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Figure 1: Continual Autonomous Learning: We enable a legged mobile manipulator to learn a variety of
tasks such as moving chairs (top, left and right), righting a dustpan (top, middle), and sweeping (bottom) via
practice in the real world with minimal human intervention.

Abstract: We present a fully autonomous real-world RL framework for mobile2

manipulation that can learn policies without extensive instrumentation or human su-3

pervision. This is enabled by 1) task-relevant autonomy, which guides exploration4

towards object interactions and prevents stagnation near goal states, 2) efficient5

policy learning by leveraging basic task knowledge in behavior priors, and 3) for-6

mulating generic rewards that combine human-interpretable semantic information7

with low-level, fine-grained observations. We demonstrate that our approach allows8

Spot robots to continually improve their performance on a set of four challenging9

mobile manipulation tasks, obtaining an average success rate of 80% across tasks,10

a 3-4× improvement over existing approaches.11

Keywords: Continual Learning, Mobile Manipulation, Reinforcement Learning12

1 Introduction13

How do we build generalist systems capable of executing a wide array of tasks across diverse envi-14

ronments, with minimal human involvement? While visuomotor policies trained with reinforcement15

learning (RL) have demonstrated significant potential to bring robots into open-world environments,16

they often first require training in simulation [1, 2, 3, 4, 5, 6]. However, it is challenging to build17

simulations that capture the unbounded diversity of real-life tasks, especially involving complex18

manipulation. What if learning instead occurs through direct engagement with the real world, without19

extensive environment instrumentation or human supervision?20
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Prior work on real-world RL for learning new skills has been shown for locomotion [7, 8], and21

in manipulation for pick-place [9, 10, 11, 12] or dexterous in-hand tasks [13, 14, 15] in stationary22

setups. Consider a complex, high-dimensional system like a legged mobile manipulator learning in23

open spaces. The feasible space of exploration is much larger than in constrained tabletop setups.24

Autonomous operation of such a complex, high-dimensional robots often does not result in data25

that has useful learning signal. For example, we would like to avoid the robot simply waving its26

arm in the air without interacting with objects. Furthermore, even after making some progress on27

the task, the robot should not stagnate near goal states. While prior work has explored using goal28

cycles [16, 13, 17] to help maintain state diversity, this has not been shown for mobile systems. Such29

systems also need to learn more complex skills, involving constrained manipulation of larger objects30

and moving beyond pick and place, making sample-efficient learning critical. Finally, reward31

supervision using current RL approaches often requires physical instrumentation using specialized32

sensors [18, 19] or humans in the loop [20, 21, 22, 23], which is difficult to scale to different tasks.33

Our approach tackles each of these issues of autonomy, efficient policy learning, and reward specifi-34

cation. We enable higher-quality data collection by guiding exploration toward object interactions35

using off-the-shelf visual models. This leads the robot to search for, navigate to, and grasp objects36

before learning how to manipulate them. We preserve state diversity to prevent robot stagnation by37

extending the approach of goal-cycles to mobile tasks and with multi-robot systems. For sample38

efficient policy learning, we combine RL with behavior priors that contain basic task knowledge.39

These priors can be planners with a simplified incomplete model, or procedurally generated motions.40

For rewards without instrumentation or human involvement, we combine semantic information from41

detection and segmentation models with low-level depth observations for object state estimation.42

The main contribution of this work is a general approach for continuously learning mobile manipula-43

tion skills directly in the real world with autonomous RL. The main components of our approach44

involve: (1) task-relevant autonomy for collecting data with useful learning signals, (2) efficient45

control by integrating priors with learning policies, and (3) flexible reward specification combining46

high-level visual-text semantics with low-level depth observations. Our approach enables a Spot robot47

to continually improve in performance on a set of 4 challenging mobile manipulation tasks, including48

moving a chair to a goal with the table in the corner or center of the playpen, picking up and vertically49

balancing a long-handled dustpan, and sweeping a paper bag to a target region. Our experiments50

show that our approach gets an average success rate of about 80% across tasks, a 4× improvement51

over using either RL or the behavior prior individually with our task-relevant autonomy component.52

2 Related Work53

Autonomous Real-World RL: Previous work for real-world RL mostly involves either manip-54

ulation for table-top pick-place settings [9, 10, 8], in-hand dexterous manipulation [15, 13, 14] or55

locomotion behavior [24, 25, 8]. Approaches for automated resets needed for continual practice56

include instrumented environments [9, 10], forward-backward policies [26], graph structure of sub-57

tasks that serve as resets for one another [13, 14], or pre-trained, reliable reset policies [7]. For58

mobile manipulation, real-world RL has been limited to pick and place tasks [11, 12]. In our work,59

we extend the RL framework to learn challenging manipulation skills such as sweeping and moving60

chairs for a mobile system. Autonomous mobile systems should leverage the ability of the robot to61

move around to extend the effective reach of the robot and attempt manipulation tasks with large62

objects that are not possible on a table-top setup. For efficient learning on these complex tasks, we63

leverage behavior priors, which have some basic task knowledge. Moreover, task specification is a64

big challenge [27] for real-world learning. Current approaches often require physical instrumentation65

using specialized sensors [18, 19] or humans in the loop [20, 21, 22, 23], which is difficult to scale to66

different tasks. There has been some work on completely self-supervised learning systems with some67

extensions to robotics [28, 29], but these approaches are challenging to deploy on complex tasks due68

to intractability, underspecification, and misalignment. We extend the approach of using language69

goals and combining these with large-scale visual models [30], conditioned on open-vocabulary70

prediction [31, 32, 33], to obtain object states, which can be used to compute reward.71
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Figure 2: Method Overview: The main components of our approach for robots to continually practice tasks
in the real world. Left: Task-relevant autonomy to ensure collection of useful data via object interaction, and
maintaining state diversity via automated resets using multi-goal and multi-robot setups. Center: Efficient
control by aiding policy learning with basic task knowledge present in behavior priors in the form of planners
with a simplified model or automated behaviors. Right: Flexible reward supervision that combines human-
interpretable semantic detection-segmentation information with low-level, fine-grained depth observation.

Mobile Manipulation In the 2015 DARPA Robotics Challenge Finals, mobile manipulation so-72

lutions primarily relied on pre-built object models and task-specific engineering to enable mobile73

manipulation [34]. More recent work modularizing tasks into skill primitives and interacting with74

those primitives using flexible planners, including large language models, has enabled more gen-75

eralization outside of pre-coded tasks [35, 36, 11, 37]. Imitation learning approaches to mobile76

manipulation enable joint reasoning over manipulation and navigation actions and generalize across77

broad sets of tasks [38, 39, 40, 41, 42]. However, imitation learning requires an expensive collection78

of expert trajectories. In contrast, RL methods can learn from experience without requiring extra79

human labor for each new task. Decomposing the action space over which the RL policy operates en-80

ables more tractable and efficient learning of long-horizon mobile manipulation skills [43, 44, 45, 46].81

In our work, we move beyond tasks that involve picking and placing to instead learn skills that require82

coordination between the legs and arms, e.g., moving chairs or sweeping.83

3 Continuously Improving Mobile Manipulation via Real-world RL84

Algorithm 1 Autonomous RL for Mobile Manipulation

Require: Detection-segmentation models M(.)
Require: Behavior prior P (.)

1: Initialize Data buffer D, RL policy πθ

2: Initialize task goal GT with goal object state gT
3: Initialize trajectories per task K, horizon H
4: while training do
5: for trajectory 1:K do
6: Approach object using Auto-grasp/nav
7: for timestep 1:H do
8: Use policy πθ(.) and prior P (.) for separate,

sequential or residual control
9: Compute reward rt using M(ot)

10: Add (ot, at, ot+1, rt) 7→ D
11: Sample batch β ∼ D to update π via RL
12: end for
13: (optional) If distance(x, gT ) ≤ ϵ, break
14: end for
15: Switch task goal GT
16: end while

We design our approach to allow robots85

to autonomously practice and efficiently86

learn new skills without task demonstra-87

tions or simulation modeling, and with min-88

imal human involvement. The overview89

of the approach we use is presented in90

Alg.1. Our approach has three components,91

as depicted in Fig 2: task-relevant auton-92

omy, efficient control using behavior pri-93

ors, and flexible reward specification. The94

first ensures the data collected is likely to95

have learning signal, the second utilizes96

signal from data to collect even better data97

to quickly improve the controller, and the98

third describes how to define learning sig-99

nal for tasks. This allows learning diffi-100

cult manipulation tasks, including tool use101

and constrained manipulation of large and102

heavy objects. Next, we describe each of103

these components in further detail.104
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Figure 3: Task Goals: States that define goal-cycles for our 4 tasks - (a-b): Chair Moving with a corner table,
(c-d): Chair Moving with a middle table, (e-f): Long Handled Dustpan Standup, (g-h): Sweeping

3.1 Task-Relevant Autonomy105

Auto-Grasp/Auto-Nav: For safe autonomous operation, we first create a map by walking the robot106

around the environment. This map is used by the robot to avoid collisions during its autonomous107

learning process. To ensure data collected involves object interaction, every episode begins with108

the robot estimating, moving to, and/or grasping the object of interest for the task. The object state109

is estimated using detection and segmentation models along with depth observations, as described110

in section 3.3. The robot then navigates towards the object position using RRT* to plan in SE(2)111

space using the collision map, and optionally deploys the grasping skill from the Boston Dynamics112

Spot SDK depending on the task. This grasp is generated via a geometric algorithm that fits a grasp113

location with a geometric model of the gripper, scores different possible grasps, and picks the best114

one. We do not constrain the grasp type, or on which portion of the object the grasp is performed.115

This allows the robot to keep practicing regardless of which position or orientation the object might116

end up in as a result of continual interaction.117

Goal-Cycles: To prevent robot stagnation near goal states, we set up ’goal-cycles’ within tasks,118

which serve as automated task resets. We show the different goal states used in each of the 4 tasks119

we consider in Fig.3. In the case of the chair moving tasks (Fig.3: a-d), the robot alternates between120

goals that are far apart in the x-y plane, and for the dustpan stand-up task (Fig.3 e,f), the robot needs121

to pickup the fallen dustpan and vertically orient and balance it. For the sweeping task (Fig.3: g-h),122

we use a multi-robot setup for the goal cycle, where one robot holds the broom and needs to sweep123

the paper bag into the target region (denoted by the blue box), while the other needs to pick up the124

bag and drop it back into the region where it can be swept. Since we only need learning for the125

sweeping skill, the robot that picks up the bag runs the previously described auto-grasp procedure.126

3.2 Prior-guided Policy Learning127

Incorporating Priors: We enable efficient learning by leveraging behavior priors that utilize basic128

knowledge of the task. This removes the burden from the learning algorithm from having to129

rediscover this knowledge and instead focus on learning additional behavior needed to solve the130

task. For example, an RRT* planner with a simplified 2D model can help an agent move between131

two points in the x-y plane while avoiding obstacles. Starting with this prior, using RL can help the132

robot learn to recover from collisions and deal with dynamic constraints not represented in the model.133

Concretely, the prior is a function P (.) that takes in an observation ot and produces an action at,134

similar to a policy π(at|ot). We can deploy the prior and the policy in the following ways:135

4



1. Separate: Trajectories are collected independently using either the prior136

{P (a0|o0), . . . , P (aT |oT )} or the policy {π(a0|o0), . . . , π(aT |oT )}. Instead of learning en-137

tirely from scratch, we incorporate the (potentially) suboptimal data from the prior into the robot’s138

data buffer to bootstrap learning. Intuitively, the prior is likely to see a higher reward than a139

completely randomly initialized policy, especially for sparse reward tasks. We make no assumptions140

on the optimality of the prior, and bootstrap learning via incorporating its data. In practice, we first141

collect trajectories using the prior, to initialize the data buffer for training the online RL policy π(.).142

2. Sequential: In addition to providing data with better signal to the learning process, priors can143

reliably make reasonable progress on a task. This is because they often generalize well, for example,144

an SE(2) planner will make reasonable progress in moving a robot between any two points in the145

x-y plane, even when it performs constrained manipulation. We would need to sample many times146

from the prior to distill this information purely via the data buffer. Hence, a more direct approach is147

to utilize the prior along with the policy for control. We do this by sequentially executing the prior,148

followed by the policy. That is, trajectories collected in this manner take the form:149

{P (a0|o0), .., P (aL|oL), π(aL+1|oL+1), .., π(aT |oT ).} (1)

Thus, the prior structures the policy’s initial state distribution, making learning easier. The data150

collected by the prior is added to the data buffer, allowing the policy to learn from these transitions.151

3. Residual: In certain cases, the prior might not be robust enough to deploy directly but nonetheless152

provide reasonable bounds on what actions should be executed. For example, for sweeping an object,153

the robot’s base should roughly be in the vicinity of the trash being swept, but this does not prescribe154

what exact actions to take. Such a prior can be used residually, where a policy adjusts the actions of155

the prior at every time step before being executed. These trajectories take the form:156

{P (a0|o0) + π(a0|o0), . . . , P (aT |oT ) + π(aT |oT )} (2)

RL Policy Training: The RL objective is learn parameters θ of a policy πθ to maximize the expected157

discounted sum of rewards R(st, at):158

J(πθ) = E s0∼p0

at∼πθ(at|st)
st+1∼P(st+1|st,at)

[
T∑

t=0

γtR(st, at),

]
(3)

where p0 is the initial state distribution, P is the transition function and γ is the discount factor. For159

sample efficient learning that effectively incorporates prior data, we use the state-of-the-art model-free160

RL algorithm RLPD [47]. RLPD is an off-policy method based on Soft-Actor Critic (SAC) [48],161

which samples from a mixture of data sources for online learning. Like REDQ [49], RLPD uses162

a large ensemble of critics and in-target minimization over a random subset of the ensemble to163

mitigate over-estimation common in TD-Learning. Since our observations consist of raw images, we164

incorporate the image augmentations added by DrQ [50] to the base RL algorithm.165

3.3 Flexible Supervision via Text-Prompted Segmentation166

For flexible reward supervision, we combine semantic high-level information from vision and167

language models with low-level depth observations. Each task is defined by a desired configuration168

of some object of interest, so we derive a reward function by comparing the estimated state of the169

object at a given time to this desired state (see Section 4 for task-specific details). To estimate the170

state of the object, we start by using an open-vocabulary detection model Detic [51] to obtain the171

bounding box corresponding to the object of interest. We then obtain the corresponding object mask172

by conditioning a segmentation model, Segment-Anything [30], on the bounding box. Finally, using173

depth observations and the calibrated camera system for either the egocentric or fixed third-person174

cameras, we get a point cloud. Although this estimation is noisy, we find it sufficient to enable175

learning effective control policies via real-world RL. This system is flexible enough to handle different176

objects of interest, such as the chair, long handled dustpan for vertical orientation, or the paper bag177

for sweeping. Full details on the prompts, detection and segmentation models, and reward functions178

for each task in the supplemental materials.179
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4 Experimental Setup180

For our experiments, we run continual autonomous RL using the Spot robot and arm system in a181

playpen of about 6×5 meters, enclosed with metal railings for safety. The playpen is mapped before182

autonomous operation to ensure the robot stays within bounds and doesn’t collide with the railings.183

The navigation aspect of task autonomy involves searching for objects of interest. Since the main184

focus of this work is on learning complex manipulation skills, we do not use learning for the search185

problem; instead, we rely on a fixed camera in the scene. In addition to this, we also use the 5186

egocentric body cameras of the Spot while searching for objects.187

Prior Policy mode Reward Sparse

Chair-tablecorner RRT* Sequential Chair-goal distance False
Chair-tablemiddle RRT* Sequential Chair-goal distance False
Dustpan Standup Scripted Separate Handle height True
Sweeping Distance constraint Residual Bag-goal distance False

Table 1: We list the choice of prior, how it is combined with the policy,
how reward relates to the object state, and whether the reward is sparse.

The chair-moving task requires188

the robot to grasp a chair and189

move it between goal locations.190

We consider two variants, chair-191

tablecorner(Fig.3 a-b) and chair-192

tablemiddle(Fig.3 c-d). The lat-193

ter is more challenging since col-194

lisions between the chair and ta-195

ble base are much more frequent196

and the robot has to operate in a much tighter space. The dustpan standup task involves lifting up the197

long handle of a dust-pan (Fig.3-e), and then vertically balancing it so that it can stay upright on its198

base (Fig.3-f). Sweeping involves two robots, where one of the robots holds a broom in its gripper199

and needs to use it to sweep a paper bag into a goal region (Fig.3-g). The other robot does not use200

learning, instead using the auto-grasp procedure to reset the paper bag by picking it up and dropping201

it close to the initial position(Fig.3-h). For each task, we specify success criteria for task completion,202

which corresponds to reaching the goal states in Fig.3. We list the choice of the prior, its combination203

with the policy, the state measurements used for reward, and reward sparsity in Table 1.204

The observation space for RL policy training for all tasks consists of three 128X128 RGB image205

sources: the fixed, third-person camera and two egocentric cameras on the front of the robot.206

Additionally, we use the body position, hand position, and target goal. The action space for the207

chair and sweeping tasks is 5 dimensional, with base (x, y, θ) control and (x, y) control for the208

hand relative to the base. The dustpan stand-up task is 3 dimensional, consisting of (z, yaw, gripper)209

commands for the hand, where the gripper open action terminates the episode. We use the same210

network architectures for image processing, critic functions, policy, etc., for all comparisons. Please211

see supplementary materials for more details on the full reward functions, success criteria, procedural212

functions for priors, hyper-parameters for learning, and network details.213

5 Results214

Our real-world experiments test whether autonomous real-world RL can enable robots to continuously215

improve mobile manipulation skills for performing various tasks. Specifically, we seek to answer the216

following questions: 1) Can a real robot learn to perform tasks that require both manipulation and217

mobility in an efficient manner? 2) Does performance continually improve as the robot collects more218

data? 3) How does the approach of structured exploration using priors along with RL, compare to219

solely using the prior, or using only RL? 4) How does the policy learned via autonomous training220

perform when evaluated in test settings?221

Task-relevant Autonomy: Running the robot without auto-grasp or goal-cycles, with the full222

action space comprising base and arm movement to any position in the playpen does not lead to223

any meaningful change in task progress even over long periods of time. Further, such operation is224

unsafe since the robot arm can get stuck in the enclosure railings, or strike the wall in an outstretched225

configuration. Hence, all the experiments we conduct, including those for baselines, utilize the226

task-relevant autonomy component so that the robot can make some progress on the task.227

6



0 1000 2000 3000
Steps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Chair Move - Table Corner

0 1000 2000 3000
Steps

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Chair Move - Table Middle

0 200 400 600 800
Steps

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

Long Handled Dustpan

0 1000 2000
Steps

0.0

0.1

0.2

0.3

0.4

Su
cc

es
s R

at
e

Sweeping

RL + Prior (Ours) RL (without prior) Prior

Figure 4: Continual training improvement: Success rate vs number of samples for ours, only RL and
only prior. Note that we use our task-relevant autonomy approach with all methods. We see that our approach
continuously improves with experience across tasks, learning much faster than RL without priors, and attaining
significantly higher performance than just using the prior.

Continual Improvement via Practice: Given our task autonomy procedure, how effective is our228

proposed approach of combining real world RL with behavior priors, as opposed to using either only229

the prior or RL? From Fig.4, we see that our approach learns significantly faster than using only230

RL, and attains much superior performance than the prior, for each of the tasks. On the especially231

challenging sweeping task which involves tool use of the broom with a deformable paper bag, using232

only the prior or only RL leads to almost no progress, while our method is able to learn the task. Each233

robot training run takes around 8-15 hours, with the variation in time owing to different goal reset234

strategies across tasks and variance in how often the robot retries grasping objects for task-relevant235

autonomy. Hence, for fair comparisons across methods, we use the number of real-world samples236

collected to measure efficiency. The system also needs to be robust to many different factors in order237

to learn these tasks. The training area is exposed to sunlight, and the robot keeps collecting data238

and learning throughout the day with varying degrees of illumination. Object starting positions and239

grasps can vary widely, which affects the resulting object dynamics when practicing the task.240
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Figure 5: Training mean reward: Mean reward vs
number of samples for the chair moving tasks. The
negative average reward for RL without priors indicates
that the robot is often far from the goal location.

RL without Prior: For some tasks, using RL241

without the prior does improve in performance,242

but at a much slower rate than our method. With-243

out the prior, RL often spends samples exploring244

parts of the state that are far from the goal. To245

illustrate this, we plot the average reward over246

each trajectory for the chair tasks (Fig.5). The247

reward for this task is of the form −x + e−x,248

where x is the distance of the chair to the goal249

position of the chair. The negative mean reward250

for RL without the prior implies that the dis-251

tance x to the goal is quite large, meaning that252

the robot is often far from the goal. On the other253

hand, since our method executes the prior and254

policy sequentially for the chair task, our policy always starts out reasonably close to the goal, and can255

thus can pick up on high reward signal more often, leading to faster learning. We observe a similar256

pattern for the sweeping task, where using only RL leads the robot to wander around the playpen,257

greatly decreasing the likelihood of interacting with the paper bag and obtaining high reward.258

Prior without RL: While the behavior priors are effective at bootstrapping learning, they are not259

sufficient on their own. This is because they do not adapt or learn from experience, and so keep260

repeating the same mistakes without improvement over time. We illustrate a qualitative failure261

example of the behavior prior for the chair moving task in Fig.6, where the robot following the RRT*262

planner runs into a collision state due to the simplified model being used. In contrast, our approach263

adapts the policy based on its experience to improve its performance, avoiding such collisions. For264

some tasks like sweeping the behavior prior is much simpler, only providing a constraint not to move265

too far away from the paper bag, which does not specify how the robot should sweep.266

7



Figure 6: Left: The prior (RRT* with incomplete model) gets stuck in a collision with the table and is unable
to recover as the planner does not have a model of chair-table interaction dynamics. Right: Our approach
effectively recovers from collisions to complete the task.

Final Policy Evaluation: We evaluate the final policies obtained after autonomous, contin-267

ual practice and find that our approach obtains an average success rate of 80% across tasks268

from Table 2. For comparisons between our method and using only RL, we evaluate models269

obtained with the same number of real world samples. For evaluation, we use the determin-270

istic policy instead of sampling from the stochastic distribution, which is used during training.271

Ours Only RL Only Prior Offline RL

Chair-tablecorner 100% 20% 22% 10%
Chair-tablemiddle 80% 50% 38% 20%
Dustpan Standup 60% 20% 18% 60%
Sweeping 80% 0% 5% 10%

Table 2: Evaluation Comparison: The success rate of the final
policy evaluated on different tasks. For evaluation, we use the deter-
ministic policy instead of sampling from the stochastic distribution
like in training. Our approach gets an average success rate of 80%,
about 4× improvement over using only the prior or only RL.

Further, we set the initial state of the272

objects to be close to the opposite goal273

in the goal cycle. For instance, in the274

sweeping task, we initialize the paper275

bag roughly in the location shown in276

Fig.3-h. This is different from train-277

ing, where the paper bag could end up278

in any location, and success is continu-279

ally evaluated. We note that on the par-280

ticularly hard task of sweeping, none281

of the other methods are successful,282

while our approach gets 80% success.283

Prior Data Quality: The behavior prior helps our approach in two ways, by structuring exploration284

for online learning, and also by providing higher quality data than random search, containing higher285

reward. To test the quality of the data obtained by the prior, we run offline RL on the dataset collected286

by the prior. This utilizes the reward of transitions to learn a policy, without any online rollouts.287

From Table 2, we see that on the chair and sweeping tasks, the behavior prior data quality is much288

worse, with an average success rate of 13%. The case of dustpan standup is notable since offline RL289

performs on par with our method, getting about 60% success. While the numerical performance is290

similar, there is a considerable qualitative difference in the behavior learned. Our approach learns291

strategies that are very different from the behavior prior, through exploration. This involves raising292

the robot’s arm and dropping the dustpan, such that it lands upright. On the other hand, offline RL293

sticks close to the successful examples from the behavior prior generations.294

6 Discussion and Limitations295

We have presented an approach for continuously learning new mobile manipulation skills. This is296

enabled using task-relevant autonomy, efficient real-world control using behavior priors, and flexible297

reward definition. The current approach uses learning primarily for acquiring low-level manipulation298

skills after objects are grasped. Using automated procedures for navigation and search making use299

of a fixed third-person camera is a current limitation. This can be addressed by adding learning300

for the higher-level search problem too, which would allow the robot to rely just on its egocentric301

observations. This would allow learning in more unstructured, open-ended environments.302
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Appendix443

A Videos444

The main video summarizing our results can be found in result video.mp4 in the zip folder. This445

depicts the robot performing each of the tasks we consider - moving the chair 1) with a table in446

the corner in the playpen, 2) with a table in the middle of the playpen, 3) picking up a dustpan and447

vertically orienting it such that it can stand up, 4) sweeping a paper bag into a target region. We also448

include timelapse videos which show how our approach adapts behavior over time.449

B Policy Training450

For our experiments we run DrQ implemented in the official RLPD codebase open-sourced by451

Ball et al. [47]. Since we run image-based real robot experiments, we use learning algorithm452

hyperparameters (including for the image encoders) from Stachowicz et al. [52], which deployed453

RLPD for race car driving. The observations are first encoded into a latent space (separately for the454

actor and critic), and the processed latent is used by the critic ensemble or the actor. Details of the455

architecture for each of these, in addition to hyperparameters for training is provided in Table 3.456

We use both image and vector observations for learning. Each of these is processed by an image457

encoder or a 1-layer dense encoding for vector observations, and the corresponding latents are all458

concatenated together and then used as input for the actor or critic. Note that we use separate encoders459

for the critic and the critic. We use the architecture from Stachowicz et al. [52] for encoding each460

image source, without using any pre-trained embeddings, the network is retrained from scratch for461

each new experiment. There are 4 RGB image sources. The network encoders are provided with462

the last 3 frames for each image source, except for the goal image, since this remains fixed for the463

episode. The image sources are -464

• Egocentric front-left image465

• Egocentric front-right image466

• Third-person fixed-cam current image467

• Third-person fixed-cam goal image468

We use (128,128) spatial resolution for the egocentric images, and (256,256) for the images from the469

third person camera. The latter uses a higher resolution since it is further away from the scene and470

objects appear smaller/less clear.471

In addition, we have two vector observations -472

• Body pose - We compute the (x,y,θ) position of the robot body in the SE(2) plane relative to473

the calibrated playpen frame (calibration details in section D). The input to the network is 4474

dimensional, consisting of (x, y, cos(θ), sin(θ)). We use sin, cos transforms for the angle to475

avoid discontinuities in input, since −π and π represent the same orientation.476

• Hand pose - 6-dof end effector orientation of the hand relative to the base position.477

There are certain learning parameters that are tuned separately for each environment, which we list in478

Table 4. This was mainly to balance the exploration-exploitation trade-off for learning new behavior,479

and pertain to the weight placed on entropy maximization in DrQ (temperature and target entropy),480

or to handle sparse rewards (number of min Q functions). We use a maximum episode length of 16481

for the chair and sweeping tasks, and 8 for the dustpan task, since it has sparse reward.482
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Table 3: Hyperparameters used in the experiments
Category Hyperparameter Value
Training Batch size 256

Update to Sample Ratio 4

Actor/Critic Actor learning rate 3e-4
Critic learning rate 3e-4
Actor network architecture 2x256
Critic network architecture 2x256
Critic ensemble size 10

Image Encoder Layer count 4
Convolution size 3x3
Stride 2
Hidden channels 32
Output latent dim 50

Table 4: Environment-tuned Hyperparameters
Env #MinQ Temp LR Init Temp Target Entropy

Chair 2 1e-4 0.5 -2
Dustpan 1 1e-3 0.1 -2

Sweeping 2 1e-4 0.1 -4

C Rewards483

C.1 Detection-Segmentation484

Figure 7: Grounded SAM/Detic Visualization: Visualization
of the object masks obtained from Segment Anything for chair
moving(left) and sweeping (right).

For each task, there is an object of485

interest, the state of which is used to486

compute the reward. We specify the487

object using a text prompt, which is488

used by the detection model to ob-489

tain a bounding box. This is then490

used to condition the Segment Any-491

thing [30] model to obtain a 2D ob-492

ject mask, as shown in Fig.7. For493

text-based detection we use either494

Grounding-Dino [53] or Detic [51].495

For Grounding-Dino, we append the496

task-specific prompt to the list of class names in COCO [54] (to avoid cases of false positive de-497

tection), and we use Detic with objects365 vocabulary class names. The task-specific text498

prompts we use are ’chair’ for the chair tasks, ’red broom’ for the dustpan standup task, and499

’box.bag.poster.signboard.envelope.tag.clipboard.street sign’ for the sweeping task. The object of500

interest in the sweeping task is a paper bag being swept and we use many different possible matching501

text descriptions since it is detected as different classes due to its deformable nature. We list the502

detection model and the confidence threshold for a detection to be accepted for each task in Table 5.503

Once we obtain object masks, we can obtain the corresponding object point-cloud using depth504

observations. Some detections are rejected based on estimated position, eg: if there is a detection505

of an object outside the playpen. This filtering is essential since the robot often picks up on known506

infeasible objects, eg: the box in the middle of the playpen, or some chairs outside the railings.507
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Table 5: Detection Settings
Env Detection Model Confidence Threshold

Chair Grounding-Dino 0.4
Dustpan Grounding-Dino 0.2

Sweeping Detic 0.1

C.2 Reward Function508

Chair-moving tasks: For this task, we compute reward at every timestep of the episode. Given the509

estimated chair point cloud using the detection-segmentation system along with depth observations,510

we estimate the center of mass xt and the yaw rotation wt. Given the goal position g and orientation511

gw (extracted from the goal image), we compute position xdiff and yaw difference wdiff norms. Then512

the reward is given by :513

rposition = −xdiff + e(−xdiff) + e(−10·xdiff)

rori = e(−wdiff) + e(−10·wdiff)

Total Reward = rposition + rori

Dustpan Standup In this task, it is difficult to provide reward when the robot is interacting with the514

dustpan, since the detection model fails to pick up on the dustpan from the third person or egocentric515

image observations. We can measure reward at the end of the episode (when the robot has released516

its grasp) to detect the dustpan and estimate the center of the handle xT , and provide a large bonus517

if the height of the handle (z component of xT ) is above a set threshold. To prioritize faster task518

completion, we use an alive penalty of -0.1. The robot can terminate the episode earlier by releasing519

its gripper and letting go of the handle.520

rpenalty = −0.1

rbonus = 10 if xt height ≥ thresh

Total Reward =

{
rpenalty, if timestep t < T
rbonus, if end of episode, timestep T

Sweeping: Similar to the chair task, we compute reward at every timestep of the episode. We521

estimate the point cloud of the paper bag, let its center of mass be denoted by xt. The target region522

is a rectangle, denoted by Gr. Let d(x,Gr) denote the distance from position x to the closest523

corresponding point on the rectangle given by Gr. Then the reward is given by:524

rdistance = −0.2 · d(xt, Gr) + e(−10·xdiff)

rprogress = 10 ·max(0, d(xt−1, Gr)− d(xt, Gr))

rbonus =

{
10, if d(xt, Gr) = 0
0, else

Total Reward = rdistance + rprogress + rbonus

C.3 Success Criteria525

The results we show for continual improvement during training, as well as the evaluation of the final526

policies report success rate. Success is defined for an episode in the following manner:527

• Chair tasks: Max reward in episode is above 1, implying the chair is very close to its target.528
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• Dustpan Standup: Episode ends with a reward of 10 (indicating the dustpan is standing up).529

• Sweeping: Episode ends with a reward of 10 (paper bag is swept into the goal region).530

C.4 Priors531

Algorithm 2 Prior generation for Dustpan Standup

1: Initialize Prior data buffer D
2: Initialize Uniform noise distribution U with limits

:
(−0.1,−0.1,−1) → (0.1, 0.1, 1)

3: for N = 1 to Number of episodes do
4: Initialize action list A = []
5: Set yaw hand rotation ω to either +0.5 or -0.5
6: for t = 1 to episode len do
7: Set vertical hand action z to be either +0.2 or

-0.2
8: Add (z, ω, 0) + (n ∼ U) to A
9: end for

10: Add (−0.2, ω, 0) + (n ∼ U) to A
11: Execute A on the robot, record observations, add

to D
12: end for
13: return Prior data buffer D

For the chair moving tasks we use RRT*532

for planning a path in SE(2) space with a533

simplified model that only has 2D occu-534

pancy of the top surface of the table, and535

is not aware of the chair, or robot-chair or536

chair-table interactions. This generates a537

set of way-points for the target position of538

the center of mass of the robot in SE(2)539

space, in global coordinates. We use coor-540

dinate transforms to convert these targets to541

be in the robot’s body frame in order to use542

the same action space as the reactive RL543

policy. We are able to perform this com-544

putation since we know the robot’s body545

position in global coordinates. Specifically,546

we have Wbody = Wglobal ∗ T−1, where547

Wf denotes the way-point with respect to548

frame f and T is the matrix transform of549

the robot body center of mass with respect550

to the global coordinates. For sweeping, the prior is simply to stay within 0.5m of the last detected551

location of the paper bag. For dustpan standup we use a simple procedural function to generate552

trajectories to create a prior dataset, which we detail in Algorithm 2553

D Map Calibration554

Figure 8: Collision map of
the playpen used for safety
and navigation. The table
is added to this map when
included in experiments.

We use the GraphNav functionality provided in the SpotSDK by Boston555

Dynamics for Spot robots for generating a map of the playpen. This556

involves walking the robot around with some fiducials (we use 5) in the557

arena. This needs to be performed only once, and is used to obtain a558

reference frame to localize the robot, which is useful to record body pose559

information and also to implement safety checks to make sure the robot560

is not executing actions that collide with the playpen railings. While Spot561

has inbuilt collision avoidance we implement an additional safety layer562

using the map to clip unsafe actions that would move the robot too close563

to the playpen railings. For navigation we use RRT* to plan in SE(2)564

space given the obstacles, using the collision map of the playpen as shown565

in Fig. 8. The red region denotes the estimate of the robot’s position in566

the x-y plane, with the blue marking denoting its heading.567

E System Overview568

We use a workstation with a single A5000 GPU to run RLPD online, which requires about 20GB569

GPU memory, mostly owing to all the image inputs that need to be processed. The detection and570

segmentation models are run on cloud compute on a single A100 GPU. The fixed third person571

camera images from the realsense are streamed to a local laptop. Communication between the laptop,572

workstation and cloud server is facilitated via GRPC servers, and the main program script is run on573

the workstation, which also controls the robot. Commands are issued to the robot over wifi using the574

SpotSDK provided by Boston Dynamics.575
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