
PhysiX: A Foundation Model for Physics Simulations

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 Foundation models have achieved remarkable success across image and language
2 domains. By scaling up the parameter count and data, these models acquire generalizable
3 world knowledge and often surpass task-specific approaches. However,
4 such progress has yet to extend to the domain of physics simulation. A primary
5 bottleneck is data scarcity: while millions of images, videos, and textual resources
6 are available on the internet, the largest physics simulation datasets contain only
7 tens of thousands of samples. This data limitation hinders the use of large models,
8 as overfitting becomes a major concern. As a result, physics applications typically
9 rely on small models, which struggle with long-range prediction due to limited
10 context understanding. Additionally, unlike other modalities that often exhibit fixed
11 granularity, physics datasets vary drastically in scale, amplifying the challenges
12 of scaling up multitask training. We introduce **PhysiX**, one of the first large-scale
13 foundation models for physics simulation. PhysiX is a 4.5B parameter autoregressive
14 generative model. It uses a discrete tokenizer to encode physical processes at
15 different scales into a sequence of discrete tokens, and employs an autoregressive
16 next-token prediction objective to model such processes in the token space. To
17 mitigate the rounding error in the discretization process, PhysiX incorporates a
18 specialized refinement module. Through extensive experiments, we show that
19 PhysiX effectively addresses the data bottleneck, outperforming task-specific base-
20 lines under comparable settings as well as the previous absolute state-of-the-art
21 approaches on The Well benchmark. Our results indicate that knowledge learned
22 from natural videos can be successfully transferred to physics simulation, and that
23 joint training across diverse simulation tasks enables synergistic learning.

24 **1 Introduction**

25 Simulating physical systems governed by partial differential equations (PDEs) is a cornerstone of
26 modern science and engineering. From modeling fluid dynamics to understanding galaxy formation,
27 PDE-based simulations enable us to predict, control, and optimize complex natural phenomena [13,
28 5, 6, 37, 12, 29]. Traditionally, physics simulations have relied on numerical solvers that discretize
29 and integrate governing equations over space and time. While highly accurate, such methods are
30 computationally intensive, often requiring specialized hardware and expert-tuned software [16]. This
31 high cost has led to growing interest in machine learning (ML)-based surrogates, which aim to
32 approximate simulation outputs at a fraction of the expense [52, 55, 19]. Recent work has shown
33 that deep neural networks can learn surrogate models for a range of PDE-driven systems, enabling
34 orders-of-magnitude reductions in inference time [56, 49, 11, 50, 17].

35 Despite these promising advances, current ML-based surrogates remain largely task-specific. Most
36 methods are designed for a single physical system and trained from scratch using individual datasets.
37 These models typically struggle to adapt when simulation parameters change, such as domain geometry,
38 boundary conditions, or physical constants, and often require significant retraining or architectural

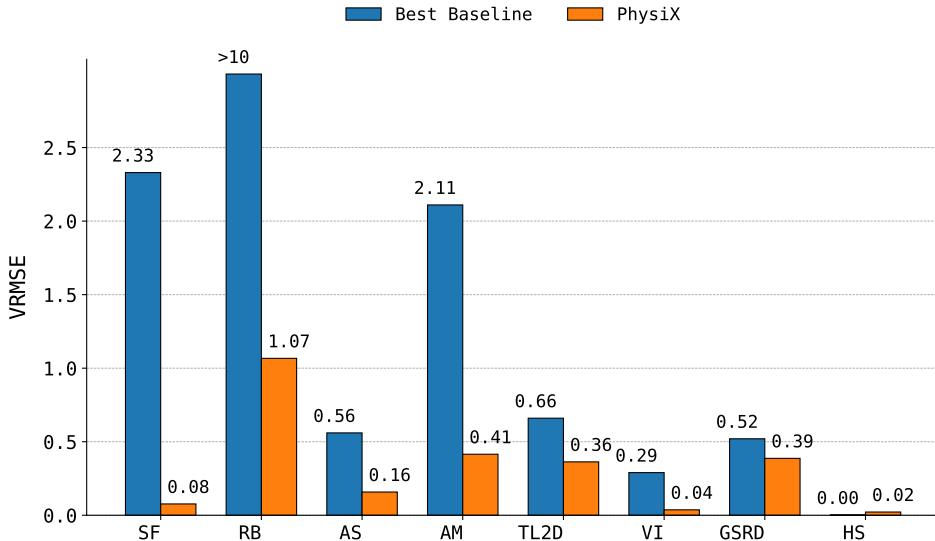


Figure 1: PhysiX versus the baselines in 8 tasks of the Well benchmark. We report VRMSE (lower is better) averaged across different physical properties and lead time between 9-26 frames for each task.

39 modification to maintain accuracy [14, 62, 38, 18]. Moreover, since they are trained separately for
40 each task, they fail to capture shared inductive biases across domains, such as spatiotemporal locality,
41 symmetry, or conservation laws. To address similar limitations of task-specific models in other
42 domains, researchers have increasingly adopted the foundation model paradigm, where a large model
43 is first pretrained on a large set of diverse data, before being finetuned for specific tasks [9, 7].

44 The success of foundation models raises a natural question: *can we build a foundation model for*
45 *physical simulations?* Unlike text or images, physics simulations pose unique challenges. First,
46 simulation data is expensive to generate and inherently limited in volume. Even the largest public
47 datasets contain only tens of thousands of spatiotemporal examples [40], orders of magnitude smaller
48 than the text or video corpora used to train large language and vision models. In addition, physical
49 systems exhibit substantial diversity, varying in resolution, dimensionality, underlying equations, and
50 physical domains – from turbulent fluids to elastic solids and chemical reaction-diffusion systems.
51 Modeling such heterogeneity requires a flexible architecture and a training strategy capable of
52 learning shared representations across domains while preserving task-specific fidelity. Together, these
53 challenges make it non-trivial to scale the foundation model paradigm to physical simulations.

54 In this work, we introduce **PhysiX**, the first large-scale autoregressive foundation model for physical
55 simulations. PhysiX comprises three main components: a universal discrete tokenizer, a 4.5B
56 parameter autoregressive transformer, and a refinement module. We first train the tokenizer jointly on
57 a diverse collection of physics simulation datasets to compress continuous spatiotemporal fields at
58 different scales into sequences of discrete tokens, allowing the model to capture shared structural
59 and dynamical patterns across domains. This discrete representation enables effective data fusion
60 across heterogeneous sources and allows training on a unified token space analogous to language
61 modeling. Building on this representation, we then train a large-scale autoregressive transformer
62 using a next-token prediction objective over the combined tokenized corpus. To further improve
63 generalization and mitigate data scarcity, we initialize both the tokenizer and the autoregressive model
64 from pretrained checkpoints of high-capacity video generation models, enabling PhysiX to leverage
65 strong spatiotemporal priors learned from natural videos. Finally, to address the quantization error
66 introduced by tokenization and improve output fidelity, PhysiX incorporates a lightweight refinement
67 module that reconstructs fine-scale details from predicted token sequences.

68 Empirically, PhysiX significantly outperforms task-specific baselines and previous state-of-the-art
69 models on The Well benchmark [40], demonstrating improved long-range prediction and better
70 generalization across tasks. Figure 1 highlights these results. Our experiments show that PhysiX can
71 effectively transfer knowledge from natural video pretraining to physics simulations, and that joint
72 training across multiple simulation datasets enables synergistic learning. These results demonstrate

73 compelling evidence that foundation models can serve as unified surrogates for diverse physical
74 systems, bringing us closer to general-purpose, scalable, and efficient tools for scientific computing.

75 2 Related Works

76 **Physics Simulation** Traditional simulation modeling typically relies on numerical methods, such
77 as finite element methods, finite difference methods, and finite volume methods, to approximate
78 solutions to differential equations governing physical laws. While effective, these approaches often
79 require significant computational resources, especially for high-resolution simulations or long-term
80 predictions, limiting their scalability and real-time applicability.

81 Advances in machine learning have offered promising alternatives to accelerate or supplement traditional
82 PDE solvers [51, 22]. Physics-informed neural networks (PINNs) incorporate prior knowledge
83 of governing equations into the loss function [46]. These methods require little observational data,
84 as physical constraints guide the learning process. This provides the benefit of interpretable and
85 improved physical plausibility, but makes PINNs an unsuitable choice when the underlying physical
86 laws are unknown or only partially understood.

87 Concurrently, data-driven surrogate modeling methods have also seen success in this area, shifting
88 from explicitly modeling physical laws towards implicitly learning system dynamics through ob-
89 served data [34]. Early work utilized CNNs, particularly U-Net architectures [48, 63], to model
90 spatiotemporal relationships between physical fields. More recently, neural operator frameworks
91 have emerged, which aim to learn mappings between infinite-dimensional function spaces [28, 35].
92 These include Fourier Neural Operators (FNOs) [32], which leverage Fast Fourier Transforms for
93 efficient global convolution, and various Transformer-based architectures [30, 25] that utilize attention
94 mechanisms to capture long-range dependencies. To handle complex geometries where methods
95 like FNOs may struggle, Graph Neural Network (GNN) based operators have also been developed,
96 capable of operating directly on unstructured meshes [31, 8]. These operator learning frameworks
97 enable generalization to different initial conditions, boundary conditions, and spatial resolutions
98 without explicit retraining.

99 Despite these advancements, current neural network-based physics simulators face limitations. They
100 often struggle with long-range predictions [33], and many models are typically trained and optimized
101 for a specific physical system, a narrow range of parameters, or a particular set of governing equations.
102 Current neural network approaches can generalize within a physical domain, but perform poorly
103 across distinct physical domains without substantial retraining or architectural modifications.

104 **Video Generation** Video generation models have achieved considerable progress in recent years.
105 [57, 27, 41, 2]. These models achieve high-fidelity video generation by pre-training on web-scale
106 video data [1, 3]. The most common approach for video generation employs diffusion models [21, 4,
107 60], which model videos in a continuous latent space. Several works also explored autoregressive
108 video modeling [26, 15], which convert videos into sequences of discrete tokens using a discrete
109 tokenizer and apply the next-token prediction objective. Most notably, Emu3 [59] demonstrated that
110 autoregressive models can achieve competitive performance with diffusion models at scale. There
111 are several dedicated lines of work focusing on specific design choices of video generative models,
112 including video tokenizer [61, 58], model architecture [44], and learning objective [53].

113 **Foundation Models** The concept of foundation models first emerged in the context of transfer
114 learning [64], where a model trained on large-scale data in one domain can be easily fine-tuned to
115 perform many tasks in adjacent domains. Notable early examples include self-supervised learning on
116 ImageNet-1K, a dataset of natural images [10, 20, 42]. These pre-trained vision models proved to be
117 versatile for a wide range of downstream applications such as medical imaging [23]. More recent
118 works shifted the training paradigm to vision-language alignment. Models like CLIP [45] are pre-
119 trained on large amounts of image-text pairs and have demonstrated strong zero-shot generalization
120 capabilities to a wide range of downstream tasks across multiple domains. Most recently, several
121 works have focused on building foundation models for domain-specific use cases such as remote
122 sensing [47], weather forecasting [39], and material design [54]. Most notably, Cosmos [2] builds
123 a foundation world model for physical AI by pre-training on large amounts of video documenting
124 physical applications using the video modeling objective. Its training data covers a wide range of
125 physical applications such as robotic manipulation and self-driving. In this work, we investigate if
126 similar approaches can be adapted to build a foundation model for physics simulations.

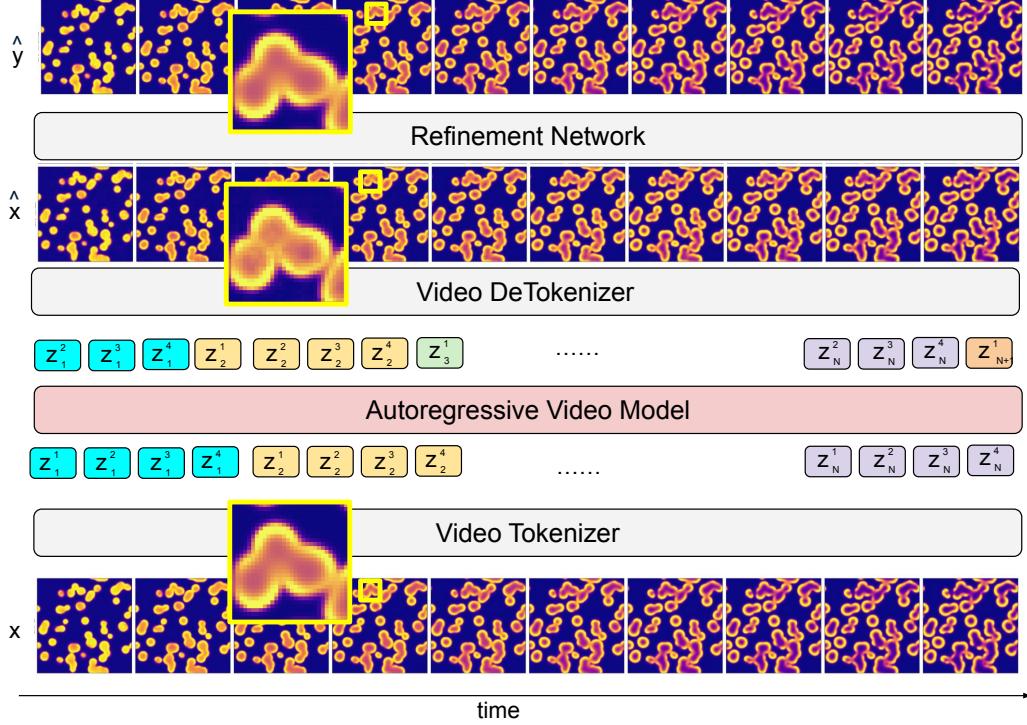


Figure 2: **The overall design of PhysiX.** PhysiX consists of a video tokenizer, an autoregressive model, and a refinement network. Given input frames x_1, \dots, x_N , the tokenizer discretizes each frame into a sequence of discrete tokens, where the j th token of frame i is denoted as $\{z_i^j\}$. The autoregressive model then generates predictions in this discrete token space, which are converted back to pixel-level predictions \hat{x} by the de-tokenizer. A refinement module is incorporated to mitigate artifacts caused by the discretization error, such as blocky, pixelated outputs (visualized in yellow boxes), and produce the final sharper and more detailed output \hat{y} .

127 3 Method

128 PhysiX consists of three components: a discrete tokenizer, an autoregressive generation model, and a
 129 refinement module. Given k input frames x_1, x_2, \dots, x_k as the historical context, we first convert
 130 them into sequences of \hat{k} latent discrete tokens $z_1, z_2, \dots, z_{\hat{k}}$, where each $z_i = [z_i^1, z_i^2, \dots, z_i^L]$
 131 consists of L tokens. We then concatenate these sequences into a single sequence, and use it as
 132 the input for the autoregressive model. The autoregressive model then predicts discrete tokens,
 133 $z_{\hat{k}+1}, z_{\hat{k}+2}, \dots, z_{\hat{k}+\hat{T}}$ where \hat{T} is the maximum lead time measured in latent frames (corresponding to
 134 T pixel frames). These tokens are decoded back to pixel space to obtain the coarse AR prediction
 135 $\hat{x}_{k+1}, \hat{x}_{k+2}, \dots, \hat{x}_{k+T}$. We employ a refinement module to further improve the prediction. It refines \hat{x}_j ,
 136 the prediction of the AR model at time step j , to obtain a refined prediction \hat{y}_j . We incorporate the
 137 refinement module as we observe that the discretization process of the tokenizer introduces small
 138 rounding errors and leads to information loss. The refinement module, which has access to the
 139 historical context in pixel space, can mitigate such error by correcting the AR predictions based on
 140 the pixel values of the context. This process is visualized in Figure 2.

141 3.1 Universal Tokenizer

142 We adopt the discrete tokenizer architecture from the Cosmos framework [2], which transforms input
 143 videos into sequences of compact discrete tokens while preserving spatiotemporal structure. The
 144 tokenizer follows an encoder-decoder design. The encoder processes an input sequence of video
 145 frames using temporally causal convolution and attention layers to produce a compressed latent
 146 representation. This representation is then quantized using Finite-Scalar Quantization (FSQ) [36],
 147 resulting in discrete token sequences. The decoder reconstructs the original video frames from these

148 tokens. A key design choice of the Cosmos tokenizer architecture is its temporal causality, where each
 149 stage observes only past and present frames, making it well-suited for downstream autoregressive
 150 modeling. In PhysiX, we train a tokenizer with $8 \times$ spatial and $4 \times$ temporal compression. Given an
 151 input sequence of frames $x_{1:M}$, where $M = k + T$ and each frame has a size $H \times W$, the tokenizer
 152 then compresses them into $\hat{M} = \frac{k+T}{4}$ latent frames, each containing $L = \frac{HW}{8^2}$ discrete tokens. We
 153 concatenate the sequences to obtain a 1D sequence z .

154 To enable cross-task generalization, we train a single universal tokenizer across all available simulation
 155 datasets. This setting poses unique challenges due to the heterogeneity of the data: different datasets
 156 vary in channel dimensionality, spatial resolution, and physical semantics. We address this in two
 157 ways. First, we modify the first embedding layer of the encoder to accept a fixed union of all possible
 158 channels observed across datasets. When a data point lacks certain channels, we pad the missing
 159 entries with learnable 2D tensors specific to each channel type. This design allows the model to
 160 flexibly process any subset of channels within a unified architecture. Second, while the encoder is
 161 shared across datasets to enforce a shared embedding space, we train a separate decoder for each
 162 dataset to improve reconstruction quality and accommodate dataset-specific output distributions.

163 To ensure balanced representation across datasets during training, we replicate samples from datasets
 164 with fewer training examples so that each dataset contributes an equal number of sequences to the
 165 training process. We initialize the universal tokenizer from a pre-trained Cosmos checkpoint, which
 166 we found significantly accelerates convergence and improves reconstruction performance compared
 167 to training from scratch. This pre-trained initialization also facilitates better transfer to the physics
 168 domain by leveraging learned priors from natural video data.

169 3.2 Autoregressive Generative Models

170 After training the universal tokenizer, we train a large-scale autoregressive model to simulate physics
 171 in the discrete latent space. We adopt the autoregressive architecture introduced in the Cosmos
 172 framework [2], which is a decoder-only transformer trained using a next-token prediction objective.
 173 Given a sequence of discrete tokens produced by the tokenizer for the past k input frames, the
 174 transformer predicts the tokens corresponding to the next T frames autoregressively. The model
 175 minimizes the negative log-likelihood of the correct token at each position, conditioned on all previous
 176 tokens. Formally, the training objective is

$$\mathcal{L}_{\mathcal{AR}} = - \sum_{i=1}^{\hat{M}} \sum_{j=1}^L \mathbb{E}_z \left[\log p(z_i^j | \{z_m^n | m < i \text{ or } m = i, n < j\}) \right], \quad (1)$$

177 where $L = \frac{HW}{8^2}$ is the length of each latent frame z_i , and $\hat{M} = \frac{k+T}{4}$ since each latent frame
 178 represents four pixel frames.

179 The autoregressive model incorporates 3D rotary position embeddings (RoPE) to capture relative
 180 spatiotemporal relationships across the token sequence. A key distinction from prior work is our
 181 support for variable spatial resolutions during training. Since simulation datasets differ in shape, we
 182 adjust the positional encodings dynamically: rather than resizing inputs or interpolating embeddings,
 183 we simply truncate the 3D RoPE frequencies along the height and width dimensions to match the size
 184 of the current input. This approach, implemented with minimal modification to the original RoPE
 185 module, allows seamless handling of mixed-resolution data without sacrificing performance. We
 186 found this simple strategy worked equally well as more advanced interpolation techniques [43, 65].

187 We initialize the autoregressive model from the 4.5B parameter Cosmos checkpoint
 188 (NVIDIA/COSMOS-1.0-AUTOREGRESSIVE-4B), enabling it to inherit strong spatiotemporal priors
 189 learned from large-scale natural video datasets. Similar to tokenizer training, we oversample smaller
 190 datasets to match the size of the largest one.

191 3.3 Refinement Module

192 The refinement module is a convolutional neural network that aims to refine the output of AR models
 193 by removing the artifacts caused by the discretization process. We show one such example in Figure 2.
 194 We observe that the output of the AR model (middle) \hat{x} exhibits a pattern that is similar to quantization
 195 noise in the center, whereas the ground truth data (bottom) x is noise-free. The refinement module is
 196 able to successfully remove such noise, as shown in its output (top) \hat{y} . This noise is introduced due to

197 the inherent limitation of the discrete tokenization process, which was initially designed for natural
198 videos. When generating natural videos such as characters or scenery, this noise is often negligible
199 and does not affect the overall fidelity of generated videos. However, it can significantly hurt the
200 performance in physical simulation tasks, where precision is required.

201 We train our refinement module as a post-processing step for the AR model. After the AR model
202 is trained, we autoregressively generate predictions for each sample in the training split to produce
203 training data for the refinement module. The ground truth frames are used as the refinement target.
204 Notably, we decode the outputs of the AR model before passing them into the refinement model,
205 so the model learns to improve AR generations in pixel space. We adopt the same architecture as
206 ConvNeXt-U-Net baseline of the Well benchmark for our refinement model and utilize MSE loss
207 during the training process. The primary difference with the baseline is the learning objective, as
208 the refinement model learns to refine the AR output instead of predicting a new frame itself. Just
209 as our universal tokenizer employs different decoder layers for different datasets, we train separate
210 refinement modules for each dataset. We provide more details in the appendix.

211 4 Experiments

212 We train and evaluate PhysiX across eight simulation tasks from the Well benchmark [40], as shown
213 in Tables 1 and 2. Following the benchmark protocol, we report the Variance-Weighted Root Mean
214 Squared Error (VRMSE), averaged over all physical channels for each dataset. For datasets such
215 as `helmholtz_staircase` and `acoustic_scattering (maze)`, we exclude channels that remain
216 constant across time steps from the evaluation. We compare PhysiX against four baselines provided by
217 the Well benchmark: Fourier Neural Operator (FNO), Tucker-Factorized FNO (TFNO), U-Net, and U-
218 Net with ConvNeXt blocks (C-U-Net), considering both next-frame and long-horizon rollout settings.
219 In addition, we conduct extensive ablation studies to assess the impact of various architectural and
220 training design choices in PhysiX. We also study the ability of PhysiX to adapt to unseen simulations,
221 the impact of using video-pretrained models, scaling results, and qualitative results in Appendix G.

222 4.1 Next-frame Prediction

223 In the next-frame prediction benchmark, PhysiX outperforms the baselines on 5 out of 8 datasets,
224 demonstrating strong generalization across diverse physical systems. In addition, PhysiX achieves the
225 best average rank across the 8 tasks, with a score of 1.62 compared to 2.38 for the best-performing
226 baseline. Importantly, PhysiX achieves this performance using a single model checkpoint shared
227 across all tasks, whereas the baseline results are obtained from separate models trained specifically
228 for each dataset. This highlights the ability of PhysiX to act as a general-purpose simulator. The
229 performance gain is especially significant on the `shear_flow` and `rayleigh_benard` datasets,
230 where PhysiX reduces the VRMSE by 91% and 78% respectively relative to the best baseline.

Table 1: **Next-frame prediction performance across 8 datasets on the Well benchmark.** We report VRMSE (lower is better) averaged across different fields for each dataset.

Dataset	Baseline				Ours
	FNO	TFNO	U-Net	C-U-Net	PhysiX
<code>shear_flow</code>	1.189	1.472	3.447	0.8080	0.0700
<code>rayleigh_benard</code>	0.8395	0.6566	1.4860	0.6699	0.1470
<code>acoustic_scattering (maze)</code>	0.5062	0.5057	0.0351	0.0153	0.0960
<code>active_matter</code>	0.3691	0.3598	0.2489	0.1034	0.0904
<code>turbulent_radiative_layer_2D</code>	0.5001	0.5016	0.2418	0.1956	0.2098
<code>viscoelastic_instability</code>	0.7212	0.7102	0.4185	0.2499	0.2370
<code>gray_scott_reaction_diffusion</code>	0.1365	0.3633	0.2252	0.1761	0.0210
<code>helmholtz_staircase</code>	0.00046	0.00346	0.01931	0.02758	0.0180
Average Rank (↓)	3.62	3.75	3.62	2.38	1.62

Table 2: **Long-horizon prediction performance across 8 datasets on the Well benchmark.** We report VRMSE (lower is better) averaged across different fields for each dataset. We report averaged results over different ranges of lead time: 2-8, 9-26 and 27-56 frames.

Dataset	$\Delta t = 2:8$		$\Delta t = 9:26$		$\Delta t = 27:56$	
	Baseline	PhysiX	Baseline	PhysiX	Baseline	PhysiX
shear_flow	2.330	0.077	>10	0.153	>10	0.236
rayleigh_benard	>10	1.067	>10	0.741	>10	0.847
acoustic_scattering (maze)	0.560	0.158	0.920	1.246	1.341	2.189
active_matter	2.110	0.415	2.710	0.974	1.635	1.320
turbulent_radiative_layer_2D	0.660	0.363	1.040	0.693	1.331	0.953
gray_scott_reaction_diffusion	0.290	0.037	7.620	1.984	12.714	12.643
viscoelastic_instability	0.520	0.387	—	—	—	—
helmholtz_staircase	0.002	0.022	0.003	0.071	—	—

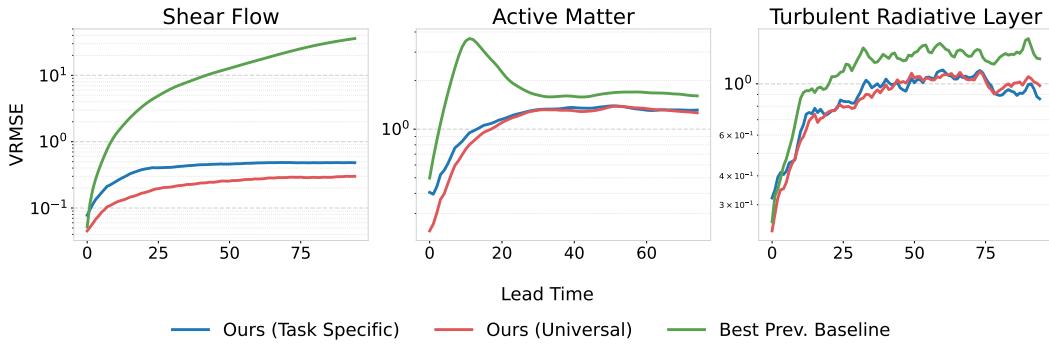


Figure 3: **Long-horizon prediction performance.** We visualize VRMSE (lower is better) across different lead time on `shear_flow`, `active_matter`, and `turbulent_radiative_layer` datasets.

231 4.2 Long-horizon Prediction

232 While PhysiX already performs competitively in next-frame prediction, its true strength lies in long-
 233 horizon simulation. As shown in Table 2, PhysiX achieves state-of-the-art performance on 18/21
 234 evaluation points across different forecasting windows. The improvements are not only consistent
 235 but also significant in various tasks. For example, on `shear_flow`, PhysiX reduces VRMSE by
 236 over 97% at the 6:12 horizon compared to the best-performing baseline (from 2.33 to 0.077). On
 237 `rayleigh_benard`, PhysiX achieves more than 90% lower error across all rollout windows. Similar
 238 results are observed in `active_matter`, where PhysiX consistently achieves better performance at
 239 every forecast horizon, underscoring its robustness and adaptability across domains.

240 Figure 3 further illustrates the long-term behavior of PhysiX compared to the best baseline model in
 241 each dataset. In the early stages of the rollout, both models exhibit similar performance. However, as
 242 the lead time increases, the performance of the baseline models degrades rapidly due to compounding
 243 prediction errors. In contrast, PhysiX maintains low VRMSE across time steps, demonstrating much
 244 greater stability. This stability stems from the autoregressive nature of PhysiX, which allows the
 245 model to learn from full sequences of simulations rather than focusing solely on short-term prediction.
 246 This enables it to maintain stability and accuracy over extended rollouts, making it particularly
 247 well-suited for challenging multi-step prediction tasks.

248 4.3 Ablation Studies

249 To study the effectiveness of our design, we conducted a series of thorough ablation studies. In
 250 the main paper, we explored the performance of universal (multi-task) models versus single-task
 251 models, and the effectiveness of the refinement module. We provide additional ablation studies, such
 252 as training the model from scratch versus initializing the model with weights pre-trained on natural
 253 videos in the appendix.

Table 3: **Comparison of multi- and single-task models.** We report next-frame and long-horizon prediction results on the Well benchmark for the multi-task and single-task models.

Dataset	$\Delta t = 1$		$\Delta t = 2:8$		$\Delta t = 9:26$		$\Delta t = 27:56$	
	Spec.	Univ.	Spec.	Univ.	Spec.	Univ.	Spec.	Univ.
shear_flow	0.0689	0.070	0.236	0.118	0.378	0.281	0.452	0.397
rayleigh_benard	0.137	0.147	0.436	1.090	0.522	0.704	0.724	0.646
turbulent_radiative_layer	0.359	0.343	0.565	0.357	0.792	0.710	1.014	0.998
active_matter	0.150	0.090	0.844	0.477	1.177	1.396	1.352	1.381
gray_scott_reaction	0.0418	0.0210	1.487	0.0375	15.965	0.390	62.484	0.895
viscoelastic_instability	0.251	0.237	0.764	0.406	—	—	—	—

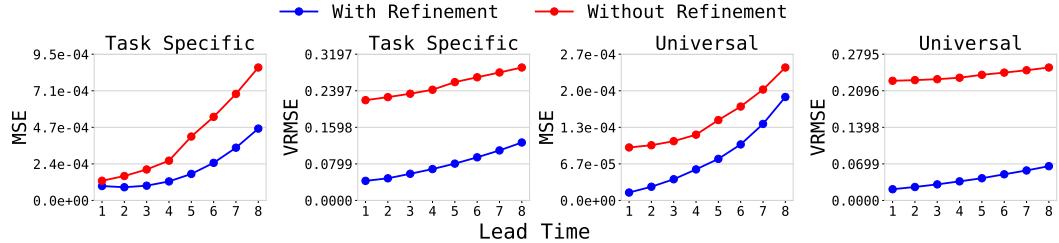


Figure 4: **Effect of refinement module.** We apply refinement module to both the multi-task and single-task AR model and study its effect on predication errors. We report VRMSE and MSE (lower is better) over prediction windows ranging from 1 frame to 8 frames on the gray_scott_reaction_diffusion dataset.

254 **General Model vs Task Specific Models** We compare the performance of our multi-task model
 255 and single-task models on both one-frame prediction and long-horizon prediction tasks. For the
 256 task-specific model, we followed the same setup as the universal model, including the model size,
 257 model architecture, and training hyperparameters. The only difference is the training data. We
 258 report VRMSE across 8 datasets and different lead times in Table 3. Experiment results show that
 259 the universal model outperforms task-specific models, achieving lower VRMSE on the majority of
 260 datasets across different lead times. Our results show that joint multi-task training improves the
 261 performance of individual tasks, as the model may learn some common patterns and mechanisms
 262 across different physical processes.

263 **Effectiveness of Refinement Module** We compare PhysiX with and without the refinement module.
 264 We show such differences for both the multi-task AR model and the single-task AR model at different
 265 prediction windows in Figure 4. The refinement model reduces MSE and VRMSE metrics for both
 266 models on all prediction windows of the gray_scott_reaction_diffusion dataset, highlighting
 267 the effectiveness of the proposed refinement process. Most notably, with the help of refinement
 268 model, the 8-frame prediction error (0.07) of our multi-task model, measured by VRMSE, is lower
 269 than the 1-frame prediction error of the best performing baseline on the Well benchmark (0.14).

270 5 Conclusion

271 PhysiX introduces a unified foundational model designed for general-purpose physical simulation
 272 across a diverse range of systems. PhysiX uses a universal tokenizer for shared discrete representations,
 273 a large-scale autoregressive transformer for modeling temporal relationships, and a refinement
 274 network to improve output fidelity. Our joint training approach enabled PhysiX to capture shared
 275 spatiotemporal patterns and adapt to varying resolutions, channel configurations, and physical semantics.
 276 We show a single universally trained model significantly outperforms task-specific baselines on a wide
 277 variety of physical domains. PhysiX demonstrates superior performance on single timestep prediction
 278 and significantly outperforms baseline methods on long-horizon rollouts, while maintaining stability
 279 and accuracy. The success of PhysiX highlights the potential of foundation models in accelerating
 280 scientific discovery by providing generalizable tools to model complex physical phenomena.

281 **References**

282 [1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici, Balakrishnan
283 Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m: A large-scale video classification
284 benchmark. *arXiv preprint arXiv:1609.08675*, 2016.

285 [2] Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit
286 Chattopadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model
287 platform for physical ai. *arXiv preprint arXiv:2501.03575*, 2025.

288 [3] Max Bain, Arsha Nagrani, Gü̈l Varol, and Andrew Zisserman. Frozen in time: A joint video
289 and image encoder for end-to-end retrieval. In *Proceedings of the IEEE/CVF international
290 conference on computer vision*, pages 1728–1738, 2021.

291 [4] Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
292 Junhwa Hur, Guanghui Liu, Amit Raj, et al. Lumiere: A space-time diffusion model for video
293 generation. In *SIGGRAPH Asia 2024 Conference Papers*, pages 1–11, 2024.

294 [5] Marsha J Berger and Randall J LeVeque. Implicit adaptive mesh refinement for dispersive
295 tsunami propagation. *SIAM Journal on Scientific Computing*, 46(4):B554–B578, 2024.

296 [6] Lorenz T Biegler, Omar Ghattas, Matthias Heinkenschloss, and Bart van Bloemen Waanders.
297 Large-scale pde-constrained optimization: an introduction. In *Large-scale PDE-constrained
298 optimization*, pages 3–13. Springer, 2003.

299 [7] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
300 Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
301 opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

302 [8] Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers.
303 *arXiv preprint arXiv:2202.03376*, 2022.

304 [9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
305 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
306 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

307 [10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
308 for contrastive learning of visual representations. In *International conference on machine
309 learning*, pages 1597–1607. PMLR, 2020.

310 [11] Kamal Choudhary, Brian DeCost, Chi Chen, Anubhav Jain, Francesca Tavazza, Ryan Cohn,
311 Cheol Woo Park, Alok Choudhary, Ankit Agrawal, Simon JL Billinge, et al. Recent advances
312 and applications of deep learning methods in materials science. *npj Computational Materials*,
313 8(1):59, 2022.

314 [12] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
315 *Proceedings of the National Academy of Sciences*, 117(48):30055–30062, 2020.

316 [13] Veronika Eyring, Sandrine Bony, Gerald A Meehl, Catherine A Senior, Bjorn Stevens, Ronald J
317 Stouffer, and Karl E Taylor. Overview of the coupled model intercomparison project phase 6
318 (cmip6) experimental design and organization. *Geoscientific Model Development*, 9(5):1937–
319 1958, 2016.

320 [14] Nicola Rares Franco, Stefania Fresca, Filippo Tombari, and Andrea Manzoni. Deep learning-
321 based surrogate models for parametrized pdes: Handling geometric variability through graph
322 neural networks. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 33(12), 2023.

323 [15] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman.
324 Make-a-scene: Scene-based text-to-image generation with human priors. In *European Confer-
325 ence on Computer Vision*, pages 89–106. Springer, 2022.

326 [16] Jared A Goldberg, Yan-Fei Jiang, and Lars Bildsten. Numerical simulations of convective
327 three-dimensional red supergiant envelopes. *The Astrophysical Journal*, 929(2):156, 2022.

328 [17] Vignesh Gopakumar, Stanislas Pamela, Lorenzo Zanisi, Zongyi Li, Ander Gray, Daniel Bren-
 329 nand, Nitesh Bhatia, Gregory Stathopoulos, Matt Kusner, Marc Peter Deisenroth, et al. Plasma
 330 surrogate modelling using fourier neural operators. *Nuclear Fusion*, 64(5):056025, 2024.

331 [18] Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized
 332 pde modeling. *arXiv preprint arXiv:2209.15616*, 2022.

333 [19] Ehsan Haghighat, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. A physics-
 334 informed deep learning framework for inversion and surrogate modeling in solid mechanics.
 335 *Computer Methods in Applied Mechanics and Engineering*, 379:113741, 2021.

336 [20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 337 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
 338 *computer vision and pattern recognition*, pages 9729–9738, 2020.

339 [21] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and
 340 David J Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*,
 341 35:8633–8646, 2022.

342 [22] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
 343 Yang. Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

344 [23] Hee E Kim, Alejandro Cosa-Linan, Nandhini Santhanam, Mahboubeh Jannesari, Mate E Maros,
 345 and Thomas Ganslandt. Transfer learning for medical image classification: a literature review.
 346 *BMC medical imaging*, 22(1):69, 2022.

347 [24] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 348 *arXiv:1412.6980*, 2014.

349 [25] Georgios Kissas, Jacob H Seidman, Leonardo Ferreira Guilhoto, Victor M Preciado, George J
 350 Pappas, and Paris Perdikaris. Learning operators with coupled attention. *Journal of Machine*
 351 *Learning Research*, 23(215):1–63, 2022.

352 [26] Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Grant Schindler, Rachel
 353 Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, et al. Videopoet: A large language
 354 model for zero-shot video generation. *arXiv preprint arXiv:2312.14125*, 2023.

355 [27] Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin
 356 Li, Bo Wu, Jianwei Zhang, et al. Hunyuanyvideo: A systematic framework for large video
 357 generative models. *arXiv preprint arXiv:2412.03603*, 2024.

358 [28] Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
 359 Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
 360 spaces. *Journal of Machine Learning Research*, 24:1–97, 2023. Article 89.

361 [29] Pablo Lemos, Liam Parker, ChangHoon Hahn, Shirley Ho, Michael Eickenberg, Jiamin Hou,
 362 Elena Massara, Chirag Modi, Azadeh Moradinezhad Dizgah, Bruno Regaldo-Saint Blanchard,
 363 et al. Simbig: Field-level simulation-based inference of galaxy clustering. *arXiv preprint*
 364 *arXiv:2310.15256*, 2023.

365 [30] Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential
 366 equations' operator learning. *arXiv preprint arXiv:2205.13671*, 2022.

367 [31] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
 368 Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial
 369 differential equations. *arXiv preprint arXiv:2003.03485*, 2020.

370 [32] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
 371 Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
 372 tial equations. In *International Conference on Learning Representations*. ICLR, 2021.

373 [33] Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-
 374 refiner: Achieving accurate long rollouts with neural pde solvers. *Advances in Neural Infor-
 375 mation Processing Systems*, 36:67398–67433, 2023.

376 [34] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
 377 identifying differential equations based on the universal approximation theorem of operators.
 378 *arXiv preprint arXiv:1910.03193*, 2019.

379 [35] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 380 nonlinear operators via DeepONet based on the universal approximation theorem of operators.
 381 *Nature Machine Intelligence*, 3(3):218–229, 2021.

382 [36] Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar
 383 quantization: Vq-vae made simple. In *The Twelfth International Conference on Learning
 384 Representations*.

385 [37] Bijan Mohammadi and Olivier Pironneau. Shape optimization in fluid mechanics. *Annu. Rev.
 386 Fluid Mech.*, 36(1):255–279, 2004.

387 [38] Binh Duong Nguyen, Pavlo Potapenko, Aytekin Demirci, Kishan Govind, Sébastien Bompas,
 388 and Stefan Sandfeld. Efficient surrogate models for materials science simulations: Machine
 389 learning-based prediction of microstructure properties. *Machine learning with applications*,
 390 16:100544, 2024.

391 [39] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover.
 392 Climax: A foundation model for weather and climate. *arXiv preprint arXiv:2301.10343*, 2023.

393 [40] Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez,
 394 Marsha Berger, Blakesly Burkhardt, Stuart Dalziel, Drummond Fielding, et al. The well: a
 395 large-scale collection of diverse physics simulations for machine learning. *Advances in Neural
 396 Information Processing Systems*, 37:44989–45037, 2024.

397 [41] OpenAI. Sora: A video generation model. <https://openai.com/sora>, 2024. Accessed:
 398 2025-05-13.

399 [42] Maxime Oquab, Timothée Darcret, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 400 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 401 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

402 [43] Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context
 403 window extension of large language models. In *The Twelfth International Conference on
 404 Learning Representations*.

405 [44] Zhiwu Qing, Shiwei Zhang, Jiayu Wang, Xiang Wang, Yujie Wei, Yingya Zhang, Changxin
 406 Gao, and Nong Sang. Hierarchical spatio-temporal decoupling for text-to-video generation. In
 407 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
 408 6635–6645, 2024.

409 [45] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 410 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 411 models from natural language supervision. In *International conference on machine learning*,
 412 pages 8748–8763. PMLR, 2021.

413 [46] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks:
 414 A deep learning framework for solving forward and inverse problems involving nonlinear partial
 415 differential equations. *Journal of Computational Physics*, 378:686–707, 2019.

416 [47] Colorado J Reed, Ritwik Gupta, Shufan Li, Sarah Brockman, Christopher Funk, Brian Clipp,
 417 Kurt Keutzer, Salvatore Candido, Matt Uyttendaele, and Trevor Darrell. Scale-mae: A scale-
 418 aware masked autoencoder for multiscale geospatial representation learning. In *Proceedings of
 419 the IEEE/CVF International Conference on Computer Vision*, pages 4088–4099, 2023.

420 [48] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
 421 biomedical image segmentation. In *International Conference on Medical image computing and
 422 computer-assisted intervention*, pages 234–241. Springer, 2015.

423 [49] Kevin Ryczko, David A Strubbe, and Isaac Tamblyn. Deep learning and density-functional
 424 theory. *Physical Review A*, 100(2):022512, 2019.

474 **A Limitations**

475 Despite the promising success of PhysiX, we acknowledge that it has several key limitations.

476 **Generalization.** Existing foundation models typically have zero-shot generalization capabilities.
477 For example, CLIP [45], which was pretrained on a large set of vision-language data, can perform
478 zero-shot classification on images for domain-specific applications. While PhysiX is trained on
479 multiple datasets, generalizing to novel physical processes requires fine-tuning, as they may have
480 unseen input channels or represent a drastically different dynamic system from those seen during
481 training. We leave this to future work.

482 **Discretization Error.** The tokenization process introduces quantization errors, and while the
483 refinement module helps mitigate this, residual errors can still affect the precision of long-term
484 simulations. This is especially significant for datasets with low spatial or temporal variance which are
485 much more sensitive to small perturbations. Exploring alternative tokenization schemes or end-to-end
486 training of the tokenizer and autoregressive model could help minimize this error.

487 **Data Diversity.** PhysiX was only trained on 2D datasets, due to the architecture of the video tokenizer.
488 This limits its direct applicability to 3D physical systems or systems with significantly different
489 spatial structures. Future work could explore more flexible tokenization architectures that enable the
490 compression of higher spatial dimensions, and include data from outside The Well.

491 **B Experimental settings**

492 **Refinement Module** For each trajectory in the raw training data, we randomly sample a starting
493 timestamp and run autoregressive generation to obtain the training data for the refinement module.
494 We adopted MSE loss. We use a global batch size of 64 frames, a learning rate of $5e - 3$ and a cosine
495 decay learning rate scheduler. We trained each refinement model for 500 epochs on its respective
496 data. Unlike the base model, which is trained in bfloat16 precision, we observe that using float32
497 precision is crucial to achieve high-quality outputs, especially for datasets with low spatial variance.

498 **Tokenizer** We trained the universal tokenizer on the 8 datasets in Table 1 for 1000 epochs with an
499 effective batch size of 32. We optimize the models using AdamW [24] with a base learning rate of
500 $1e - 3$, using a 10-epoch linear warmup, followed by a cosine decay schedule for the remaining
501 epochs. For model selection, we average the validation loss across all datasets after each training
502 epoch and use the model with the lowest validation loss as the final tokenizer checkpoint.

503 **AR Model** For the autoregressive (AR) model, we trained for 10000 steps with an effective batch size
504 of 32. We used Adam as the optimizer with a learning rate schedule similar to the tokenizer, where
505 the number of warmup steps is set to 1000. We validated the model after every 100 training steps and
506 used the best checkpoint for testing. For both tokenizer and AR training, we upsampled the smaller
507 datasets to match the size of the largest one, ensuring the model learns from each dataset uniformly.

508 **Evaluation** After training, we tested the model on the held-out test set provided by the Well [40].
509 For the one-step setting, we evaluated the model on random sliding windows sampled from the test
510 simulations. For the long-horizon setting, we always initiated the model from the beginning of each
511 simulation. This adheres to the standard practice in the Well.

512 **Finetuning** To adapt PhysiX to an unseen task, we finetune both the tokenizer and the autoregressive
513 model. Specifically, we finetune the tokenizer for 100 epochs and the autoregressive model for
514 1000 iterations, with similar learning rates and schedulers to pretraining. This means the compute
515 requirement for each finetuning task is about 10% of that of pretraining. Section G.1 shows that
516 PhysiX was able to achieve strong performance even with this limited compute, demonstrating its
517 usefulness for the broad research community.

518 **C Compute resources**

519 We trained the tokenizer and PhysiX on $8 \times 40\text{GB}$ A100 devices, and evaluated using $1 \times 40\text{GB}$
520 A100 device for each task. We trained PhysiX for 24 hours on $8 \times \text{A100s}$ for 8 datasets. This is
521 approximately equal to the combined cost of training the best baseline model for each dataset at

522 current market rate cloud compute costs ¹. Each model in The Well required 12 hours on $1 \times$ H100 [40],
523 for a total time of 96 H100 hours when only considering the best model for each dataset, or about
524 half the A100 hours used by PhysiX.

525 **D Reproducibility statement**

526 We will release the training and evaluation code, as well as the model checkpoints. We also note that
527 the Well’s authors ² reported some reproducibility issues with the baseline models at the moment and
528 are planning to update the codebase and the paper. We cite the currently reported numbers in our
529 main experiments. For numbers not reported (e.g. longer rollouts), we use the latest version of the
530 official codebase at the time of writing.

531 **E Licenses**

532 Cosmos [2] is licensed under Apache-2.0, and the Well [40] benchmark follows BSD-3-Clause
533 license. We respect the intended use of each artifact and complied with all license requirements.

534 **F Statistical significance**

535 While the Well does not publish variance of the baselines for test sampling, Table 4 shows that our
536 95% confidence interval for 1 frame prediction with PhysiX is outside the range of the baseline mean
537 assuming a normal distribution. For rollout predictions, we start from the beginning of each sequence
and evaluate on the entire test dataset, just as the baseline was evaluated.

Table 4: **PhysiX 1 frame prediction with 95% confidence intervals.**

Dataset	Interval	Dataset	Interval
shear_flow	0.070 ± 0.011	turbulent_radiative_layer	$0.210 \pm .0344$
rayleigh_benard	$0.147 \pm .029$	gray_scott_reaction	0.021 ± 0.005
acoustic_scattering (maze)	$0.096 \pm .002$	viscoelastic_instability	0.212 ± 0.029
active_matter	0.090 ± 0.011	helmholtz_staircase	0.018 ± 0.004

538

539 **G Additional experiments**

540 **G.1 Adaptation to Unseen Simulations**

541 We evaluate the adaptability of PhysiX on two unseen simulations: `euler_multi_quadrants`
542 (`periodic b.c.`) and `acoustic_scattering` (`discontinuous`). These tasks involve novel
543 input channels and physical dynamics not encountered during training. To handle this distribution
544 shift, we fully finetune the tokenizer for each task. We consider two variants of the autoregressive
545 model: PhysiX_f , which finetunes the pretrained model, and PhysiX_s , which trains from scratch using
546 the Cosmos checkpoint as initialization. Further finetuning details are provided in Appendix B.

547 Table 5 shows that PhysiX_f achieves the best performance on nearly all tasks and prediction hori-
548 zons, only losing to C-U-Net on one-step prediction for one task, and the performance gap widens
549 significantly as the horizon increases. Notably, PhysiX_f consistently outperforms PhysiX_s across all
550 settings, highlighting its ability to effectively transfer knowledge to previously unseen simulations.

¹Using pricing from Lambda Labs

²https://github.com/PolymathicAI/the_well/issues/49

Table 5: **Performance on two simulation tasks unseen during training.** We compare both the finetuning version (PhysiX_f) and the scratch version (PhysiX_s) with the baselines.

Models	euler_multi_quadrants (periodic b.c.)				acoustic_scattering (discontinuous)			
	$\Delta t = 1$	$\Delta t = 2:8$	$\Delta t = 9:26$	$\Delta t = 27:56$	$\Delta t = 1$	$\Delta t = 2:8$	$\Delta t = 9:26$	$\Delta t = 27:56$
PhysiX_f	0.105	0.188	0.358	0.642	0.038	0.057	0.443	1.168
PhysiX_s	0.105	0.188	0.366	0.658	0.039	0.062	0.455	1.192
FNO	0.408	1.130	1.370	—	0.127	2.146	2.752	3.135
TFNO	0.416	1.230	1.520	—	0.130	2.963	3.713	4.081
U-Net	0.183	1.020	1.630	—	0.045	2.855	6.259	8.074
C-U-Net	0.153	4.980	>10	—	0.006	5.160	>10	>10

551 G.2 Pretrained vs scratch

552 Figure 5 compares the performance of PhysiX when initialized from a Cosmos pretrained checkpoint
553 (Pre-trained) vs when initialized from scratch (Random). Using the pretrained checkpoint outperforms
554 training from scratch across almost all tasks and evaluation settings, which shows the effectiveness of
555 PhysiX in transferring prior knowledge from natural videos to physical simulations. Table 6 details
556 the performance of the two models.

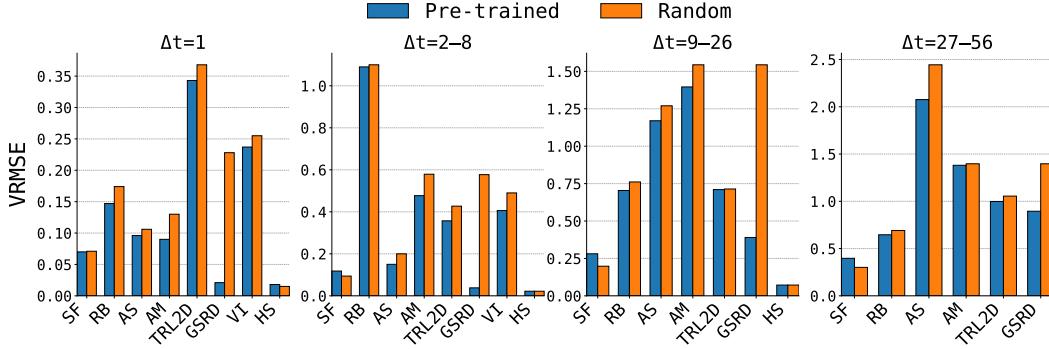


Figure 5: Comparison of pretrained and randomly initialized weights

Table 6: **Comparison of pre-trained and randomly initialized models.** Next-frame and long-horizon prediction results on the Well benchmark for Cosmos weights pre-trained on natural video and with randomly initialized weights.

Dataset	$\Delta t = 1$		$\Delta t = 2:8$		$\Delta t = 9:26$		$\Delta t = 27:56$	
	Pre.	Rand.	Pre.	Rand.	Pre.	Rand.	Pre.	Rand.
shear_flow	0.070	0.071	0.118	0.094	0.281	0.198	0.397	0.301
rayleigh_benard	0.147	0.174	1.090	1.100	0.704	0.761	0.646	0.691
acoustic_scattering (maze)	0.096	0.106	0.150	0.200	1.170	1.270	2.076	2.444
active_matter	0.090	0.130	0.477	0.579	1.396	1.544	1.381	1.397
turbulent_radiative_layer_2D	0.343	0.368	0.357	0.427	0.710	0.714	0.998	1.055
gray_scott_reaction_diffusion	0.021	0.228	0.038	0.577	0.390	1.544	0.895	1.397
viscoelastic_instability	0.237	0.255	0.406	0.490	—	—	—	—
helmholtz_staircase	0.018	0.015	0.022	0.022	0.072	0.072	—	—

557 G.3 Scaling results

558 We study the scalability of PhysiX by training and evaluating autoregressive models with 3 different
559 sizes: 700M, 2B, and 4B. Since Cosmos only provides the 4B model checkpoint, we initialized all
560 3 models in this experiment from scratch for a fair comparison. Table 7 shows that 4B is the best
561 performing model, followed by 700M, while 2B performed the worst. We observed that both the 4B

562 and the 2B models overfit whereas the 700M model did not, and the 2B model converged to a worse
563 point compared to the 700M and 4B models, leading to overall poorer performances.

Table 7: **Prediction errors for Scratch models at various time horizons.** We report next-frame and long-horizon prediction errors for Scratch 4B, Scratch 2B, and Scratch 700M across different datasets, highlighting the best (lowest) error in each horizon.

Dataset	t + 1			t + 2:8			t + 9:26			t + 27:56		
	4B	2B	700M	4B	2B	700M	4B	2B	700M	4B	2B	700M
shear_flow	0.071	0.075	0.073	0.094	0.112	0.096	0.198	0.216	0.166	0.301	0.303	0.257
rayleigh_benard	0.174	0.181	0.194	1.10	1.201	1.113	0.761	0.855	0.827	0.691	0.823	0.999
acoustic_scattering (maze)	0.106	0.110	0.120	0.20	0.211	0.237	1.270	1.284	1.242	2.444	2.497	2.287
turbulent_radiative_layer	0.368	0.421	0.312	0.427	0.443	0.450	0.714	0.758	0.730	1.055	1.099	0.942
active_matter	0.130	0.102	0.105	0.579	0.592	0.623	1.544	1.626	1.394	1.397	1.415	1.417
gray_scott_reaction	0.228	0.230	0.231	0.577	0.509	0.526	1.544	1.126	1.051	1.397	2.290	1.300
viscoelastic_instability	0.255	0.319	0.246	0.490	0.494	0.590	—	—	—	—	—	—
helmholtz_staircase	0.015	0.015	0.014	0.0224	0.019	0.017	0.0718	0.056	0.061	—	—	—

564 G.4 Qualitative Comparison

565 Figure 6 presents a qualitative comparison between PhysiX and the best-performing baseline models
566 on two representative simulation tasks: `shear_flow` and `rayleigh_benard`. At rollout horizons
567 of 24 and 15 steps respectively, PhysiX produces predictions that remain visually consistent with
568 the ground truth across all physical fields, including tracer, pressure, buoyancy, and velocity compo-
569 nents. In contrast, baseline models exhibit noticeable distortions, blurring, and loss of fine-grained
570 structures, particularly evident in the vortex structures of `shear_flow` and the convective plumes of
571 `rayleigh_benard`. These qualitative results highlight superior fidelity and stability of PhysiX over
572 extended prediction windows.

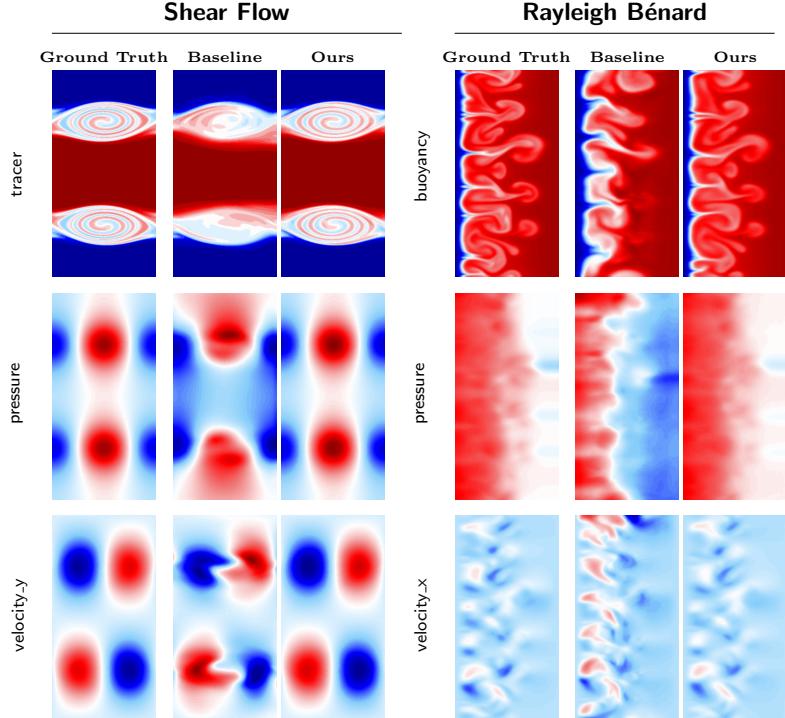


Figure 6: **Side-by-side qualitative comparison of PhysiX and baseline models.** PhysiX demon-
strates superior performance in long horizon rollouts than the leading baseline model. At lead times
of 24 and 15 steps for shear flow and Rayleigh–Bénard convection respectively, PhysiX maintains
high-fidelity predictions across all physical fields, while baseline models ConvNeXt-UNet and TFNO
exhibit visible distortions and loss of detail.

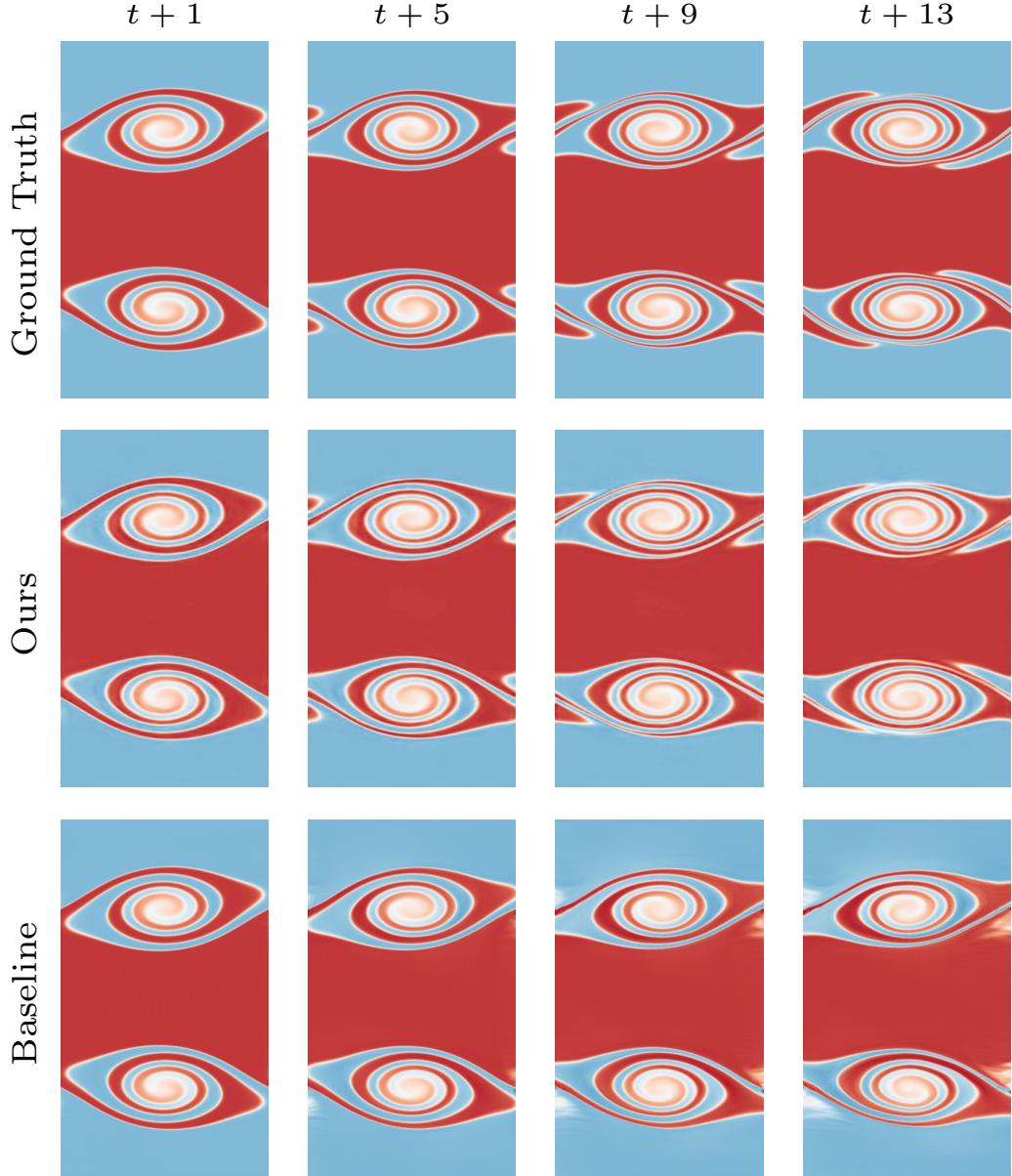


Figure 7: **Qualitative Comparisons on `shear_flow` Dataset.** We compare the prediction of PhysiX with the ground truth and the prediction of the best baseline model at lead times of 1,5,9,13 frames.

573 **G.5 More qualitative results**

574 We provide additional visualizations of the PhysiX’s prediction results on `shear_flow`
 575 (Figure 7), `viscoelastic_instability` (Figure 8), `rayleigh_benard` (Figure 9) and
 576 `gray_scott_reaction_diffusion` (Figure 10). We compare the prediction of PhysiX with the
 577 ground truth and the prediction of baseline models at various lead times. PhysiX shows consistent
 578 improvement over baselines across all lead times. The improvements on longer lead times are more
 579 pronounced.

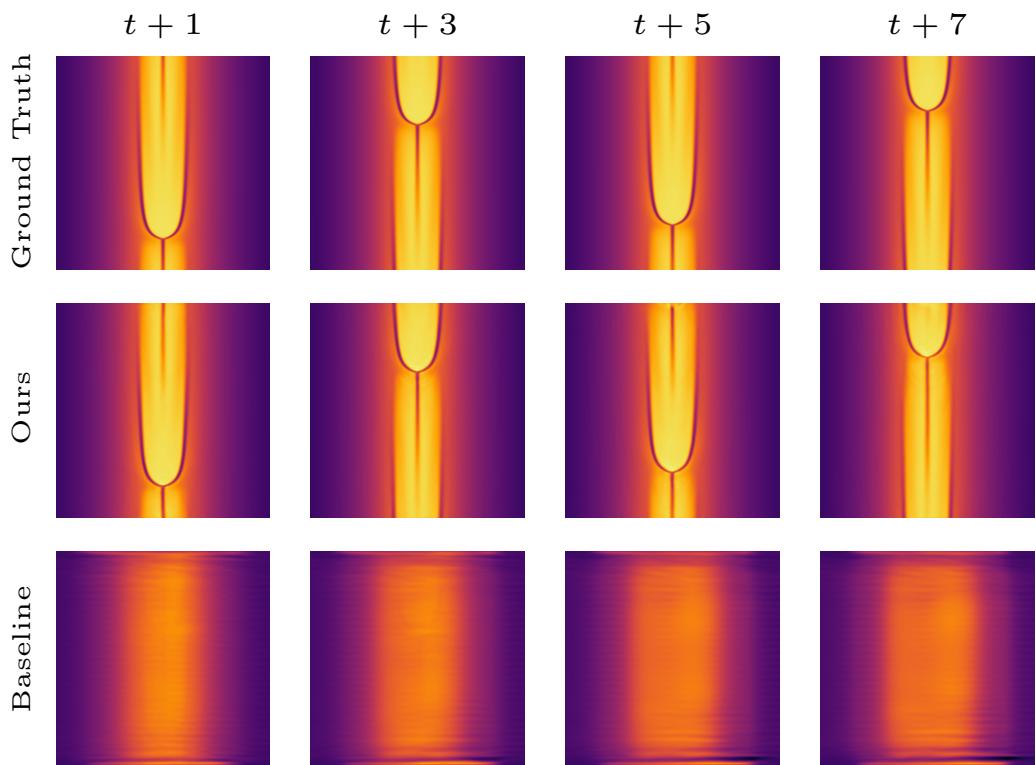


Figure 8: **Qualitative Comparisons on viscoelastic_instability Dataset.** We compare the prediction of PhysiX with the ground truth and the prediction of the best baseline model at lead times of 1,3,5,7 frames.

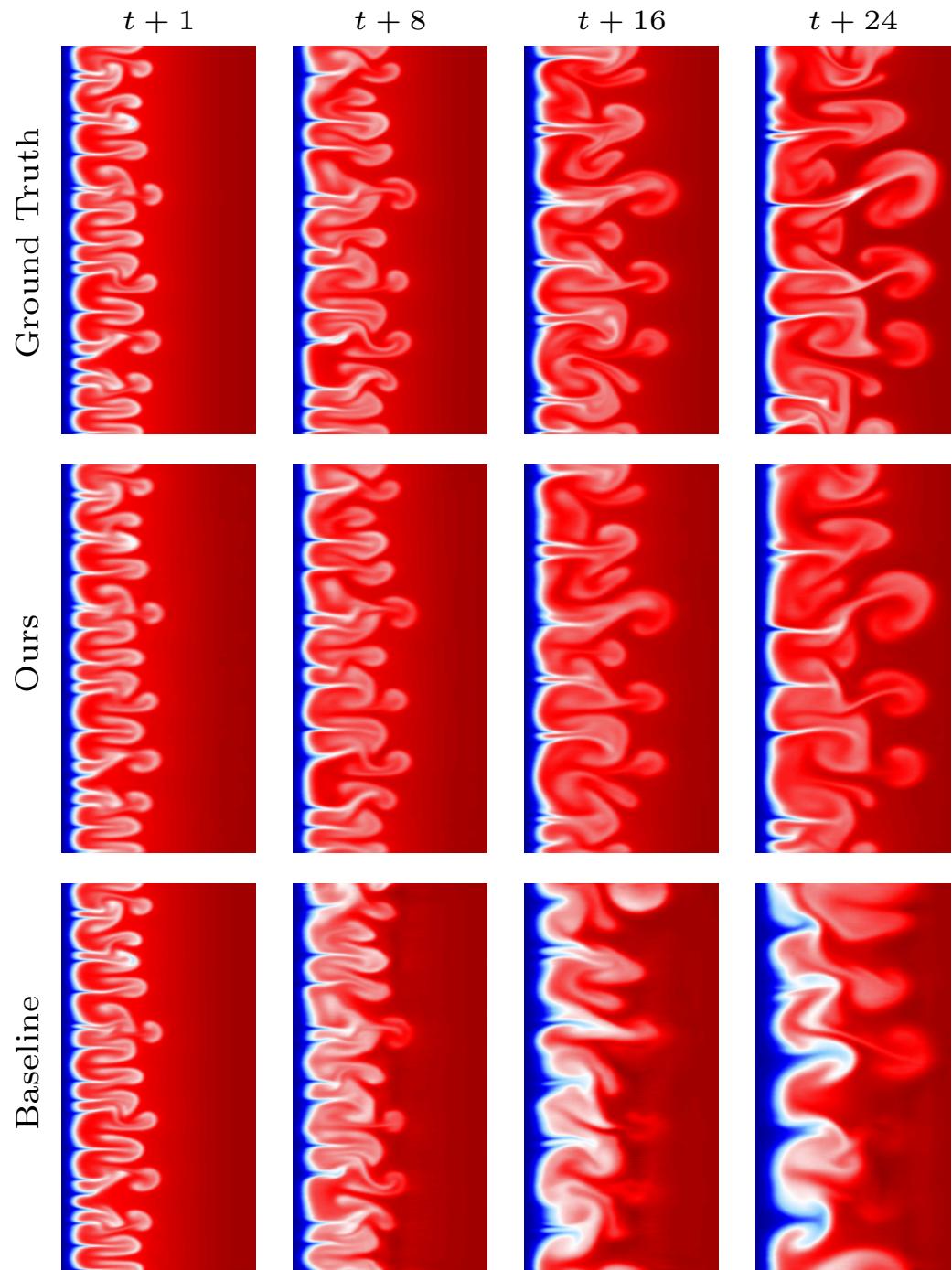


Figure 9: **Qualitative Comparisons on rayleigh_benard Dataset.** We compare the prediction of PhysiX with the ground truth and the prediction of the best baseline model at lead times of 1,8,16,24 frames.

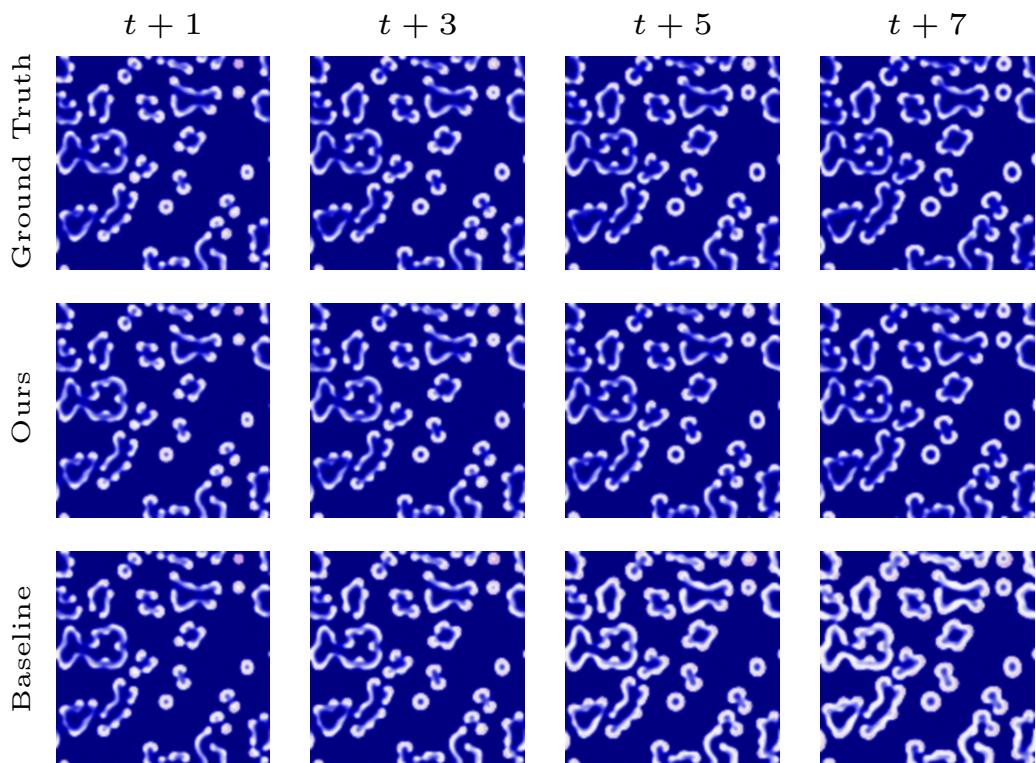


Figure 10: **Qualitative Comparisons on gray_scott_reaction_diffusion Dataset.** We compare the prediction of PhysiX with the ground truth and the prediction of the best baseline model at lead times of 1,3,5,7 frames.