test509

simulations. For the long-horizon setting, we always initiated the model from the beginning of each510

simulation. This adheres to the standard practice in the Well.511

Finetuning To adapt PhysiX to an unseen task, we finetune both the tokenizer and the autoregressive512

model. Specifically, we finetune the tokenizer for 100 epochs and the autoregressive model for513

1000 iterations, with similar learning rates and schedulers to pretraining. This means the compute514

requirement for each finetuning task is about 10% of that of pretraining. Section G.1 shows that515

PhysiX was able to achieve strong performance even with this limited compute, demonstrating its516

usefulness for the broad research community.517

C Compute resources518

We trained the tokenizer and PhysiX on 8× 40GB A100 devices, and evaluated using 1× 40GB519

A100 device for each task. We trained PhysiX for 24 hours on 8×A100s for 8 datasets. This is520

approximately equal to the combined cost of training the best baseline model for each dataset at521
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current market rate cloud compute costs 1. Each model in The Well required 12 hours on 1×H100 [40],522

for a total time of 96 H100 hours when only considering the best model for each dataset, or about523

half the A100 hours used by PhysiX.524

D Reproducibility statement525

We will release the training and evaluation code, as well as the model checkpoints. We also note that526

the Well’s authors 2 reported some reproducibility issues with the baseline models at the moment and527

are planning to update the codebase and the paper. We cite the currently reported numbers in our528

main experiments. For numbers not reported (e.g. longer rollouts), we use the latest version of the529

official codebase at the time of writing.530

E Licenses531

Cosmos [2] is licensed under Apache-2.0, and the Well [40] benchmark follows BSD-3-Clause532

license. We respect the intended use of each artifact and complied with all license requirements.533

F Statistical significance534

While the Well does not publish variance of the baselines for test sampling, Table 4 shows that our535

95% confidence interval for 1 frame prediction with PhysiX is outside the range of the baseline mean536

assuming a normal distribution. For rollout predictions, we start from the beginning of each sequence537

and evaluate on the entire test dataset, just as the baseline was evaluated.

Table 4: PhysiX 1 frame prediction with 95% confidence intervals.
Dataset Interval Dataset Interval
shear_flow 0.070± 0.011 turbulent_radiative_layer 0.210± .0344

rayleigh_benard 0.147± .029 gray_scott_reaction 0.021± 0.005

acoustic_scattering (maze) 0.096± .002 viscoelastic_instability 0.212± 0.029

active_matter 0.090± 0.011 helmholtz_staircase 0.018± 0.004

538

G Additional experiments539

G.1 Adaptation to Unseen Simulations540

We evaluate the adaptability of PhysiX on two unseen simulations: euler_multi_quadrants541

(periodic b.c.) and acoustic_scattering (discontinuous). These tasks involve novel542

input channels and physical dynamics not encountered during training. To handle this distribution543

shift, we fully finetune the tokenizer for each task. We consider two variants of the autoregressive544

model: PhysiXf , which finetunes the pretrained model, and PhysiXs, which trains from scratch using545

the Cosmos checkpoint as initialization. Further finetuning details are provided in Appendix B.546

Table 5 shows that PhysiXf achieves the best performance on nearly all tasks and prediction hori-547

zons, only losing to C-U-Net on one-step prediction for one task, and the performance gap widens548

significantly as the horizon increases. Notably, PhysiXf consistently outperforms PhysiXs across all549

settings, highlighting its ability to effectively transfer knowledge to previously unseen simulations.550

1Using pricing from Lambda Labs
2https://github.com/PolymathicAI/the_well/issues/49
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Table 5: Performance on two simulation tasks unseen during training. We compare both the
finetuning version (PhysiXf ) and the scratch version (PhysiXs) with the baselines.

Models euler_multi_quadrants (periodic b.c.) acoustic_scattering (discontinuous)

∆t = 1 ∆t =2:8 ∆t =9:26 ∆t =27:56 ∆t = 1 ∆t =2:8 ∆t =9:26 ∆t =27:56

PhysiXf 0.105 0.188 0.358 0.642 0.038 0.057 0.443 1.168
PhysiXs 0.105 0.188 0.366 0.658 0.039 0.062 0.455 1.192
FNO 0.408 1.130 1.370 – 0.127 2.146 2.752 3.135
TFNO 0.416 1.230 1.520 – 0.130 2.963 3.713 4.081
U-Net 0.183 1.020 1.630 – 0.045 2.855 6.259 8.074
C-U-Net 0.153 4.980 >10 – 0.006 5.160 >10 >10

G.2 Pretrained vs scratch551

Figure 5 compares the performance of PhysiX when initialized from a Cosmos pretrained checkpoint552

(Pre-trained) vs when initialized from scratch (Random). Using the pretrained checkpoint outperforms553

training from scratch across almost all tasks and evaluation settings, which shows the effectiveness of554

PhysiX in transferring prior knowledge from natural videos to physical simulations. Table 6 details555

the performance of the two models.556
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Figure 5: Comparison of pretrained and randomly initialized weights

Table 6: Comparison of pre-trained and randomly initialized models. Next-frame and long-
horizon prediction results on the Well benchmark for Cosmos weights pre-trained on natural video
and with randomly initialized weights.

Dataset ∆t = 1 ∆t = 2:8 ∆t = 9:26 ∆t = 27:56

Pre. Rand. Pre. Rand. Pre. Rand. Pre. Rand.

shear_flow 0.070 0.071 0.118 0.094 0.281 0.198 0.397 0.301
rayleigh_benard 0.147 0.174 1.090 1.100 0.704 0.761 0.646 0.691
acoustic_scattering (maze) 0.096 0.106 0.150 0.200 1.170 1.270 2.076 2.444
active_matter 0.090 0.130 0.477 0.579 1.396 1.544 1.381 1.397
turbulent_radiative_layer_2D 0.343 0.368 0.357 0.427 0.710 0.714 0.998 1.055
gray_scott_reaction_diffusion 0.021 0.228 0.038 0.577 0.390 1.544 0.895 1.397
viscoelastic_instability 0.237 0.255 0.406 0.490 — — — —
helmholtz_staircase 0.018 0.015 0.022 0.022 0.072 0.072 — —

G.3 Scaling results557

We study the scalability of PhysiX by training and evaluating autoregressive models with 3 different558

sizes: 700M, 2B, and 4B. Since Cosmos only provides the 4B model checkpoint, we initialized all559

3 models in this experiment from scratch for a fair comparison. Table 7 shows that 4B is the best560

performing model, followed by 700M, while 2B performed the worst. We observed that both the 4B561
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and the 2B models overfit whereas the 700M model did not, and the 2B model converged to a worse562

point compared to the 700M and 4B models, leading to overall poorer performances.563

Table 7: Prediction errors for Scratch models at various time horizons. We report next-frame
and long-horizon prediction errors for Scratch 4B, Scratch 2B, and Scratch 700M across different
datasets, highlighting the best (lowest) error in each horizon.

Dataset t+ 1 t+ 2:8 t+ 9:26 t+ 27:56

4B 2B 700M 4B 2B 700M 4B 2B 700M 4B 2B 700M

shear_flow 0.071 0.075 0.073 0.094 0.112 0.096 0.198 0.216 0.166 0.301 0.303 0.257
rayleigh_benard 0.174 0.181 0.194 1.10 1.201 1.113 0.761 0.855 0.827 0.691 0.823 0.999
acoustic_scattering (maze) 0.106 0.110 0.120 0.20 0.211 0.237 1.270 1.284 1.242 2.444 2.497 2.287
turbulent_radiative_layer 0.368 0.421 0.312 0.427 0.443 0.450 0.714 0.758 0.730 1.055 1.099 0.942
active_matter 0.130 0.102 0.105 0.579 0.592 0.623 1.544 1.626 1.394 1.397 1.415 1.417
gray_scott_reaction 0.228 0.230 0.231 0.577 0.509 0.526 1.544 1.126 1.051 1.397 2.290 1.300
viscoelastic_instability 0.255 0.319 0.246 0.490 0.494 0.590 — — — — — —
helmholtz_staircase 0.015 0.015 0.014 0.0224 0.019 0.017 0.0718 0.056 0.061 — — —

G.4 Qualitative Comparison564

Figure 6 presents a qualitative comparison between PhysiX and the best-performing baseline models565

on two representative simulation tasks: shear_flow and rayleigh_benard. At rollout horizons566

of 24 and 15 steps respectively, PhysiX produces predictions that remain visually consistent with567

the ground truth across all physical fields, including tracer, pressure, buoyancy, and velocity compo-568

nents. In contrast, baseline models exhibit noticeable distortions, blurring, and loss of fine-grained569

structures, particularly evident in the vortex structures of shear_flow and the convective plumes of570

rayleigh_benard. These qualitative results highlight superior fidelity and stability of PhysiX over571

extended prediction windows.572
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Figure 6: Side-by-side qualitative comparison of PhysiX and baseline models. PhysiX demon-
strates superior performance in long horizon rollouts than the leading baseline model. At lead times
of 24 and 15 steps for shear flow and Rayleigh–Bénard convection respectively, PhysiX maintains
high-fidelity predictions across all physical fields, while baseline models ConvNeXt-UNet and TFNO
exhibit visible distortions and loss of detail.
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Figure 7: Qualitative Comparisons on shear_flow Dataset. We compare the prediction of
PhysiX with the ground truth and the prediction of the best baseline model at lead times of 1,5,9,13
frames.

G.5 More qualitative results573

We provide additional visualizations of the PhysiX’s prediction results on shear_flow574

(Figure 7), viscoelastic_instability (Figure 8), rayleigh_benard (Figure 9) and575

gray_scott_reaction_diffusion (Figure 10). We compare the prediction of PhysiX with the576

ground truth and the prediction of baseline models at various lead times. PhysiX shows consistent577

improvement over baselines across all lead times. The improvements on longer lead times are more578

pronounced.579
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Figure 8: Qualitative Comparisons on viscoelastic_instability Dataset. We compare the
prediction of PhysiX with the ground truth and the prediction of the best baseline model at lead times
of 1,3,5,7 frames.
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Figure 9: Qualitative Comparisons on rayleigh_benard Dataset. We compare the prediction of
PhysiX with the ground truth and the prediction of the best baseline model at lead times of 1,8,16,24
frames.
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Figure 10: Qualitative Comparisons on gray_scott_reaction_diffusion Dataset. We com-
pare the prediction of PhysiX with the ground truth and the prediction of the best baseline model at
lead times of 1,3,5,7 frames.
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