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ABSTRACT

High-stakes decisions in healthcare, energy, and public policy have long depended
on human expertise and heuristics, but are now increasingly supported by predic-
tive and optimization-based tools. A prevailing paradigm in operations research
is predict-then-optimize, where predictive models estimate uncertain inputs and
optimization models recommend decisions. However, such approaches often side-
line human judgment, creating a disconnect between algorithmic outputs and
expert intuition that undermines trust and adoption in practice. To bridge this
gap, we propose CREDO, a framework that, for any candidate decision proposed
by human experts, provides a distribution-free upper bound on the probability of
suboptimality—informed by both the optimization structure and the data distri-
bution. By combining inverse optimization geometry with conformal generative
prediction, CREDO delivers statistically rigorous risk certificates. This framework
allows human decision-makers to audit and validate their decisions under uncer-
tainty, strengthening the alignment between algorithmic tools and human intuition.

1 INTRODUCTION

Decision-making under uncertainty in domains with significant societal and economic consequences
requires not only the identification of nominally optimal solutions, but also rigorous quantification
of the probability that any candidate decision maintains optimality when uncertain parameters
are realized (Zhu et al.| [2022)). The prevailing predict-then-optimize (PTO) paradigm addresses
uncertainty by first estimating unknown parameters through predictive models (e.g., future demand or
patient outcomes), then solving an optimization problem to recommend actions (Bertsimas & Kallus|
2020; Elmachtoub & Grigas| 2022)). This pipeline has become the foundation of many data-driven
decision systems across a wide spectrum of applications (Bertsimas et al.,|[2021}; |Tian et al., [2023).

Despite its ubiquity, the PTO approach has two fundamental shortcomings in high-stakes contexts.
First, these systems often function as black boxes that prescribe decisions without revealing their
robustness or sensitivity to uncertainty. As a result, they do not provide any transparency as to
whether alternative decisions might perform comparably or better under different parameter realiza-
tions. This opacity makes it difficult for human decision-makers to gauge confidence in algorithmic
recommendations or determine when to override them with their own expertise (L1 & Zhul [2024;
Zhang et al., 2025)). Second, such pipelines are inherently limited to point predictions that cannot
capture distributional complexity. For example, under multi-modal parameter distributions, these
methods recommend decisions optimized for expected values that fall between modes, where the true
parameters may have negligible probability (Sim et al.,|2024). In practice, this means PTO may not
only fail to guide human judgment effectively but also recommend harmful or misleading actions.

These shortcomings are especially problematic given that high-stakes real-world decision-making
rarely relies solely on algorithmic prescriptions. Experienced practitioners often propose alternatives
based on domain knowledge that extends beyond available data, such as insights about rare events,
operational constraints, or risk factors not captured in historical records. Yet, current optimization
frameworks offer no principled way to evaluate these expert-generated decisions, creating a disconnect
between algorithmic tools and practitioner expertise. Decision-makers need methods to rigorously
assess any candidate solution, enabling them to compare algorithmic prescriptions with alternatives
derived from human judgment.

To bridge this gap, we propose the complementary decide-then-assess paradigm. Rather than
replacing human expertise with model prescriptions, our goal is to support human judgment by
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auditing candidate decisions in a data driven manner. Specifically, we ask: For a user-specified
decision, how likely is it to remain optimal under the true, unknown realization of uncertainty? This
perspective enables rigorous risk assessment for any candidate decision, regardless of whether it
originates from optimization algorithms, expert judgment, or external constraints.

Building on this principle, we introduce CREDO—Conformalized Risk Estimation for Decision
Optimization—a framework that quantifies, for any candidate decision, a distribution-free upper
bound on the probability of suboptimality (Figure[I)). Unlike scenario-based planning, which evaluates
decisions against a discrete set of possible futures, CREDO quantifies optimality probability over
the entire parameter distribution with rigorous statistical guarantees. The framework rests on two
key insights: () in a broad class of optimization problems, the optimal solution is a deterministic
function of the objective parameters (Chan et al.,[2025)), which allows us to invert this mapping and
characterize the set of outcomes under which a decision remains optimal; and (¢¢) by combining
conformal prediction (Shafer & Vovk,2008) with generative modeling, we can estimate the probability
mass of this set, yielding valid, data-driven upper bounds on decision risk. The resulting tool provides
informative and computationally efficient risk certificates, empowering human decision-makers
to audit and validate their choices under uncertainty, while systematically exposing discrepancies
between human intuition and empirical data.

Our contributions can be summarized as follows:
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Related Works Decision-making under uncertainty is a fundamental challenge in operations
research and machine learning. A large body of work addresses this through robust optimization
(RO), which ensures decisions perform well under worst-case realizations within an uncertainty
set (Bertsimas & Thielel 2006). Distributionally robust optimization (DRO) generalizes this by
accounting for ambiguity in the underlying distribution (Delage & Ye, |2010; Duchi & Namkoong,
2021; [Levy et al) [2020; Rahimian & Mehrotral 2022). More recently, the PTO paradigm has
gained traction as a practical framework for data-driven decision-making (Bertsimas & Kallus, [2020;
Elmachtoub et al., 2020; [Lepenioti et al., [2020). It involves a two-stage procedure: first predicting
unknown parameters via machine learning, then solving a deterministic optimization problem using
these estimates. This has inspired decision-focused learning (DFL) approaches, where model training
directly targets decision quality by differentiating through the optimization layer (Amos & Kolter,
2017} |Chen et al.| |2025; [Mandi et al., [2024} Shah et al.| |2022; |Wang et al.,2025; Wilder et al.;2019).
While these frameworks may account for risks by their modeling assumptions, they do not explicitly
quantify the level of risk associated with each decision. Our work addresses this gap directly.

Methodologically, our work builds upon the literature on conformal prediction (CP), a general statis-
tical framework that enables distribution-free uncertainty quantification by constructing calibrated
prediction sets under mild assumptions (Papadopoulos et al.,|2002; [Shafer & Vovk, 2008} Vovk et al.}
20035)). Two strands of recent research are particularly relevant to our approach. First, a growing body
of work explores replacing traditional point prediction models in CP with generative models, enabling
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Figure 2: The overall architecture of the proposed framework. It contains two main steps: (i) Map
the given candidate decision z (e.g., (0.0)) to its inverse feasible region 7~ (2); (i) Conservatively
assess the risk via conformalized risk estimation over 7~ 1(z) using collected data of X and Y.

better modeling of stochastic outputs and yielding tighter prediction sets (Wang et al.| 2023} Zheng
& Zhul 2024} Zhou et al., [2024). Our methodology adopts this generative modeling perspective
as a key component to improve the accuracy of our risk estimates. A parallel line of research also
investigates the “inverted” use of conformal prediction, where the goal is to estimate the miscoverage
rate corresponding to a fixed prediction set (Prinster et al., [2022; 2023};|Singh et al., [2024; |Gauthier|
et al., 2025a). The technique we use is most similar to the concurrent work of (Gauthier et al.,
2025a), leveraging recent advancements in e-value conformal prediction (Vovk, [2025} Balinsky &
Balinsky} 2024} |Gauthier et al.} 2025b). However, our framework departs from their work by focusing
on the decision risk assessment setting rather than being a pure conformal prediction task. From
the decision-making, broader integration of CP has also been explored in recent works, including
problems involving RO (Patel et al., [2024} |Chenreddy & Delage, 2024} [Lin et al., [2024} |Chan et al.,
2024), DFL (Cortes-Gomez et al.,[2024), and human decision-making contexts (Hullman et al.l 2025),
though they aim to address fundamentally different tasks compared to our work.

Finally, our study contributes to a growing body of research on human-AlI interaction in decision-
making. Recent work has investigated how machine learning algorithms can serve as advisory tools
to support human decisions (Chen et al.; |(Grand-Clément & Pauphilet, [2024} [Hullman et al.| 2025}
Orfanoudaki et al.l [2022). A parallel line of research has explored how generative models can be
leveraged to present a more diverse set of decisions, thereby encouraging exploration and aiding the
development of improved decision strategies (Ajay et al.||2022} [Krishnamoorthy et al.| 2023} |Li &
/hu, 2024). Our work advances further in quantifying the risk associated with each candidate decision,
enriching the informational quality of decision support—particularly when multiple dimensions of
decision quality must be traded off (Li & Zhu, |2024; Masin & Bukchin| 2008)).

2 PROBLEM SETUP

Let X € X denote observed covariates, and let Y € ) be a random outcome variable represent-
ing uncertain objective parameters. The decision-making task is formalized as solving a general
constrained optimization problem, whose solution set is given by:

w(Y;0) == argming(z,Y,0) C Z(6). (1
z€Z(0)

Here, 6 denotes known parameters of the objective function ¢ and the feasible region Z(6), with the
latter assumed to be a compact subset of Z. Our goal is to develop a distribution-free, data-driven
method for estimating the probability that a prescribed decision z is suboptimal. Specifically, given a
candidate decision z, we aim to develop a risk measure «(z) that satisfies:

P{zen(Y;0)} >1—a(z), VzeZ, 2)

where we omit the dependency of a(z) on x for notation simplicity. The randomness on the
left-hand side is induced by the 7(Y’;8), which is dependent on the random variable Y. The
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objective in equation [2)is well-defined for any optimization problem and candidate decision satisfying
P{z € m(Y;0)} > 0. Otherwise, one can take &(z) = 1 as the trivial solutior['}

3 CREDO: CONFORMALIZED DECISION RISK ASSESSMENT

We propose a framework for quantifying decision risk a(z) by casting this problem as a structured
uncertainty quantification task over the decision space, as illustrated by Figure [2] The key idea
is to project the decision’s optimality condition to an inverse feasible region (Chan et al.| 2025}
Tavaslioglu et al.| [2018)) in the outcome space, and then construct inner geometric approximations of
this region using conformal calibrated regions (Shafer & Vovk|[2008; Wang et al., [2023), where their
miscoverage rates will be finally used as the risk estimates. We detail this procedure in two steps.

Step 1: Reformulation with Inverse Feasible Region For any given realization y of Y, a decision
z is optimal if and only if it achieves the smallest objective value among all feasible decisions:

zen(y;0) <= g(z,y:0) < g2, y;0), Vz'eZ(0).

Therefore, the inverse feasible region, which is defined as the set of outcomes y for which z is an
optimal decision, can be defined as

7N z0) = (] {weVlglzy0) <gz,y:0)}. ()

z'€Z(0)
The definition equation [3|allows the objective to be reformulated as summarized in Proposition

Proposition 1 (Reformulation). Let 7~ 1(2;0) be defined in equation 3| then the objective defined in
equation|2|can be equivalently expressed as:

P{zen(Y;0)} =P{Y e '(2;0)}. 4)

The reformulated objective in equation [4] separates the random variable Y~ from the mapping 7. As a
result, the original problem reduces to a standardized uncertainty quantification task, where the goal
is to estimate the probability that Y lies within 771(2; 6).

Step 2: Risk Estimation via Generative Conformal Prediction To estimate the reformulated
objective in equation 4, we propose to do so by constructing calibrated inner approximation sets of
7~ 1(2; 0). Specifically, we require two core conditions to be satisfied by the constructed set: (a) It
is fully contained within 7=1(z; 0); (b) Its coverage probability of Y is known or can be quantified.
This allows us to use this constructed set as a surrogate to bound the reformulated objective by:

P{YGW*(Z;H)}(E)IP{YGC(X;Q)} (2)1704. ©)

Here, we denote C(X; «) as the constructed set given input X, and « is the coverage probability,
which should also serve as an estimate for «(z) in the objective defined in equation

Additionally, the estimate o should not be overly conservative. This requires constructing approx-
imation sets that not only fully exploit the space within 7~ (z; #) but also concentrate around the
high-density regions of Y, ensuring that both inequalities (a) and (b) in equation 5]are tight enough. A
possible idea is to employ generative models as base predictors to capture the underlying distribution,
and then generate multiple and diverse conformalized sets as the approximation sets, which should
empirically satisfy both conditions when the generative models are well-trained. We refer to this as
the generative conformal prediction procedure, and it is formally detailed as follows.

We begin with training a (conditional) generative model f : X — )Y on a training dataset to
approximate the conditional distribution of Y'|X. For a test input x,,41, we draw a prediction

Gns1 ~ f(@ny1) and construct the conformalized set as an {5 ball centered at §,, 1

Clanii;a) = {y € V| lly—dusrlle < R(a)} ifa < Lelsed, ©)

! Another option is to generalize the objective so that the near-optimal candidate decisions are also considered
as a solution. This can be achieved by relaxing the optimal objective value by a prespecified small margin, see
Andrews & Chen|(2025); |Kiyani et al.| (2025).
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Figure 3: Visualization of decision risk estimation under different modeling choices. The figure
compares point prediction model with generative models () = 3 and K = 4) as the base prediction
model, respectively. The black lines denote the boundary of the inverse feasible region 7~ (z). The
blue shade represents the true conditional distribution Y | X, and the black dots indicate generated

predictions §(*). The green ball indicates the conformalized sets C(¥) (z; &(2)).

where R(a) denotes the conformalized radius, which is calibrated using a dataset {(z;, )}, to
guarantee that C(x,,11; o) achieves valid (1 — o) coverage of the distribution of Y. For instance, one

possible configuration of R(«) is:
A > it 9 = yill2
R(a) = ===
(@) an+1) -1

The coverage level « is determined by solving the following optimization problem, which finds the
smallest « such that the conformalized set is entirely contained within the inverse feasible region:

~ _ . . C _1 . .
a(z) aE[l}r(l’rlLr-‘,l-l),l] {a | C(zpy1;0) Cr (2,0)} ®)

(N

The procedure is repeated K times to obtain the collection of estimates {G(*) (2)H<_,, which are then
averaged to yield the final estimator:

alz) = (a<1>(z) TR d(K)(z)) /K. )

The full pseudocode of the algorithm is provided in Appendix [A]

Remark 1. We further clarify the role of generative models by emphasizing their advantages over
point prediction models (e.g., regressors). As shown in Figure 3] point prediction models can produce
outputs that lie near the boundary of, or even outside, 7~ *(z;0), leading to overly conservative
risk estimates (i.e., risk equal to one). In contrast, generative models allow multiple draws, and
increasing K raises the chance that at least one prediction falls within the inverse feasible region,
resulting in a more accurate (less than one) risk estimate. This idea will later be formalized through
the notion of the true positive rate in our theoretical analysis.

4 THEORETICAL ANALYSIS

This section presents three key theoretical analyses of our method. First, we prove conservativeness,
showing that the estimator provides a valid upper bound of the decision risk. Second, we provide a
unifying view on the proposed risk estimator with Monte Carlo estimators. Finally, we show that the
method supports high-quality decision-making, with its true positive rate increasing as the number of
generated predictions grows. In our analyses, we set the conformalized radius as equation[7]

Our first theoretical result on conservativeness relies on the assumption that the calibration data are
exchangeable. This requirement is milder than the i.i.d. assumption, as the latter implies the former,
and is therefore commonly adopted in the conformal prediction literature (Angelopoulos & Bates),
2021} Barber et al., |2023}; |Papadopoulos et al.,[2002).

Assumption 1 (Exchangeability). A dataset {(;,v;)}1, 11 is exchangeable if, for any permutation p
of the index set {1,...,n + 1} and all measurable sets A C (X x Y)"*1, there is

P{(z1,91),- > (@ni1,Yns1) € A} = P{(2,01), ¥p1))> - - » (Tp(nt1), Yp(n+1)) € A}
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Under this assumption, we can derive Theorem [I] which states that our estimator yields a valid upper
bound on the decision risk in expectation. Notably, this result does not require any assumption on how
well the generative model captures the underlying distribution, which underscores the robustness of
our algorithm against potential model misspecification, as well as the trustworthiness of the algorithm
for applications where conservativeness is critical.

Theorem 1 (Conservatism). Under Assumptionthe estimator &(z) defined in equation@]satisﬁes:
P{zen(Ynt1;0)} > 1—-E[a(2)].

Theorem [1| shows that the proposed estimator & is, in expectation, a conservative estimate of the
decision risk. The success of the proof relies on the post-hoc validity property of e-value conformal
prediction (Vovkl [2025}; Balinsky & Balinsky, |2024; |Gauthier et al., 2025b), which motivates our
design of the conformalized radius in equation|/| The detailed proof, along with a discussion of the
first-order Taylor approximation procedure used therein, is provided in Appendix [B]

Next, we highlight an important theoretical insight: the proposed estimator can be interpreted as a
weighted Monte Carlo (MC) probability estimator based on K generated predictions.

Proposition 2. The estimator in equation[9 can be re-written as:

K
a(z)=1- %Z (w(k)(z,xnﬂ) -1 {@;’21 e (z 9)}) . (10)
k=1

Here, the conformalized weights w*®)(z,z,,11) € [0, 1] are determined by our conformalization
procedure, ensuring the conservatism guarantee established in Theorem [I] The unifying view in
Proposition 2] hints potential extensions: by setting the conformalized weights to 1, we get a more
radical variant of the estimator with more accurate risk estimationﬂ but may fail the conservatism
guarantee. We will examine this ablation variant in our subsequent synthetic experiments. The proof
of Proposition 2]is provided in Appendix [C]

Finally, we study the estimate’s true positive rate (TPR), defined as the ratio of total decisions that are
correctly estimated to have risks smaller than one out of all decisions with risks smaller than one:

E[#{z € Z2(0) | a(z) < land &(z) < 1}] (1n

#{z e 2(0) [ a(z) <1} ’
where with some abuse of notation, we denote a(z) = P{z & w(Y,,11;6)} as the actual risk. TPR
indirectly reflects the discrepancy in final decisions led by different outputted risk estimates: assuming
that decision-makers choose to rule out decisions z with &(z) = 1, then for those “false-positive”

rule-outs, the decision-maker would risk losing profits as they’ve omitted decisions that are possible
to be optimal. Therefore, TPR scales positively with the quality of the decision assessment.

TPR =

Proposition 3 (True positive rate). TPR (equation[I1) monotonically increases as K increases.

Proposition [3|specifically highlights the generative model’s important role in avoiding overconser-
vatism, confirming the intuition built by Figure 3} when K is small (e.g., K = 1), or when the
generative model is replaced by a deterministic predictor, the estimator becomes more susceptible to
such erroneous exclusions, potentially leading to a lower TPR. Therefore, the generative approach of
drawing diverse predictions would help mitigate this issue and support high-quality decision-making.
These insights are also tested in our numerical experiments. Its proof is detailed in Appendix

5 EFFICIENT COMPUTATION FOR LINEAR PROGRAMMING

Recall that the generic CREDO algorithm described in Section [3] makes no assumptions about the
form of the objective function g(z,Y’;6) or the feasible region Z(6), enabling its application to
general constrained optimization problems. In particular, under a linear programming setting, we can
further show that the algorithm is highly computationally efficient as it admits a closed-form solution,
thereby eliminating the need for iterative or approximation-based procedures.

Suppose ), Z C R?, a linear programming (LP) problem is defined as:

mp(Yi0); = argmin(Y,z), Z(6) = {z € Z | Az <b}, (12
z€Z(0)

2Assuming K is large and the predictive model f(Y'|X) is well-trained.
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where A € R?™ and b € R™ are known parameters belonging to 6. As one of the most fundamental
optimization structures, LPs arise naturally in a wide range of real-world applications, including
supply chain management, energy dispatch, and transportation (Charnes & Cooper, |1957). Moreover,
LPs are often employed to approximate more complex optimization problems, with many relaxations
proving both useful and widely applied in practice (Lovasz,|1975). The closed-form expression of
our estimator in this setting follows directly as a corollary to Equation (I0):

Corollary 1. Suppose the optimization problem is defined in equation|[I2) then:

K N +
1 nD® — 3 |1 — yill )
A — _ i= L L N . <
[ B US|

where V(0) denotes the set of vertices of Z(8), and D®) is the distance ofgj,(ﬁgl to the boundary of
7= 1(2;0), with the expression D) = min,ey oy {2} |<g)£ﬁ£1, z—=v)|/|lz = vla.

In Corollary (I} computing vertices of a polytope Z(6) can be efficiently executed with well-
established algorithms such as the double description method (Fukuda & Prodonl (1995 Motzkin
et al.,|1953). Once the vertices are precomputed, the estimator &(z) can be computed via a single pass
over equation [I3] entirely avoiding set enumerations and numerical optimizations. This renders it
highly efficient for even very large-scale LP problems. Moreover, one can prove that when z ¢ V(6),
the indicator term turns out to be zero (Tavashoglu et al., [2018). As a result, the algorithm can be
further accelerated by automatically outputting risk one if it detects that the inputted decision is not
on the vertex of the feasible region, making our proposed algorithm computationally efficient and
implementation-friendly. The proof of Corollary|l|is provided in Appendix

6 EXPERIMENTS

In this section, we evaluate CREDO on both synthetic and real-world optimization problems. We
show that: (i) The proposed risk estimator is empirically conservative, adding to Theorem [T} (i) The
generative approach improves the accuracy of CREDO in risk estimates, adding to Proposition [3} (ii¢)
How the key parameters, such as the number of generated samples K and variance scales o, impact
the performance of CREDO; (zv) CREDO produces high quality decisions under various settings.

Our experiment settings include: (7) Two synthetic settings that are referred to as Setting I and Setting
II, illustrated in Figure {4} Setting I features a triangular feasible region with three vertices and can be
interpreted as a basic profit-maximization problem. In contrast, Setting I presents a more stylized
scenario with an octagonal feasible region comprising five vertices. (iz) A real-world infrastructure
planning problem, where we study a budget-constrained substation upgrade problem, formulated as
a knapsack optimization, that aims to minimize the expected overflow of solar panel installations
in a power distribution grid (Zhou et al.,[2024)). We use real data of solar panel installation records
collected 2010-2024 from a utility situated in Indiana, U.S. More details can be found in Appendix [E]

In our experiments, we specify the generative model as a three-component Gaussian Mixture model,
fitted using the EM algorithm for 1 x 102 epochs. This modeling choice balances its capability
of accurately capturing multi-modality in the data, without the need for a large amount of training
data as required by deep learning architectures. The training and calibration data are randomly and
equally split following the split conformal prediction framework (Papadopoulos et al.,|2002). Across
all experiments, we adopt the standard p-value conformalized radius (Singh et al.| 2024) as the
conformalized radius R(a), which has been demonstrated by prior works to show strong empirical
accuracy and conservativeness properties. More details can be found in Appendix

Conservativeness vs. Accuracy Tradeoff In the first set of experiments, we evaluate the properties
of CREDO through controlled component analysis under the synthetic settings. We focus on testing
for two hypotheses: it can consistently produce conservative risk estimates, and it achieves superior
accuracy, meaning that it can closely estimate the ground-truth risk.

We adopt three metricﬂ (2) Conservativeness rate: the percentage of trials where the risk estimate
satisfies the conservativeness guarantee in equation [2f for all feasible decisions; (i¢) True positive

3Note that the latter two both aim at assessing the accuracy.
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Figure 4: Illustration of settings I and II. The gray region represents the feasible region in the decision
space, and the cones to the right are the corresponding inverse feasible regions in the outcome space.
The blue shade denotes the density mass of Y.
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Figure 5: Selected results from the ablation comparison. Each column shows (from left to right):
Conservativeness of different ablation models; True positive rate (TPR) versus generative sample size
K; Relative accuracy versus variance scale . Experiments are repeated across 20 independent trials.
The default configuration is K = 100 and o = 1 unless otherwise specified.

rate (TPR): the percentage of actions where the method correctly identifies them to have risks of less
than one, averaged across trials (equation[TT); (ii7) Relative accuracy (Acc): the normalized sum of
absolute differences between the estimated and true risks across all decisions, averaged across trials.

We compare the performance of CREDO on these metrics with two direct ablation variants: (z)
Point: a variant that uses a point prediction (the conditional mean) instead of sampling from a
full probabilistic model (Singh et al.l 2024)). (:¢) NS: the naive sampling estimator that sets the
conformalized weights to one in equation [0} taking a Monte Carlo probability estimator form.

We present some selected insightful results in Figure [5]and leave the complete results to Appendix [F]
It can be observed from the first column that both CREDO and Point consistently achieve 100%
conservative estimates, whereas NS attains only around 50%. These results align with Theorem
highlighting the significance of the conformalized weighting term and its effectiveness in downscaling
the estimate to satisfy the conservativeness guarantee. Due to the deficiency of NS in conservativeness,
which is the key property that we study for, it has been withdrawn from subsequent comparisons.

In the second column of Figure[5] we observe that as the sample size K increases, CREDO exhibits
a significant increase in true positive rate. In contrast, the curve for Point remains flat. This
indicates that, while maintaining a similar level of conservativeness, CREDO can identify a greater
number of potentially suboptimal actions, whereas Point may overlook viable alternatives that the
decision-maker could consider. This serves as strong numerical evidence supporting Proposition 3]
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In the third column of Figure E} we observe that in Setting I, as the data variance scale increases, the
performance of CREDO crosses over and eventually surpasses that of Point. In Setting II, CREDO
consistently achieves higher relative accuracy across all variance levels. These results suggest that
CREDO is particularly effective when the outcome variable Y is highly stochastic and challenging to
approximate with point estimators. This further validates the underlying motivation of incorporating
generative components instead of point-prediction models.

Decision Quality Evaluation In the second experiment, we assess decision quality based on risk
estimates produced by CREDO across both synthetic and real-world settings. We show that CREDO
can be used to select decisions with consistently higher confidence, demonstrating the effectiveness
of CREDO’s risk estimates in guiding practical decision-making.

We adopt empirical confidence ranking as our primary evaluation metric: given a decision policy 7
and a test dataset {(z;,y;)}7~, we apply 7 to each input z; to generate predicted decisions {z; }1" .
We then compute the score » . | h(z;), where h maps each prediction to a discrete rank based on its
frequency among the ground-truth optimal decisions {z; }7", in the test set. This metric is designed
to capture a method’s tendency to select decisions that are most likely to be optimal—an aspect
valued in practice but not fully reflected by the standard notion of regret.

We define the decision policy for CREDO as selecting the action with the lowest estimated risk. It is
compared with four decision-making baselines: predict-then-optimize (PTO) (Bertsimas & Kallus|
2020), robust optimization (RO) (Bertsimas & Thiele} [2006), smart PTO (SPO+) (Elmachtoub &
Grigasl 2022), and decision-focused learning (DFL) (Amos & Kolter, [2017). These baselines are
chosen for their popularity and their alignment with the prescriptive, risk-averse decision-making
paradigm underlying our decision risk assessment setup.

Table 1: Evaluated empirical confidence ranking ({) for different methods across three datasets.

Setting I Setting II Real Data
0c=0.1 oc=1 o=10 oc=0.1 oc=1 o=10

PTO 1.00+0.00 276+0.59 2244079 3.554+0.50 3.36+0.48 2.04+1.65 1.75£1.69

RO 1.00+0.00 298+0.14 3.00£0.00 4.994+£0.10 6.00£0.00 3.98+0.80  3.00=£1.29
SPO+ 1.00+0.00 2.68+0.65 2.02+£0.82 395+1.20 4.67+1.56 3.56+£1.50 2.67£1.43
DFL 244+£064 183+£081 206+0.79 3.60+1.52 3.96+2.07 3.66+248 1.92+1.04

CREDO 1.75+0.77 1.61+0.56 1.48+0.52 1.05+0.22 1.00£000 2.03+096 1.75+0.92

Method

Table [I] presents the comparison results. It can be seen that CREDO achieves the smallest ranking
metric value across most datasets, on average selecting the top two most likely decisions across all
datasets. Though it might seem concerning that the in Setting I (c = 0.1), PTO, RO, and SPO+ all
achieve better performance than CREDO, this is because when o is small, the data becomes highly
concentrated around the mean, rendering the problem nearly deterministic and can be best dealt
with point-prediction baselines. This also mirrors the behavior observed in the Accuracy vs. o
plot for Setting I in Figure[5] These results highlight the capability of our method for high-quality
decision-making, especially under highly uncertain environments.

7 CONCLUSION

We proposed CREDO, a distribution-free framework for decision risk assessment that combines
inverse optimization with conformal prediction to estimate the probability that a candidate decision
is suboptimal. Our method provides statistically valid risk certificates by characterizing inverse
optimality regions and using generative models to construct calibrated inner approximations. Em-
pirical results on synthetic and real-world datasets demonstrate that CREDO offers conservative yet
informative risk estimates, enabling more robust and interpretable decision support under uncertainty.

From a practical standpoint, the conformalized radius in CREDO is not restricted to the e-value
variant discussed in this work. The e-value approach offers rigorous post-hoc validity guarantees,
but alternatives such as the p-value variant provide tighter risk estimates at the cost of weakened
validity. Selecting an appropriate radius thus requires balancing the trade-off between validity and
informativeness, ensuring that decision support remains both safe and actionable.
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APPENDIX OVERVIEW

In the Appendix, we provide comprehensive supporting material for the main manuscript. We include
a detailed description of the algorithm pseudo code (Appendix [A), detailed proof and derivation for
all theoretical results (Appendices [B|to[D), detailed experiment setups Appendix [E] and additional
experiment results Appendix [F|

Remark 2. Throughout the theoretical derivations, we introduce slightly modified versions of some
definitions of the algorithmic components in Section[3} In particular, we redefine the conformalized
set (equation[0), conformalized radius (equation[), and estimated risk (equation[S)) respectivly as

Catiia) = {y € Y| Iy = dusilla < (@),

+00 ifoa €0, 27),
Rla) = § =222 foe ),

0 ifa=1.
a(z) = aren[%)r,ll] {a ‘ C(xpi1;a) Cml(z; 9)} .

Compared to the original definitions, these modified versions are more convenient for mathematical
derivations, though slightly less interpretable. It is straightforward to verify that adopting these
modifications does not affect the CREDO algorithm or its associated theoretical guarantees.

A ADDITIONAL ALGORITHM DETAILS
The algorithm pseudo-code of the conformalized decision risk assessment described in the main text
is summarized in Algorithm I]

Additionally, we propose a heuristic algorithm for solving 4(*)(z) in Step @ with the algorithm
pseudo-code summarized in Algorithm[2] Specifically, we note that the user needs to specify two
lists of finite points 5) C Y and Z C Z(0) a priori, which serve as approximations for their original
space counterparts. Some examples that can be considered for Y include:

* When || < +00, one can trivially take Y= .

* When ) is a bounded metric space, one can take JNJ as the e-net of ) (a.k.a. the vertices of
some finite grid discretization).

* When Y is an unbounded metric space, one can set 37 as the e-net of the level set of

the marginal distribution of Y. Namely, for some 5 > 0, this level set is denoted as:

{y € Y | py(y) > B}. It indicates the regions where Y has a density mass of at least 5 > 0.

For Z(0), since we have already assumed it to be a compact space, then the first two options can be
similarly used when constructing Z.

B PROOF OF THEOREMIII

Conditioned on the modified definitions introduced in Remark [2] we first present the following
lemma:

Lemma 1 (E-value post-hoc validity). Under Assumption|[I] then the estimator é(z) satisfies
]P’{YnH e c<k)(Xn+1;d)} >1-Ela], Vk=1,... K.

where & can probabilistically depend on {(X;, Y;)Y'*! in arbitrary ways.

Proof of Lemmal[l] When & < 1/(n + 1) or & = 1, by the definition of R(«), the statement holds
trivially. So we only need to consider the case when 1 > & > 1/(n+1). Forany k = 1,..., K, we

14
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Algorithm 1 Conformalized Decision Risk Assessment (CREDO)

Require: Fitted generative model f; Calibration dataset {(x;, y;)}.,; Sample size K'; Optimization
parameter 6; Decision z; Test covariate ;4 1.
7~ 1(z;0) < Compute the inverse feasible region defined in equation
Initialize nonconformity score set £ + ();
fori e {1,...,n} do
Ui ~ f(@3); mi < |lyi — Gilles € <= EU{ri}s
end for
fork=1,...,Kdo
ﬂg& ~ f(il?n+1);
C*®)(x,,41; ) + Construct conformal set given £ and @7(1121 via equation@

@®)(2) « Solve for the k-th decision risk via equation [8|(refer to Algorithm ;
end for
return G&(z) «+ 1/K - Zszl a®(z).

TRY 2 F Uk W

—_

Algorithm 2 Heuristic algorithm for risk estimation

Require: Proposal points ) and Z; Required inputs of Algorithm El
7 (50) < Naez {y €V lg(zy;0) > g(Z’,y;G)}
. . o (k
2 DW G2 (2:0) 15 = 9501 l2-
DM+ 19i—vill2
(n+1)D*)
4: return Approximated risk estimator &%) (z).

3 af)(z) «

begin by expanding the left-hand side:

) A i 19 — Y
]P’{Y ¢ c““)(X;a)} =P{Ilyff+)1 Y2 > W}

~ ~(k N ~(k
P{MH+DY“wﬂN2>2N%—K2+-%L—Yb}

i=1

jol

n ~ ~(k
_P{ >z_wm—mm+uéh—wb}
- ~(k
(n+ D15, — Yl

~(k
_P{ (7 + Dllgts = Y1lo >1}
- n ~ ~(k A .
S0 G = Yille + 195, Y.~ @

Denote the following random variables,
(n+ Dl[gi = Yill2

Fi: " R (k) 5 Vi:l,...,n,
> it 19i = Yillz + l9n7 0 — Yl
. (k
D -V
Py = n A (k) :
> it 19 = Yillz + 19n7 0 — Yl
It can be seen that the following two conditions hold:
(a): EFfi+...+F,+Fu1]=n+1,
QVE E[Fi] =... =E[F,] = E[F11],
where () holds by exchangeability (Assumption|[I)). Therefore, there is
ElFpa] = 1. (14)

Using this result, it can be derived that
P(F, 1/a v - EIF,
sup £ {(“NW} < supE [O‘[H]} =E[Fpiq] = 1,
& « &

a
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where the inequality follows from Markov’s inequality. Therefore, for any & which may depend on
the data {X;, Y;}"7!, there is:

o [P(Fn+1 >1/a | @)] <oup {]P’(Fn“gi 1/@)] o

&
Using a first-order Taylor expansion on the left-hand side of the inequality above, there is

® [IP’(F,,+1 >1/a| d)} E[P(Fny1 > 1/é | &)]

a ~ Ela] (15

We assume that this approximation is exact, so the ~ sign can be replaced with a = sign (detailed
discussion in Appendix [B.I). Consequently, by combining the two equations above, we get

E[P(Fu > 1/ | &) < Ela] <= P{Yai1 € €M (Xo1158)} > 1~ Eld],

n+1

where & can probabilistically depend on {(X;, Y;)}";" in arbitrary ways. This finishes the proof. [

Proof of Theorem[I] We begin by observing that
| K
oV RPN ®) x4k
P{zen(Y;0)}=P{YV en (z,&)}_K;—lP{YGC (X,a (z))}. (16)

The first equality is due to the problem reformulation equation 4] The second inequality holds due to
the definition of &(*) (2 ) which guarantees that the k-th generated conformal prediction region is
always contained in 7~ 1(2). Since by Lemma' we have proved that:

P {Y ec® (X; d(k)(z))} >1-E {o%k)(z)} .

Therefore, combining this with equation [I6] we obtain:

Z ( ] 1 —Ea(z)].

k

P{zen(Y;0)} >1—-E

We conclude the entire proof for Theorem I} O

B.1 DISCUSSION ON THE APPROXIMATION ERROR IN EQUATIONE]

In this section, we comment on the approximation error of the first-order Taylor approximation in
equation[I3] This approximation trick has been adopted in prior works (Gauthier et al., 2025b), which
has been argued that its error is small when the estimator & is well concentrated around its mean.
Empirically, this condition is usually satisfied in our setting. For example, when CREDO is deployed
in a human-algorithm collaboration setting, the candidate decisions provided from the decision maker
would be expected to be near optimal and should already enjoy a relatively small ground truth risk.
This makes & have a relatively small variance and well concentrated around its mean.

Even when this condition does not hold, we can resort to an alternative way to account for the approx-
imation error during risk assessment. This can be done by theoretically deriving the approximation
error and then manually offsetting the error in our risk estimator to achieve an exact conservativeness
guarantee. Specifically, let h(&) := E[P(F,,+1 > 1/& | &)], there is:

2 [M] - Z) < (2] - )+ Vertoienver (£,

The first term is the Jensen gap, and the second term is by the Cauchy-Schwarz inequality. Assuming
& €[4, 1] almost surely, then

o

1 1 1 R
Ea < gVar( &), and Var (d) < 6—3Var (a).
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Then, plugging them into the previous equation, we get

‘E{h@)} B E][g[g)]’ < %Var(éﬁ%\/w.

«

Since for random variables bounded within [d, 1], there is the following trivial upper bound:

Var(a) < % > Cov (I, I}) < !

17
k,k’
therefore, we can conclude that:
P(Fht1 > 1/&| &) E[P(Fny1 > 1/& | &) 1 1
E - — - < — 4+ —.
& E[&] 463 462

Plugging this result back into the proof of Theorem|[I] we get
P{zen(Y;0)}>1—E[a(z)] —1/4(07% +4572).
Therefore, one can take the final estimator as
min{&(z) + 1/4(57% +672),1} (17)
so that exact conservativeness is achieved.

Note that in the derivation above, we have assumed that & € [d, 1] almost surely and 0 is known. A
trivial value that the user can take for  is 1/(n + 1), which is guaranteed by the design of the CREDO
algorithm. We can also manually tune the value of § by modifying the conformalized radius as

+o0, ifa €10,9),
R(a) = ¢ X501 19 = will2/(a(n + 1) = 1) ifar € [6,1),
0 ifa=1,

to achieve a tighter bound (i.e., smaller offset). One can prove that as long as ¢ is chosen such that
d > 1/(n 4+ 1), all theorems presented in the main text remain valid, and the bound (i.e., offset)
becomes tighter as J increases. Then, one can take equation [I7|as the final estimator.

In the meantime, we note that the above definition of the conformalized radius is equivalent to
truncating the lower part of &(2) at 4, i.e., setting max{&(z), 6} as the risk estimator, and then taking
equation [I7)as the final estimator.

C PROOF OF PROPOSITION 2] AND COROLLARY [l

This section consists of three parts: we first prove the weighted Monte Carlo estimator form pro-
vided in equation ['1;0] in Proposition E]; Then, we derive the indicator term; Finally, we derive the
conformalized weighting term. The latter two all appear in Corollary [I]

Please note that all derivations use the modified definitions introduced in Remark 21
Proof of equation[I0} Note that by definition of the conformalized radius R(«) and @(*) (), when

the k-th prediction falls outside of the inverse feasible region, then &¢*)(z) would be conservatively
set to one. Therefore, we can make the following decomposition:

e =1 {ii en @0} min {a O S =0} +1{h ¢ (=:0)}

=1{gh en (=0} +1{ah ¢ n 7 (=10)}

+1 {Qfﬁl € ﬂ_l(z;H)} : ( min) {a ‘ C(k)(mnﬂ;a) C 71-_1(,3;9)} - 1)

a€l0,1
=1- <1 — min {a ‘ C®)(z,1;0) C 77_1(,2;(9)}> -1 {397(521 € 7'('_1(2;9)}

a€l0,1)

=1- w(k)(zaxn-l-l) -1 {gr(:igl € 7-(71(2;9)} )
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where in the last equation, we denote the conformalized weight as:

w® (2, 2,41) =1 — min {a ‘ CH®) (zy1150) C 7r*1(z;9)} .
a€l0,1)

The final estimator is an average over all K of these estimators:

=1- Zw(k) Z,Tpy1) - 1 {@&21 e iz 0)} ,
which concludes this part of the derivation. O

Derivation of the indicator term. Under the linear programming assumption, there is:

{yeyiyer (=0} = () {yeVlgy0) <9z y:0)}

z'€Z(0)
= () {weYlg(zy0) —g(z,y;6) <0}
z'€Z(6)
(| eyl - () <0}
2/ €Z(0)
N weylz—2)<0}
2 €Z(0)
={yed| sup (y,z—2) <0}

z'€Z(0)

‘We rewrite the condition in the set as:

! . !/
sup (y,z—2z')={y,z)— inf (y,z').
z’EZ(G)< )= z’EZ(9)< )

Since Z(#) is a compact set, by the Krein—-Milman theorem (Krein & Milman) [1940), there is

inf 'Y = inf .
z/é%(a)@’ Z) venm}(e)@’ v)

where we denote V(6) as the collection of extreme points of Z(#). Plugging in the original equation,
we get

{veylyer(z0)}={yec)| sup (y,z —v) <0} = N vedllyz—v) <0}
V() veV(0)
Therefore, there is:
NG k
]l{nyleeﬂ (z;@)}: H {(y;_gl,z—v)<0}.
veV(0)

This concludes this part of the derivation. O

Derivation of the conformalized weight. Recall that the conformalized weight is defined as

w® (2, 2y41) =1 — min {a ‘ C¥) (2 11;0) C W_l(z;ﬁ)} .
a€l0,1)

By the definition of the conformalized set, there is the following equivalence:

_ i . ~(k
C®) (&pp1;a) S (2:0) <= R(a) < yea‘;r*ljlf(z'e) 1551 — yll2,

where the right-hand side represents the closest distance to the boundary of a 7~1(z; #). Under linear
programming assumption, the inverse feasible region can be written as

Mz0)= () {weR'|y'z<y’2}= [ {veR! |y (z—v) <0},
P10 veV(6)
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Therefore, m~1(2; 6) is a polyhedral cone, which is a group of intersecting hyperplanes. Therefore,
the closest distance to the boundary of this cone can be derived as:

~(K)T
g (2 =)

min —_— b(k).
vz Iz —vll2

inf A(k) _
yeag_ll(z;a)ﬂynﬂ ylz=

We denote the right-hand side quantity as D(*). Therefore, by the definition of R(«), there is

D) + 50 g =il
(n+1)D®) T n+tl

Therefore, the solution to the optimization problem yields a closed-form solution as:

D® 4+ 37 l9i — willz L
(n +1)D(k) ’

and a < 1.

R(a) < DV «—= o>

a€l0,1)

min <o | CH* (z,41;0) C77(2;0) } = min
{o }—uin

Therefore, plugging this back to the conformalized weight:

. +
’I’LD(k) — 7-17 AZ' —Y;
w® (2, 2ns1) = Zl_lj|i vill2 )
(n+1)D®)

where (-)7 is the positive part operator. This concludes the proof. O

D PROOF OF PROPOSITION[3]
Proof. For notation simplicity, denote the sets in the numerator and the denominator of TPR defined
in equation [T ] as:

A={z€Z0)|P{z¢n(Y;0)} <land &(z) < 1},

B={z€Z(00) |P{z ¢n(Y;0)} <1}.

Note that A C B. Without loss of generality, we assume that B (therefore A) is a finite set, i.e., there
is only a finite set of decisions that have ground-truth risk smaller than on

Since B is a constant irrelevant to K, we begin by expanding the following expression:

E[#A] =E lz 1{a(z) < 1}]

z€B
-5 (-1 (o e o 2 {0 > o}) )]
zEB k=1
K
=E[#B]-E|> []4
z€B k=1

Here, the second equality results from the observation that when: (7) at least one of the model
predictions falls within 71 (2; 6), and (i) its conformalized weight is not zero, then the estimated
risk after averaging would be less than one. In the last equality, we denote

A =1 {97(1121 ¢ (2 9)} -1 {w(k)(z,xnﬂ) > 0} .

Note that Ay € {0, 1} and has a nonzero probability taking oneﬂ Since at the right hand side, the

term H _, Ay, monotonically decreases with K almost surely, then E [# A] monotonically increase
with K. Since TPR = E [#A] /E [# B], we know that TPR monotonically increases with K. This
concludes the proof. O

“This proof naturally extends to the infinite case by replacing the counting measure “#” with continuous
measures, such as Lebesgue measure defined within the decision space Z.

5Under some regularity condition on the distribution of Y, e.g., is supported on the whole space ). Without
this condition, the statement also holds by changing “monotonically increasing” to “non-decreasing”.
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E EXPERIMENT SETTING

This section is organized as follows: Appendix shows the computation resources used in our
experiments. Appendix [E.2] and Appendix [E.3| presents the detailed configurations for the two
synthetic settings and the real-world case study, respectively. Appendix describes the detailed
configurations of CREDO, the baselines, and the procedures for the two experiments (Conservativeness
versus Accuracy Tradeoff and Decision Quality Evaluation).

E.1 COMPUTATION RESOURCES

Table 2: Computation resources specfications

Operating System CPU RAM GPU
Windows 11 13th-generation Intel Core i7, 16 cores 16GB  Not used

The computational resources used in our experiments are detailed in Table[2] Our code is implemented
in Python, with key dependencies including Scikit-learn (Pedregosa et al., 2011) for solving linear
programs and working with Gaussian mixture models (fitting and sampling), and CDD (Fukuda, |1997)
for computing the vertices of polytopes. A complete list of dependencies and their version numbers
is available in our codebase.

In terms of execution time, each single experiment (consisting of multiple independent trials) in the
paper takes less than 30 minutes to run. All models can be executed almost instantly for a single trial
in our experiment, except SPO+ (Elmachtoub & Grigas|[2022). The main computational bottleneck of
SPO+ (Elmachtoub & Grigas| 2022) arises from the need to solve two linear programming problems
for each iteration of parameter update, which can be easily addressed by using more efficient solvers.

E.2 SYNTHETIC SETTING

We denote o as the component variance scale (¢ = 1 by default), and we denote I, as the two-
dimensional identity matrix.

Setting I A linear programming problem featuring a triangular feasible region with three vertex
decisions, defined as:

maX{Y1z1 +Y222 ‘ 21+ 29 S 1,2’1‘ 2 072’2 Z O}, <§1) NN (<—}> 7o'-IQ) .
z€R2 2 -

This optimization problem can be interpreted as a profit maximization task, where a manufacturer
chooses the optimal production quantities z; and 2z, under a budget constraint. The Gaussian random
revenues Y7 and Y5 have negative expected values but may exhibit some variance, capturing a risky
market scenario that could still yield profit under favorable conditions.

The feasible region in this problem can be more compactly denoted by its constraint matrix A and

constraint vector b as
1 1 1
A= <—1 0 ) b= (0) .
0 -1 0

Setting II A linear programming problem that employs a more complex octagonal feasible region
with five vertices and multimodal objective uncertainty, allowing us to assess performance in scenarios
with multiple potentially optimal decisions. Specifically, the optimization problem is set up as the
canonical form max, cg2 {YTz | Az < b}, where the constraint matrices A and constraint vector
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b are defined as

~05 -1 -1
0 -1 0

05 1 1

05 1 5

A=l 1| P=l1
10 5.5

0 1 2.5

“1 0 1

The random vector Y € R? is drawn from a three-component Gaussian mixture distribution

3
p(e) =3 wN (@] s - oila)

k=1

where the mixture weights are w = (0.3, 0.4, 0.3), the component means are

{00 ~[(-05 (08
Pr=1\_08)> 2= {025)" M= \-01)"

and the component variances are

o =(0.01)%, o3 =1(0.03)% oF=(0.02)"

E.3 REAL-WORLD SETTING

As described in the main paper, we consider a real-world power grid investment decision-making
problem (Zhou et al., 2024). We begin by introducing the application background, followed by a
formalization of the problem as a knapsack optimization. Finally, we present a linear programming
relaxation of this problem, which can be directly used in CREDO.

Background A utility company based in Indianapolis, Indiana, has compiled detailed records of
over 1,700 solar panel installations between 2010 and 2024, including the installation dates and
affiliated grid components. With the renewable energy sector now at full scale, the management
team anticipates a steady and significant monthly increase in solar adoption in the downtown area.
In preparation for the incoming demand, they are planning targeted upgrades to grid-level inverters
at four selected substations (we refer to them as Substation A to D) under a limited budget. The
utility company would like to consult on CREDO’s suggestion for a list of candidate upgrade plans
that would most likely be optimal.

The data is available in our codebase in a spatio-temporally aggregated format (monthly, by substa-
tion), with substation names anonymized. However, the granular solar panel installation data used in
this study cannot be shared publicly, as it is proprietary to the utility company.

Mathematical Formulation This problem can be mathematically formulated as a penalized knap-
sack problem, whose goal is to minimize the total penalty from capacity violations while ensuring
that the total upgrade cost does not exceed the budget. Formally, define d as the total number of
substations, and define parameters as in Table [3] the optimization problem can be written as

d d
ael%i,rll}d {2 1(Y; > 7)1 — a;)l; ;aiq < b} . (18)

1=

In our experiment, we configure these parameters as follows: we assume the cost ¢; and loss [; for
all substations equals one unit. The capacity threshold 7; is set to be the historical average solar
panel monthly increment. The budget b is set to half the cost of upgrading all substations, allowing
at most two out of four substations can be upgraded. Note that these parameters require additional
information from the company, which is not available at the time of writing this paper.
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Table 3: Parameter definitions for the real-world optimization problem

Parameter Definition

a; Binary decision variable; a; = 1 indicates a substation up-
grade, and a; = 0 indicates no upgrade.

Y; Random variable representing the monthly increase in solar
panel installations.

C; Cost associated with upgrading substation i.

T Capacity threshold—the maximum number of allowable so-
lar connections at substation 4.

l; Penalty incurred if the threshold 7; is exceeded without an
upgrade.

b Total budget.

Relaxed Formulation The knapsack problem defined in equation 18| can be relaxed into the
following linear programming problem:

d d d
. L
e {Z T () | - Zj:l Gz S b Zi:l CZ} : (19

=1

where £ is an arbitrary smoothing parameter that we set 5 = 0.5. Note that in the equation above,
two relaxations have been applied:

* The binary random variable 1 {Y; > 7;} has been relaxed to a continuous random variable
over [0, 1] using the sigmoid function, where the smoothing parameter 8 controls the
sharpness of the approximation.

* The decision space of a; has been relaxed from the discrete set 0, 1% to the continuous unit
hypercube [0, 1]¢. This relaxation does not introduce approximation bias, as the optimal
solutions to the original and relaxed problems are almost surely the same — both attained at
one of the hypercube’s vertices.

Denote the vectors

l;
Tre A% € 1—ay
Y = = , c=|...|, z= , (20)
1_:,.575(13’1'*7'7:) Cn I—an

we can compactly write the optimization problem above as

mil}i {YTz| —CTZSb—l;ll—C, nggl}. (21
z€R

This can be written as the canonical form of linear programming min_ cga {YTZ | Az < b} by
defining

—c’ b— 1(—{0
A= Id s b= 1d s
7Id 04

where I; denotes the d-dimensional identity matrix, and 14 and 04 denote the d-dimensional all-ones
and all-zeros vectors, respectively. These parameters can be directly input to the CREDO framework
using the data Y obtained via sigmoid transformation defined in equation [20]to obtain decision risk
estimates.

Therefore, with the above reformulation in equation |21} the problem is now a linear programming
problem, where the closed-form risk estimator derived in Corollary[I]can be directly applied.

E.4 BENCHMARKING BASELINES DESCRIPTION
In this part, we describe the p-value conformalized radius, baselines, metrics, as well as the detailed

evaluation procedure for each experiment that we conducted in the main paper. For both experiments,
the following (Table d) default values of hyperparameters are used for CREDO.
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The p-value conformalized radius (Singh et all [2024)) originates from the standard conformal
prediction literature, defined as:

e = @ (1= a)])

where Q() denotes the empirical quantile function of the calibrated nonconformity scores {||§; —
Yill2 Y, with §; being a generated prediction from f (:cl)lﬂ

Table 4: Hyperparameters in the Convservativeness vs. Accuracy Tradeoff experiment.

Hyperparameter Description Default value
K Simulation size 1 x 102
o (Component) variance scale 1
n Calibration dataset size 1 x 102
m Training dataset size 1 x 102

Convservativeness vs. Accuracy Tradeoff Table[5|summarizes the used baslines, which are two
ablation models mainly target replacing step 2 of CREDO with different methods that can evaluate the
probability P {Y € 7~!(z;6)}. We note that we implement Point by setting CREDO with K = 1
and configure the probabilistic model to collapse to a point mass centered at the mean.

Table 5: Summary table of baselines used in the Convservativeness vs. Accuracy Tradeoff experiment

Model Name Description Additional Remark

Point A deterministic variant of CREDO, where the gen- The design of Point limits
erative model f is replaced by a deterministic point ~ its ability to capture multi-
prediction model. The prediction model captures modal or heteroskedastic un-
the mean of the distribution of Y. Note that this ~ certainty in the objective coef-
ablation model is adopted from previous literature ~ ficient space.

(Singh et al.|[2024), where it was originally applied
to assessing the risk of given prediction intervals.

NS A naive sampling estimator computed as The design of NS contrasts the

proposed estimator, which can

. 1 & (k) 1 be rewritten as equation [I0]

ans(z) =1~ K Z 1 {yn+1 em (% 0)} » by dropping the conformal-

k=1 ized weighting term. This lim-

its its ability to meet the con-
servativeness guarantee.

where yf}jl, . gjni)l are independent samples

drawn from f(z,41). This estimator directly ap-
proximates the probability mass over the inverse
feasible region using samples from the generative
model.

Table [6] summarizes the evaluation metrics used in this experiment. We use T to denote the total
number of repeated independent trials, where we set T" = 20 across all of our experiments. For each
metric, the error is reported as the standard error of the mean (SEM), calculated as the standard
deviation of the metric values across trials divided by v/T. Note that while most metrics require
summing over all feasible decisions, we can simplify to summing all the decisions defined on the
vertices of the feasible region, as we have justified in the main text.

Decision Quality Evaluation Table[/|presents the four selected baselines used in the Decision
Quality Evaluation experiment. The baselines have been selected to satisfy the following criteria: (i)
the ability to produce a decision that maximizes a (linear) objective function; and (ii) the capacity to
handle randomness in the underlying optimization problem.

SWe set Q(0) = 0 and Q(1) = 400 to complete the definition.

23



Under review as a conference paper at ICLR 2026

Table 6: Summary table of metrics used in the Convservativeness vs. Accuracy Tradeoff experiment.

Metric Name

Conservativeness
rate

True positive rate

Relative accuracy

S 1{a(2) < a(2))

Description Mathematical Formula
The percentage of decisions

where the risk estimate satis- 1

fies the conservativeness guar- T-1V(0)

antee in equation Z]averaged

across all trails.

The percentage of decisions

where the method correctly 1
identifies them to have risk of
less than one, averaged across
all trials.

The absolute differences be-
tween the estimated and true
risks across all decisions and
trials, normalized to [0, 1]
across different baselines.

z€eV(0)

Z 1{a(z) <0} -1{a(z) <0}

z€V(0)

Table 7: Summary table of baselines used in the Decision Quality Evaluation experiment

Model Name Description Additional remarks

PTO The standard two-stage predict-then-optimize ap- Since X is omitted in our
proach (Bertsimas & Kallus| 2020), which first ~setting, PTO degenerates to
predicts parameters and then solves the resulting  stochastic optimization, and Y
optimization problem; can be simply specified as the

. - empirical average estimator.
min g(z,Y),
z€Z(0)
where Y is a point estimate of E[Y|X].
RO Robust optimization defined as The uncertainty set is con-
. structed in a data-driven man-
e5(0) el 7 (2,9) ner by applying naive confor-
mal prediction to Y, using the
where & C Y is the uncertainty set of Y. ¢~ norm residual as the non-
conformity score (Zhou et al.,
2024).

SPO+ A predict-then-optimize method where the predic- For each trial, it is trained for
tion model is trained using the surrogate smart 1 x 102 epochs using a learn-
predict-then-optimize loss (Elmachtoub & Grigas| ing rate of 1 x 10~
2022)

DFL Decision-focused learning, where the prediction  For each trial, it is trained for

model is trained by directly optimizing the down-
stream objective through end-to-end differentiation
of the optimization layer (Amos & Kolter|[2017).

1 x 102 epochs using a learn-
ing rate of 1 x 1071,

As for the evaluation metric, Algorithm 3]outlines the generic procedure for computing empirical
confidence rankings in a single trial. In the synthetic setting, this procedure is repeated over T’ =
1 x 102 independent trials with £ = 1 x 103 test data points. Meanwhile, in the real-world setting,
the evaluation is performed rolling over 1" = 12 periods, spanning from 2010 to 2022. Each trial uses
a two-year window (24 months) of data, which is sequentially split into training, calibration, and
testing sets in an 8:8:8 ratio. The reported error is the standard error of the mean (SEM), computed

as the standard deviation of the metric across trials divided by /7.
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Algorithm 3 Empirical Confidence Ranking

Require: Original optimization 7* : ) — Z; Evaluated policy 7 : X — Z; Test dataset

{(@i,) iz
Z* =
fori={1,...,¢} do
zF 7 (yi).
ZF— ZFU{z}
end for
for z € V(0) do
h(z) < the total occurence of decision | {7 | z¥ = z}|.
end for
9: fori ={1,...,¢} do
10: Zi +— 71'(.%1)
11:  rank; < ranking of estimated decision | {2z’ € V(0) | h(z') > h(2;)}|
12: end for
13: return Empirical confidence ranking 1/¢ - Ele rank;.

A

F ADDITIONAL EXPERIMENT RESULTS

This section shows additional experiments from the two experiments (Conservativeness vs. Accuracy
Tradeoff, Decision Quality Evaluation) that were shown in the main paper, as well as an additional
experiment that investigates the effect of misspecified models on the risk estimation under the CREDO
framework.

Conservativesness vs. Accuracy Tradeoff In this section, we first present three additional insights
based on the results in Figure [5] followed by the complete set of experimental results that were
only partially shown in the main paper. These experiments aim to investigate the sensitivity of
our method’s accuracy to different hyperparameter settings. At a high level, we find that CREDO
consistently outperforms Point, with the performance gap becoming more pronounced at larger
variance scales o and higher simulation sizes K.

From Figure[5] we draw the following observations in addition to those discussed in the main paper:

* A general trend observed in both settings is the decline in relative efficiency. This is
expected: conformal prediction must adopt a more conservative approach to preserve its
validity guarantees as the data becomes more stochastic. While this ensures coverage, it also
results in wider prediction sets and, consequently, lower relative efficiency.

* In the first example, PointModel achieves the best performance when the variance is small.
This is because the generated distribution is tightly concentrated around the origin (0, 0),
rendering the problem effectively deterministic—an ideal scenario for point estimation. In
contrast, the second example features mixture components that are inherently dispersed
across different inverse optimality regions. As a result, the data remains non-deterministic
even at low variance levels, and CREDO consistently outperforms the baselines by capturing
this underlying distributional uncertainty.

* The performance gap between NS and CREDO leads to an alternative explanation of our pro-
posed method: the weighting term takes value from O to 1, and “safeguards” the estimation
from being overestimation by downscaling the contribution of each sample that would fall
within region 77 ~1(z). The value of this weight is determined through a data-driven, confor-
malized procedure, ensuring conservativeness is achieved. This proves the significance of
our proposed algorithm.

Figure [6] Figure [7] Figure [8] Figure []illustrate the full results evaluating the accuracy of three
methods under three hyperparameter selections. We make two remarks:

* Observe that NS achieves the highest accuracy metrics across nearly all plots. This outcome

is expected, as NS is explicitly designed to maximize accuracy. However, it fails to satisfy
the conservativeness guarantee, rendering its performance substantially less reliable in
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practice. Therefore, we exclude it from
comparisons.

the result demonstration in our experiment result

* Observe that CREDO consistently achieves higher accuracy metrics than Point, highlight-
ing the advantage of incorporating generative models in CREDO over relying solely on point

predictions.

Additionally, Figure [I0] and Figure [T1] present the raw estimated risks for all decisions across the
three methods under Setting I and Setting II. These plots provide a more fundamental perspective
underlying the summarized metrics shown previously. Each boxplot is computed over 20 independent

trials using the default hyperparameter settings.

CREDO and Point provide confidence estimates

that fall below it, NS may overshoot to the red region. This indicates the conservativeness guarantee

provided by the conformailized procedure in our
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Figure 9: Relative accuracy versus simulation size K (left) and varaince scale o (right) in Setting II.

Decision Quality Evaluation Figure [I2] shows the frequency that the decisions get picked for
each baseline of Setting I and Setting II. In both settings, the output of CREDO closely aligns with
the Simulation benchmark computed from the ground-truth distribution, whereas most other
baselines tend to select different decisions. This highlights two key points: (i) the maximum likelihood
decision rule can lead to substantially different decisions compared to methods that optimize the
objective without accounting for probabilistic structure; and (ii) in such a case, CREDO can provides
a reliable first-stage identification of the magnitude of risk for each provided decision.

Figure[I3] presents the top four candidate upgrade plans identified by CREDO. The lowest-risk, and
thus most confident, recommendation is to upgrade substations A and C. This highlights CREDO’s
prioritization of these two substations for immediate upgrades in future operations. While the
second- to fourth-ranked combinations may not be the most likely to be optimal under the model’s
risk assessment, they may still be valuable in practice. These alternatives might offer advantages
along other dimensions not captured by the knapsack formulation, such as geographic equity, policy
constraints, or logistical feasibility. We envision CREDO as a decision support tool that complements,
rather than replaces, human judgment. Its ranked recommendations provide a diverse set of plausible
solutions, enabling informed and context-aware decision-making instead of enforcing a single
deterministic outcome.

Additional experiment: Misspecified Model We conduct an additional experiment to evaluate
the conservativeness—accuracy tradeoff of various models under a setting where the prediction or
generative model is entirely misspecified. Our results show that, despite the misspecification, CREDO
consistently maintains conservative estimates while achieving relatively high efficiency compared to
its point prediction variant.

Specifically, the data generation distribution and model distribution are assumed to take the following

T e (1) ) e () G 1)
om0 (1.5 ) (). 2))
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Figure 10: Estimated confidence level (1 — «) versus different baseline models in Setting I. The red
dashed line indicates actual confidence computed from the ground-truth distribution.
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Figure 11: Estimated confidence level (1 — «) versus different baseline models in Setting II. The red
dashed line indicates actual confidence computed from the ground-truth distribution.

Figure [T4] provides the raw view of estimated risk versus the different specifications of calibration
dataset size under Setting I. Figure [I5]highlights the inverse feasible region correspondence from
each decision in the feasible region.

Figure [T presents the main results of this experiment, illustrating the estimated confidence levels of
different models across various decisions. Due to model misspecification, NS notably overestimates
the confidence for Decision 2. In contrast, both CREDO and Point avoid such overestimation, align-
ing with their conservativeness guarantees. Furthermore, across all decisions, CREDO consistently
yields higher confidence than Point, indicating superior accuracy.

28



Under review as a conference paper at ICLR 2026

Setting I Setting 1T
100 4 rT 100 4 =
o H (]
5 751 - 5 751 o
g g
2 504 ° = 504
& : . € .
25 . 25 1 :
N * N
[ J . .
0 1 _— %ol 0 = L
T T T T T
[1.0] 0. 1] 1. 1.5 [L.05] [2 0]
Decisions Decisions
=== Simulation (Oracle) w===_ CREDO * PTO * RO rees SPO+ ===+ DFL

Figure 12: Frequency of each selected decision over 100 repeated trials, compared across all baseline
methods. The left panel corresponds to Setting I, and the right to Setting II.
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distribution.
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Figure 14: Setting visualization of the misspecified model experiment setting
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Figure 15: Decisions space and outcome space correspondence through the inverse feasible mapping

in our misspecified experiment problem setting.
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