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Abstract

Link Prediction (LP) in Knowledge Graphs (KGs) is typically framed as ranking candidate
entities for a query of the form (entity, relation,?), with models evaluated on their ability
to rank the correct entities for each query. At the same time, Knowledge Graph Embedding
(KGE) models used for this task produce unnormalised scores, making it unclear how to
interpret their belief in the truthfulness of triples across different queries. Together, these
two factors create a blind spot: models can achieve perfect rankings while assigning scores
that are not comparable across queries, limiting their utility in downstream tasks or even
in identifying the most plausible triples overall. Indeed, this issue becomes clear when
test triples are ranked globally and evaluated with IR metrics, revealing that models with
unnormalized scores often perform poorly due to inconsistent scoring across queries. To
address this problem, we propose a new KGE model, called ART, which exploits probabilis-
tic Auto-Regressive modelling and hence is normalised by design. Despite its conceptual
simplicity, we show that ART outperforms prior art for discriminative and generative LP as
well as other post-hoc calibration techniques.

1. Introduction

Knowledge Graphs (KGs) are structured representations of knowledge, organised as graphs
that model relationships between entities. KGs are widely studied in academia and exten-
sively utilised in industry, driving advancements in research and practical applications (Wang
et al., 2017b; Hogan et al., 2021; Zhang et al., 2023). However, a key limitation of KGs
is their inherent incompleteness—many links (triples) are missing, reducing their overall
utility in real-world scenarios. An important step toward addressing this limitation is Link
Prediction (LP), where the goal is to predict which unknown links in a KG are likely to be
true, given the observed graph (Lii and Zhou, 2011).

A mainstream approach to solving the LP problem involves Knowledge Graph Embed-
ding (KGE) models. These models transform the entities and relations into continuous
vector spaces, to assign each triple (subject, relation, object) a real-valued score through a
scoring function (Wang et al., 2017a). To answer queries of the form (subject, relation, 7)
or (7, relation, object), KGE models return a ranked list of candidate entities and perfor-
mance is evaluated by averaging the quality of these rankings using metrics such as Mean
Reciprocal Rank (MRR) or hits@K.

While KGE models have shown strong performance on these metrics, the scores they
assign to triples—used to produce the rankings—are not normalised (Loconte et al., 2023),
which limits the interpretability of the model’s beliefs regarding the plausibility of individ-
ual triples (Friedman and den Broeck, 2020). For example, when KGE models are used
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to predict drug side effects (Yao et al., 2022), the scores of candidates corresponding to
the query (paracetamol, hasSideEffect, ?) cannot be compared with those from the query
(morphine, hasSideEffect, ?7) as they might be on a different scale. In general, empirical
evidence of this problem can be obtained by collecting all the scores assigned to candidates
of queries, construct a single unified ranking, and assessing its quality using standard In-
formation Retrieval metrics, such as max-F;. Notice that this evaluation methodology is
different than Triple Classification (TC) (Socher et al., 2013), which reframes the problem
as a binary classification task rather than ranking. While TC also often implies scores to be
globally comparable, as it frequently relies on decision thresholds shared across all queries,
TC brings the additional challenge of finding a good strategy of making the binary decision.

Although this problem has received some attention, it remains very challenging. In
general, existing solutions for producing comparable scores fall into two categories: post-
processing methods, where scores are rescaled through a specific procedure, e.g. calibra-
tion (Tabacof and Costabello, 2020), and probabilistic frameworks, which aim to produce
intrinsically normalised scores. To our knowledge, the only approach in the latter category
extends TF models by applying a single non-linear transformation to ensure positive scores,
and calculating the normalisation constant (Loconte et al., 2023). Although this results
in probabilistic outputs, a single non-linear transformation limits the model’s ability to
capture complex dependencies in the KG.

Contributions Our first contribution is to establish a principled methodology to evaluate
normalisation using a global ranking and IR metrics. The second is a new addition to the
portfolio of KGE methods, which consists of a simple, yet powerful, generative KGE model
called ART. In contrast to other solutions, ART is fully auto-regressive generative; hence
is normalised by design. Experiments, using our proposed methodology and pre-existing
metrics for LP, yield several key insights. First, an evaluation based only on query-based
ranking, with metrics such as MRR, does not give a full picture as it does not take into
account normalisation. Indeed, unnormalised methods that are leading under MRR do not
perform as well as normalised methods when considering our proposed methodology. Among
the normalised methods, ART achieves the best results on two out of three benchmarks and
delivers competitive performance on the third. Finally, our results indicate that intrinsically
normalised methods consistently outperform post-processing techniques like calibration.

2. Background

Knowledge Graphs A KG is a structured graph-like representation of entities and their
relationships. It can be represented as a set of triples of the form (s, r, 0) where s, 0 belongs
to a set £ of entities and r from the set R of relations. KGE models use latent representations
of KGs, trained for tasks such as LP. KGE models typically consist of two components. One
component represents entities and relations as continuous vectors (embeddings) in a low-
dimensional space R?. These embeddings are designed to capture the semantic meanings and
structural information of the entities and relations while preserving the inherent structure
of a KG. The second component is a scoring function ¢ : R? x R4 x R* — R that assigns a
score to the vector representation of every triple, ¢(es, ry, €,). That score is usually a real
value in R and represents the model’s belief in the truthfulness of the triple.
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Popular KGE models, such as ComplEx (Trouillon et al., 2016), can be interpreted as
binary classifiers (Loconte et al., 2023) where each triple corresponds to a distinct Bernoulli
random variable, such that p(Ys,|S, R, O). An important limitation is that the scores are
unnormalised and that the model’s belief in a triple’s truthfulness is inherently context-
dependent, that is, the scores are only meaningful within the scope of a specific query
(Friedman and den Broeck, 2020). Moreover, for binary classification, negative examples are
required for training models to distinguish between true and false candidates. KGs typically
do not contain negative examples (Tabacof and Costabello, 2020). To counter this, negative
examples can be artificially created by sampling unknown triples and assuming that they
are false via a technique known as negative sampling (Bordes et al., 2013).

Generative Models It may be desirable to learn a KG model that is intrinsically nor-
malised, which means that the scores are probabilities, and that the model describes the pro-
cesses that produce data (Papamakarios et al., 2021). This naturally motivates a generative
approach, which aims to model the joint distribution, p(x), of a dataset D of n-dimensional
datapoints x (Ruthotto and Haber, 2021). The goal is to optimise the closeness between
the data and the model distribution. This is achieved by selecting the model parameters
f € M that maximise the log-likelihood of the data D. This learning objective is called
Maximum Likelihood Estimation (MLE).

1

gﬁmélogm(ﬂ = L(6|D). (1)

In order to learn a valid joint distribution, the total probability mass assigned to all
possible datapoints should sum to one. Different classes of generative models have different
ways of achieving this. We briefly discuss the ones that are most relevant for this work.

AutoRegressive Models Deep AutoRegressive models (ARMs) (Gregor et al., 2014)
factorise the joint distribution according to the chain rule of probability, into a marginal
distribution and a sequence of conditional distributions. A key simplifying assumption is
that each factorised distribution can be modelled as a (generalised) Bernoulli random vari-
able. Because a Bernoulli distribution is completely specified by its mean (the probability
of success), this simplifies normalisation: once the mean is predicted, the distribution is
fully defined and normalised. Subsequently, if the factorised distributions are normalised
locally, the joint distribution is also normalised.

Energy-based Models Energy-based models (EBMs) (LeCun and Huang, 2005) can
learn arbitrary probability distributions by assigning an energy value to each configuration
of variables. EBMs are based on the Boltzmann distribution: p(z) = %e_E(z), where
E(z) is the energy function and Z = Y e #(®@) is the partition function. While this
formulation is very flexible, computing Z is often intractable as it requires summing all
possible configurations. If we apply EBMs to implement KGEs, the normalisation constant,
Z = 2(57“0)67— ¢(es, Iy, €0), requires computing £ x R x & triples at every training step,
which even for small KGs this is infeasible (Loconte et al., 2023). Moreover, non-negative

scores have to be enforced. Next, we briefly recap how this has been addressed in the recent
work by Loconte et al. (2023).



BrRUNINK COCHEZ URBANI

KGEs as Probabilistic Circuits (Loconte et al., 2023) Some of the most popular
KGE models (Trouillon et al., 2016; Lacroix et al., 2018; Nickel et al., 2011) are Tensor
Factorisation models (Hitchcock, 1927). They are called Tensor Factorisation (TF) models
because the triple score is a product of the subject, relation, and object factors (embed-
dings). For example, the scoring function of CP (Lacroix et al., 2018) is the dot product.
These models can be interpreted as unnormalised EBM models (Minervini et al., 2016).
However, by interpreting the TF models as a computational graph, they can be cast into
a Probabilistic Circuit (PC) (Choi et al., 2020). If a PC is smooth and decomposable,
the partition function can be calculated in O((|€] + |R|) - cost(¢)) time, enabling efficient
normalisation (Choi et al., 2020). Subsequently, non-negativity is enforced by extending
the models with a non-linear operation, e.g., the square operator (Loconte et al., 2023).

3. Our Approach

A natural starting point for learning a generative KGE model is to normalise the distribution
of traditional KGE models p(Ys0|S, R, O) by learning the joint distribution p(Y, S, R, O).
This yields a normalised model that can assign probabilities to triples (Lasserre et al.,
2006). However, since Y is not observed and must be approximated via negative sampling,
its generative interpretation is unclear. By directly modelling p(S, R, O), we no longer need
to rely on artificially constructed negatives.

The prior work by Loconte et al. normalises this distribution, extending TF models with
a single non-linear transformation to ensure non-negative scores. A property of TF models,
multi-linearity (Kolda and Bader, 2009), allows each embedding dimension to contribute
independently to the final score, resulting in strong classification performance. However,
when such KGE models are extended with non-linear operations—such as squaring—they
lose their core characteristic of multilinearity and can no longer be considered TF models.
This change is not only structural but also detrimental: they tend to perform significantly
worse on the original ranking task (Lacroix et al., 2018). Moreover, moving from binary
classification to modelling a probability distribution results in a shift in objective. Our
proposal below aims at addressing these limitations, with a different approach.

3.1. ART

In many domains, (deep) ARMs are used to model high-dimensional data by stacking a
large number of simplified distributions—typically low-capacity conditionals like Bernoulli
or categorical distributions. Although effective, this often reflects a trade-off between ex-
pressivity and tractability (Salimans et al., 2017; van den Oord et al., 2016) because the
large number of factorized distributions acts as an approximation. In contrast, in our case,
there are only three variables that we can use for factorizing the joint distribution: subject,
relation, and object. Since they are discrete and finite, the autoregressive factorisation is
not a simplifying approximation, as it is when ARMs are used in other domains, but a
natural decomposition, allowing us to retain both tractability and expressivity.

Therefore, we operationalise this decomposition in our proposed model ART using the
chain rule of probabilities as follows:

p(S, R,0) = p(S) - p(R|S) - p(O|R, S) (2)
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While this decomposition is exact, in general it still requires summing over all possible
(S, R,0) configurations to ensure normalisation. Fortunately, the variables S, R, and O
are categorical in our domain since they take on one of a fixed set of possible values (e.g.,
entities or relations). Hence, each factorized conditional distribution can be implemented
using a Softmax. Because each part of the factorised distribution is normalised this way,
the full joint distribution is also normalised.

In the remaining, we motivate why we chose this factorization and not other ones.

Model’s size KGs typically contain far fewer relations than entities, meaning that the
training data offer more coverage of the relations. As a result, the marginal distribution
of the relations that we can compute from the frequencies of the training dataset typically
tends to better reflect the real one than it does, for instance, for subjects. Therefore, one
could wonder why not using an alternative factorisation such as p(R) - p(S|R) - p(O|R, S).
The problem is that such formulation would significantly increase the size and computation
of the models of the other two factors, since it would require a softmax over all subjects
and objects. This is why we decided to implement the factorization in Eq. 2.

Head vs. tail queries Our model defines a joint distribution over triples, p(S, R, O),
allowing us to assign a probability to any triple. To efficiently evaluate all candidates for
a tail query (s1,71,7), we compute p(S = s1) and p(R = r1 | S = s1) once and multiply
them with p(O | R = r1,S = s1) in a single pass—mirroring the efficiency of standard
KGE models. However, this efficient computation only holds in the forward direction (tail
prediction). Tasks like Link Prediction and Complex Query Answering (CQA) often require
scoring in both directions i.e. head and tail queries. To support head queries, one may decide
to implement the factorization p(O) - p(O|R) - p(S|R, O). However, this is not needed, since
a known solution for this problem is simply to add inverse triples (Dettmers et al., 2018).
This effectively lets the model answer head queries as tail queries on the augmented graph,
introducing directionality at the cost of doubling the relation types — but importantly, still
using a single model with shared parameters rather than training two separate models.

3.2. Architecture

We provide a high-level overview of the core design choices and model structure. We refer
to Appendix B.1 for a detailed specification of our architecture.

Conditional Distributions Our conditional distributions—p(R | S) and p(O | R, S)—can
be parameterised by any neural network. For example, ConvE (Dettmers et al., 2018), a
Deep KGE model, can be interpreted as modelling p(Og,. | S = s, R = r); it takes embed-
dings of (s,r) as input and outputs a score for each candidate object. We follow this idea
but replace the Sigmoid activation with a Softmax, yielding a proper categorical distribu-
tion over all objects. To complete the factorisation, we also add a conditional distribution
p(R | S), modelled by a network that takes only the subject embedding as input and outputs
a distribution over relations. To model both conditionals efficiently, we use an AutoRegres-
sive Transformer (Vaswani et al., 2017), which can handle both timesteps jointly within a
single architecture. This is why we call our method ART (AutoRegressive Transformer).

Prior A natural choice to implement the marginal distribution p(S) would be to use the
raw (relative) train frequency of the subjects. However, this frequency might not accu-
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rately represent the “real” distribution. To learn the most likely parameters (MLE) for the
marginal distribution as well as the other two conditional probabilities, we use a learnable
parameter for every logit, and add a learnable Temperature parameter 7', which allows us
to smooth the train frequencies if needed and jointly optimise the objective.

More formally, our models are learned by optimising the exact Maximum Likelihood
Estimation (MLE) as follows, where D is the training set and 6 are the parameters of the

model.
1

=D > llogps(s) +logpe(r|s) +log pe(olr, 5)] 3)
(

s,m,0)€D

max L(0)

4. Related Work

We extensively discussed the most related work (Loconte et al., 2023) in Section 3. Other
relevant approaches to this problem take different perspectives. AutoRegressive (AR) mod-
els have been extensively studied for triple likelihood estimation in Knowledge Graphs (Chen
et al., 2021; Yao et al., 2019; Tresp et al., 2021; You et al., 2018). However, these approaches
either rely on Large Language Models, focus on local subgraphs, or do not explicitly model
the KG data as three Categorical variables. Consequently, they are not amenable for ex-
act Maximum Likelihood Estimation (MLE) as discussed by Loconte et al. (2023). In
this work, we focus on learning an exact joint distribution over three Categorical random
variables using MLE. Hence, we do not consider methods that approximate the joint dis-
tribution (Simonovsky and Komodakis, 2018).

The first work that gave a probabilistic interpretation to tensor factorisation KGE mod-
els was tractOR (Friedman and den Broeck, 2020). They assume conditional independence
betweeen the random variables (factors), such that p(Ysro = 1|s,7,0) = p(Es = 1|s) - p(T} =
1lr) - p(E, = 1|o). Consequently, the number of to be learned independent variables is
reduced from |&] - [R| - |€] to |€] + |R|. Moreover, the decomposition in unary statements
enables fast inference in Probabilistic Databases (PDBs) (Suciu et al., 2011). However, the
scores are unnormalised, and the conditional independence assumption is problematic, as
it rules out any interaction between the subject, relation, and object — which are typically
highly dependent in real-world KGs.

Our evaluation protocol relates to Triple Classification (Socher et al., 2013), which
classifies triples as true or false using a threshold, implicitly adopting the Closed World
Assumption (CWA)—treating all unknown triples as false. Finding the optimal threshold
requires calibration (Tabacof and Costabello, 2020) and forces binary decisions. In contrast,
we use a ranking formulation aligned with the Open World Assumption (OWA), focusing
on whether known triples rank higher than unknown ones, similar to LP, without requiring
calibration or binary classification.

5. Experiments

Experimental Setup We conducted all experiments ! on an Nvidia RTX A4000 GPU.
Deep KGE models tend to have many parameters. To show that our improved expressive-
ness does not come from increasing model size, we keep our total parameter count relatively

1. The code is available at https://github.com/yaaani85/art_kge
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Table 1: Statistics of datasets used for the evaluation, including number of entities (|€]),
relations (|R|), and data splits. Final columns indicate the number of forward and
inverse queries derived from the test set.

Dataset I€] IR  Train  Valid  Test IR Test (Fwd/Inv)
FB15k-237 14,541 237 272,115 17,535 20,466 10,270 / 10,196
WN18-RR 40,943 11 86,838 3,034 3,134 2,694 / 440

0GBL-BIO 93,773 51 4M 163K 163K 88,808 / 74,062

low: We fix the embedding rank to 150 and adopt a simple decoder-only Transformer with
up to four layers, a single attention head, and no positional encoding. For a detailed de-
scription, see Appendix B.2.

Datasets We evaluated ART and its competitors on datasets which are frequently used in
the literature: FB15k-237 (Toutanova and Chen, 2015), WN18RR (Dettmers et al., 2018) and
ogbl-biokg (Hu et al., 2020). Table 1 reports statistical details for each of them. We use
the transductive splits, provided in the original papers, where all entities in the validation
and test sets are observed during training.

Baselines We chose to compare ART against the following approaches:

e ComplEx? (Loconte et al., 2023): A normalised version of ComplEx that learns exact
joint distribution via global normalisation, introduced in Section 3.

e NBF (Zhu et al., 2021): Neural Bellman-Ford Networks, which is, to the best of our
knowledge, the KGE with the best results on LP.

e ComplEx (Trouillon et al., 2016), which is another KGE model that is frequently used
in the literature, which leverages complex embeddings and produces unnormalised
scores.

e ComplEx/Cal (Tabacof and Costabello, 2020): ComplEx with Platt scaling applied
post-hoc to calibrate the scores. This was selected as the best method by prior work
on calibration.

Our primary comparison is against ComplEx?, since both ART and ComplEx? return proba-
bility distributions over triples. We select ComplEx and NBF as representative of the leading
unnormalised KGE methods. Finally, we include ComplEx/Cal as representative for post-
hoc calibration.

For ComplEx? and NBF, we adopt the configuration provided in the original implemen-
tation. To isolate the effects of normalisation and post-processing, we use identical model
configurations across ComplEx?, ComplEx, and ComplEx/Cal. This is to ensure that differ-
ences in performance are solely due to normalisation or calibration.
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Testset construction We construct our candidate set directly from the LP benchmarks,
using the triples that are candidates in head and tail prediction queries. This ensures our
evaluation is a natural extension of LP rather than a new task — we unify what is typically
evaluated per query into a single, global ranking over all candidate triples.

While we could restrict evaluation to a single prediction direction (e.g., tail prediction
only, as common in Triple Classification (Socher et al., 2013)), this would test only half
of the model’s scoring behaviour. Many downstream applications, such as Complex Query
Answering (CQA) (Ren et al., 2024), require combining scores from both directions.

However, to prevent duplicates from appearing — for example, when the same triple
occurs in both head and tail prediction queries — we include each triple only once, based
on its first occurrence. This avoids artificially inflating ranking-based metrics by giving the
model multiple opportunities to score the same fact. It also keeps the candidate set from
growing unnecessarily large and results in a more challenging and informative evaluation,
as the unified ranking must reflect a coherent ordering over head and tail predictions drawn
from across the entire benchmark. More details are available in Appendix A.1.

Evaluation Protocol We follow the standard protocol for traditional LP and evaluate
on two prediction tasks: object prediction (s,r,?) and subject prediction (?,r,0). For each
test triple (s,r,0), we generate candidates by replacing either the object or subject with all
possible entities, and rank these candidates using the model’s scores. We use the filtered
setting (Bordes et al., 2013) for the query-based evaluation, and report the mean reciprocal
rank (MRR) (Lii and Zhou, 2011). For completeness, we also report Hits@k (Lii and Zhou,
2011) in the Appendix C.1.

New proposed metric To evaluate normalisation, we propose a new metric in which we
construct a single global ranking across all queries rather than separate rankings per query.
Instead of evaluating performance on a specific downstream task, we introduce this metric
to enable intrinsic evaluation, isolating the normalisation capability without interference
from task-specific factors. We argue that this metric serves as a strong proxy for many
downstream tasks, as it directly assesses the comparability of scores across different queries.

To this end, the metrics used for query-based ranking are unsuitable because now there
is only one ranking. Therefore, we instead rely on standard IR metrics such as Precision,
Recall, and Fy. Crucially, this evaluation remains fully aligned with the LP setting in every
other respect: we use the same filtered candidates, evaluate the same triples, and do not
modify the task from ranking to classification.

We report the max-F) score over all possible thresholds used to compute precision and
recall, capturing the model’s best precision—recall balance without relying on a learned
threshold. This aligns with the Open World Assumption by offering a nuanced evaluation
across all triples. Unlike Triple Classification, which requires tuning thresholds on validation
data, our approach evaluates performance across all possible thresholds. For completeness,
we also provide precision—recall curves in the Appendix C.2 to illustrate this range.

Model Selection After training, we select the best model based on MRR validation using
a limited hyperparameter search (see Appendix B.2). While we report the test set max Fj
for reference, the threshold is computed post hoc and is not used for model selection. This
ensures fair comparison and adheres to standard evaluation practice.
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Table 2: Performance comparison using query-based MRR and max-F} global rankings.
For both metrics, higher is better. For max-F7, results in are either the best
ones or very close to the best (max 5% difference) while the ones in (red)
are the ones that are (much) worse than the best.

FB15k-237 WN18RR OGBL-BIOKG
MODEL MRR max-F; MRR max-F; MRR max-Fj
ART (oUms) T .342 451 .832
CoMpPLEX? ' .300 .391 074 .840
NBF o .415 515 811
CoMPLEX o .336 .049 470 .828 278
CoMpLEx/CaL * .336 .049 470 .828 278

T NORMALISED (GENERATIVE) MODELS, ¢ DISCRIMINATIVE MODELS, * POST-PROCESSED VARIANT OF COMPLEX
WITH PLATT SCALING.

5.1. Results

Table 2 shows a performance comparison with the MRR computed with query-based ranking
and with our proposed metric for measuring normalisation. We make three key observations.

Observation 1: MRR vs max-F; First, we note that LP metrics (query-based MRR),
which were extensively used in the literature, are not a reliable indicator of performance
in tasks that require normalisation. This can be deduced from the fact that unnormalized
methods, like NBF, which returns the best scores on MRR, do not perform equally well
with max-F;. Second, we also observe that methods that are intrinsically normalised (ours
and ComplEx?) outperform the other competitors with our new proposed metric (max-Fy)
on two of the three datasets. On the third one, WN18RR, our method returns a score that is
very similar to NBF. The reason is that it is well-known there is a distribution shift between
the train and test triples in WN18RR (Loconte et al., 2023). This is known as the Domain
Adaptation problem (David et al., 2010). For instance, 19% of the subjects in the test set
are not in the train set, and 95% of subject-relation pairs in the test set are not in the train
set. This means that the testset is not a faithful representation of the distribution that we
can learn from the trainset. Notice that despite this problem, our method is still able to
predict as accurately as the state-of-the-art.

Observation 2: ART vs ComplEx? Contrasting with ComplEx?, which relies on a single
non-linear operation, our model employs multiple non-linearities encoded in the Trans-
former, providing greater expressiveness. While using only half of the parameters, see
Appendix C.3, ART had superior performance on both MRR and max-Fj, making our ap-
proach the preferred choice when comparable scores are required. Moreover, because ART
factorizes the joint distribution as p(S)-p(R|S)-p(O|R, S), it can better adapt to distribution
shifts, like those in WN18RR, than ComplEx2.

Observation 3: Intrinsic Normalisation vs. Calibration Post-processing methods
such as calibration or score normalisation applied after training do not affect MRR (Tabacof
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and Costabello, 2020), and similarly have no impact on our IR metrics. While calibration
shifts the optimal max-F threshold from its original value (e.g., 70) to 0.5 after calibration,
as shown in Appendix C.2 — it does not improve the max-F; score. This demonstrates
that calibration changes the presentation of confidence scores but does not alter the model’s
underlying belief distribution. Therefore, this suggests that encoding normalisation inside
the model is a more effective approach than post-hoc calibration.

Uncertainty Quantification While ART improves performance on IR metrics compared
to unnormalised approaches, it also provides a measure of likelihood. In this context, a com-
mon metric for evaluating uncertainty is Expected Calibration Error (ECE) (Tabacof and
Costabello, 2020). Previous work has shown that normalisation improves ECE scores (Lo-
conte et al., 2023). However, while this distinction is clear when comparing unnormalised
and normalised models, using ECE to determine which of two normalised models is better
is ambiguous due to the OWA inherent in KGs. In Appendix C.3, we discuss this issue
considering a scenario in which all unknown triples with high probability are assumed true
rather than false, resulting in markedly different outcomes.

6. Conclusion and Future Work

Summary This paper highlights a critical limitation of many state-of-the-art KGE mod-
els. The prediction scores of a KGE model for multiple queries are not directly comparable,
which significantly reduces their applicability in downstream tasks that, for example, require
score aggregation across queries.

The standard evaluation protocol, which focuses on query-based ranking, overlooks this
issue. To fill this gap, we propose another evaluation methodology that exploits global
ranking and IR metrics as proxies for assessing effectiveness in scenarios where scores from
different queries must be combined. In addition, we introduce a novel generative KGE
model, ART, that produces intrinsically normalised scores. Our results on multiple bench-
marks demonstrate that ART is substantially more effective at generating scores that are
consistent and comparable across queries.

Future Work Normalisation is useful in many downstream tasks. Omne is Complex
Query Answering (CQA). Recent work shows that CQA performance, when using the
same unnormalized models evaluated in this study, is notably degraded with very com-
plex queries (Gregucci et al., 2025). This motivates future work to apply ART to CQA. This
requires a dedicated study since answering complex queries efficiently requires additional
tasks, like query planning or cardinality estimation, which is challenging if the underlying
KB is provided by a KGE. Another interesting avenue for future work is KB Completion,
which calls for a system that is capable of making binary decisions (Triple Classification)
regarding the truthfulness of facts. Next to the challenge of identifying suitable strategies
for deciding when a triple is true, it is worth further studying if the probabilities are over-
confident with specific classes of entities, or whether there is any other source of bias that
stems from training in a generative setting.

In conclusion, this work advances the development of KGE models with reliable score
normalisation, enabling more robust evaluation, improved comparability between queries,
and enhanced applicability in a wider range of downstream settings.

10
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Appendix A. Experimental Setting
A.1. Information Retrieval Candidates

As detailed in the main paper, our Information Retrieval (IR) benchmark is derived from
the LP test sets. We construct the IR set by first executing forward (tail) queries of the
form (s,r,7), and storing these triples. We then traverse the test set again, executing
corresponding inverse (head) queries (?,r,0). If a triple has already been included as a
forward query, it is skipped for inverse inclusion. This ensures that each test triple appears
at most once in the IR benchmark, avoiding duplication and promoting diversity in query
direction.

This method typically leads to a roughly balanced distribution between forward and
inverse queries, as seen in FB15k-237 and OGBL-BIO. However, WN18RR shows a strong
imbalance favoring forward queries. This is not a consequence of our construction method,
but a result of the dataset’s inherent structure—many WN18RR test triples have tail entities
that appear far more frequently or earlier than the corresponding head counterparts, causing
them to be selected first during traversal. As such, most inverse candidates are filtered out,
leading to the observed skew.

While we could have artificially rebalanced the IR set—for example, by resampling or
enforcing symmetry—we chose not to. Instead, we prioritise a reproducible and transparent
generation process. Selecting the first occurrence of a triple, regardless of direction, is
deterministic and straightforward. This avoids arbitrary rebalancing heuristics and makes
the construction method easy to implement on other datasets. Please see the last column of
Table 1 for the resulting number of forward and inverse triples included in our evaluation.

The code used to generate the IR benchmark is included in the supplementary material
for full reproducibility.

Appendix B. Details of ART

B.1. Architecture

Attention is all you need. Our autoregressive model ART is based on a standard Trans-
former (Vaswani et al., 2017) architecture composed of stacked self-attention blocks. Each
block consists of a multi-head self-attention layer followed by a feedforward MLP with
GELU activations, residual connections, and layer normalisation. In our implementation,
we use a single attention head.

The model receives entity and relation embeddings as input and processes them jointly
through several Transformer blocks. The output is split into two parts: one passed through
a softmax classifier over relations, and the other through a softmax classifier over entities.

While our architecture follows standard design choices, we emphasise that expressiveness
is primarily introduced through the stacked non-linear transformations, particularly the use
of Softmax layers over high-dimensional representations. This layered non-linearity enables
richer modelling of interactions compared to simpler factorisation-based approaches.
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B.2. Optimisation

Hyerparameters. We fix the embedding dimension to 150 across all experiments. ART is
trained using the AdamW optimizer (Loshchilov and Hutter, 2019) and the MLE objective,
with an initial learning rate of 0.1. If the validation performance does not improve for five
consecutive epochs, we apply learning rate decay with a multiplicative factor selected from
[0.1,0.3,0.5,0.7,0.9]. We use a batch size of 1024 and apply dropout with a rate sampled
uniformly in [0, 0.5].

For the architecture, we perform a small-scale hyperparameter search over the number
of Transformer blocks, using values from [1, 2, 3,4, 5], and the feedforward layer size, scaled
as a multiple of the embedding dimension with multipliers from [2,3,4,5,6,7,8]. We fix
the number of attention heads to 1 throughout. Positional encodings are omitted, since the
input structure (head and relation embeddings) is fixed and semantically ordered.

We also explore different strategies for initialising and training the prior logits. Logits
are either initialised uniformly or based on empirical training set frequencies, and are either
kept fixed or treated as learnable parameters. Similarly, the Softmax Temperature is either
fixed at 1.0 or learned during training.

Model Selection We explore several strategies for model selection, including monitoring
validation loss, the average of training and validation losses, and Mean Reciprocal Rank
(MRR). While validation loss is a standard choice, it may be unreliable on smaller knowl-
edge graphs, where the validation set might not accurately reflect the true distribution. For
consistency with prior work and fair comparison across models, we always select the check-
point with the highest validation MRR. This also eliminates the need for a separate held-out
set during information retrieval (IR) evaluation. We note, however, that selecting based on
negative log-likelihood may yield better performance for generative tasks. The final model
configurations and all settings required to reproduce the experiments are provided in the
supplementary material.

Appendix C. Additional Results

C.1. Link Prediction

Hits@k Refer to Table 3 for Hits@Qk results that complement the Link Prediction perfor-
mance reported in the main text.
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Table 3: Hits@k.
Dataset Model H@l H@3 H@5 HQI10

ART 249 378 442 530
NBF 323 456 514 595
FBISK=23T  complEx 247 369 433 520
ComplEx* .247 .369 433  .520
ComplEx? .217 .331 .389  .469
ART 424 461 480 503
NBF 497 572 613 .662
WNAS-RR o mplEx 433 485 511 545
ComplEx* 433 485 511  .545
ComplEx? .342 423 448 471
ART 769 877 913 .946
oesL-pro  VBF 744 853 .893  .938

ComplEx 760 .879 916  .950
ComplEx* .760 .879 916  .950
ComplEx? .774 .888 .923  .954

C.2. Information Retrieval

Precision-Recall Curves These plots provide more detailed precision-recall curves for
reference. The max-F} point used in the main text is indicated with a cross.

Precision-Recall Curves Comparison
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Precision-Recall Curves Comparison
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Optimal Threshold Analysis Post-Processing e.g. callibration does not improve Infor-
mation Retrieval performance. Although callibration improves classification accuracy i.e.
learning the optimal threshold, it does not improve the ranking performance, because the
internal belief of the model can not be changed after training.

Table 4: Optimal Threshold.

Dataset Model Threshold
FB15k-237 gzzﬁgz* 1095601
WN18RR gzzgigz* 101’-5704
0GBLBIO e 050

C.3. Generative Models for Knowledge Graphs

Number of Parameters

In traditional Tensor Factorization KGE models for discrim-

inative tasks, increasing the embedding rank typically improves performance by enabling
the model to better capture the structure of independent triples. However, as shown in
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Table 5, this intuition does not hold for generative models that learn the joint distribution
over knowledge graph triples.

Both ART and ComplEx? deviate from classical tensor factorization in both modeling
approach and objective. Rather than scoring individual triples independently, generative
models must capture complex dependencies across the graph. In this context, expressivity
is more efficiently gained through a more complex, parameter-rich scoring function rather
than by increasing the embedding dimension.

Table 5 highlights that ART allocates significantly more parameters to the scoring func-
tion, while Comp1Ex? relies entirely on larger embeddings. Despite having fewer total pa-
rameters, ART achieves greater expressive power through its design, underlining that param-
eterization of the scoring function plays a critical role in modeling joint distributions over
triples.

Table 5: Number Of Parameters.
Dataset Model Score Emb Total

ART 1571 225  17.96
FBISK™23T  ComplEx® 0 20.56  29.56
ART 30.13 615  45.27
WNASRR  omplEx® 0 81.90  81.90
csipr  MRT 7911 14.08  93.19

ComplEx? 0 187.64 187.64

Open/Closed World Assumption A knowledge graph embedding (KGE) model that
assigns low probability to all unknown triples is of limited use under the Open World
Assumption (OWA), where the goal is to discover new facts. In such settings, evaluation
metrics that assume the Closed World Assumption (CWA)—like Expected Calibration Error
(ECE)—become unreliable. They penalize the model for assigning high probability to triples
that are simply unobserved, not necessarily false.

To highlight this issue, we focus on normalised models—ART and ComplEx?—on the
O0GBL-BIO dataset. These models produce probabilities rather than scores, allowing us to
construct meaningful precision-recall (PR) curves. We use the Fj-maximizing threshold
from the main paper and evaluate performance under two contrasting assumptions: Opti-
mistic (O), where all predictions above the threshold are assumed to be true, and Pessimistic
(P), where they are assumed false.

While the main paper evaluates pessimism through F, we adopt a stronger form here
using Mean Average Precision (MAP), which more harshly penalizes false positives. As
shown in Table 6, the large gap between optimistic and pessimistic MAP values under-
scores how strongly the evaluation depends on unverifiable assumptions about the status of
unknown triples.

This highlights a core problem: ECE and similar metrics assume a CWA-like interpreta-
tion where all unlabelled triples are considered negative. In reality, many such triples could
be true, especially under OWA. When a model like ART assigns high probability to these, it
may appear miscalibrated under CWA metrics—but may in fact be correct. These results
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suggest that calibration-based evaluations under OWA should be interpreted with caution,
and that metrics relying on CWA assumptions, like ECE or pessimistic MAP, can produce
misleading comparisons.

Table 6: ART assigns higher probability to more unknown triples at the Fi-optimal
threshold. Evaluation metrics like ECE assume a Closed World Assumption
(CWA), treating all unlabelled triples as false—an assumption that can be mis-
leading in Open World settings. To illustrate this ambiguity, we report MAP under
both a Pessimistic (P) scenario, where all triples above the F; threshold are as-
sumed false, and an Optimistic (O) scenario, where they are assumed true. Results
on the 0GBL-BIO dataset show substantial differences between the two, highlighting
that CWA-based metrics can yield unreliable conclusions for normalised generative
models.

MODEL OPTIMISTIC PESSIMISTIC

ART 780 .245
CoMPLEX? .735 .318
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