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ABSTRACT

We propose a simple algorithm that needs only a few data samples from a single
graph for learning local routing policies that generalize across classes of geomet-
ric random graphs in Euclidean and hyperbolic metric spaces. We thus solve the
all-pairs near-shortest path problem by training deep neural networks (DNNs) that
let each graph node efficiently and scalably route (i.e., forward) packets by consid-
ering only the node’s state and the state of the neighboring nodes. Our algorithm
design exploits network domain knowledge in the selection of input features and
in the selection of a “seed graph” and its data samples. The leverage of domain
knowledge provides theoretical assurance that the seed graph and node subsam-
pling suffice for learning that is generalizable, scalable, and efficient. Remarkably,
one of these DNNs we train —using distance as the only input feature— learns
a policy that exactly matches the well-known Greedy Forwarding policy, which
forwards packets to the neighbor with the shortest distance to the destination. We
also learn a new policy, which we call Greedy Tensile routing —using both dis-
tance and stretch factor as the input features— that almost always outperforms
greedy forwarding. We demonstrate the explainability and ultra-low latency run-
time operation of Greedy Tensile routing by symbolically interpreting its DNN in
low-complexity terms of two linear actions.

1 INTRODUCTION

There has been considerable interest in machine learning to mimic the human ability of learning
new concepts from just a few instances. While human learning with high data efficiency is yet to
be matched by formal frameworks for machine learning, such as the language-identification-in-the-
limit framework (Gold, 1967) and probably approximately correct (PAC) learning (Valiant, 1984),
few-shot (or one-shot) learning methods (Muggleton, 1996; Wang et al., 2020; Muggleton, 2023)
have sought to bridge the gap by using prior knowledge to rapidly generalize to new instances given
training on only a small number of samples with supervised information.

In this paper, we explore the learnability of policies that generalize in the domain of graph rout-
ing, where a one-size-fits-all solution is challenging when the class of graphs has strict scalability
limits for network capacity (Xue & Kumar, 2006) or has significant graph dynamics (Hekmat &
Van Mieghem, 2004; Grossglauser & Tse, 2002). Manually designed algorithms and heuristics often
cater to particular network conditions and come with tradeoffs of complexity, scalability, and gen-
eralizability across diverse graphs. Many machine learned algorithms in this space incur relatively
high computational complexity during training (Reis et al., 2019), have high overhead at run-time
which limits their use in graphs with high dynamics, or are applicable only for small-scale graphs
or graphs of limited types (e.g., high density graphs). Our work focuses attention on answering the
following question:

Can we design a high data efficient machine learning algorithm for graph routing
based on local search that addresses complexity, scalability and generalizability
issues all at once?

We answer this question in the affirmative for the all-pairs near-shortest path (APNSP) problem
over the class of uniform random graphs in Euclidean and in hyperbolic metric spaces. It is well
known that uniform random graphs in Euclidean metric spaces can represent the topologies inherent
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in wireless networks and that the graphs in hyperbolic metric spaces can represent the tree-like
topologies of the Internet and social networks where node degree follows a power-law distribution
(Boguná et al., 2010; Verbeek & Suri, 2014); the policies we learn are thus broadly applicable to
real-world wireless and wired networks. Our key insight is that —in contrast to pure black-box
approaches— domain knowledge suffices to theoretically guide the selection of “seed” graph(s)
and corresponding sparse training data for efficiently learning models that generalize to (almost) all
graphs in these geometric classes.

To motivate our focus on local search, we recall that approaches to solve the APNSP problem can
be divided into two categories: global search and local search. Global search encodes the entire
network state into graph embeddings (Narayanan et al., 2017) and finds optimal paths, whereas local
search needs only node embeddings (Grover & Leskovec, 2016) to predict the next forwarder on the
shortest path. The model complexity (in time and space) resulting from the latter is inherently better
than the former, as is the tolerance to network perturbations. The latter can even achieve stateless
design, as is illustrated by geographic routing (Cadger et al., 2012) where packet forwarding can be
based on using only the location of the forwarding node and the destination. In other words, local
search can achieve scalability and dynamic adaptation in a fashion that is relatively independent of
the network configuration. We seek to achieve these properties by learning a low-complexity policy
that by virtue of its generalizability can be instantiated and adapted in real-time.

We model the APNSP problem as a Markov decision process (MDP) and propose a DNN-based
approach to learn a “single-copy” local routing policy that at each routing node and at each time
only considers the states from that node and one of its neighbors to predict a local metric (a Q-
value) for routing. Routing thus uses a single neighbor for which the Q-value is the largest. For
achieving efficient learning that generalizes over a class of graphs, we develop a theory based on the
similarity between the local ranking of node neighbors in terms of Q-value and the global ranking
with respect to the (shortest) path length metric. If local input features can be chosen to thus achieve
high similarity for most nodes in almost all graphs in the chosen class, the APNSP objective can be
realized with high probability by training a DNN that characterizes the local metric of each neighbor
as a potential forwarder. Moreover, the DNN policy can generalize even if it is trained from only
a few data samples chosen from a single “seed” graph. The theory guides our selection of input
features as well as corresponding training data and is corroborated by empirical validation of our
learned routing solutions.

Our approach thus yields a light-weight solution to graph routing in chosen classes of graphs, in
the sense that (a) the routing policy is rapidly learned from a small dataset that is easily collected
from a single “seed” graph; (b) the learned policy can be used on all nodes of a graph, and is able to
generalize across almost all graphs in the classes without additional training on the target networks;
and (c) the routing decision only depends on the local network state, i.e., the state of the node and
its one-hop neighbor nodes.

Our main contributions and findings are as follows: First, generalization from few-shot learning
from a single graph is feasible for APNSP and theoretically assured by domain knowledge. Second,
domain knowledge also guides the selection of input features and training samples to increase the
training efficiency and testing accuracy. Third, learning from a single graph using only a distance
metric matches the well-known greedy forwarding routing. Fourth, learning from a single graph us-
ing both distance and node stretch factor relative to a given origin-destination node pair yields a new
policy, Greedy Tensile routing, that achieves even better generalized APNSP routing. Fifth, both
these learned policies can be symbolically interpreted in a low complexity fashion—they are ap-
proximated by policies with one and two linear actions respectively. Lastly, reinforcement learning
from a single graph achieves comparable generalization performance for ASNSP.

2 PROBLEM FORMULATION FOR GENERALIZED ROUTING

Consider the class G of all graphs G = (V,E) whose nodes are uniformly randomly distributed
over a 2-dimensional geometric space, that is either an Euclidean space or a hyperbolic space. Each
node v ∈ V knows its global coordinates. For any pair of nodes v, u ∈ V , edge (v, u) ∈ E holds if
and only if the distance between v and u is at most the communication radius R.

For the case of G in a 2-dimensional Euclidean plane, we let R be a user-defined constant. Let ρ
denote the network density, where network density is defined to be the average number of nodes per
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R2 area, and n the number of nodes in V . It follows that all nodes in V are distributed in a square

whose side is of length
√

n×R2

ρ .

For the case of G in a 2-dimensional hyperbolic plane, all nodes in V are distributed in a disk
of radius R. Each node v thus has hyperbolic polar coordinates (rv, θv) with rv ∈ [0, R] and
θv ∈ [0, 2π]. Let δ be the average node degree. And let n and −α denote the number of nodes in
V and the negative curvature, respectively. All nodes are randomly distributed points with radial
density p(r) = α sinh (αr)

cosh (αR)−1 and uniform by angle, where R = 2 log n
δ . It is well known that such

uniform random graphs in the hyperbolic plane yield a power-law distribution for the node degrees
(Aldecoa et al., 2015).

2.1 ALL-PAIRS NEAR-SHORTEST PATH PROBLEM (APNSP)

The objective of APNSP routing problem is to locally compute for all node pairs of any graph
G ∈ G their near-shortest path. Here, near-shortest path is defined as one whose length is within a
user-specified factor (≥ 1) of the shortest path length.

Formally, let de(O,D) denote the distance between two endpoints O and D, and dsp(O,D) denote
the length of the shortest path between these endpoints. Further, let ζ(O,D) denote the path stretch
of the endpoints, i.e., the ratio dsp(O,D)

de(O,D) .

The APNSP Problem. Learn a routing policy π such that, for any graph G = (V,E) ∈ G and
any origin-destination pair (O,D) where O,D ∈ V , π(O,D, v)=u finds v’s next forwarder u and
in turn yields the routing path p(O,D) with path length dp(O,D) that with high probability is a
near-shortest path. In other words, π optimizes the accuracy of p(O,D) as follows:

max AccuracyG,π =

∑
O,D∈V η(O,D)

|V |2
, (1)

s.t. η(O,D) =

{
1, if

dp(O,D)
dsp(O,D) ≤ ζ(O,D)(1 + ϵ)

0, otherwise
(2)

Note that the user-specified factor for APNSP is ζ(O,D)(1 + ϵ), where ϵ ≥ 0.

2.2 MDP FORMULATION FOR THE APNSP PROBLEM

Figure 1: Schema for solution using DNN to predict
Q-values for selecting the routing forwarder.

To solve APNSP, we first formulate it as
a Markov decision process (MDP) prob-
lem that learns to choose actions that max-
imize the expected future reward. In gen-
eral, an MDP consists of a set of states S,
a set of actions A(s) for any state s ∈ S,
an instantaneous reward r(s, a), indicat-
ing the immediate reward for taking action
a ∈ A(s) at state s, and a state transi-
tion function P (s′|s, a) which character-
izes the probability that the system transits
to the next state s′ ∈ S after taking ac-
tion a at the current state s ∈ S. To sim-
plify the routing behavior in the problem,
the state transition is assumed to be deter-
ministic. Specifically, each state s represents the features of a node holding a packet associated with
an origin-destination pair (O,D), and an action a ∈ A(s) indicates the routing behavior to forward
the packet from the node to one of its neighbors. Given the current state s and an action a ∈ A(s)
which selects one neighbor as the next forwarder, the next state s′ is determined as the features of
the selected neighbor such that the probability P (s′|s, a) is always one. The tuple (s, a, r, s′) is
observed whenever a packet is forwarded.

In addition, we define the Q-value to specify the cumulative future reward from state s and taking
action a: Q(st = s, at = a) =

∑L
i=t γ

i−tr(si, ai), where γ, 0≤γ≤1, is the discount factor. When
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γ = 0, the instantaneous reward is considered exclusively, whereas the future rewards are treated as
equally important as the instantaneous reward in the Q-value if γ = 1. In the APNSP problem, we
define the instantaneous reward r(s, a) as the negative length of the corresponding edge (s, s′), and
set γ = 1. Therefore, the optimal Q-value, Q∗(s, a), is equal to the cumulative negative length of
the shortest path from s to the destination.

For solving APNSP, we seek to learn the optimal Q-value through a data-driven approach with
DNNs. As depicted in Figure 1, each state s and action a will be embedded into a set of input
features denoted by fs(s) and fa(a), respectively. A DNN will be learned to approximate the
optimal Q-value given the input features, based on which a near-shortest path routing policy can be
obtained by choosing actions with largest Q-values.

2.3 DESIGN OF INPUT FEATURES

To learn a routing protocol that generalizes across graphs with different scales, densities, and topolo-
gies, the input features of the DNN should be designed to be independent of global network con-
figurations, including the identity of nodes and of packets. Recall that each node knows its own
coordinates and the coordinates of the origin and the destination.

Input features based on distance and on stretch factor have been found useful in local geographic
routing protocols. Accordingly, we design the input features, including state and action features, as
follows:

• State feature, fs(O,D, v). For a packet with its specified origin O and destination D at
node v, the state features are the vectors with the elements below.

1. Distance to destination, dist(v,D): the distance between v and D.

2. Stretch factor, sf(O,D, v) = dist(O,v)+dist(v,D)
dist(O,D) : the stretch of the indirect distance

between O and D that is via v with respect to the direct distance between O and D.

• Action feature, fa(O,D, a) = fs(O,D, u). The feature for the action that forwards a
packet from v to u ∈ nbr(v), fa(O,D, a) is chosen to be the same as the state feature of
u, fs(O,D, u).

Henceforth, we consider learning with two different combinations of input features, one with only
dist(v,D), dist(u,D) and the other with both dist(v,D), dist(u,D) and sf(O,D, v), sf(O,D, u).

3 ASSURING GENERALIZABILITY OF ROUTING POLICIES

We begin with a sufficient condition for how a routing policy, π, learned from a seed graph G∗ =
(V ∗, E∗) ∈ G, where G is the set of all uniform random graphs, with select samples generated from
a subset of nodes in V ∗, can generalize over other (and potentially all) graphs G∈G.

A basis for generalizability in this setting is the concept of a ranking metric for each node v ∈ V
with respect to each u ∈ nbr(v), where nbr(v) denotes the set of v’s one-hop neighbors. Let
fs : V → RI be a map of v ∈ V to its state features (of cardinality I) and let fa : V → RJ

be a map of u ∈ nbr(v) to its action features (of cardinality J). We define a ranking metric
m(fs(O,D, v), fa(O,D, u)) ∈ R to be a linear function over the input features associated with
v and u. For notational convenience, given an ordering ⟨u0, ..., ud⟩ of all nodes in nbr(v), let Xv =
{(fs(O,D, v), fa(O,D, u0)), ..., (fs(O,D, v), fa(O,D, ud))}, denote the set of input vectors for
each corresponding neighbor uk ∈ nbr(v), 0 ≤ k ≤ d. Also, let Yv = {Q(v, u0), ..., Q(v, ud)}
denote the corresponding set of Q-values.

Consider then a sufficient condition on the relation between the local ranking metric m and the
corresponding Q-values set Yv , namely, the global ranking metric, to learn a DNN model for ranking
the neighbors u ∈ nbr(v) according to their Q-values.

Theorem 0 (Learnability). Let v be any node in V for which ranking metric
m(fs(O,D, v), fa(O,D, u)) satisfies the following property, RankPres:
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If ⟨m(fs(O,D, v), fa(O,D, u0)), ... , m(fs(O,D, v), fa(O,D, ud)⟩ is mono-
tonically increasing1, then ⟨Q(v, u0), ..., Q(v, ud)⟩ is monotonically increasing.

There exists a learnable DNN H , H : RI+J → R, with training samples ⟨Xv, Yv⟩, that
achieves optimal ranking of all u ∈ nbr(v), i.e., its output for the corresponding neighbors of v,
⟨H(fs(O,D, v), fa(O,D, u0)), ...,H(fs(O,D, v), fa(O,D, ud)) ⟩, is monotonically increasing.

Next, we lift the sufficient condition to provide a general basis, first, for ranking the neighbors of all
nodes in a graph according to their optimal shortest paths, from only the samples derived from one
(or a few) of its nodes; and second, for similarly ranking the neighbors of all graphs in G.

Theorem 1 (Cross-Node Generalizability). For any graph G, G=(V,E), if there exists a ranking
metric m(fs(O,D, v), fa(O,D, u)) that satisfies the RankPres property for all v ∈ V , then an
optimal ranking policy for all v∈V is learnable with only a subset of training samples ⟨XV ′ , YV ′⟩,
where V ′ ⊆ V , XV ′ =

⋃
v∈V ′ Xv , and YV ′ =

⋃
v∈V ′ Yv .

Note that if the Q(v, u) value corresponds to the optimal (shortest) path Q-value for each (v, u)
pair, then the DNN indicated by Theorem 1 achieves an optimal routing policy for all nodes in V .
Note also in this case that if the ranking metric m satisfies RankPres not for all nodes but for almost
all nodes, a policy learned from samples from one or more nodes v that satisfy RankPres may not
achieve optimal routing for all nodes. Nevertheless, if the relative measure of the number of nodes
that do not satisfy RankPres to the number of nodes that do satisfy RankPres is small, then with high
probability the policy achieves near-optimal routing.

Theorem 2 (Cross-Graph Generalizability). If there exists a ranking metric
m(fs(O,D, v), fa(O,D, u)) that satisfies the RankPres property for the nodes in all graphs
G ∈ G, then an optimal ranking policy is learnable by using training samples from one or more
nodes in one or more chosen seed graph(s) G∗∈G.

Again, if Theorem 2 is considered in the context of Q-values corresponding to optimal shortest
paths, the learned routing policy π generalizes to achieving optimal routing over all graphs G∈G.
And if we relax the requirement that RankPres holds for all nodes of all graphs in G to only requiring
that for almost all graphs G ∈G, there is a high similarity between the ranking metric m and the
optimal Q-value, then with high probability the policy achieves near-optimal routing.

Proofs of the above-mentioned theorems are relegated to Appendix A.

Proposition 1. For APNSP, there exists a local ranking metric m1(fs(O,D, v), fa(O,D, u)) of the
form w1.dist(v,D)+w2.dist(u,D) based on the distance input feature that satisfies the RankPres
property for almost all nodes in almost all graphs G.

Also, there exists a local ranking metric m2(fs(O,D, v), fa(O,D, u)) of the form w1.dist(v,D)+
w2.sf(O,D, v)+w3.dist(u,D)+w4.sf(O,D, u) based on both distance and stretch factor input
features that satisfies the RankPres property for almost all nodes in almost all graphs G.

We empirically validate Proposition 1, as presented in Appendix B. RankPres is quantified in terms
of Ranking Similarity; high ranking similarity implies that RankPres holds with high probability.
We show that Proposition 1 holds for both Euclidean and hyperbolic spaces with respectively chosen
weights w for m1 and m2.

It follows that an efficient generalizable policy for APNSP is feasible for each of the two chosen
input feature sets, given the existence of respective ranking metrics that with high probability satisfy
RankPres. For APNSP, the optimal Q(v, u) values can be retrieved by calculating the length of the
shortest path starting from v toward u until reaching the destination. A near-optimal routing policy
may then be learned via supervised learning on a single seed graph.

1By monotonic increasing order in ⟨m(fs(O,D, v), fa(O,D, u0)), ... , m(fs(O,D, v), fa(O,D, ud)⟩,
we mean m(fs(O,D, v), fa(O,D, u0)) ≤ ... ≤ m(fs(O,D, v), fa(O,D, ud).
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4 SINGLE GRAPH LEARNING ALGORITHM

4.1 SELECTION OF SEED GRAPH AND GRAPH SUBSAMPLES

To achieve both cross-graph generalizability and cross-node generalizability, we develop a
knowledge-guided mechanism with the following two selection components:

Seed Graph Selection. The choice of seed graph depends primarily on the analysis of cross-node
generalizability (Theorem 1) across a sufficient set of uniform random graphs with diverse sizes and
densities/average node degrees. In Figures 10 and 11 in Appendix B.2, we empirically show that,
with the use of distance and stretch factor, a good seed graph is likely to exist in a set of graphs with
small size (e.g., 50) and high density (e.g., 5) in the Euclidean space and high average node degree
(e.g., 4) in the hyperbolic space.

There may be applications where analysis of large (or full) graphs is not always possible. In such
situations, given a graph G, an alternative choice of seed graph can be from a small subgraph G′ =
(V ′, E′), V ′ ⊂ V,E′ ⊂ E with relatively high cross-node generalizability. Note that, in Theorem 1,
for a graph G = (v,E) satisfying the RankPres property for all v ∈ V , RankPres still holds for
v′ ∈ V ′ in a subgraph G′ = (V ′, E′) of G. This is because the learnable function m still preserves
the optimal routing policy for all nodes in a subset of nbr(v).

Graph Subsamples Selection. We provide the following scheme of subsample selection for a given
graph G = (V,E) to choose a set of ϕ nodes for generating ϕδ training samples.

1. Select an origin and destination pair (O,D), O,D ∈ V .
2. Select ϕ nodes, v0, ..., vϕ−1 ∈ V \D.
3. For each chosen node v0, ..., vϕ−1, respectively, collect the subsamples ⟨X,Y ⟩, where

X=
⋃

v∈{v0,...,vϕ−1}∧u∈nbr(v) {⟨fs(O,D, v), fa(O,D, u)⟩} and
Y =

⋃
v∈{v0,...,vϕ−1}∧u∈nbr(v) {Q∗(v, u)}.

In Appendix F, we analyze the complexity of graph subsampling. An alternative for seed nodes
search is also provided to limit the search complexity.

4.2 SUPERVISED LEARNING FOR APNSP WITH OPTIMAL Q-VALUES

Given the dataset ⟨X,Y ⟩ collected from a seed graph, we train a DNN based on supervised learning
to capture the optimal ranking policy. Specifically, suppose the DNN H is parameterized by Θ. We
seek to minimize the following loss function:

min
Θ

∑
⟨X,Y ⟩

∥HΘ(fs(O,D, v), fa(O,D, u))−Q∗(v, u)∥2. (3)

Note that we assume that the optimal Q-values are known for the seed graph in the supervised learn-
ing above, which can be obtained based on the shortest path routing policies of the seed graph. By
leveraging these optimal Q-values and supervised learning on the seed graph, a generalized routing
policy is learned for APNSP routing over almost all uniform random graphs in both Euclidean and
hyperbolic spaces, as we validate in the experiments in Section 5.

4.3 REINFORCEMENT LEARNING FOR APNSP

For the case where the optimal Q-values of graphs are unknown, we solve the APNSP problem
using RL. Using the same input features and seed graph selection procedure, the RL algorithm
continuously improves the quality of Q-value estimations by interacting with the seed graph.

In contrast to the supervised learning algorithm, where we collect only a single copy of data sam-
ples from a set of chosen (shortest path) nodes once before training, in RL new training data samples
from nodes in a shortest path, predicted by most recent training episode (i.e., based on the current
Q-value estimation), are collected at the beginning of each training episode. Remarkably, the gener-
alizability of the resulting RL routing policy across almost all uniform random graphs in Euclidean
and hyperbolic spaces is preserved. The details of the RL algorithm, named as RL-APNSP-ALGO,
are shown in Algorithm 1 in Appendix C.
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5 ROUTING POLICY PERFORMANCE FOR SCALABILITY AND ZERO-SHOT
GENERALIZATION

In this section, we discuss implementation of our machine learned routing policies and evaluate their
performance in predicting all-pair near-shortest paths for graphs across different sizes and densities
over Euclidean and hyperbolic spaces in Python3. We use PyTorch 2.0.1 (The Linux Foundation,
2023) on the CUDA 11.8 compute platform to implement DNNs as shown in Figure 1. Table 3 in
Appendix D.1 shows our simulation parameters for training and testing the routing policies.

5.1 COMPARATIVE EVALUATION OF ROUTING POLICIES

We compare the performance of the different versions of Greedy Tensile policies obtained using the
following approaches:

Supervised (ϕ=3) / Supervised (all): Supervised learning from appropriately chosen seed graph
G∗ using graph subsamples selection from ϕ=3 or all nodes.

RL (ϕ=3) / RL (all): RL from appropriately chosen seed graph G∗ using graph subsamples selection
from ϕ=3 or all nodes.

GF: Greedy forwarding that forwards packets to the one-hop neighbor with the minimum distance
to the destination.

Note that for a given set of input features, both supervised learning and reinforcement learning
schemes use the same DNN configuration to learn the routing policies. By using the subsampling
mechanism, not only the sample complexity but also the training time will be significantly reduced
in Supervised (ϕ=3) and RL (ϕ=3) compared to those in Supervised (all) and RL (all), respectively.

5.2 ZERO-SHOT GENERALIZATION OVER DIVERSE GRAPHS

(a) Euclidean Space (b) Hyperbolic Space

Figure 2: Average APNSP prediction accuracy across graph sizes with
various ρ and δ for Greedy Tensile policies.

To evaluate the scalabil-
ity and generalizability
of the policies, we
directly (i.e., without
any adaptation) test the
policies learned from the
seed graph G∗ on new
uniform random graphs
with different combina-
tions of (Ntest, ρtest)
in Euclidean spaces and
(Ntest, δtest) in hyper-
bolic spaces. We select
20 random graphs for
each pair and calculate
the average prediction
accuracy over these
20Ntest

2 shortest paths.

For the DNNs with input dist(v,D) and dist(u,D), the tests confirm that the performance of all
the learned policies exactly match the prediction accuracy of Greedy Forwarding in both Euclidean
and hyperbolic spaces. (In Appendix E, we symbolically interpret the learned DNN with input
dist(v,D) and dist(u,D) to show it can be reduced to GF.)

For the Greedy Tensile DNNs with input ⟨dist(v,D), sf(O,D, v), dist(u,D), sf(O,D, u)⟩, we plot
in Figure 2 the respective average prediction accuracies across graph sizes in {27, 64, 125, 216} with
density in {2, 3, 4, 5} in Euclidean space and average node degree in {1, 2, 3, 4} in hyperbolic space.

In Euclidean space, the Supervised (ϕ=3) approach achieves the best performance among all the
approaches. In particular, compared to GF, the Supervised (ϕ=3) policy improves the accuracy up to
9% over GF, whereas the other learned policies show at least comparable performance in low density
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graphs (ρ = 2) and achieve an improvement of up to 5% in graphs with ρ ≥ 3. The performance gap
between the DNNs and GF increases as the network density increases to a high level (e.g., ρ = 5),
wherein GF was believed to work close to the optimal routing.

In hyperbolic space, the RL (all) policy improves the accuracy up to 3% over GF, whereas the other
learned policies show at least comparable performance in low degree graphs (δ = 1) and achieve an
improvement of up to 2% in graphs with δ ≥ 2. To the best of our knowledge, we are the first to
provide routing policies that outperform GF in almost all random graphs; recall GF was shown to
find almost optimal shortest path in scale-free topologies (Papadopoulos et al., 2010).

6 SYMBOLIC INTERPRETABILITY OF LEARNED MODEL

In this section, we symbolically interpret the learned model for Greedy Tensile routing, achieving
a two orders of magnitude reduction in its operational complexity. Figure 3 plots the output of its
DNN, towards explaining the learned policy2. Since dist(v,D) and sf(O,D, v) stay unchanged for
a fixed routing node v at a given time, we plot the shape of the ranking metric (z-axis) of the learned
DNN according to varying sf(O,D, v) (x-axis) and dist(u,D) (y-axis) in the figure.

(a) DNN, dist(v,D) = 2 (b) DNN, dist(v,D) = 4 (c) Symbolic Approximation

Figure 3: The shape of ranking metrics of the Greedy Tensile DNN and its two-linear action Sym-
bolic Approximation policy, given sf(O,D, v) = 1.2. The x and y axes represent sf(O,D, u) and
dist(u,D), and the z axis is the ranking metric for routing.

Figures 3(a) and 3(b) show that the Greedy Tensile DNN has two planes separated by a transition
boundary that varies as dist(v,D) changes. The two planes can be respectively approximated by two
different linear functions. The first function (for the upper plane) prefers both smaller sf(O,D, u)
and dist(u,D). The second (for the lower plane) significantly prioritizes smaller dist(u,D). We
find that the two functions that approximate the Greedy Tensile DNN can be symbolically repre-
sented by a guarded command:

z =


−0.013dist(v,D)− 0.023sf(O,D, u)− 0.012dist(u,D)− 0.063,

if dist(u,D) < 1.020dist(v,D) + 0.567sf(O,D, u)− 0.690

0.025dist(v,D)− 0.002sf(O,D, u)− 0.044dist(u,D)− 0.146, otherwise.

(4)

The weights of the guarded command are calculated using linear regression. Its first action assigns
dominant weights to both sf(O,D, u) and dist(u,D), while its second action gives almost negli-
gible weight to sf(O,D, u) compared to the weight of dist(uD). The shape of ranking metrics of
the guarded command given dist(v,D) = 4 is shown in Figure 3(c), which has a two-plane surface
similar to Figure 3(b). Figure 14 in Appendix D.3 shows that the accuracy of the two-linear action
policy using Equation 4 is close to that of Greedy Tensile DNN.

The simplified two-linear-action policy also has substantially reduced operation complexity.
Whereas the Greedy Tensile DNN requires at least Ω × Ne[1] × Ne[2](= 4 ∗ 200 ∗ 4) multipli-
cations to output the Q-value for a given (state, action) pair, where Ω represents the number of

2Since Greedy Tensile models in Euclidean and hyperbolic spaces have a similar shape, we only visualize
the learned model in the Euclidean space here.
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input features of the DNN and Ne[i] denotes the number of neurons in the i-th hidden layer, the
two-linear-action policy needs less than ten multiplications.

7 RELATED WORK

Feature Selection for Routing. A classic feature for local routing comes from greedy forward-
ing (Finn, 1987), where the distance to the destination node (in an Euclidean or hyperbolic metric
space) is used to optimize forwarder selection. It has been proven that this feature achieves nearly
optimal routing in diverse network configurations, including scale-free networks (Kleinberg, 2000;
Papadopoulos et al., 2010). A stretch bound on routing paths using greedy forwarding is investi-
gated in diverse models with or without the assumption of unit disk graphs (Flury et al., 2009; Tan
et al., 2009b; Tan & Kermarrec, 2011; Tan et al., 2009a; Won & Stoleru, 2014). Other features
for forwarder selection include Most Forward within Radius (MFR) (Takagi & Kleinrock, 1984),
Nearest with Forwarding Progress (NFP) (Hou & Li, 1986), the minimum angle between neighbor
and destination (aka Compass Routing) (Kranakis, 1999), and Random Progress Forwarding (RPF)
(Nelson & Kleinrock, 1984).

Network domain knowledge has also been used to guide search efficiency in routing protocols. A
recent study (Chen et al., 2023) shows that searching for shortest paths in uniform random graphs
can be restricted to an elliptic search region with high probability. Its geographic routing protocol,
QF-Geo, uses node Stretch Factor as an input feature to determine whether a node’s neighbors lie in
the search region and to forward packets only within the predicted elliptic region.

Generalizability of Machine Learned Routing. Only recently has machine learning research
started to address generalizability in routing contexts. For instance, generalizability to multiple
graph layout distributions, using knowledge distillation, has been studied for a capacitated vehicle
routing problem (Bi et al., 2022). Some explorations have considered local search: i.e., wireless
network routing strategies via local search based on deep reinforcement learning (Manfredi et al.,
2021; 2022) have been shown to generalize to other networks of up to 100 nodes, in the presence
of diverse dynamics including node mobility, traffic pattern, congestion, and network connectivity.
Deep learning has also been leveraged for selecting an edge set for a well-known heuristic, Lin-
Kernighan-Helsgaun (LKH), to solve the Traveling Salesman Problem (TSP) (Xin et al., 2021). The
learned model generalizes well for larger (albeit still modest) sized graphs and is useful for other
network problems, including routing. Likewise, graph neural networks and learning for guided lo-
cal search to select relevant edges have been shown to yield improved solutions to the TSP (Hudson
et al., 2021). In related work, deep reinforcement learning has been used to iteratively guide the
selection of the next solution for routing problems based on neighborhood search (Wu et al., 2021).

8 CONCLUSIONS AND FUTURE WORK

We have shown that guiding machine learning with domain knowledge can lead to the rediscovery
of a well-known routing policy (somewhat surprisingly), in addition to discovering a new routing
policy, that perform well in terms of complexity, scalability, and generalizability. The theory we
have presented in the paper is readily extended to other classes of graphs (such as non uniform clus-
ter distributions), ranking metrics that are nonlinear, and MDP actions that span multiple neighbors.
Thus, albeit our illustration intentionally uses relatively familiar input features and local routing
architectures, richer domain theory will be useful to guide machine learning of novel routing algo-
rithms. Moreover, the routing policies are likely to be competitive for richer classes of graphs than
the class of uniform random graphs on which we have focused our validation.

While samples from nodes of a single seed graph suffice for generalizable learning, in practice,
learning from multiple seed graphs may be of interest. For instance, if an ideal seed graph is not
known a priori, online learning from better or multiple candidate seed graphs as they are encountered
may be of interest for some applications. Along these lines, we recall that the set of ideal (and near
ideal) seed graphs is relatively large in the problem we considered. One way to relax the knowledge
of ideal seed graphs is to leverage online meta-learning, for learning a good model initialization
and continuing to improve the initialization based on better seed graphs as they are encountered.
Towards this end, we have also been studying the merits of efficiently fine tuning the model for the
target graph as an alternative to zero-shot generalization.
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A PROOF OF THEOREM

In this section, we provide the proof of the three theorems stated in Section 3.

1. Proof of Theorem 0.

Proof. Since the ranking metric m is a linear function, a single neuron DNN H can achieve
the optimal ranking by weighing each input feature with the weight corresponding to that
feature in m.

2. Proof of Theorem 1.

Proof. From Theorem 0, m can be learned by a DNN with samples generated from any
v ∈ V (or, more generally, from any set of nodes V ′ ⊆ V ). Since the RankPres property
holds for all v ∈ V , the resulting DNN achieves an optimal ranking of all nodes in V and
hence for G.

3. Proof of Theorem 2.

Proof. From Theorem 2, learning from G∗ with training samples chosen from one or more
nodes in G∗ achieves an optimal ranking policy π for all nodes in G∗. The soundness of the
subsampling argument suffices for the same policy to achieve optimal ranking for nodes in
any graph G ∈ G, as long as there exists a common ranking metric m with the RankPres
property holding for all graphs in G.

B RANKING SIMILARITY BETWEEN LOCAL AND GLOBAL METRICS

Based on the theory of Section 3, we now investigate the existence of a ranking metric m for the first
input feature, as well as the pair of input features, and demonstrate that in both cases the ranking
similarity is close to 1 across nodes in almost all graphs G, regardless of their size and density. The
results thus empirically corroborate the feasibility of routing policy generalization from single graph
learning, and also guide the selection of seed graphs and training samples.

Let SIMv(m,Q∗) ∈ [0, 1] denote the ranking similarity between the ranking metric m and the
optimal Q-values (Q∗) at node v. Moreover, let SIMG(m,Q∗) ∈ [0, 1] denote the average rank-
ing similarity between m and Q∗ across all nodes v ∈ V in a given graph G = (V,E), i.e.,
SIMG(m,Q∗) =

∑
v∈V SIMv(m,Q∗)

|V | .

Conceptually, SIMv(m,Q∗) should tend to 1 as the order of neighbors in the sorted ascending order
of m(fs(O,D, v), fa(O,D, u)), u ∈ nbr(v), comes closer to matching the order of the neighbors
in the sorted ascending order of Q∗(v, u). More specifically, we adopt Discounted Cumulative Gain
(DCG) (Järvelin & Kekäläinen, 2002) to formally define the ranking similarity. The idea of DCG is
to evaluate the similarity between two ranking sequences by calculating the sum of graded relevance
of all elements in a sequence. First, a sorted sequence of Q∗(v, u) with length L = |nbr(v)|,
u∈ nbr(v), is constructed as the ideal ranking, denoted by A. For each position i in A, we assign
a graded relevance relA[i] by following the rule: relA[i] = (L − i)2, i = 0...L − 13. The value of
DCG accumulated at a particular rank position τ is defined as:

DCGτ =
∑τ

i=1
rel[i]

log2(i+1) .

For example, let A = [4, 1, 3, 2, 5]. The corresponding relA[i] and relA[i]
log2(i+1) values are shown in

Table 1. Then A’s DCG3 = 25 + 10.095 + 4.5 = 39.595.

Next, a sorted sequence of m(fs(O,D, v), fa(O,D, u)) with length L = |nbr(v)|, u ∈ nbr(v), is
constructed as the estimated ranking, denoted by B. Let B = [1, 2, 4, 5, 6]. The graded relevance

3The assignment of graded relevance could be any way to decrease the value from left to right positions.
Here we use squared value to assign dominant weights to the positions close to leftmost.
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Table 1: An example of DCG calculation for an ideal ranking A = [4, 1, 3, 2, 5].

i A[i] relA[i] log2(i+ 1) relA[i]
log2(i+1)

1 4 25 1 25
2 1 16 1.585 10.095
3 3 9 2 4.5
4 2 4 2.322 1.723
5 5 1 2.807 0.387

Table 2: An example of DCG calculation for an estimated ranking B = [1, 2, 4, 5, 6].

j B[j] relB [j] log2(j + 1) relB [j]
log2(j+1)

1 1 16 1 16
2 2 4 1.585 2.524
3 4 25 2 12.5
4 5 1 2.322 0.431
5 6 0 2.807 0

for B[j] depends on the position of B[j] in A and follows the rule:

relB [j] =

{
relA[i], if (∃i : A[i] = B[j])

0, otherwise

Then B’s corresponding relB [j] and relB [j]
log2(j+1) values are shown in Table 2. Accordingly, B’s

DCG3 = 16 + 2.524 + 12.5 = 31.024. The ranking similarity between B and A is calculated
by the ratio of B’s DCG to A’s DCG, i.e., 31.024

39.595 = 0.784.

B.1 RANKING SIMILARITY WITH DISTANCE INPUT FEATURE.

For ⟨fs(O,D, v), fa(O,D, u)⟩ = ⟨dist(v,D), dist(u,D)⟩, we examine if there exists a linear
function m that yields high SIMv(m,Q∗) and SIMG(m,Q∗) across different network configu-
rations. Let the ranking metric m be m(fs(O,D, v), fa(O,D, u)) = −dist(u,D). (Recall that
Q∗(fs(O,D, v), fa(O,D, u)) is the cumulative negative length of the shortest path.)

In Figure 4, we plot SIMv(m,Q∗) for all v,D ∈ V for a given random Euclidean graph with size
in {50, 100} and density in {3, 5}. In Figure 5, we plot SIMv(m,Q∗) for all v,D ∈ V for a given
random hyperbolic graph with size in {50, 100} and average node degree in {2, 4}. Each point
represents the value of SIMv(m,Q∗) for a given v and D. All |V |2 points are shown in ascending
order. The sub-figures in Figures 4 and 5 illustrate that at least 75% of the points have high similarity
(≥ 90%) between m and Q∗. According to Theorem 1, the distribution of SIMv(m,Q∗) implies
that training samples collected from one (or a few) nodes in this large set can be sufficient to learn
a near-optimal routing policy that achieves high accuracy across nodes. On the other hand, using
training samples generated from the nodes with relatively low SIMv(m,Q∗) should be avoided.
This observation motivates a knowledge-guide mechanism to carefully choose the data samples
used for training.

In Figures 6 and 7, we show the distribution of SIMG(m,Q∗) in ascending order for a set of 100
graphs, respectively with size in {50, 100} with density in {3, 5} in the Euclidean space and average
node degree in {2, 5} in the hyperbolic space. Note that in high density Euclidean graphs (say
density 5) and high degree hyperbolic graphs (say degree 4), all 100 graphs have high similarity
(≥ 90%) between m and Q∗, implying that training with samples from almost any high density
Euclidean graph and high degree hyperbolic graph can be sufficient to learn a routing policy with
high performance. On the other hand, in low density Euclidean graphs (say density 3) and low degree
hyperbolic graphs (say degree 2), there exist a small set of graphs with slightly low SIMG(m,Q∗),
pointing to the importance of careful selection of seed graph(s) for training.
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(a) Size 50, Density 3, rnd=19 (b) Size 50, Density 5, rnd=19

(c) Size 100, Density 3, rnd=48 (d) Size 100, Density 5, rnd=48

Figure 4: Distribution of SIMv(m,Q∗) given a uniform random graph in the Euclidean space with
random seed (rnd), where m is the ranking metric for distance dist(u,D).

(a) Size 50, Degree 2, rnd=19 (b) Size 50, Degree 4, rnd=19

(c) Size 100, Degree 2, rnd=48 (d) Size 100, Degree 4, rnd=48

Figure 5: Distribution of SIMv(m,Q∗) given a uniform random graph in the hyperbolic space with
random seed (rnd), where m is the ranking metric for distance dist(u,D).

In addition, we observe that the upper bound of SIMG(m,Q∗) decreases as the network size in-
creases. These results implicitly show that, with respect to the chosen input feature, graphs with
smaller size but higher density can be better seeds for learning generalized routing policies.

According to the results in Figures 4 and 5 and Figures 6 and 7, using distance implies the existence
of a ranking metric that should with high probability satisfy cross-node generalizability and cross-
graph generalizability. The ranking function, m(fs(O,D, v), fa(O,D, u)) = −dist(u,D), or an
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(a) Size 50, Density 3 (b) Size 50, Density 5

(c) Size 100, Density 3 (d) Size 100, Density 5

Figure 6: Distribution of SIMG(m,Q∗) across 100 uniform random graphs in the Euclidean space,
where m is the ranking metric for distance dist(u,D).

(a) Size 50, Degree 2 (b) Size 50, Degree 4

(c) Size 100, Degree 2 (d) Size 100, Degree 4

Figure 7: Distribution of SIMG(m,Q∗) across 100 uniform random graphs in the hyperbolic space,
where m is the ranking metric for Euclidean distance dist(u,D).

analogue can be easily learned by a DNN, and then the learned routing policy should achieve high
performance across uniform random graphs.

B.2 RANKING SIMILARITY WITH DISTANCE AND STRETCH FACTOR INPUT FEATURES.

We examine if there exists a linear function m that yields high SIMv(m,Q∗) and
SIMG(m,Q∗) across different network configurations, for ⟨fs(O,D, v), fa(O,D, u)⟩ =
⟨dist(v,D), sf(O,D, v), dist(u,D), sf(O,D, u)⟩. Let the ranking metric m as
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(a) Size 50, Density 3, rnd=19 (b) Size 50, Density 5, rnd=19

(c) Size 100, Density 3, rnd=48 (d) Size 100, Density 5, rnd=48

Figure 8: Distribution of SIMv(m,Q∗) given a uniform random graph in the Euclidean space with
a random seed (rnd), where m is the ranking metric for Euclidean distance dist(u,D) and stretch
factor sf(O,D, u).

(a) Size 50, Degree 2, rnd=19 (b) Size 50, Degree 4, rnd=19

(c) Size 100, Degree 2, rnd=48 (d) Size 100, Degree 4, rnd=48

Figure 9: Distribution of SIMv(m,Q∗) given a uniform random graph in the hyperbolic space with
a random seed (rnd), where m is the ranking metric for Euclidean distance dist(u,D) and stretch
factor sf(O,D, u).

m(fs(O,D, v), fa(O,D, u)) = −0.875dist(u,D) − 0.277sf(O,D, u) in the Euclidean graphs
and let m be m(fs(O,D, v), fa(O,D, u)) = −dist(u,D)− sf(O,D, u) in the hyperbolic graphs.
Note that fs(O,D, v) does not affect the sorting of m(fs(O,D, v), fa(O,D, u)). For convenience,
we assign zero weight for dist(v,D) and sf(O,D, v) in m.
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(a) Size 50, Density 3 (b) Size 50, Density 5

(c) Size 100, Density 3 (d) Size 100, Density 5

Figure 10: Distribution of SIMG(m,Q∗) across 100 uniform random graphs in the Euclidean space,
where m is the ranking metric for distance dist(u,D) and stretch factor sf(O,D, u).

(a) Size 50, Degree 2 (b) Size 50, Degree 4

(c) Size 100, Degree 2 (d) Size 100, Degree 4

Figure 11: Distribution of SIMG(m,Q∗) across 100 uniform random graphs in the hyperbolic
space, where m is the ranking metric for distance dist(u,D) and stretch factor sf(O,D, u).

In Figures 8 and 10, we apply the same network configurations in the Euclidean graphs as in Fig-
ures 4 and 6 to plot the distribution of SIMv(m,Q∗) and SIMG(m,Q∗) for the proposed choice
of m. In Figures 9 and 11, we apply the same network configurations in the hyperbolic graphs as
in Figures 5 and 7. Note that because the stretch factor relies on v,O,D ∈ V , there are |V |3 points
plotted in Figureg 8 and 9 with ascending order. The sub-figures in Figures 8 and 9 demonstrate
that at least 80% of the points have similarity above 90%, which is higher than the corresponding
percentage of points in Figures 4 and 5. These observations indicate that using both distance and
stretch factor assures the existence of ranking metric, and in turn implies learnability of a DNN that
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with high probability achieves even better cross-node generalizability, compared to the one using
only Euclidean distance in the input features.

Figures 10 and 11 shows a similar distribution of SIMG(m,Q∗) to Figures 6 and 7, respectively. In
order to achieve cross-graph generalizability, we need to carefully select a seed graph for training,
especially from graphs with moderate size and high density. Also, instead of using all the nodes
to generate data samples, using a subset of nodes that avoid relatively low SIMv(m,Q∗) further
improves the cross-node generalizability.

C ALGORITHM OF THE REINFORCEMENT LEARNING FOR APNSP

Algorithm 1: RL-APNSP-ALGO
1 Input: nn: randomly initialized DNN; G∗: seed graph; Φ: set of chosen nodes; O,D: chosen

origin and destination
2 for episode = 1...EpiNum do
3 X:=[], Y :=[], i := 0;
4 for v ∈ Φ do
5 for u ∈ nbr(v) do
6 X[i] := ⟨fs(O,D, v), fa(O,D, u)⟩;
7 Estimate Q(v, u) using Equation 5;
8 Y [i] := Q(v, u);
9 i := i+ 1;

10 end
11 end
12 for iter = 1...IterNum do
13 Train nn with ⟨X,Y ⟩ based on Equation 6;
14 end
15 end
16 return nn;

More specifically, in Algorithm 1, Lines 2 to 15 outline the sample selection and training procedure
for each episode. The for-loop in Lines 4 to 11 generates the training data samples from set of chosen
nodes, where the data labels Y , i.e., target Q-values that we train the DNN to fit for improving the
estimation accuracy of optimal Q-values, are given by:

Qtarget(s, a) = r(s, a)+γmax
a′

Q(s′, a′). (5)

Next, based on the collected dataset, in Lines 12 to 14, the DNN is trained for a fixed number of
iterations to minimize the following loss function:

min
Θ

∑
⟨X,Y ⟩

∥HΘ(fs(O,D, v), fa(O,D, u))−Qtarget(v, u)∥2. (6)

Since the target Q-values approach the optimal Q-values as the number of training episodes in-
creases, minimizing Equation 6 will eventually lead to a learned model that nearly matches the
supervised learning in Equation 3.

D DETAILED ROUTING POLICY PERFORMANCE EVALUATION

D.1 DNN CONFIGURATION

Table 3 shows the simulation parameters for training and testing the routing policies in Euclidean
and hyperbolic spaces.

D.2 PERFORMANCE EVALUATION FOR Greedy Tensile POLICIES

Figure 12 shows the respective prediction accuracies of Greedy Tensile policies across graphs in
Euclidean space whose size is in {27, 64, 125, 216} and whose density is in {2, 3, 4, 5}; Figure 13
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Table 3: Simulation Parameters
Symbol Meaning Value
Ntrain size of seed graph 50
ρtrain density of seed graph 5
Ntest sizes of tested graphs 27, 64, 125, 216
ρtest densities of tested graphs in the Euclidean space 2, 3, 4, 5
δtest average node degree of tested graphs in the hyperbolic space 1, 2, 3, 4
R communication radius in the Euclidean space 1000
−α negative curvature in the hyperbolic space -0.6

Ω = I + J # of input features 2,4
K # of hidden layers 2
Ne[] # of neurons in each hidden layer [50Ω,Ω]
ϵ margin for shortest paths prediction 0.05
ϕ # of nodes for subsampling 3
γ discount factor 1

IterNumS # of iterations in supervised learning 5000
IterNumRL # of iterations in RL 1000
EpiNum # of episodes in RL 20

plots the prediction accuracies of Greedy Tensile policies across graphs whose size is in {27, 64,
125, 216} and whose average node degree is in {1, 2, 3, 4}.

(a) Density 2 (b) Density 3

(c) Density 4 (d) Density 5

Figure 12: APNSP prediction accuracy on tested graphs of various sizes and densities in the Eu-
clidean space for Greedy Tensile policies.
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(a) Node Degree 1 (b) Node Degree 2

(c) Node Degree 3 (d) Node Degree 4

Figure 13: APNSP prediction accuracy on tested graphs of various sizes and node degrees in the
hyperbolic space for Greedy Tensile policies.

D.3 PERFORMANCE EVALUATION FOR THE TWO-LINEAR-ACTION POLICY

Figure 14: APNSP prediction accuracy for the two-linear-action policy in Equation 4 versus the
policies of learned DNN (Supervised (ϕ = 3)) and greedy forwarding (GF) in graphs with size 50
and density in {2, 3, 4, 5}.

The performance of the policy using Equation 4 is shown in Figure 14. The two-linear-action policy
achieves an approximated accuracy to the learned DNN.

E SYMBOLIC INTERPRETABILITY OF LEARNED MODEL WITH DISTANCE
INPUT FEATURES

Figure 15 shows that the learned DNN, using dist(v,D), dist(u,D) as the input feature, is mono-
tonically increasing as the dist(u,D) decreases for a fixed dist(v,D) in both Euclidean and hyper-
bolic spaces. Since dist(v,D) stay unchanged for a fixed routing node v at a given time and does
not affect the ranking of ⟨m(fs(O,D, v), fa(O,D, u0)), ... , m(fs(O,D, v), fa(O,D, ud)⟩, ui ∈
nbr(v), these models are effectively equivalently substituted for routing by a simple linear function
(e.g., −dist(u,D)) that achieves the same performance as Greedy Forwarding.
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(a) DNN, dist(v,D) = 2 (b) DNN, dist(v,D) = 4

Figure 15: The shape of ranking metrics of the learned DNN using dist(v,D), dist(u,D) as the
input features. The x and y axes represent dist(v,D) and dist(u,D), and the z axis is the ranking
metric for routing.

F COMPLEXITY OF GRAPH SUBSAMPLING

According to the results in Appendix B.1 and B.2, seed nodes must have respectively have a high
SIMv(m,Q∗), denoting the ranking similarity between the ranking metric m and the optimal Q-
values (Q∗) at node v. The seed graph is assumed to have a sufficient number of nodes v that have
high SIMv(m,Q∗).

In graph subsamples selection in Section 4.1, we search the ϕ nodes with highest values of
SIMv(m,Q∗) for graph subsampling. Typically, depth-first search (DFS) or breadth-first search
(BFS) can be used for searching a graph G = (V,E) to get a node list of top-ϕ SIMv(m,Q∗) for
subsampling. The time complexity of DFS and BFS is O(|V |+ |E|) since the worst case of traver-
sal time in these two algorithms should explore every node and edge. However, searching an entire
graph becomes time consuming as the number of nodes increase to a considerable value. Note that
in a uniform random graph with an average node degree δ, the number of edges in a graph can be
represented by O(E) = O(δV ).

To effectively reduce the search effort, an alternative is to search the nodes with top-ϕ SIMv(m,Q∗)

values in a subgraph G
′
(D,Λ) = (V

′
, E

′
) ⊆ G, where only nodes within Λ-hop distance to a given

destination D are included in the subgraph.
Theorem 3 (Complexity of Graph Subsampling). Search ϕ nodes with top-ϕ SIMv(m,Q∗) in a
subgraph G

′
(D,Λ) = (V

′
, E

′
) ⊆ G has a time complexity of O(δΛ).

Proof. Figure 8 shows the distribution of SIMv(m,Q∗) for all pairs (v,O,D) in G and Figure 16
plot the distribution SIMv(m,Q∗) for the pairs (v

′
, O

′
, D), v

′
, O

′ ∈ V
′

in the set of subgraphs,
G

′
(D,Λ) = (V

′
, E

′
), D ∈ V . Figures 8 and 16 show a similar distribution of ranking similarity.

Searching nodes with top-ϕ SIMv(m,Q∗) from a subgraph G
′
(D,Λ) does not impact the efficacy

of subsampling for learning to achieve high accuracy. Therefore, for a given destination D in a
random graph G with an average node degree δ, the time complexity of searching using DFS/BFS
in the corresponding subgraph G

′
(D,Λ) is O(δΛ), a constant number independent of the graph

size.
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(a) Size 50, Density 3, rnd=19, Λ=2 (b) Size 50, Density 5, rnd=19, Λ=2

Figure 16: Distribution of SIMv(m,Q∗) in the set of subgraph G
′
(D,Λ) of G = (V,E) in Figure 8.

Each subgraph G
′
(D,Λ) includes nodes only within Λ-hop distance to the given destination D ∈ V .
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