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ATAC: ABSTRACTIVE TOKEN-LEVEL QUESTION-
AGNOSTIC PROMPT CMPRSR
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Cmprsr
(abstractive)

LLMLingua-2
(extractive)

Nasa has said it hopes to send astronauts on a ten-day trip around the Moon as soon as February.  The US space
agency had previously committed to launching no later than the end of April but said it aims to bring the mission
forward.  It's been 50 years since any country has flown a crewed lunar mission. Nasa will send four astronauts there
and back to test systems.

NASA hopes ten day trip around Moon soon February send four astronauts test systems
after 50 years no crewed lunar mission

Nasa send astronauts ten-day trip Moon February April aims mission forward 50 years
crewed lunar mission four astronauts test systems

GPT-4.1-mini
(abstractive; vanilla)

Nasa aims 4 astronauts on 10-day Moon trip by Feb, advancing from April; first crewed lunar
mission in 50 years.

79 tokens

25 tokens

31 tokens

25 tokens

Prom
pted com

pression rate: 0.3 (23 tokens)

Figure 1: Extractive compression selects a subset of the input sequence tokens, while abstractive
compression allows for clever paraphrases. While one can use vanilla LLMs as abstractive com-
pressors, their performance can be further improved with RL-based post-training, yielding Cmprsr.
Note that extractive compression may introduce ambiguities, e.g. “February April”, “mission for-
ward 50 years”, while vanilla abstractive compression does not adhere to the desired compression
rate. The original text snippet is from BBC (2025).

ABSTRACT

Motivated by the high costs of using black-box Large Language Models (LLMs),
we introduce a novel prompt compression paradigm, under which we use smaller
LLMs to compress inputs for the larger ones. We present the first comprehen-
sive LLM-as-a-compressor benchmark spanning 25 open- and closed-source mod-
els, which reveals significant disparity in models’ compression ability in terms of
(i) preserving semantically important information (ii) following the user-provided
compression rate (CR). We further improve the performance of gpt-4.1-mini, the
best overall vanilla compressor, with Textgrad-based compression meta-prompt
optimization. We also identify the most promising open-source vanilla LLM—
Qwen3-4B—and post-train it with a combination of supervised fine-tuning (SFT)
and Group Relative Policy Optimization (GRPO), pursuing the dual objective of
CR adherence and maximizing the downstream task performance. We call the
resulting model Cmprsr and demonstrate its superiority over both extractive and
vanilla abstractive compression across the entire range of compression ratios on
lengthy inputs from MeetingBank and LongBench as well as short prompts from
GSM8k. The latter highlights Cmprsr’s stable performance for varying input
types. Moreover, Cmprsr closely follows the requested compression ratio, of-
fering fine control over the cost-quality trade-off.

1 ABSTRACTIVE COMPRESSION WITH LLMS

The discovery of scaling laws Kaplan et al. (2020) set the trend for training increasingly large Lan-
guage Models (LMs). Despite rapid advancements in both hardware and software supporting LLMs’
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inference, the costs of their usage continue to surge. This trend reflects not only growing adoption
Liang et al. (2025), but also the Jevons paradox Luccioni et al. (2025): efficiency gains that spur
even greater consumption.

According to recent estimates Tully et al. (2025), 87% of enterprise spendings on LLMs are at-
tributed to the black-box LLMs, accessed via API. This means that in practice the only way the
majority of LLM consumers can optimize their spendings is through minimizing the length of the
queries they pass to the models; this can be achieved with the token-level prompt compression Li
et al. (2025), i.e. exploiting the redundancy of the human language Shannon (1951) and mapping
the original input sequence to a shorter one, while preserving original semantics.

We focus on the question-agnostic compression Jiang et al. (2023), which aims to process the context
provided to the model so that the compression can be re-used for any context-related question or
task: possible use-cases include (i) combining compression with Retrieval-Augmented Generation
Gao et al. (2023) via retrieving pre-compressed entries, (ii) single-call compressions of lengthy texts
such as meeting transcripts Hu et al. (2023) for their subsequent comprehensive analysis involving
multiple LLM calls, (iii) optimizing LLM-powered learning platforms via compressing learning
materials (iv) addressing tokens-per-minute (TPM) API bandwidth limitations.

The most popular approaches tailored for this set-up are extractive Jiang et al. (2023); Pan et al.
(2024), meaning that compression is posed as a binary classification problem of preserving/remov-
ing each of the input sequence parts (usually tokens). We hypothesize that abstractive methods,
operating under a much larger space of valid compressions, can provide better outputs through para-
phrase of the input sequence. To this end, we define 2 metrics, characterizing the quality of a
Compressor LLM: (i) Target LLM performance on a downstream task given its inputs are prepro-
cessed by the Compressor (ii) Adherence of the Compressor to the user-defined Compression Rate
(CR), reflecting user’s tolerance to the quality deterioration versus the incurred costs. We ask the
following research questions (RQs):

• RQ1. What are the compression capabilities of the off-the-shelf LLMs?

• RQ2. Can we further improve their performance with prompt optimization techniques such
as Yuksekgonul et al. (2025)?

• RQ3 How does performance of an SFT/RL post-trained “small LLM” Compressor com-
pares to the SOTA extractive approaches across different datasets?

We share results of the extensive benchmarking addressing RQ1, and show that the answer to RQ2
is positive in case the prompt is used with the same Compressor model it was optimized for. Most
importantly, we present abstractive Cmprsr, outperforming SOTA extractive compression across
different compression rates, which answers RQ3.

2 RELATED WORK

Compression can be performed in either question-aware Shandilya et al. (2024); Kim et al. (2025);
Choi et al. (2024); Yoon et al. (2024) or question-agnostic way. In the question-aware set-up, com-
pression is conditioned on the given question and aims to filter out all irrelevant information. While
allowing high compression rates, this also prevents compression re-usage for the new queries. Mo-
tivated by the use-cases detailed in Sec. 1, we focus on the question-agnostic set-up.

Furthermore, prompt compression techniques can be divided into 2 categories Li et al. (2025):

Embedding-level (a.k.a soft prompt methods Mu et al. (2023); Chevalier et al. (2023)), which
require access to the internals of the Target model, and are therefore not viable for the black-box
models.

Token-level (a.k.a hard prompt methods): (i) Extractive: compression space is the set of order-
preserving subsequences of the input; the filtering can be implemented on the token Jiang et al.
(2023); Pan et al. (2024) or the sentence Liskavets et al. (2025) level. Notably, Hu et al. (2025);
Shandilya et al. (2024) use RL techniques to optimize the extraction policy. (ii) Abstractive: the
compression space is all sequences over the vocabulary, which allows semantics-preserving para-
phrase/reordering via tokens not present in the input.
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Below, we detail prior contributions falling into the same broad category as ours, i.e. question-
agnostic token-level abstractive compression. Pu et al. (2024) rely on vanilla LLaMA-2-7B to
perform compression guided by demonstrations, optimized for the particular dataset. Despite im-
provement over straightforward prompting, this method is not readily generalizable across tasks,
as each new dataset requires generating/selecting a new set of demonstrations. In a recent work,
Zhang et al. (2025) develop another approach to abstractive compression, using either GPT-4o-mini
or Qwen-2.5: they rely on dynamic chunking and derivation of chunk-specific compression ratios,
which allows to preserve important context.

Neither of the two methods above compares a meaningful number of LLMs in terms of their aptitude
for compression, which, as we show, greatly varies. Furthermore, according to our experiments,
even the models dominating ”vanilla compression leaderboard” can be significantly improved with
post-training in terms of both compression quality and adherence to the user-specified compression
rate. The work of Chuang et al. (2024) is the one we find closest to addressing this limitation:
while it still experiments with a single backbone (Vicuna-7B), the model is actually tuned for better
compressions. The main limitation of the presented approach is that it falls short of adopting RL:
Vicuna-7B serves as both Compressor and the Target model, and the signal comes from the semantic
preservation loss between the original and the compressed input activations. Moreover, the desired
absolute length of the compression is ingrained in the loss during the training stage and is thus
non-adjustable during the inference time.

Among the works targeting specific downstream tasks, Larionov & Eger (2025) investigate compres-
sion for the machine translation quality assessment. While the whole training pipeline is tailored for
this task and the resulting model cannot be used for prompt compression ”in the wild”, the authors
notably introduce RL —in the form of preference optimization (ORPO)—for training an abstractive
compressor.

3 COMPRESSIONBENCH

We focus on the following 2 metrics reflecting the practical usability of a Compressor model: (i)
adherence to the desired compression ratio: CR = ncmpr

tkns /n
original
tkns ; ∆CR = CRreal −CRdesired;

(ii) performance on the downstream tasks given compressed inputs. In case of MeetingBank (MB),
2 downstream tasks are summarization and question-answering (see Fig. 2). The template of the
Compressor prompt, including the length conditioning—we render compression rate into the desired
number of tokens and add it to the system prompt—is given in the Appendix. Both here and when
training Cmprsr, we cut transcripts into chunks before passing them to the Compressor model,
following the methodology of Pan et al. (2024) to avoid truncated final sentences in the produced
chunks. We then combine compressed chunks back into the compressed transcripts.

We present the most important MB results in Table 1, and provide full MB results (Table 4) along
with the GSM8k results (Table 5) and the full names of the models (Table 3) in the Appendix. We
dissect the benchmarking results below as a set of enumerated findings: F1, F2, F3, and F4.

F1 Vanilla LLMs poorly adhere to the prompted compression rate. While they are susceptible
to the prompted rate, the length of the generations skews towards some fixed CR, leading to
”under-compression” for high compression rates (0.1) and ”over-compression” for low com-
pression rates (0.5). LLMLingua-2 does not suffer from this limitation, as the classification
threshold can be dynamically adjusted for the extractive methods.

F2 Abstractive LLMs excel at high compression rates. Unlike extractive methods, they can
rephrase and condense information beyond the original tokens, preserving key semantics. This
highlights the crucial role of abstraction for aggressive compression.

F3 Comparison of LLMs. Although closed-source models generally outperform large open-
source models, which in turn surpass smaller open-source ones, performance is not monotonic
within each class. Model size or release date alone does not predict the outcome: for example,
gpt-4.1-mini outperforms both gpt-4.1 and gpt-5-mini on compression ratio (CR) adherence
and compression quality.

F4 LLMs vastly outperform LLMLingua-2 on the shorter prompts from GSM8k, although
CR adherence is worse than for long MB prompt (Table 5).

3
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Table 1: Compression performance of various vanilla models on the MeetingBank transcripts: trun-
cated version of Table 4. Within each group, we sort the models based on the average QA perfor-
mance accross compression rates.

∆CR BERT-F1 QA

Requested CR 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

Closed-source models
gpt-5-nano 0.19 0.17 0.04 0.87 0.88 0.88 0.25 0.30 0.31
gpt-4.1-mini 0.07 -0.00 -0.17 0.89 0.90 0.90 0.20 0.29 0.30
gpt-5-mini 0.13 0.11 0.10 0.86 0.87 0.87 0.19 0.25 0.27
gpt-5 0.10 0.08 0.06 0.87 0.88 0.88 0.18 0.25 0.25
gemini-2.0-flash-lite 0.09 0.00 -0.17 0.88 0.89 0.89 0.17 0.24 0.25
gpt-4.1-nano 0.04 -0.02 -0.19 0.87 0.89 0.89 0.15 0.26 0.25
gpt-4.1 0.06 -0.02 -0.19 0.88 0.89 0.89 0.17 0.23 0.25
gemini-2.5-flash 0.03 -0.03 -0.16 0.88 0.89 0.89 0.15 0.22 0.24
o4-mini 0.10 0.05 -0.17 0.88 0.88 0.88 0.14 0.22 0.21

Large Open-source models (> 10B)
gemma-3-12b-it 0.18 0.07 -0.05 0.89 0.89 0.89 0.22 0.25 0.26
Mistral-Small-3.1-24B 0.14 -0.04 -0.23 0.88 0.89 0.89 0.22 0.24 0.23
DeepSeek-V3 0.11 -0.05 -0.24 0.89 0.89 0.89 0.21 0.24 0.25

Small Open-source models (< 10B)
Llama-3.2-3B 0.05 -0.10 -0.30 0.87 0.87 0.87 0.17 0.21 0.22
Qwen3-4B 0.05 -0.08 -0.26 0.86 0.88 0.88 0.16 0.21 0.22
Qwen2.5-7B 0.08 -0.11 -0.31 0.87 0.88 0.88 0.16 0.19 0.18
gemma-3-4b 0.00 -0.15 -0.35 0.87 0.87 0.88 0.13 0.17 0.19
Llama-3.1-8B -0.02 -0.19 -0.39 0.85 0.86 0.86 0.14 0.17 0.15
Qwen2.5-3B 0.09 -0.08 -0.24 0.85 0.86 0.86 0.10 0.12 0.12

Extractive
llmlingua-2 -0.01 -0.03 -0.03 0.86 0.89 0.9 0.16 0.34 0.42

The results from this section inform our choice of the models for the Cmprsr experiments: Qwen3-
4B among the small open-source models (it performs on par with LLams-3.2-3B with slighly better
CR adherence), and gpt-4.1-mini among the closed-source ones.

3.1 BOOSTING VANILLA PERFORMANCE WITH TEXTGRAD

Motivation. The system prompt is crucial for aligning LLM output with a user’s expectations.
As a result, it has a major impact on the performance of our LLM-based compressor. With the
increase in LLM popularity, prompting has grown into a mature field with a variety of techniques,
including step-by-step reasoning instructions and few-shot examples. However, choosing which
technique to use and how to phrase it remains nontrivial and highly task-dependent. To solve both of
these problems, we use TEXTGRAD Yuksekgonul et al. (2024) for principled prompt optimization.
TEXTGRAD treats textual components of compound LLM systems as optimization variables and
improves them via natural-language “gradients.”

Method in brief. We model the MeetingBank QA benchmark as a computation graph with nodes
corresponding to stages in the LLM pipeline. Each node is assigned a role description, helping
the optimizer-LLM understand the high-level interdependencies among nodes. Starting from the
ground-truth–based evaluation at the output, TEXTGRAD (i) identifies failure modes, (ii) generates
suggestions on how to fix them, (iii) backpropagates this feedback through the graph to the upstream
nodes, and (iv) uses the accumulated feedback to update the compressor system prompt. For eval-
uation, we use a 10-point LLM Judge score to assess QA performance, where the LLM is asked to
evaluate each answer and assign a score. More Details on TEXTGRAD are provided in Appendix B.
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Figure 2: MeetingBank evaluation pipeline. We assess transcripts’ compressions on 2 downstream
tasks. (i) Summarization, i.e we compute BertScore between compressed and original. (ii) QA,
where we build a dataset of questions and answers from MeetingBank transcripts, and measure the
Target model’s accuracy using the compressed context.

Results. As TEXTGRAD iteratively updates the prompt, the model outputs become increasingly
better aligned with the downstream QA task. Figure 3 illustrates the tradeoff between the QA quality
and adherence to the CR across iterations, and shows excerpts from the initial prompt and the best
quality prompt (iteration 8). The optimized prompt yields a +0.51 gain in average LLM Judge score,
with only a -0.02 drop in CR adherence. Interestingly, the learned prompt addresses the uncovered
failure modes by adding a positive and a negative example as well as by stressing the importance of
named entities and numeric values. As a result, the updated prompt steers the compressor to retain
information most salient for answering questions while remaining close to the desired token budget.
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[...] Given the exact question [insert question], prioritize
retaining all facts, named entities, numeric values, and
regulatory terms needed to answer it fully and precisely.
[...] Good: Jordan Winn, 2nd District resident and S.O.S.
Board member, spoke about enforcement of Ordinance 1482.
- Bad: A resident asked about next steps.  [...]

[...] You can aggressively shorten words, drop
prepositions and articles do whatever it takes to
shorten the prompt to the absolute bare minimum
[...] Stop compressing if it risks clarity or
solvability. [...]

Figure 3: TextGrad system prompt optimization for Qwen3-4B on MeetingBank QA dataset.
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In Figure 3, each point is an iteration of TEXTGRAD; the x-axis shows the average compression-
rate adherence reward (higher is better), and the y-axis displays the average LLM-Judge QA score
(0–10, higher is better), both computed on a 100-transcript hold-out set. Panels include parts of the
initial system prompt (iter. 0) and the prompt with the best quality (iter. 8).

4 CMPRSR

4.1 SUPERVISED FINE-TUNING (SFT)

Data generation. We use the strongest vanilla Compressor—gpt-4.1-mini—to generate MB com-
pressions for the subsequent distillation, while randomly sampling prompted compression rate from
the [0.1, 0.7] range. We notice that the distribution of lengths of the generated data points does not
follow the uniform distribution of the prompted rates, skewing to ≈ 0.3. In order to mitigate that,
we experiment with 2 re-balancing strategies: (i) downsampling, i.e., dropping entries with over-
represented lengths, (ii) upsamplig, i.e., boosting under-represented ones. We label each generated
compression with the number of tokens it contains.

SFT. The aim of this stage is twofold: (i) improving Qwen3-4B performance through distill-
ing the compression strategies of gpt-4.1-mini (ii) improving adherence to the prompted compres-
sion rate. To this end, we append the true number of tokens in the compression to the prompt,
i.e., the structure of the sequence the fine-tuning is performed on is Original + Length
Conditioned Prompt (len(Compression)) + Compression, and the loss is com-
puted on the Compression part; this “length conditioning” is inspired by the Hindsight Instruction
Relabelling (HIR) works Zhang et al. (2023); Shypula et al. (2024). In the preliminary experiments,
we also tested additional “quality conditioning”, i.e. passing the normalized quality of the com-
pression relative to other compressions in the same compression rate range. This research direction,
however, had limited success. We varied (lr) in the [10−4, 10−8] range, and picked SFT checkpoint
with the best validation accuracy, which is the one, trained on the upsampled dataset with lr = 10−5.

4.2 GRPO

To ensure that the model not only achieves the desired compression ratio but also retains task-
relevant information, we extend the SFT stage with GRPO training. For each input chunk x and its
compressed form xC , we define two complementary reward functions: a length reward to control
compression and a quality reward to maintain semantic fidelity.

Length reward. The length reward (1) encourages the model to adhere to the target compression
ratio rT . For a given input, the achieved compression ratio is computed as rC = |xC |

|x| . This for-
mulation penalizes over-compression (when rC > rT ), while assigning a reward close to 1 if the
compression stays within or below the target threshold.

Rlen = 1−max
(
0, rC − rT

)
, (1)

Quality reward. The quality reward Rqual (2) measures how well the compressed chunk xC pre-
serves information relevant to the downstream task. We initially experimented with a QA-based
reward, i.e., the reward is computed by evaluating the compressed text on a QA task against the
ground-truth answer from the uncompressed text. However, we found the model exploited this re-
ward by outputting many possible answers instead of compressing effectively. We therefore define a
summary-based reward, computed as the cross-entropy loss of an open-source solver. Given a query
q and answer a = (a1, . . . , a|a|) from chunk x, the reward is:

Rqual =
1

1 + 1
|a|

∑|a|
i=1 logP

(
ai | q, xC , a<i

) , (2)

where |a| is the answer length and a<i = (a1, . . . , ai−1) its prefix. Intuitively, the reward increases
when xC enables the solver to predict the answer with high probability, indicating that the com-
pressed input has preserved sufficient task-relevant information.
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Dual-objective reward. To balance compactness and informativeness, we combine both objectives
into a single reward signal (Equation 3). This combined reward simultaneously penalizes the un-
necessary verbosity, avoids harmful over compression, and promotes representations that are both
efficient and effective for task performance.

R = Rqual +Rlen. (3)

Training. Further details of GRPO training are given in Sec. C.1. While we also experimented with
DPO and ORPO, these approaches did not outperform the GRPO-based pipeline; we describe these
setups in Sec. C.2 of the Appendix.

4.3 EVALUATION

To assess the effectiveness of our approach, we evaluate model performance under two comple-
mentary task settings: summarization and QA. Our primary focus is (i) to examine whether the
compressed representations are question-agnostic, i.e., they preserve general information that sup-
ports diverse queries, and (ii) to verify whether they retain sufficient abstraction to follow the intent
of summarization tasks. Although the model is trained exclusively on the MeetingBank dataset,
we evaluate it across multiple out-of-distribution (OOD) benchmarks, including GSM8K for QA and
LongBench for both summarization and QA. This setup tests generalization across tasks with dif-
fering requirements, ranging from factual short reasoning to long-document summarization. The
evaluation pipeline operates as follows: a compressed text xC is first generated, which is then fed
into the solver model to either produce a summary or answer task-specific questions.

We report the evaluation results in Table 8. For summarization tasks, we adopt the Bert-F1 score
as the primary metric, while for QA tasks we use accuracy (i.e 1 if the predicted answer matches
the ground truth, and 0 otherwise). For LongBench, which includes multiple subtasks within the
same dataset, we aggregate results by averaging over all QA-related tasks (e.g., single-document QA
and few-shot QA) and separately averaging over all summarization-related tasks. Full, fine-grained
results for each subtask are provided in the Appendix D.

Table 2: Question quality and summary similarity under different compression ratios (CR). ∆CR is
the absolute deviation from the target compression ratio (lower is better).

CR Models
Question Score Summary Similarity

GSM8K LongBench MeetingBank MeetingBank LongBench
∆CR EM ∆CR Accuracy ∆CR Accuracy ∆CR BERT-F1 ∆CR BERT-F1

0.1

Lingua 2 0.04 0.67 -0.01 16.67 -0.01 16.70 -0.01 0.8641 -0.01 0.8564
gpt-4.1-mini 0.24 39.33 0.12 20.00 0.07 18.27 0.07 0.8865 0.09 0.8766
TG-gpt-4.1-mini 0.05 27.33 0.11 20.82 0.07 25.05 0.07 0.8874 0.08 0.8796
Qwen3-4b 0.42 63.00 0.09 20.00 0.06 14.89 0.06 0.8629 0.10 0.8622
TG-Qwen3-4b 0.35 50.67 0.13 20.22 0.16 23.02 0.16 0.8885 0.15 0.8787
SFT 0.30 54.33 0.07 17.41 0.07 17.96 0.07 0.8841 0.06 0.8754
TG-SFT 0.14 27.33 0.04 19.71 0.03 15.30 0.03 0.8804 0.03 0.8718
GRPO 0.27 7.33 0.00 17.63 0.02 17.26 0.02 0.8461 -0.01 0.8402
CMPRSR 0.00 12.67 -0.02 19.67 -0.01 20.05 -0.01 0.8773 -0.02 0.8691

0.3

Lingua 2 0.08 12.33 -0.01 19.74 -0.03 32.70 -0.03 0.8913 -0.02 0.8773
gpt-4.1-mini 0.24 82.00 0.13 19.00 0.00 27.61 0.00 0.8989 0.07 0.8829
TG-gpt-4.1-mini 0.16 66.33 0.18 20.70 0.07 36.70 0.07 0.9014 0.16 0.8886
Qwen3-4b 0.32 75.00 -0.01 20.00 -0.07 18.69 -0.07 0.8823 -0.03 0.8713
TG-Qwen3-4b 0.30 69.67 0.06 20.39 0.05 29.62 0.05 0.8978 0.07 0.8822
SFT 0.27 78.00 0.09 21.77 0.02 26.38 0.02 0.8971 0.03 0.8817
TG-SFT 0.17 71.00 0.06 20.10 0.00 26.23 0.00 0.8962 0.00 0.8803
GRPO 0.12 13.33 0.06 18.80 -0.01 25.40 -0.01 0.8641 -0.01 0.8603
CMPRSR 0.00 35.33 -0.01 20.10 -0.01 33.20 -0.01 0.9009 -0.04 0.8835

0.5

Lingua 2 0.09 49.33 -0.01 17.14 -0.03 41.14 -0.03 0.9020 -0.02 0.8893
gpt-4.1-mini 0.14 87.00 -0.01 21.10 -0.17 28.36 -0.17 0.8975 -0.07 0.8857
TG-gpt-4.1-mini 0.14 82.67 0.09 19.67 -0.02 39.90 -0.02 0.9039 0.12 0.8913
Qwen3-4b 0.12 76.67 -0.16 19.18 -0.24 20.22 -0.24 0.8868 -0.19 0.8748
TG-Qwen3-4b 0.24 74.67 -0.06 19.76 -0.06 32.78 -0.06 0.9004 -0.04 0.8858
SFT 0.15 83.33 -0.01 20.72 -0.10 30.87 -0.10 0.8965 -0.08 0.8852
TG-SFT 0.06 81.67 0.00 20.83 -0.10 30.81 -0.10 0.9018 -0.09 0.8837
GRPO -0.05 15.00 -0.01 19.57 -0.11 28.95 -0.11 0.8704 -0.09 0.8629
CMPRSR -0.06 62.33 0.03 20.20 -0.01 41.95 -0.01 0.9083 -0.04 0.8917
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Based on Table 8, higher raw scores are often achieved at the cost of exceeding the target CR, i.e pos-
itive ∆CR. Since our objective is to maximize task performance under strict constraint of ∆CR ≤ 0,
we do not select the highest score. Instead, we focus on models that respect the CR budget while
still delivering competitive outcomes. Under this criterion, SFT and GRPO occasionally yield strong
performance, but only when tolerating higher ∆CR values, i.e., compressing less than required. To
improve on this, we explore GRPO and also TextGrad as cost-efficient alternatives. For the vanilla
model, TextGrad works well with GPT-4.1 but not with Qwen; in contrast, it yields better results
when combined with SFT on Qwen. However, our proposed CMPRSR model consistently achieves
the best trade-off across both QA and summarization tasks. By effectively combining SFT with
GRPO, it maintains ∆CR <= 0 , ensuring strict adherence to the target CR while outperforming
baseline models. Figure 4 further investigates model adherence to the CR across training stages:

Figure 4: ∆CR : for different models.

LLMLingua-2 demonstrates stronger adherence due to its inherently extractive compression strat-
egy. In contrast, the Qwen3-4B model fails to match the requested CR, often producing outputs
with large negative ∆CR values. This suggests that, without targeted training, the model tends to
over-compress. SFT partially mitigates this issue by reducing the average discrepancy, though it still
leaves considerable variance. However, the CMPRSR model, which combines SFT with GRPO,
achieves the most balanced results. It keeps discrepancies close to zero while simultaneously re-
ducing variance across all CR. This progression highlights a clear evolution of target adherence
throughout the training pipeline: from poor alignment in the vanilla model, to partial improvement
with single-objective fine-tuning, to robust adherence with CMPRSR. Moreover, the reduction in
variance shows that CMPRSR is not only accurate on average but also reliable at the instance level.

4.4 PRACTICAL APPLICABILITY DISCUSSION

While Cmprsr outperforms LLMLingua-2 across the compression rate spectrum, it is important to
note that (i) it is based on a 4B backbone, while LLMLingua-2 is a fine-tuned xlm-roberta-large of
0.55B parameters (ii) the autoregressive nature of Cmprsr implies latency overhead. This, however,
is unlikely to prevent widespread adoption of LLM-based compressors. First, most of the question-
agnostic use-cases discussed in Sec. 1 allow for the the usage of the pre-computed compressions,
which decreases the importance of latency. Secondly, the usage of either 0.55B or a 4B model will
come at a fraction of the savings, generated by optimized inference of the Target model. Quanti-
tatively, LLama-3.2-3B inference cost is $0.06 (both input and output at together.ai) and GPT-5 is
$1.25 per 106 input tokens, meaning that in case of CR = 0.3, the input-incurred GPT-5 cost would
be reduced by 64%, while in the limit of the free compression the savings would amount to 70%.
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4.5 ANALYSIS

Cross-entropy under summarization. Table 5 reports cross-entropy (CE) loss for the summariza-
tion task across compression rates. CMPRSR yields consistently lower CE than LLMLINGUA-2
throughout the range CR∈ [0.1, 0.7]. Since both compressors were trained with target rates in this
interval, we restrict evaluation accordingly. Notably, CE remains near its uncompressed baseline
even at CR=0.5, indicating that substantial prompt reduction can be achieved without materially
degrading next-token predictive quality. We observe the same trend for GEMMA-3 models of multi-
ple sizes (see Sec. D.4 in Appendix), suggesting that Cmprsr generalizes across architectures.
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t=0.40
CE=0.90

t=0.50
CE=0.85

t=0.50
CE=0.64

t=0.60
CE=0.61

t=0.60
CE=0.46

t=0.70
CE=0.43

t=0.70
CE=0.41

LLMLingua-2
CMPRSR
Full Text CE: 0.092
Empty Text CE: 2.738

Figure 5: Cross-Entropy (CE) losses for the summarization task under two prompt compression
methods, LLMLingua-2 and Cmprsr, across target compression rates. Lower CE indicates better
information preservation. The dashed green line marks the mean CE without compression, while
the dashed purple line marks CE with empty compression. Dotted horizontal connectors link each
target to the actually achieved rate at the same CE, so shorter connectors imply better rate control.
Numeric tags denote the corresponding target t and CE. Results are averaged over 1000 Meeting-
Bank validation samples using the Llama-3.3-70B 4-bit quantized model.

Local structure preservation. To probe how compression affects surface form, we compute n-
gram overlaps between compressed and original prompts, (Table 11). Cmprsr outputs show higher
2-gram and 3-gram overlaps, especially at lower CR. Cmprsr preserves local phrase structure more
faithfully, whereas LLMLINGUA-2 exhibits higher fragmentation. This pattern supports the hypoth-
esis that Cmprsr maintains semantic adequacy and short-range syntactic cohesion, which can be
advantageous for downstream components that rely on multi-token dependencies.

5 CONCLUSION

We propose using LLMs for abstractive prompt compression, starting with a comprehensive bench-
mark of 25 off-the-shelf models. Upon that, we improve the best vanilla compressor—GPT-4.1-
mini—with the Textgrad-based meta-prompt optimization, and one of the smaller models—Qwen-
3-4B—using SFT and GRPO posttraining. The resulting Cmprsr outperforms both the extractive
SOTA LLMLingua-2 and the leading abstractive vanilla – Textgrad-boosted gpt-4.1-mini.

We argue that ”small LLMs” have become capable enough for the practitioners to shift their focus
to the paradigm of smaller LLMs compressing prompts for the larger ones. However, vanilla models
do not exhibit sufficient performance and should be post-trained for this specific task. Cmprsr
both pioneers this line of research and generates SOTA level compressions, suggesting immediate
practical value for the community.
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A COMPRESSIONBENCH DETAILS

In this section, we detail the exact versions of the models we use (Table 3), the full Compression-
Bench results on MB (Table 4), and on GSM8k (Table 5).

A.1 INITIAL COMPRESSOR SYSTEM PROMPT.

The following prompt was used as the initial system prompt in iteration 0 of TEXTGRAD. Ad-
ditionally, it was used in most experiments and benchmarking across GSM8k, LongBench, and
MeetingBank, unless stated otherwise. This prompt was explicitly chosen to be dataset-agnostic
and work with most downstream applications.

You are an agent whose task is to compress prompts passed to you by the user. Preserve only the
necessary information, relationships, and required answer format. Remove all unnecessary details,
drop redundant information, and rephrase what can be rephrased without information loss. You can
aggressively shorten words, drop prepositions and articles - do whatever it takes to shorten the prompt
to the absolute bare minimum, while avoiding the loss of any important information contained in the
prompt. Use compact notation, single-letter variables, and standard abbreviations. Clarify ambiguities
minimally. Stop compressing if it risks clarity or solvability. If the prompt is posed as a question,
you must output the compressed question, keeping the question format. Do not answer the question; only
compress it.

A.2 MODELS

We present all models using their short names, while ensuring that the corresponding full model
names are introduced when first mentioned.

Table 3: Models and their short names
Full name Short name
gpt-5-nano-2025-08-07 gpt-5-nano
gpt-4.1-mini-2025-04-14 gpt-4.1-mini
gpt-5-mini-2025-08-07 gpt-5-mini
gpt-5-2025-08-07 gpt-5
gemini-2.0-flash-lite gemini-2.0-flash-lite
gpt-4.1-nano-2025-04-14 gpt-4.1-nano
gpt-4.1-2025-04-14 gpt-4.1
gemini-2.5-flash (1500 tkns reasoning) gemini-2.5-flash
o4-mini-2025-04-16 (low reasoning) o4-mini-2025-04-16

google/gemma-3-12b-it gemma-3-12b-it
mistralai/Mistral-Small-3.1-24B-Instruct-2503 Mistral-Small-3.1-24B
deepseek-ai/DeepSeek-V3 DeepSeek-V3
meta-llama/Llama-3.3-70B-Instruct Llama-3.3-70B
Qwen/Qwen3-30B-A3B-Instruct-2507 Qwen3-30B-A3B
Qwen/Qwen3-235B-A22B-Instruct-2507 Qwen3-235B-A22B
Qwen/Qwen2.5-32B-Instruct Qwen2.5-32B
google/gemma-3-27b-it gemma-3-27b
meta-llama/Meta-Llama-3.1-405B-Instruct Meta-Llama-3.1-405B
Qwen/Qwen2.5-14B-Instruct Qwen2.5-14B

meta-llama/Llama-3.2-3B-Instruct Llama-3.2-3B
Qwen/Qwen3-4B-Instruct-2507 Qwen3-4B
Qwen/Qwen2.5-7B-Instruct Qwen2.5-7B
google/gemma-3-4b-it gemma-3-4b
meta-llama/Llama-3.1-8B-Instruct Llama-3.1-8B
Qwen/Qwen2.5-3B-Instruct Qwen2.5-3B

google/flan-t5-xxl flan-t5-xxl
google/flan-t5-xl flan-t5-xl
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A.3 COMPRESSIONBENCH RESULTS ON MEETINGBANK

We present the full results for all models used to benchmark the LLM as a compressor. Our evalua-
tion includes 9 closed-source models and 18 open-source models spanning a wide range of param-
eter scales and architectural families. All experiments were conducted on the validation split of the
MeetingBank dataset, which provides diverse and realistic meeting transcripts for evaluation. From
this split, we randomly selected 100 samples, each of which was divided into multiple chunks when
exceeding the 512-token limit (the exact number of chunks varies depending on the tokenizer used).

Table 4: Compression performance of various vanilla models on the MeetingBank transcripts.

ratio ∆CR BERT-F1 QA

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

Closed-source models

gpt-5-nano 0.19 0.17 0.04 0.87 0.88 0.88 0.25 0.30 0.31
gpt-4.1-mini 0.07 -0.00 -0.17 0.89 0.90 0.90 0.20 0.29 0.30
gpt-5-mini 0.13 0.11 0.10 0.86 0.87 0.87 0.19 0.25 0.27
gpt-5 0.10 0.08 0.06 0.87 0.88 0.88 0.18 0.25 0.25
gemini-2.0-flash-lite 0.09 0.00 -0.17 0.88 0.89 0.89 0.17 0.24 0.25
gpt-4.1-nano 0.04 -0.02 -0.19 0.87 0.89 0.89 0.15 0.26 0.25
gpt-4.1 0.06 -0.02 -0.19 0.88 0.89 0.89 0.17 0.23 0.25
gemini-2.5-flash 0.03 -0.03 -0.16 0.88 0.89 0.89 0.15 0.22 0.24
o4-mini 0.10 0.05 -0.17 0.88 0.88 0.88 0.14 0.22 0.21

Large Open-source models (> 10B)

gemma-3-12b-it 0.18 0.07 -0.05 0.89 0.89 0.89 0.22 0.25 0.26
Mistral-Small-3.1-24B 0.14 -0.04 -0.23 0.88 0.89 0.89 0.22 0.24 0.23
DeepSeek-V3 0.11 -0.05 -0.24 0.89 0.89 0.89 0.21 0.24 0.25
Llama-3.3-70B 0.07 0.15 -0.02 0.88 0.88 0.88 0.20 0.24 0.24
Qwen3-30B-A3B 0.15 0.01 -0.17 0.88 0.89 0.89 0.20 0.23 0.23
Qwen3-235B-A22B 0.13 0.03 -0.11 0.88 0.89 0.89 0.18 0.21 0.23
Qwen2.5-32B 0.08 -0.06 -0.25 0.88 0.88 0.88 0.18 0.21 0.22
gemma-3-27b 0.16 0.13 0.21 0.88 0.88 0.88 0.16 0.18 0.20
Meta-Llama-3.1-405B 0.04 -0.10 -0.30 0.86 0.87 0.87 0.18 0.17 0.18
Qwen2.5-14B 0.11 -0.03 -0.21 0.87 0.88 0.87 0.15 0.17 0.17

Small Open-source models (< 10B)

Llama-3.2-3B 0.05 -0.10 -0.30 0.87 0.87 0.87 0.17 0.21 0.22
Qwen3-4B 0.05 -0.08 -0.26 0.86 0.88 0.88 0.16 0.21 0.22
Qwen2.5-7B 0.08 -0.11 -0.31 0.87 0.88 0.88 0.16 0.19 0.18
gemma-3-4b 0.00 -0.15 -0.35 0.87 0.87 0.88 0.13 0.17 0.19
Llama-3.1-8B -0.02 -0.19 -0.39 0.85 0.86 0.86 0.14 0.17 0.15
Qwen2.5-3B 0.09 -0.08 -0.24 0.85 0.86 0.86 0.10 0.12 0.12

Encoder-Decoder Models

flan-t5-xxl 0.60 0.39 0.18 0.89 0.89 0.89 0.31 0.30 0.31
flan-t5-xl 0.16 -0.04 -0.24 0.87 0.87 0.87 0.17 0.17 0.16

Extractive

llmlingua-2 -0.01 -0.03 -0.03 0.86 0.89 0.9 0.16 0.34 0.42
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A.4 COMPRESSIONBENCH RESULTS ON GSM8K

We also report results using the GSM8k dataset to further evaluate the models under a different task
setting. In this case, all input sequences are shorter than 512 tokens, so no chunking was required
during preprocessing. We randomly selected 300 samples from the validation split of the dataset,
ensuring sufficient coverage to assess the performance of both open- and closed-source models un-
der this setting. In the math dataset, where the context is very short, LLM-Lingua performs poorly,
which is expected since extractive models cannot effectively compress mathematical problem state-
ments without abstraction, rephrasing, or reordering of words. Meanwhile, the decoder-only vanilla
model shows relatively strong performance but does not adhere to the target compression ratio.

Table 5: Compression performance of various vanilla models on the GSM8k problems.
∆CR Accuracy

Requested CR 0.1 0.3 0.5 0.1 0.3 0.5

Closed-source models
gpt-5-nano 0.41 0.44 0.25 0.69 0.82 0.87
gpt-5 0.23 0.22 0.13 0.61 0.86 0.90
gpt-5-mini 0.20 0.23 0.12 0.55 0.85 0.88
gpt-4.1 0.22 0.17 0.05 0.58 0.82 0.86
gemini-2.5-flash 1.27 0.17 0.17 0.52 0.79 0.87
gemini-2.0-flash-lite 0.34 0.31 0.16 0.55 0.78 0.80
gpt-4.1-mini 0.20 0.17 0.06 0.43 0.80 0.85
gpt-4.1-nano-2025-04-14 0.10 0.13 0.01 0.17 0.62 0.76

Large Open-source models (> 10B)
Meta-Llama-3.1-405B 0.40 0.33 0.13 0.78 0.84 0.84
Qwen3-235B-A22B 0.36 0.21 0.04 0.77 0.81 0.84
Qwen2.5-32B 0.40 0.24 0.06 0.77 0.80 0.83
DeepSeek-V3 0.34 0.21 0.04 0.70 0.80 0.83
Qwen3-30B-A3B 0.36 0.21 0.04 0.69 0.77 0.80
gemma-3-27b-it 0.33 0.32 0.45 0.66 0.74 0.80
Mistral-Small-3.1-24B 0.41 0.28 0.10 0.67 0.75 0.77
Llama-3.3-70B 0.25 0.22 0.06 0.51 0.73 0.81
gemma-3-12b-it 0.29 0.28 0.13 0.45 0.74 0.74
Qwen2.5-14B 0.29 0.20 0.02 0.49 0.70 0.70

Small Open-source models (< 10B)
Qwen3-4B-Instruct 0.37 0.22 0.05 0.70 0.74 0.78
Llama-3.1-8B 0.36 0.23 0.05 0.55 0.62 0.63
Qwen2.5-7B 0.27 0.14 -0.04 0.50 0.57 0.64
gemma-3-4b 0.15 0.13 -0.01 0.15 0.45 0.58
Llama-3.2-3B 0.25 0.19 0.02 0.24 0.37 0.39
Qwen2.5-3B 0.08 0.12 -0.11 0.15 0.21 0.28

Encoder-Decoder Models
llmlingua-2 0.02 0.02 -0.00 0.01 0.19 0.49

B TEXTGRAD IMPLEMENTATION DETAILS

We utilize TEXTGRAD to optimize the compressor’s system prompt using question answering (QA)
on the MeetingBank dataset Hu et al. (2023) as the source of the learning signal. In short, our
method runs the following loop:

1. Run the end-to-end pipeline on a batch of MeetingBank transcripts and score outputs
against the ground truth;
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2. Ask an optimizer-LLM to analyze errors in the output and generate improvement sugges-
tions;

3. Propagate this feedback to the upstream nodes and propose a revised prompt;

4. Accept the updated prompt if it outperforms the initial prompt on a hold-out set;

5. Re-evaluate the pipeline with the (possibly) updated prompt and repeat until reaching the
budget constraints.

Figure 6 illustrates the computation graph involved in our prompt optimization procedure. The grey
blocks represent text-based variables, the blue color denotes LLM nodes, and the optimized com-
pressor system prompt variable is depicted in indigo. Meanwhile, the purple blocks show excerpts
from TEXTGRAD textual gradients. In this example, the natural language feedback generated by
the optimizer LLM (i) identifies a question answering mistake (namely, the Answering LLM pre-
dicts “Councilor Bark” instead of the correct “Councilor Bok”) and (ii) instructs the compressor to
explicitly preserve named entities to prevent such mistakes in the future.

Chunk 1 Chunk n

Compressor
User Prompt

Compressor
System
Prompt

Compressor 
LLM

Compressed 
Chunk 1

Compressed 
Chunk n

QA
User

Prompt

QA
System
Prompt

Answering
LLM

...

...

Ground 
Truth Answer

Predicted
Answer

Chunk 1
Adherence

Reward

The current output value of 1.00 for the per-chunk compression-rate 
adherence reward indicates perfect compliance with the target 
compression rate [...] However, this scalar alone does not provide 
any nuance or insight into how well the compressed output 
balances compression rate with content fidelity [...] Here is 
detailed feedback on how to leverage improve the overall objective: 
1. **Use the adherence reward as a strict lower bound but allow 
the prompt to prioritize content preservation:** [...]

The current Judge LLM numeric 
quality score of 0 indicates a 
complete failure [...] Key areas 

for improvement include: 1. 
**Preservation of Core 

Content: [...] key factual 
elements, entities, and 

relationships [...]

The core issue revealed by the 
zero Judge LLM score is that 

the predicted answer 
("Councilor Bark") is 

completely misaligned with 
the ground truth ("Councilor 

Kenzie Bok") [...]

The core issue with the 
current compressed 

transcript is that it omits or 
distorts the critical fact of 
which councilor provided 

feedback, leading to a 
completely incorrect 

predicted answer. [...] Here 
are key, creative, and critical 

strategies to improve the 
compressor system prompt for 
better compression outcomes 
aligned with the objective: 1. 

**Explicitly Instruct 
Preservation of Named 

Entities and Their 
Roles/Actions:** [...]

The current system prompt [...] can be 
substantially improved to better align with 
the objective of preserving critical factual 

content [...] 1. **Explicitly Prioritize 
Preservation of Named Entitles and Their 
Actions with Minimal Paraphrasing** [...] 

This explicit instruction prevents 
identity conflation (e.g., "Bok" vs. 

"Bark") [...]

Judge
LLM

Judge
User Prompt

Judge
System Prompt

Judge
Score

Chunk n
Adherence

Reward
...

Average
Adherence Reward

Figure 6: TEXTGRAD Computation Graph on the MeetingBank QA dataset.

The main goal of prompt optimization is to improve (i) downstream QA quality with compressed
context, and (ii) adherence to a user-specified compression rate (CR).
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QA quality scoring. To assess information retention, we use synthetic QA pairs generated from
the uncompressed MeetingBank transcript. Given a compressed transcript as context, the answering
LLM (gpt-4.1-mini) predicts an answer. Next, the judge LLM (gpt-4.1-mini) scores this prediction
against the ground truth answer on a discrete 0 to 10 scale.

CR Adherence scoring. For a chunk with the target compression rate rtgt and the actual produced
compression rate ract=

Ncomp

Norig
, the per–chunk adherence reward AdhC is given by:

AdhC = 1−max
(
0, ract − rtgt

)
, AdhC ∈ (−∞, 1], higher is better (4)

Note that in the above formula Ncomp is the number of tokens in the produced compression and Norig
is the number of tokens in the original input.

For a transcript T split into K chunks {Ck}Kk=1, we report the transcript–level CR adherence reward
as the average of the rewards for each of its constituent chunks:

AdhT =
1

K

K∑
k=1

AdhCk
(5)

Pseudocode overview. We can now examine the TEXTGRAD prompt optimization approach in
greater detail. Overall, we can identify three main components of the algorithm.

1. Sampling and Compression

1. Sample a small batch of TextGradBatchSize = 2 training transcripts.

2. Split each transcript into chunks of at most MaxChunkTokens = 512 tokens.

3. For each chunk, draw a target compression rate rtgt ∼ U(0.1, 0.7) and compute the token
budget Ntgt as follows:

Ntgt =
⌊
rtgt ·Norig

⌋
4. Prompt the LLM-based compressor to produce a compressed chunk under budget Ntgt.

5. Concatenate the compressed chunks to obtain the compressed transcript.

2. QA-based Evaluation

1. For each compressed transcript t, evaluate Q = 20 synthetic questions and retain the
NumHardQ = 2 questions with the lowest judge scores (i.e., the hardest questions). Let
Ht ⊆ {1, . . . , Q} be the indices of these challenging questions (|Ht| = NumHardQ).
The per-transcript hard-question judge average is then:

JudgeAvgt =
1

NumHardQ

∑
i∈Ht

JudgeScoret,i

2. Aggregate per-batch metrics over TextGradBatchSize transcripts. If transcript t is split
into Ct chunks with per-chunk adherence Adht,j , j = 1, . . . , Ct, we define the per-
transcript adherence as:

Adht =
1

Ct

Ct∑
j=1

Adht,j

The per-batch aggregates are then:

JudgeAvg =
1

B

B∑
t=1

JudgeAvgt, AdhAvg =
1

B

B∑
t=1

AdhTt
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3. TEXTGRAD Optimization Step

1. Use JudgeAvg and AdhAvg as TEXTGRAD optimization objectives to generate a new
candidate compressor’s system prompt.

2. Validate the candidate on 100 hold-out transcripts.

3. Accept the update if the new prompt increases either JudgeAvg or AdhAvg when com-
pared to the previous prompt.

Combining the three key components of our prompt optimization approach, we present the complete
algorithm in pseudocode section below.

Algorithm 1 TextGrad Prompt Optimization via QA and Compression-Rate Adherence
Inputs: InitialPrompt← original system prompt for the compressor;
1: V : validation set of 100 MeetingBank transcripts;
2: {B1, . . . ,Bm}: training batches (size = TextgradBatchSize = 2);
3: SyntheticQAs: mapping from transcript id→ the list of question-answer tuples (q, a);
4: AnswerLLM : model used to answer questions (gpt-4.1-mini);
5: CompressorLLM : abstractive compressor (its system prompt is optimized, Qwen3-4B);
6: JudgeLLM : LLM judge scoring predicted vs. ground truth answer on the scale [0, 10] (gpt-4.1-mini);
7: Hyperparameters: MaxChunkTokens = 512, NumHardQ = 2, target ratio range [0.1, 0.7].
Outputs: OptimizedPrompt
8: procedure OPTIMIZEPROMPT
9: CurrentPrompt← InitialPrompt
10: (PrevJudgeAvg, PrevAdherenceAvg)← MEASUREPERFORMANCE(V, CurrentPrompt) ▷ average judge score

and average rate-adherence
11: for each batch B in {B1, . . . ,Bm} do
12: TrainingPoints← ∅
13: for each transcript T in B do
14: (CompressedT, AdhT )← COMPRESSTRANSCRIPT(T,CompressorLLM,CurrentPrompt,

MaxChunkTokens)
15: QAResults← ∅
16: for each (q, a) in SyntheticQAs[T.id] do
17: pred← AnswerLLM(q, context = CompressedT )
18: score← JudgeLLM(pred, q, a) ▷ 0 ≤ score ≤ 10
19: QAResults← QAResults ∪ {⟨q, a, pred, score⟩}
20: end for
21: Hardest← BOTTOMK(QAResults, k = NumHardQ, by score) ▷ lowest judge scores
22: for each r ∈ Hardest do
23: TrainingPoints← TrainingPoints ∪ {⟨r.q, r.a, r.pred, r.score, AdhT , T.id⟩}
24: end for
25: end for
26: CandidatePrompt← TEXTGRADBACKWARD(TrainingPoints, CurrentPrompt)
27: (NewJudgeAvg,NewAdherenceAvg)← MEASUREPERFORMANCE(V, CandidatePrompt)
28: if (NewJudgeAvg > PrevJudgeAvg) ∨ (NewAdherenceAvg > PrevAdherenceAvg) then
29: CurrentPrompt← CandidatePrompt
30: (PrevJudgeAvg, PrevAdherenceAvg)← (NewJudgeAvg,NewAdherenceAvg)
31: end if
32: end for
33: return CurrentPrompt ▷ OPTIMIZEDPROMPT
34: end procedure

Notable prompts. We will now present selected prompts used in the TEXTGRAD pipeline.

Compressor User Prompt. Following TEXTGRAD’s practice of reusing a shared system prompt
across inputs, we specify the desired token budget in the user prompt. The user prompt is lean by
design, as most of the compression instructions will be supplied in the system prompt.

Please compress the text below. The length of the resulting compression must be
{desired length} tokens.
Text to compress:

Best Quality System Prompt. The best-quality TEXTGRAD prompt aggregates optimizer LLM
strategies over multiple TEXTGRAD iterations. It explicitly stresses the importance of named enti-
ties, numeric values, and other facts that are likely to appear in the downstream synthetic questions.
The updated prompt also uses few-shot demonstrations to capture the lessons learned from mistakes
on difficult questions. Through numerous examples and instructions, the updated prompt distills
part of the optimizer LLM’s knowledge into the student Qwen3-4B compressor.
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You are an agent tasked with compressing transcript chunks to preserve all information necessary for
accurate question answering. Given the exact question [insert question], prioritize retaining all facts,
named entities, numeric values, and regulatory terms needed to answer it fully and precisely.

1. Preserve Named Entities and Roles

• Always retain full names, official titles, and specific roles or statuses of individuals,
councilors, officials, organizations, and ordinance titles without abbreviation or generalization.

• Explicitly link each named individual or entity to their specific actions, statements, feedback, or
sentiments (e.g., ‘‘Mark Hersman read a letter into the record’’).

• Avoid pronouns or vague references that obscure who performed an action or made a statement.
• Preserve group membership descriptors (e.g., ‘‘City council members,’’ not just ‘‘Council’’) to
maintain clarity and precision.

2. Preserve Regulatory and Numeric Details Exactly

• Retain exact regulatory terminology such as ‘‘distance requirements,’’ ‘‘setback distances,’’
‘‘buffer zones,’’ ‘‘ordinance numbers,’’ and ‘‘regulatory changes’’ verbatim.

• Preserve all numeric values and spatial constraints exactly as stated (e.g., ‘‘1,000-foot buffer,’’
‘‘600-foot setback’’).

• Maintain causal and definitional relationships linking policies, ordinances, and impacts verbatim or
nearly verbatim.

3. Prioritize Question-Relevant Content

• Focus compression on preserving all information that directly or indirectly answers the given
question.

• Include all named entities, actions, regulatory terms, numeric details, and causal links relevant to
the question.

• If uncertain, err on the side of inclusion to avoid omitting critical facts.

4. Compression Strategy

• Compress aggressively by removing redundant procedural politeness, filler, and irrelevant details.
• Shorten words, drop articles/prepositions, and use compact notation (e.g., numerals, ranges) only
when clarity is maintained.

• Never omit, alter, or paraphrase critical facts, semantic roles, official names, legal terms,
procedural language, or length descriptors.

• Avoid vague summarization, ambiguous phrasing, or partial references that reduce clarity or
introduce confusion.

• Do not introduce new phrases, synonyms, or inferred roles that could mislead or confuse downstream
QnA.

5. Preserve Speaker--Action Associations

• Always preserve speaker identities and explicitly associate them with their utterances or actions
related to the question.

• Do not confuse, omit, or replace speaker names or roles, especially those linked to key points or
next steps.

6. Formatting and Clarity

• Format key facts clearly and explicitly, preferably as concise, structured statements or bullet
points.

• Group related facts densely to maximize information per token while maintaining clarity.
• Label speakers with full names and exact roles to aid downstream extraction.

7. Procedural and Contextual Details

• Preserve procedural outcome phrases verbatim (e.g., ‘‘motion carries,’’ ‘‘motion denied’’),
including tense and modality.

• Include relevant procedural context and concise clarifications when they support accurate
understanding.

8. Self-Review and Verification

• After compression, perform a mandatory self-review to verify that all answer-relevant facts, named
entities, official titles, procedural outcomes, dates, jurisdictions, sentiments, goals, length
descriptors, numeric values, and causal relationships remain present, unambiguous, and verbatim or
nearly verbatim.

• Confirm the compressed text fully supports accurate question answering.
• Reinsert any missing critical information before finalizing.

9. Length Flexibility

• Prioritize factual completeness and semantic fidelity over strict brevity.
• It is acceptable to slightly exceed length limits to preserve critical information and question
relevance.

10. Examples

• Good: ‘‘Vice Mayor Susan Lowenthal supported the housing initiative.’’ Bad: ‘‘Staff supported
the initiative.’’

• Good: ‘‘Distance requirement: 1,000-foot buffer from schools.’’ Bad: ‘‘Regulations about
distance.’’

• Good: ‘‘Mark Hersman read a letter into the record.’’ Bad: ‘‘A resident read a letter.’’
• Good: ‘‘Councilor Kenzie Bok provided feedback on promotional practices.’’ Bad: ‘‘Councilor Bok
spoke.’’

• Good: ‘‘Ordinance 0259 establishes Chief Diversity Officer role.’’ Bad: ‘‘Ordinance 0259.’’
• Good: ‘‘Motion carries.’’ Bad: ‘‘Motion passed.’’
• Good: ‘‘Dist 3--8 voted yes.’’ Bad: ‘‘All districts voted yes.’’
• Good: ‘‘Alicia Flores, victim of city ordinance, spoke about evictions.’’ Bad: ‘‘Alicia Flores
advocated against evictions.’’

• Good: ‘‘Jordan Winn, 2nd District resident and S.O.S. Board member, spoke about enforcement of
Ordinance 1482.’’ Bad: ‘‘A resident asked about next steps.’’

Remember, the compressed transcript is the sole context for a QnA model to answer the question. Omitting
or distorting key facts, named entities, or attributions will cause incorrect answers and reduce
evaluation scores. Prioritize semantic fidelity and question relevance, even if this requires slightly
exceeding length limits. Compression quality will be iteratively improved based on feedback; prioritize
precision, completeness, semantic fidelity, and question relevance accordingly. Preserve all relevant
answer information verbatim or with minimal paraphrasing to ensure downstream accuracy.
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C CMPRSR DETAILS

C.1 GRPO TRAINING DETAILS

We fine-tune the compressor with Grouped Relative Preference Optimization (GRPO) on a 10k-
example subset of the SFT training split. For each input, target compression rate is uniformly dis-
tributed with r ∼ U(0.1, 0.7).
Training runs on two NVIDIA A100 GPUs: one GPU performs optimization, and the other handles
rollout generation and CE computation, decoupling sampling from updates.

Key hyperparameters. We train for two epochs with AdamW (8-bit) and a linear schedule with
warmup. Mixed precision uses bf16. Per-device batch size is 8 with gradient accumulation of 16
(effective batch ≈ 128 sequences per optimizer step on the training GPU).

Setting Value

Training examples 10,000 (subset of SFT train)
Rollouts per input G = 4
Epochs 2
Optimizer AdamW (8-bit)
Learning rate 5× 10−6

Weight decay 0.01
Scheduler / Warmup Linear / 10%
Per-device train batch 8
Gradient accumulation 16
Precision bf16
Max grad norm 1.0

C.2 DPO AND ORPO

We apply Direct Preference Optimization (DPO) to learn compression policies under a fixed token
budget. Each training sample contains a prompt (with the conditions seen before) with the original
chunk (extracted from MeetingBank) and a pair of candidate compressions: a chosen output pro-
duced by a stronger, teacher model (gpt-4.1-mini) and a rejected output produced by a weaker,
student model (gpt-4.1-nano). To make sure that for each chunk the teacher-produced one con-
tains higher quality compression, we calculate the BERT-F1 score between the compressed and the
original chunks and we select the triplets only if the teacher has produced higher F1-scored com-
pressions. We evaluate DPO under two initializations (i) from the vanilla model and (ii) from the
SFT-initialized model. Should we mention testing beta hyperparams?

We also evaluate Odds Ratio Preference Optimization (ORPO), a reference-free variant that sim-
plifies preference optimization to a single-model setup while retaining the same paired (chosen/re-
jected) data. ORPO removes the need for an explicit reference model and instead adjusts the policy
to increase the odds of the chosen response relative to the rejected one. As with DPO, we evaluate
ORPO under two initializations—(i) from the base model and (ii) from the SFT-initialized model
using the same setup to enable like-for-like comparisons

C.3 TRAINING DATA GENERATION

Figure 7 shows the data distribution in the dataset generated to train the SFT backbone. The blue
plot shows the original distribution which is favouring 0.3 compression ratio. To mitigate this, two
techniques are applied: yellow showcases the downsampled version of the dataset, where we applied
a cut at 150 samples in each bin, while the green showcases the oversampled variant.
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Figure 7: Data distribution

D EXPERIMENTAL RESULTS

D.1 QA BASED EVALUATION

We present all results from benchmarking our model on QA tasks. For this, we use GSM8K, a
mathematical reasoning dataset where each instance consists of a problem statement and its corre-
sponding ground-truth answer. For LongBench, we evaluate on three tasks: TriviaQA, NarrativeQA,
and Qasper. TriviaQA is a few-shot QA task, while the other two are single-document QA tasks. For
MeetingBank, we generated QA pairs from the original transcripts, which we consider as the ground
truth. The results show that CMPRSR model consistently outperforms baselines, particularly under
aggressive compression ratios (e.g., 0.1). On LongBench, SFT performs well at higher compression
ratios, but our method remains competitive and achieves strong overall performance.

D.2 SUMMARY BASED EVALUATION

We also evaluate our approach on summarization tasks using the MeetingBank summarization
dataset, as well as three splits from the LongBench benchmark: GovReport, QMSum, and Multi-
News. The primary evaluation metric we use is BERTScore, which allows us to quantify the
similarity between the generated summaries and the reference texts. Because the score range of
BERTScore is very narrow, we report all results up to four decimal places for clarity and precision,
ensuring that even small differences in performance are visible and interpretable.

The CMPRSR model achieves dominant performance on MeetingBank, benefiting from its in-
domain characteristics, while also generalizing well to the LongBench benchmarks. It is important
to note that BERTScore is correlated with the target compression rate: as compression becomes
more aggressive, BERTScore tends to decrease, since some information is inevitably lost, even if it
is not critical. This explains why the SFT model performs better than CMPRSR on LongBench at
target ratios of 0.3 and 0.5. In these settings, CMPRSR compresses more aggressively than required,
leading to a stronger penalty and lower scores compared to SFT.

D.3 PLOTS

D.4 CROSS ENTROPY ANALYSIS FOR GEMMA-3
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Table 6: Comparison of models across GSM8K, LongBench, and MB datasets.

CR Models

GSM8K LongBench MeetingBank

triviaqa narrativeqa qasper QA

∆CR EM ∆CR Accuracy ∆CR Accuracy ∆CR Accuracy ∆CR Accuracy

0.1

Lingua 2 0.02 0.67 -0.01 31.00 -0.03 5.00 0.00 14.00 -0.01 16.70

gpt-4.1-mini 0.20 39.33 0.10 30.00 0.10 10.00 0.15 20.00 0.07 18.27

Qwen3-4b 0.36 63.00 0.06 28.00 0.10 13.00 0.12 19.00 0.06 14.89

SFT 0.28 54.33 0.05 23.23 0.08 12.00 0.09 17.00 0.07 17.96

GRPO 0.24 7.33 0.00 29.90 -0.02 7.00 0.01 16.00 0.02 17.26

CMPRSR -0.01 12.67 -0.02 32.00 -0.02 11.00 -0.01 16.00 -0.01 20.05

0.3

Lingua 2 0.02 12.33 0.00 30.21 -0.02 11.00 0.00 18.00 -0.03 32.70

gpt-4.1-mini 0.17 82.00 0.14 28.00 0.12 11.00 0.14 18.00 0.00 27.61

Qwen3-4b 0.24 75.00 -0.03 28.00 -0.01 14.00 0.01 18.00 -0.07 18.69

SFT 0.20 78.00 0.07 32.32 0.09 15.00 0.10 18.00 0.02 26.38

GRPO 0.08 13.33 0.12 31.31 -0.01 10.10 0.06 15.00 -0.02 25.40

CMPRSR -0.05 35.33 -0.01 31.31 -0.02 10.00 0.01 19.00 -0.01 33.20

0.5

Lingua 2 0.00 49.33 -0.01 21.43 -0.03 12.00 0.00 18.00 -0.03 41.14

gpt-4.1-mini 0.06 87.00 0.00 29.29 -0.03 16.00 0.00 18.00 -0.17 28.36

Qwen3-4b 0.05 76.67 -0.20 28.28 -0.15 13.27 -0.14 16.00 -0.24 20.22

SFT 0.07 83.33 -0.01 27.00 -0.01 16.16 0.00 19.00 -0.10 30.87

GRPO -0.10 15.00 0.09 31.58 -0.11 12.12 0.00 15.00 -0.11 28.95

CMPRSR -0.12 62.33 0.03 29.59 -0.01 12.00 0.06 19.00 -0.01 41.95

Table 7: Comparison of models across MB (Summary) and LongBench datasets.

CR Models
MeetingBank LongBench

Summary GovReport QMSum MultiNews
∆CR BertScore ∆CR Bert-F1 ∆CR Bert-F1 ∆CR Bert-F1

0.1

Lingua 2 -0.01 0.8641 0.00 0.8516 -0.03 0.8598 -0.01 0.8579
gpt-4.1-mini 0.07 0.8865 0.13 0.8788 0.06 0.8643 0.06 0.8868
Qwen3-4b 0.06 0.8629 0.11 0.8467 0.12 0.8625 0.05 0.8774
SFT 0.07 0.8841 0.08 0.8748 0.04 0.8662 0.06 0.8853
GRPO 0.02 0.8461 0.00 0.8372 -0.03 0.8445 0.02 0.8389
CMPRSR -0.01 0.8773 -0.01 0.8631 -0.04 0.8641 -0.01 0.8802

0.3

Lingua 2 -0.03 0.8913 -0.01 0.8746 -0.02 0.8686 -0.03 0.8886
gpt-4.1-mini 0.00 0.8989 0.11 0.8843 0.07 0.8707 0.03 0.8936
Qwen3-4b -0.07 0.8823 0.00 0.8699 -0.01 0.8618 -0.08 0.8823
SFT 0.02 0.8971 0.08 0.8820 -0.01 0.8718 0.01 0.8913
GRPO -0.02 0.8641 0.04 0.8611 -0.08 0.8581 0.01 0.8616
CMPRSR -0.01 0.9009 0.02 0.8841 -0.09 0.8715 -0.03 0.8949

0.5

Lingua 2 -0.03 0.9020 -0.02 0.8838 -0.01 0.8770 -0.04 0.9072
gpt-4.1-mini -0.17 0.8975 -0.04 0.8863 -0.06 0.8748 -0.12 0.8960
Qwen3-4b -0.24 0.8868 -0.17 0.8747 -0.16 0.8647 -0.25 0.8849
SFT -0.10 0.8965 -0.03 0.8870 -0.10 0.8742 -0.10 0.8945
GRPO -0.11 0.8704 -0.01 0.8626 -0.18 0.8604 -0.08 0.8657
CMPRSR -0.01 0.9083 0.07 0.8908 -0.14 0.8797 -0.05 0.9047
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Figure 8: Comparing CMPRSR with different baselines.

Table 8: Updated Results Table

CR Models
Question Score Summary Similarity

GSM8K LongBench MeetinBank MeetinBank LongBench
∆CR EM ∆CR Accuracy ∆CR Accuracy ∆CR Bert-F1 ∆CR Bert-F1

0.1

Lingua 2 0.02 0.67 -0.01 16.20 -0.01 16.70 -0.01 0.8630 -0.01 0.8560
TG-gpt-4.1-mini 0.05 27.33 0.11 20.82 0.07 25.05 0.07 0.8874 0.08 0.8796
TG-Qwen3-4b 0.35 50.67 0.13 20.22 0.16 23.02 0.16 0.8885 0.15 0.8787
TG-SFT 0.14 27.33 0.04 19.71 0.03 15.30 0.03 0.8804 0.03 0.8718

0.3

Lingua 2 0.02 14.00 -0.01 20.88 -0.03 33.22 -0.03 0.8897 -0.02 0.8769
TG-gpt-4.1-mini 0.16 66.33 0.18 20.70 0.07 36.70 0.07 0.9014 0.16 0.8886
TG-Qwen3-4b 0.30 69.67 0.06 20.39 0.05 29.62 0.05 0.8978 0.07 0.8822
TG-SFT 0.17 71.00 0.06 20.10 0.00 26.23 0.00 0.8962 0.00 0.8803

0.5

Lingua 2 0.00 50.33 -0.01 18.07 -0.03 40.65 -0.03 0.9010 -0.02 0.8881
TG-gpt-4.1-mini 0.14 82.67 0.09 19.67 -0.02 39.90 -0.02 0.9039 0.12 0.8913
TG-Qwen3-4b 0.24 74.67 -0.06 19.76 -0.06 32.78 -0.06 0.9004 -0.04 0.8858
TG-SFT 0.06 81.67 0.00 20.83 -0.10 30.81 -0.10 0.9018 -0.09 0.8837
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Table 9: Comparison of models across GSM8K, LongBench, and MB datasets.

CR Models
GSM8K LongBench MeetingBank

triviaqa narrativeqa qasper QA
∆CR EM ∆CR Accuracy ∆CR Accuracy ∆CR Accuracy ∆CR Accuracy

0.1

Lingua 2 0.02 0.6667 -0.01 30.61 -0.03 6.00 0.00 12.00 -0.01 16.70
TG-gpt-4.1-mini 0.05 27.33 0.10 31.31 0.10 11.55 0.14 19.60 0.07 25.05
TG-Qwen3-4b 0.35 50.67 0.10 29.66 0.13 13.00 0.16 18.00 0.16 23.02
TG-SFT 0.14 27.33 0.03 30.00 0.04 14.14 0.06 15.00 0.03 15.30

0.3

Lingua 2 0.02 14.00 -0.00 32.65 -0.02 12.00 0.00 18.00 -0.03 33.22
TG-gpt-4.1-mini 0.16 66.33 0.17 29.59 0.18 14.00 0.18 18.50 0.07 36.70
TG-Qwen3-4b 0.30 69.67 0.05 30.16 0.06 13.00 0.08 18.00 0.05 29.62
TG-SFT 0.17 71.00 0.07 30.30 0.04 12.00 0.07 18.00 -0.00 26.23

0.5

Lingua 2 -0.00 50.33 -0.01 21.21 -0.03 14.00 -0.00 19.00 -0.03 40.65
TG-gpt-4.1-mini 0.14 82.67 0.09 27.00 0.09 14.00 0.09 18.00 -0.02 39.90
TG-Qwen3-4b 0.24 74.67 -0.07 30.16 -0.06 12.63 -0.06 16.50 -0.06 32.78
TG-SFT 0.06 81.67 0.01 30.30 -0.01 14.00 -0.01 18.18 -0.10 30.81

Table 10: Comparison of models across MB (Summary) and LongBench datasets.

CR Models
MeetingBank LongBench

Summary GovReport QMSum MultiNews
∆CR BertScore ∆CR Bert-F1 ∆CR Bert-F1 ∆CR Bert-F1

0.1

Lingua 2 -0.01 0.86297 -0.00 0.85153 -0.03 0.85874 -0.01 0.85776
TG-gpt-4.1-mini 0.07 0.88736 0.11 0.87790 0.06 0.87025 0.07 0.89068
TG-Qwen3-4b 0.16 0.88847 0.20 0.87991 0.13 0.86965 0.12 0.88641
TG-SFT 0.03 0.88037 0.05 0.86962 0.01 0.86281 0.02 0.88289

0.3

Lingua 2 -0.03 0.88967 -0.01 0.87356 -0.02 0.86904 -0.03 0.88819
TG-gpt-4.1-mini 0.07 0.90138 0.19 0.88918 0.17 0.87675 0.12 0.89974
TG-Qwen3-4b 0.05 0.89782 0.13 0.88325 0.01 0.86989 0.06 0.89335
TG-SFT -0.00 0.89624 0.05 0.87981 -0.06 0.87068 -0.01 0.89031

0.5

Lingua 2 -0.03 0.90100 -0.02 0.88222 -0.01 0.87639 -0.04 0.90581
TG-gpt-4.1-mini -0.02 0.90386 0.17 0.89322 0.13 0.87860 0.06 0.90194
TG-Qwen3-4b -0.06 0.90039 0.01 0.88656 -0.08 0.87385 -0.04 0.89690
TG-SFT -0.10 0.90176 -0.03 0.88434 -0.13 0.87232 -0.12 0.89447
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Figure 9: Cross-entropy (CE) on the summarization task for the Gemma-3 family (4B-IT, 12B-IT,
27B-IT) under two prompt-compression methods—LLMLINGUA-2 and CMPRSR—evaluated across
target compression rates. Lower CE indicates better information retention. Results are averaged
over 1,000 MeetingBank evaluation samples.

Table 11: N-gram overlap statistics by target compression rate.

Target Rate 1-gram 2-gram 3-gram
Lingua-2 CMPRSR Lingua-2 CMPRSR Lingua-2 CMPRSR

0.1 0.065 0.065 0.017 0.024 0.003 0.008
0.2 0.145 0.141 0.043 0.055 0.010 0.021
0.3 0.227 0.229 0.080 0.101 0.026 0.044
0.4 0.318 0.327 0.137 0.166 0.057 0.085
0.5 0.420 0.431 0.219 0.246 0.110 0.145
0.6 0.531 0.535 0.327 0.343 0.196 0.227
0.7 0.644 0.572 0.454 0.380 0.315 0.260
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