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Abstract
In this work, we investigate the margin-
maximization bias exhibited by gradient-based
algorithms in classifying linearly separable data.
We present an in-depth analysis of the specific
properties of the velocity field associated with
(normalized) gradients, focusing on their role in
margin maximization. Inspired by this analysis,
we propose a novel algorithm called Progressive
Rescaling Gradient Descent (PRGD) and show
that PRGD can maximize the margin at an ex-
ponential rate. This stands in stark contrast to
all existing algorithms, which maximize the mar-
gin at a slow polynomial rate. Specifically, we
identify mild conditions on data distribution un-
der which existing algorithms such as gradient
descent (GD) and normalized gradient descent
(NGD) provably fail in maximizing the margin ef-
ficiently. To validate our theoretical findings, we
present both synthetic and real-world experiments.
Notably, PRGD also shows promise in enhancing
the generalization performance when applied to
linearly non-separable datasets and deep neural
networks.

1. Introduction
In modern machine learning, models are often over-
parameterized in the sense that they can easily interpolate
all training data, giving rise to a loss landscape with many
global minima. Although all these minima yield zero train-
ing loss, their generalization ability can vary significantly.
Intriguingly, it is often observed that Stochastic Gradient
Descent (SGD) and its variants consistently converge to
solutions with favorable generalization properties even with-
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out needing any explicit regularization (Neyshabur et al.,
2014; Zhang et al., 2017). This phenomenon implies that
the “implicit bias” of SGD plays a crucial role in ensur-
ing the efficacy of deep learning; therefore, revealing the
underlying mechanism is of paramount importance.

Soudry et al. (2018) investigated implicit bias of GD for
classifying linearly separable data with linear models. They
showed that GD trained with exponentially-tailed loss func-
tions can implicitly maximize the ℓ2-margin during its con-
vergence process, ultimately locating a max-margin solution.
This discovery offers valuable insights into the superior gen-
eralization performance often observed with GD, as larger
margins are generally associated with better generaliza-
tion (Boser et al., 1992; Bartlett et al., 2017). However, the
rate at which GD maximizes the margin has been shown to
be merely O(1/ log t) (Soudry et al., 2018). This naturally
leads to the question: can we design a better gradient-based
algorithm to accelerate the margin maximization. In the
pursuit of this, Nacson et al. (2019b); Ji & Telgarsky (2021)
has demonstrated that employing GD with aggressively loss-
scaled step sizes can achieve polynomial rates in margin
maximization. Notably, Ji & Telgarsky (2021) specifically
established that the rate of NGD isO(1/t). Building on this,
Ji et al. (2021) further introduced a momentum-based gradi-
ent method by applying Nesterov acceleration to the dual
formulation of this problem, which achieves a remarkable
margin-maximization rate of O(log t/t2) and Wang et al.
(2022b) further improved it to O(1/t2), currently standing
as the state-of-the-art algorithm for this problem.

Our Contributions. In this paper, we begin by introduc-
ing a toy dataset to elucidate the causes of inefficiency in
GD/NGD and to clarify the underlying intuition for acceler-
ating margin maximization. Subsequently, we demonstrate
that these insights are applicable to a broader range of sce-
narios.

• We reveal that the rate of directional convergence and
margin maximization is governed by the centripetal
velocity–the component orthogonal to the max-margin
direction. We show that under mild conditions on
data distribution, NGD and GD will inevitably be
trapped in a region where the centripetal velocity
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is diminished, thereby explaining the inefficiency of
GD/NGD. Specifically, we establish that the aforemen-
tioned margin-maximization rates: O(1/ log t) for GD
and O(1/t) for NGD also serve as lower bounds.

• Based on the above observations, we propose to speed
up the margin maximization by maintaining a non-
degenerate centripetal velocity. We show that there
exists a favorable region, where the centripetal veloc-
ity is uniformly lower-bounded and moreover, we can
reposition parameters into this region via a simple norm
rescaling. Leveraging these properties, we introduce
an algorithm called Progressive Rescaling Gradient
Descent (PRGD). Notably, we prove that PRGD can
achieve both directional convergence and margin maxi-
mization at an exponential rateO(e−Ω(t)). This stands
in stark contrast to all existing algorithms, which maxi-
mize the margin at a slow polynomial rate.

• Lastly, we validate our theoretical findings through
both synthetic and real-world experiments. In
particular, when applying PRGD to linearly non-
separable datasets and homogenized deep neural net-
works—beyond the scope of our theory—we still ob-
serve consistent test performance improvements.

In Table 1, we summarize our main theoretical results and
compare them with existing ones.

2. Related Work
Unraveling the implicit bias of optimization algorithms has
become a fundamental problem in theoretical deep learning
and has garnered extensive attention recently.

Margin Maximization in Gradient-based Algorithms.
The tendency of GD to favor max-margin solutions when

trained with exponentially-tailed loss functions was first
identified in the seminal work by Soudry et al. (2018). Be-
yond aforementioned studies, Nacson et al. (2019c) explored
this bias for SGD and Gunasekar et al. (2018a); Wang et al.
(2022a); Sun et al. (2022); Wang et al. (2023) extended
the analysis to various other optimization algorithms. No-
tably, Ji & Telgarsky (2019b) considered the situation where
dataset are linearly non-separable, providing insights into
the robustness of these findings in more complex settings.
More recently, Ji et al. (2020) investigated the impact of the
tail behavior of loss functions and Wu et al. (2023) analyzed
the impact of edge of stability, a phenomenon previously ob-
served by Wu et al. (2018); Jastrzebski et al. (2020); Cohen
et al. (2021).

Additionally, the margin-maximization analysis has also
been extended to nonlinear models. This includes studies by
Ji & Telgarsky (2019a); Gunasekar et al. (2018b) on deep
linear networks, as well as research by Chizat & Bach (2020)
on wide two-layer ReLU networks. Notably, Nacson et al.
(2019a); Lyu & Li (2019); Ji & Telgarsky (2020) demon-
strated that for general homogeneous networks, Gradient
Flow (GF) and GD converge to solutions corresponding the
KKT point of the max-margin problem. Kunin et al. (2023)
has recently extended this analysis to quasi-homogeneous
networks. Moreover, for two-layer (leaky-)ReLU neural
networks, Lyu et al. (2021); Vardi et al. (2022); Wang & Ma
(2023) studied whether the convergent KKT point of GF is
a global optimum of the max-margin problem.

Other Implicit Biases. There are many other attempts
to explain the implicit bias of deep learning algorithms
(Vardi, 2023). Among them, the most popular one is the
flat minima hypothesis: SGD favors flat minima (Keskar
et al., 2016) and flat minima generalize well (Hochreiter
& Schmidhuber, 1997; Jiang et al., 2019). Recent studies
(Wu et al., 2018; Ma & Ying, 2021; Wu et al., 2022) pro-

Table 1: Comparison of the directional convergence and margin maximization rates of different algorithms under Assump-
tion 3.1, 5.4, and γ⋆w⋆ ̸= 1

|I|
∑

i∈I xiyi. In this table, w⋆ and γ⋆ denote the ℓ2 max-margin solution and the corresponding
margin, respectively and w(t) denotes the solution at the t-th step.

Algorithm Error of Direction e(t) = ∥ŵ(t)−w⋆∥
GD e(t) = O(1/ log t) (Soudry et al., 2018); e(t) = Θ (1/ log t) (Thm 6.4)

NGD e(t) = O(1/t) (Ji & Telgarsky, 2021); e(tk) = Θ(1/tk) (Thm 6.4)
PRGD (Ours) e(t) = e−Ω(t) (Thm 6.1)

Algorithm Error of Margin r(t) = γ⋆ − γ(w(t))

GD r(t) = O(1/ log t) (Soudry et al., 2018); r(t) = Ω
(
1/ log2 t

)
(Thm 6.4)

NGD r(t) = O(1/t) (Ji & Telgarsky, 2021); r(tk) = Ω(1/t2k) (Thm 6.4)
Nesterov Acceleration r(t) = Õ(1/t2) (Ji et al., 2021; Wang et al., 2022b)

PRGD (Ours) r(t) = e−Ω(t) (Thm 6.1)
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vided explanations for why SGD tends to select flat minima
from a dynamical stability perspective. Moreover, Blanc
et al. (2020); Li et al. (2022a); Lyu et al. (2022); Ma et al.
(2022) offered in-depth characterizations of the dynamical
process of SGD in reducing the sharpness near the global
minima manifold. Additionally, beyond empirical obser-
vations, recent studies (Ma & Ying, 2021; Mulayoff et al.,
2021; Gatmiry et al., 2023; Wu & Su, 2023) provided theo-
retical evidence for the superior generalization performance
of flat minima. Besides, Woodworth et al. (2020); Pesme
et al. (2021); Nacson et al. (2022); Pesme & Flammarion
(2023); Even et al. (2023) investigated the implicit bias on
linear diagonal networks, such as how the initialization scale
and the step size affect the selection bias of GF, GD, and
SGD in different regimes. Additionally, various studies ex-
plored how other training components impact implicit bias,
such as normalization (Wu et al., 2020; Li et al., 2020; Lyu
et al., 2022; Dai et al., 2023), re-parametrization (Li et al.,
2022b), weight decay (Andriushchenko et al., 2023), cyclic
learning rate (Wang & Wu, 2023), and sharpness-aware
minimization (Wen et al., 2023a;b; Long & Bartlett, 2023).

3. Preliminaries
Notation. We use bold letters for vectors and lowercase
letters for scalars, e.g. x = (x1, · · · , xd)

⊤ ∈ Rd. We
use ⟨·, ·⟩ for the standard Euclidean inner product between
two vectors, and ∥·∥ for the ℓ2 norm of a vector or the
spectral norm of a matrix. Let ŵ = w/∥w∥ the normalized
vector. We use standard big-O notations O,Ω,Θ to hide
absolute positive constants, and use Õ, Ω̃, Θ̃ to further hide
logarithmic constants. For any positive integer n, let [n] =
{1, · · · , n}.
Problem Setup. We consider the problem of binary clas-
sification with a linear decision function x 7→ ⟨w,x⟩.
Let S = {(x1, y1), · · · , (xn, yn)}ni=1 with xi ∈ Rd and
yi ∈ {±1} for any i ∈ [n] be the training set. Without loss
of generality, we assume ∥xi∥ ≤ 1,∀i ∈ [n]. Throughout
this paper, we assume S to be linearly separable:
Assumption 3.1 (linear separability). There exists a w ∈
Sd−1 such that min

i∈[n]
yi ⟨w,xi⟩ > 0.

Under this assumption, the solutions that classify all training
data correctly may not be unique. Among them, the max-
margin solution is often favorable due to its superior gener-
alization ability as suggested by the theory of support vector
machine (Vapnik, 1999). For any w ∈ Rd, the normalized
ℓ2-margin is defined by γ(w) := mini∈[n] yi ⟨ŵ,xi⟩. The
max-margin solution and the corresponding max margin are
defined by

w⋆ := argmax
w∈Sd−1

γ(w), γ⋆ := γ(w⋆). (1)

For the margin function, we have the following important

properties:

• Homogeneity. γ(cw) = γ(w) for any c > 0 and
w ∈ Rd.

• Directional Convergence. Under Assumption 3.1,
γ⋆ − γ(w) ≤ ∥ŵ −w⋆∥ (Lemma A.1).

Therefore, instead of directly inspecting the margin maxi-
mization, we can focus on the analysis of directional con-
vergence, which is often must easier.

In this paper, we are interested in algorithms that minimize
the following objective

L(w) =
1

n

n∑
i=1

ℓ (yi ⟨w,xi⟩) . (2)

where ℓ : R 7→ R≥0 is a loss function. We assume
ℓ(z) = e−z for simplicity and the extension to general
loss functions with exponential-decay tails such as logistic
loss ℓ(z) = log(1 + e−z) are straightforward (Soudry et al.,
2018; Nacson et al., 2019b).

Consider to solve the optimization problem (2) with GD:

GD: w(t+ 1) = w(t)− η∇L(w(t)). (3)

Soudry et al. (2018) showed under Assumption 3.1, GD (3)
with η ≤ 1 converges in direction to the max-margin so-
lution w⋆ despite the non-uniqueness of solutions. How-
ever, this occurs at a slow logarithmic rate γ⋆ − γ(w(t)) =
O(1/ log t). To accelerate the convergence, Nacson et al.
(2019b); Ji & Telgarsky (2021) proposed the following Nor-
malized Gradient Descent (NGD):

NGD: w(t+ 1) = w(t)− η
∇L(w(t))

L(w(t))
, (4)

and Ji & Telgarsky (2021) show that for NGD with η ≤ 1,
the margin maximization is much faster: γ⋆ − γ(w(t)) =
O(1/t).

4. Motivations and the Algorithm
In this section, we propose a toy problem to showcase why
NGD is slow in maximizing the margin and why our pro-
posed algorithm can accelerate it significantly.
Dataset 1. S = {(x1, y1), (x2, y2), (x3, y3)} where x1 =

(γ⋆,
√

1− γ⋆2)⊤, y1 = 1, x2 = (γ⋆,−
√
1− γ⋆2)⊤, y2 =

1, x3 = (−γ⋆,−
√

1− γ⋆2)⊤, y3 = −1, and γ⋆ > 0.

For this particular dataset, the max-margin solution is w⋆ =
e1 = (1, 0)⊤ and γ⋆ represents the associate margin. A
visualization of this dataset can be found in Figure 1a.

The Vector Field. To gain an intuitive understanding of
why NGD dynamics is slow in margin maximization for
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(a) Dataset 1.
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(b) The vector field and the trajectories of NGD and PRGD for Dataset 1.

Figure 1: (a) A visualization of Dataset 1 where w⋆ is the max-margin solution. (b) The vector field and the trajectories of NGD and
PRGD for Dataset 1. The gray arrows plot the vector field −∇L(·)/ ∥∇L(·)∥; the red dashed line corresponds to the max-margin solution
w⋆; the green zone A is an “attractor” of NGD dynamics. We plot the trajectories of PPGD and NGD for 8 iterations starting from the
same initial point w(1) (black), where w(1) is trained by NGD starting from w(0) = 0 (black).

Dataset 1, we visualize the direction of normalized gradi-
ent in Figure 1b (the gray arrows). We can see that the
centripetal velocity, i.e., the component orthogonal to w⋆,
becomes tiny in the green zone A and diminishes to zero
at the green line. Consequently, NGD (the orange curve)
always enters and is attracted in A (and remain close the
green line). A rigorous analysis in Appendix A shows that
the “attractor” of NGD (i.e., the green zone) is given by
A :=

{
w : log 2/4 ≤ w2

√
1− γ⋆2 ≤ 3 log 2/4

}
.

The Inefficiency of NGD. We can see that while NGD keeps
trapped in the attractor A, w(t) moves towards infinity and
accordingly, ŵ(t) → w⋆ as t → ∞. However, due to the
gap between A and the max-margin direction w⋆, we have
|w2(t)| = Θ(1) for all t ∈ N. Consequently, the directional
convergence of NGD is cursed to have a rate at most

∥ŵ(t)−w⋆∥ =
√(

w1(t)

∥w(t)∥ − 1

)2

+

(
w2(t)

∥w(t)∥

)2

=Θ

( |w2(t)|
∥w(t)∥

)
= Θ

(
1

t

)
,

where we use the fact that the norm ∥w(t)∥ grows at Θ(t)
rate (Lemma C.5).

Acceleration via Amplifying the Centripetal Velocity.
In Figure 1b, we can see that the centripetal velocity is
helpful for converging towards w⋆ when w is away from
w⋆. The inefficiency of NGD stems from the fact that NGD
is trapped in the green zone where the centripetal velocity
is tiny. Therefore, to accelerate the directional convergence,
we can stretch w(t) outside the the green zone via rescaling:
w(t) → cw(t) for some c > 1. This rescaling does not
change the margin (due to the homogeneity) but reposition
w(t) into a region where the centripetal velocity is lower
bounded, thereby enabling a faster directional convergence
when employing NGD steps there.

Based the above intuition, we propose the Progressive

Rescaling Gradient Descent (PRGD) given in Alg. 1. The
additional projection step in Alg. 1 is proposed to stablize
training by avoiding the rapid explosion of parameters’ norm
in each cycle. It is shown to be useful in experiments but
does not affect our theoretical results (Theorem 6.1).

Algorithm 1 Progressive Rescaling Gradient Descent
(PRGD)
Input: Dataset S; Initialization w(0); Progressive Time

{Tk}Kk=0; Progressive Radius {Rk}Kk=0;
for k = 0, 1, 2, · · · ,K do

w(Tk +1) = Rk
w(Tk)

∥w(Tk)∥ ; ▷
progressive

rescaling step
for Tk + 1 ≤ t ≤ Tk+1 − 1 do

v(t+ 1) = w(t)− η∇L(w(t))
L(w(t)) ; ▷

normalized grad-
ient descent step

w(t+ 1) = ProjB(0,Rk)
(v(t+ 1)); ▷

project-
ion step

Output: w(TK + 1).

The Efficiency of PRGD. In Figure 1b, we plot the trajectory
of PRGD (the purple curve) with hyperparameter Tk+1 −
Tk = 2. This means that in each cycle, PRGD executes one
step of norm rescaling, followed by one step of projected
NGD. It is evident from the figure that PRGD converges
towards w∗ in direction much faster. This acceleration can
be attributed to the following mechanism: the rescaling step
allows PRGD to move out of the attractor A (where the
centripetal velocity is tiny) and to undertake NGD in the
line w2 = 1, where the centripetal velocity has a uniformly
positive lower bound. Utilizing this fact, we can show that
the norm increases exponentially fast via simple geometric
calculation. Consequently, the directional convergence is
exponentially fast

∥ŵ(2k − 1)−w⋆∥ = ∥ŵ(2k)−w⋆∥
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=Θ

( |w2(2k)|
∥w(2k)∥

)
= Θ

(
1

∥w(2k)∥

)
= e−Ω(k).

The following proposition formalizes the above intuitive
analysis of NGD and PRGD for Dataset 1, whose proof is
deferred to Appendix A.

Proposition 4.1. Consider Dataset 1. Then NGD (4)
can only maximize the margin polynomially fast, while
PRGD (Alg. 1) can maximize the margin exponentially fast.
Specifically,

• (NGD). Let w(t) be NGD (4) solution at time t with
η = 1 starting from w(0) = 0. Then both the margin
maximization and directional convergence are at (tight)
polynomial rates: ∥ŵ(t)−w⋆∥ = Θ(1/t) , γ⋆ −
γ(w(t)) = Θ (1/t).

• (PRGD). Let w(1) be NGD (4) solution at time 1 with
η = 1 starting from w(0) = 0, and let w(t) be
PRGD solution (Alg. 1) at time t with η = 1 starting
from w(1). Then there exists a set of hyperparam-
eters {Rk}k and {Tk}k such that Rk = eΘ(k) and
Tk = Θ(k), and both the margin maximization and
directional convergence are at (tight) exponential rate:
∥ŵ(t)−w⋆∥ = e−Θ(t), γ⋆ − γ(w(t)) = e−Θ(t).

5. Centripetal Velocity Analysis
In the above analysis, the key property enabling the accel-
eration for Dataset 1 is the existence a region where the
centripetal velocity is uniformly lower bounded and we can
stretch w(t) to this region by simple norm rescaling. In this
section, we demonstrate that this property holds generally.

We needs the following decomposition of parameter for our
fine-grained analysis of directional dynamics. Note that the
same decomposition has been employed in Ji & Telgarsky
(2021); Wu et al. (2023).

Definition 5.1. Let P(w) := ⟨w,w⋆⟩w⋆ and P⊥(w) :=
w − ⟨w,w⋆⟩w⋆. It is worth noting that for any w ∈ Rd,
we have the following decomposition

w = P(w) + P⊥(w).

We can now formally propose the definition of the “cen-
tripetal velocity” as follows and a visual illustration of the
definition is provided in Figure 2.

Definition 5.2 (Centripetal Velocity). The normalized gra-
dient at w ∈ Rd is ∇L(w)/L(w) and we define the cen-
tripetal velocity φ(w) at w by

φ(w) :=

〈
−∇L(w)

L(w)
,− P⊥(w)

∥P⊥(w)∥

〉
.

w
1

0.0
0.5

1.0

w 2

−1.0
−0.5

0.0
0.5

1.0

w
3

−1.0

−0.5

0.0

0.5

1.0

w?

O

w −∇L(w)
L(w)

−ϕ(w) P⊥(w)
‖P⊥(w)‖

Figure 2: A visual illustration of Definition 5.2 in R3. The red ar-
row corresponds to the max-margin direction w⋆. At w ∈ R3, the
purple arrow signifies the normalized negative gradient; the orange
arrow depicts the projection of −∇L(w)/L(w) along the cen-
tripetal direction −P⊥(w)/ ∥P⊥(w)∥, reflecting the centripetal
velocity φ(w).

In addition, our subsequent analysis crucially relies on the
following geometry:

Definition 5.3 (Semi-infinite Hollow Cylinder). We use

C(D1, D2;H) :=
{
w ∈ span{xi : i ∈ [n]} :

D1 ≤∥P⊥(w)∥ ≤ D2; ⟨w,w⋆⟩ ≥ H
} (5)

to denote a cylinder which starts from the height H and
extends infinitely along the direction w⋆.

Our subsequent analysis will concentrate on this semi-
infinite hollow cylinder as PRGD ensures the iterations
will be confined in the region. Additionally, it is crucial to
note that our attention is restricted to the smaller subspace
span{xi : i ∈ [n]}, rather than the entire space Rd. This
is justified by fact that the trajectories of GD, NGD, and
PRGD, when initialized from 0, will remain staying in this
subspace indefinitely.

5.1. The Existence of a Favorable Semi-infinite Hollow
Cylinder

In this subsection, we undertake a theoretical examination
of the centripetal velocity, as defined in Definition 5.2, on
the semi-infinite hollow cylinder described in Definition 5.3.
Our investigation aims to address the following query:

Does a “favorable” semi-infinite hollow cylinder exist
where the centripetal velocity

consistently maintains a positive lower bound?

Assumption 5.4 (Non-degenerate data). Let I be the index
set of the support vectors. Assume there exist αi > 0
(i ∈ I) such that w⋆ =

∑
i∈I αixiyi and span{xi : i ∈

I} = span{xi : i ∈ [n]}.
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Under this assumption, we can establish the existence of a
favorable semi-infinite cylindrical surface as follows. The
proof is deferred to Appendix B.
Theorem 5.5 (Centripetal Velocity Analysis, Main result).
Under Assumption 3.1 and 5.4, there exists a semi-infinite
hollow cylinder C(D, 2D;H) and a positive constant µ > 0
such that

inf
w∈C(D,2D;H)

φ(w) ≥ µ.

Assumption 5.4 has been widely used in prior analysis of
the margin-maximization bias of gradient-based algorithms.
The first part, requiring strictly positive dual variables to
ensure directional convergence, is rather weak and holds
for almost all linearly separable data (Soudry et al., 2018;
Nacson et al., 2019b; Ji & Telgarsky, 2021; Wang et al.,
2022a). The second part requires the support vectors to
span the entire dataset. This condition has been adopted
in refined analysis of the residual in Theorem 4 of (Soudry
et al., 2018), the analysis of SGD dynamics (Nacson et al.,
2019c), and the edge of stability (Wu et al., 2023). We
emphasize that the second part is only a technical condition
as experimental results for real-world datasets in Section 7.1
demonstrate that PRGD performs effectively even in cases
where this condition is not met. We leave the relaxation of
this condition for future work.

6. Convergence Analysis
6.1. Exponentially Fast Margin Maximization of PRGD

Theorem 5.5 ensures the existence of a favorable semi-
infinite hollow cylinder. The following theorem shows that
PRGD (Alg. 1) can leverage the favorability to achieve an
exponential rate in directional convergence and margin max-
imization.
Theorem 6.1 (PRGD, Main Result). Suppose that Assump-
tion 3.1 and 5.4 hold. Let w(t) be solution generated by the
following two-phase algorithms starting from w(0) = 0:

• Warm-up Phase: Run GD (3) or NGD (4) with η ≤ 1
for Tw steps starting from w(0);

• Acceleration Phase: Run PRGD (Alg. 1) with some
η, {Rk}k, {Tk}k starting from w(Tw).

Then there exist a set of hyperparameters η = Θ(1),
Rk = eΘ(k) and Tk = Θ(k), ensuring both directional
convergence and margin maximization occur at exponential
rates:

∥ŵ(t)−w⋆∥ = e−Ω(t); γ⋆ − γ(w(t)) = e−Ω(t).

This theorem demonstrates that PRGD can achieve both
directional convergence and margin maximization expo-
nentially fast. In stark contrast, all existing algorithms

maximize the margin at notably slower rates, including
O(1/ log t) for GD (Soudry et al., 2018), O(1/t) for
NGD (Ji & Telgarsky, 2021), and Õ(1/t2) for Dual Ac-
celeration (Ji et al., 2021; Wang et al., 2022b).

The complete proof of Theorem 6.1 is deferred to Ap-
pendix C.1 and here, we provide a proof sketch to illustrate
the intuition behind:

• The initial warm-up phase utilizes GD to secure
a preliminary directional convergence, albeit at a
slower rate, such that the condition ∥ŵ(Tw)−w⋆∥ <
min{D/2H, 1/2} is satisfied. This condition is cru-
cial as it allows for the subsequent stretching of
w(Tw) to the favorable semi-infinite hollow cylinder
C(D, 2D;H) (in Theorem 5.5) through a straightfor-
ward norm rescaling. Without this condition, rescaling
cannot reposition w into the favorable region.

• Following the warm-up phase, rescaling is employed
to position w(Tw) into the favorable semi-infinite
hollow cylinder C(D, 2D;H) by choosing R1 =

D
∥P⊥(w(Tw))∥ . NGD steps taken thereafter yield a sig-
nificant directional convergence, however, NGD steps
also drive solutions to leave away from C(D, 2D;H).
To overcome this issue, by setting a sequence of pro-
gressively increasing radii {Rk}, we can reposition
the parameter back to C(D, 2D;H) again, as is evi-
dent illustrated in Figure 1b. Lastly, through a simple
geometric calculation, we can demonstrate that such
directional convergence is exponentially fast.

Remark 6.2. We clarify that Theorem 6.1 establishes the
exponentially fast margin maximization of PRGD under a
particular family of hyperparameters. For a broader range
of hyperparameter choices, we delve into experimetnal ex-
plorations in Section 7.
Remark 6.3. In Proposition 4.1, we have provided a tightly
exponentially fast rate on Dataset 1, which satisfies Assump-
tion 3.1 and 5.4. Hence, the tightness of Theorem 6.1 is
ensured.

6.2. Inefficiency of GD and NGD

In order to theoretically justify RPGD’s superiority over
GD and NGD, we need lower bounds of directional con-
vergence and margin maximization rates for GD and NGD.
However, as mentioned above, previous studies have only
established the upper bounds of GD and NGD asO(1/ log t)
andO(1/t), respectively. In this section, we further identify
mild assumptions, under which we show that those rates
also serve as the lower bounds for GD and NGD.

Theorem 6.4 (GD and NGD, Main Results). Suppose
Assumption 3.1 and 5.4 hold. Additionally, we assume
γ⋆w⋆ ̸= 1

|I|
∑

i∈I xiyi. Then,

6
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• For GD (3) with η ≤ η0 starting from w(0) = 0
(where η0 is a constant), it holds that

∥ŵ(t)−w⋆∥ =Θ(1/ log t);

γ⋆ − γ(w(t)) =Ω
(
1/ log2 t

)
.

• For NGD (4) with η ≤ η0 starting from w(0) = 0
(where η0 is a constant), there exists a subsequence
w(tk) (tk →∞) such that

∥ŵ(tk)−w⋆∥ =Θ(1/tk);

γ⋆ − γ(w(tk)) =Ω
(
1/t2k

)
.

To the best of our knowledge, Theorem 6.4 provides the first
lower bounds of both directional convergence and margin
maximization for GD and NGD. We anticipate that this
result can help build intuitions for future analysis of the
implicit bias and convergence of gradient-based algorithms.

As presented in Table 1, under the same conditions–
Assumption 3.1, 5.4, and γ⋆w⋆ ̸= 1

|I|
∑

i∈I xiyi, PRGD
can achieve directional convergence exponentially fast with
the rate e−Ω(t). In contrast, Theorem 6.4 ensures that GD ex-
hibits a tight bound with exponentially slow rate Θ(1/ log t),
as well as NGD maintains a tight bound of polynomial speed
Θ(1/tk). Moreover, for margin maximization, Theorem 6.4
also provides nearly tight lower bounds for GD and NGD.

The detailed proof of Theorem 6.4 is provided in Ap-
pendix C.2. While the proof of the lower bounds involves
a more intricate convex optimization analysis compared
to Proposition 4.1 (especially for NGD due to its aggres-
sive step size), the fundamental insights shared by both
proofs are remarkably similar. Specifically, for NGD, our
conditions ensures the existence of a nearly “attractor” re-
gion, such that (i) there exists a sequence of NGD w(tk)
(tk →∞) falls within this region; (ii) the condition γ⋆w⋆ ̸=
1
|I|
∑

i∈I xiyi ensures a Ω(1) distance between the attrac-
tor region and the max-margin direction. Since the norm
grows as ∥w(tk)∥ = Θ(tk), NGD is cursed to have only
Ω(1/ ∥w(tk)∥) = Ω(1/tk) directional convergence rate.

7. Numerical Experiments
7.1. Linearly Separable Datasets

Experiments on Synthetic Dataset. We start our exper-
imental validations with two synthetic linearly separable
datasets. For synthetic datasets, the value of γ⋆ is explicit,
and as such, we can explicitly compute the margin gap. To
ensure a fair comparison, we maintain the same step size
η = 1 for all GD, NGD, and PRGD.

While our theoretical analysis (Theorem 6.1) is confined to
a specific set of hyper-parameters, it is worth noting that
Theorem 5.5, a crucial property used in the proof of Theo-
rem 6.1, holds over a relatively broad region. This flexibility
enables a simpler selection of hyperparameters. Follow-
ing the guidelines provided in Theorem 6.1, we employ
PRGD(exp) with hyperparameters:

Tk+1 − Tk ≡ 5, Rk = R0 × 1.2k.

To illustrate the impact of the progressive radius, we also
examine PRGD(poly) configured with

Tk+1 − Tk ≡ 5, Rk = R0 × k1.2,

where the progressive radius increases polynomially. For
more experimental details, refer to Appendix E.1. Some
of the experimental results are provided in Figure 3, and
the complete results are referred to Appendix E.1. Con-
sistent with Theorem 6.1, PRGD(exp) indeed maximizes
the margin (super-)exponentially fast, and surprisingly,
PRGD(poly) also performs relatively well for this task. In
contrast, NGD and GD reduce the margin gaps much more
slowly, which substantiates Theorem 6.4.

Experiments on Real-World Datasets. In this case, we
extend our experiments to real-world datasets. Specifically,
we employ the digit datasets from Sklearn, which are
image classification tasks with d = 64, n = 300. In this
real-world setting, we lack prior knowledge of the exact
γ⋆. Instead, we approximate γ⋆ by employing γ(w(t))
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Figure 3: Comparison of margin maximization rates of different algorithms on a synthetic dataset. (left) A visualization of the 2d synthetic
dataset. The yellow points represent the data with label 1, while the purple points corresponds to the data with label 1; (middle)(right) The
comparison of margin maximization rates of different algorithms on this dataset at small and large time scales, respectively.
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obtained by a sufficiently trained NGD. Additionally, it is
worth noting that these datasets do not satisfy the second
part of Assumption 5.4. For instance, in the digit-01
dataset, rank{xi : i ∈ I} = 2 < rank{xi : i ∈ [n]} = 51,
where rank{xi : i ∈ I} is calculated by approximating w⋆

using ŵ(t), obtained through training NGD sufficiently.

In real experiments, we test both PRGD(exp) and
PRGD(poly) and consistently observe that the latter per-
forms much better. Therefore, in this experiment, we em-
ploy a modified variant of PRGD with smaller progressive
radii:

Rk = R0 · kα, Tk+1 − Tk = T0 · kβ , (6)

where α, β are hyperparameters to be tuned.

The results with well-tuned hyperparameters α = β = 0.6
are presented in Figure 4. It is evident that, in these real-
world datasets, PRGD consistently beats GD and NGD in
terms of margin maximization rates.
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Figure 4: Comparison of margin maximization rates of different
algorithms on digit (real-word) datasets. (Left) the results on
digit-01 dataset; (Right) the results on digit-04 dataset.

7.2. Linearly Non-separable Datasets and Deep Neural
Networks

In this subsection, we further explore the potential practical
utilities of PRGD for datasets that are not linearly separable.
1) In the first experiment, we still consider linear models but
for classifying a linearly non-separable dataset, Cancer in
Sklearn. 2) For the second experiment, we examine the
performance of PRGD for deep neural networks. Inspired
by Lyu & Li (2019); Ji & Telgarsky (2020), the max-margin
bias also exists for homogenized neural networks. Thus,
we follow Lyu & Li (2019) and examine our algorithm for
homogenized VGG-16 network (Simonyan & Zisserman,
2015) on the full CIFAR-10 dataset (Krizhevsky & Hinton,
2009), without employing any explicit regularization. Ad-
ditionally, in this setting, we employ mini-batch stochastic
gradient instead of the full gradient for these algorithms,
and we also fine-tune the learning rates of GD, NGD, and
PRGD. Both NGD and PRGD share the same learning rate
scheduling strategy as described in Lyu & Li (2019). For

both experiments, we follow the same strategy as described
in (6) to tune the progressive hyperparameters of PRGD. For
more experimental details, please refer to Appendix E.2.

The experimental results are presented in Fig 5a and Fig 5b,
respectively. One can see that our PRGD algorithm archives
better generalization performance and outperforms GD and
NGD for both tasks.
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Figure 5: Comparison of the generalization performance of GD,
NGD, and PRGD for non-linearly separable datasets and deep
neural networks.

8. Concluding Remark
In this work, we investigate the mechanisms driving the con-
vergence of gradient-based algorithms towards max-margin
solutions. Specifically, we elucidate why GD and NGD
can only achieve polynomially fast margin maximization
by examining the properties of the velocity field linked to
(normalized) gradients. This analysis inspires the design of
a novel algorithm called PRGD that significantly accelerates
the process of margin maximization. To substantiate our
theoretical claims, we offer both synthetic and real-world ex-
perimental results, thereby underscoring the potential practi-
cal utility of the proposed PRGD algorithm. Looking ahead,
an intriguing avenue for future research is the application
of progressive norm rescaling techniques to state-of-the-art
real-world models. In addition, it would be worthwhile to
explore how PRGD can cooperate with other explicit regu-
larization techniques, such as batch normalization, dropout,
and sharpness-aware minimization (Foret et al., 2021), to
further improve the generalization performance.
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A. Proofs in Section 4
A.1. Proof of Proposition 4.1

Proof of Proposition 4.1.
Step I. Regularized path analysis.

For simplicity, we denote z1 = x1y1 and z2 = x2y2.

L(w) =
1

3

(
2e−w⊤z1 + e−w⊤z2

)
=

1

3
e−w1γ

(
2e−w2

√
1−γ2

+ ew2

√
1−γ2

)
.

∇L(w) =

 − 1
3e

−w1γγ
(
2e−w2

√
1−γ2

+ ew2

√
1−γ2

)
1
3e

−w1γ
√

1− γ2
(
−2e−w2

√
1−γ2

+ ew2

√
1−γ2

) .

For any fixed R > 0, we will calculate the regularized solution in the ball ∥w∥2 ≤ R.

From the expression of∇L(w), we know∇L(w) ̸= 0 for any w ∈ Rd. Hence, it must holds
∥∥w∗

reg(R)
∥∥
2
= R. Moreover,

we can determine the signal of w∗
reg,1(R) and w∗

reg,2(R). From the symmetry of the ℓ2 ball, we know w∗
reg,1(R) < 0 and

w∗
reg,2(R) > 0. This is because: if w∗

reg,1(R) > 0, then L(−w∗
reg,1(R), w∗

reg,2(R)) < L(w∗
reg,1(R), w∗

reg,2(R)), which is
contradict to the optimum of w∗

reg(R).

Then from the optimum and differentiability, we have〈
w∗

reg(R),−∇L
(
w∗

reg(R)
)〉

R
∥∥∇L (w∗

reg(R)
)∥∥

2

= 1,
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which means

w∗
reg(R) // ∇L

(
w∗

reg(R)
)
,
〈
w∗

reg(R),∇L
(
w∗

reg(R)
)〉

< 0.

For simplicity, we use the notation w1(R) := w∗
reg,1(R), w2(R) := w∗

reg,2(R) in the proof below.

By a straightforward calculation and taking the square, we have

(1− γ2)
(
e2w2(B)

√
1−γ2

+ 4e−2w2(B)
√

1−γ2 − 4
)

γ2
(
e2w2(R)

√
1−γ2

+ 4e−2w2

√
1−γ2

+ 4
) =

w2
2(B)

w2
1(R)

=
w2

2(R)

R2 − w2
2(R)

,

which is equivalent to

R2

w2
2(R)

=
1

1− γ2
+

8γ2

(1− γ2)
(
e2w2(R)

√
1−γ2

+ 4e−2w2(R)
√

1−γ2 − 4
) . (7)

With the help of Lemma A.2, we know

lim
R→∞

〈
w∗,

w∗
reg(R)

R

〉
= lim

R→∞
w1(R)√

w2
1(R) + w2

2(R)
= 1,

which means lim
R→∞

w2
2(R)
R2 = 0. Then taking R→∞ in (7), we have

lim
R→∞

(
e2w2(R)

√
1−γ2

+ 4e−2w2(R)
√

1−γ2
)
= 4.

A straight-forward calculation gives us

lim
R→∞

w2(R) =
log 2

2
√
1− γ2

.

Step II. Proof for NGD.

Following the proof, we have

−∇L(w)

L(w)
=

(
γ√

1− γ2
(
2− e2w2

√
1−γ2

)/(
2 + e2w2

√
1−γ2

))
.

For NGD, it holds that:

w1(t+ 1) = w1(t) + γ,

w2(t+ 1) = w2(t) +
√

1− γ2
(
2− e2w2(t)

√
1−γ2

)/(
2 + e2w2(t)

√
1−γ2

)
.

It is worth noticing that the dynamics of w1(t) and w2(t) are decoupled. For w1(t), it is easy to verify that w1(t) = γt,
∀t ≥ 1. As for w2(t), we will estimate the uniform upper and lower bounds.

For simplicity, we denote x(t) := 2w2(t)
√
1− γ2 − log 2. From the dynamics of w2(t), the dynamics of x(t) are

x(t+ 1) = x(t) + 2(1− γ2)
1− ex(t)

1 + ex(t)
= x(t) + 2(1− γ2)

(
2

1 + ex(t)
− 1

)
.

Then we will prove that |x(t)| ≤ 1
2 log 2 holds for t ≥ 1 by induction.

From x(0) = − log 2, we have x(1) = − log 2 + 2(1−γ2)
3 ∈

[
− 1

2 log 2,
1
2 log 2

]
.

13
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Assume that x(t) ∈
[
− 1

2 log 2,
1
2 log 2

]
holds for any t ≤ k, and we denote h(x) := x+2(1− γ2)

(
2

1+ex − 1
)

. Then with
the help of Lemma D.2, the following estimate holds for t = k + 1:

x(k + 1) =h (x(k)) ≤ h

(
1

2
log 2

)
=

1

2
log 2 + 2(1− γ2)

1−
√
2

1 +
√
2
<

1

2
log 2;

x(k + 1) =h (x(k)) ≥ h

(
−1

2
log 2

)
= −1

2
log 2 + 2(1− γ2)

√
2− 1√
2 + 1

> −1

2
log 2.

By induction, we have proved that x(t) ∈
[
− 1

2 log 2,
1
2 log 2

]
holds for any t ≥ 1. This implies that w2(t) ∈[

log 2

4
√

1−γ2
, 3 log 2

4
√

1−γ2

]
holds for any t ≥ 1. Hence,

log 2

4tγ
√
1− γ2

≤ w2(t)

w1(t)
≤ 3 log 2

4tγ
√
1− γ2

, ∀t ≥ 1.

From the definition of directional convergence, we have:∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ =

√
2

(
1−

〈
w(t)

∥w(t)∥ , e1
〉)

=

√√√√2

(
1− w1(t)√

w2
1(t) + w2

2(t)

)

=

√√√√√2

1− 1√
w2

2(t)

w2
1(t)

+ 1

 = Θ

(∣∣∣∣w2(t)

w1(t)

∣∣∣∣) = Θ

(
1

t

)
.

From the definition of margin, we have:

γ(w(t))− γ⋆ = min
i∈[2]

〈
w(t)

∥w(t)∥ , zi
〉
− γ⋆ =

〈
w(t)

∥w(t)∥ , z2
〉
− γ⋆

=
w1(t)γ

⋆ − w2(t)
√
1− γ⋆2√

w2
1(t) + w2

2(t)
− γ⋆ =

−w2(t)
w1(t)

√
1− γ⋆2 + γ⋆√

w2
2(t)

w2
1(t)

+ 1
− γ⋆

=−
w2(t)
w1(t)

√
1− γ⋆2√

w2
2(t)

w2
1(t)

+ 1
+ γ⋆

((
w2

2(t)

w2
1(t)

+ 1

)−1/2

− 1

)
= −Θ

(
w2(t)

w1(t)

)
−Θ

(
w2

2(t)

w2
1(t)

)

=−Θ

(
w2(t)

w1(t)

)
= −Θ

(
1

t

)
.

Step II. Proof for PRGD.

For PRGD, to maximize margin exponentially fast, we only need to select Rk = eΘ(k) and Tk = Θ(k). Notice that the
choices of Rk and Tk are not unique. For simplicity, we use the following choice to make our proof clear.

• Phase I. We run NGD with η = 1 for one step.

• Phase II. We run PRGD with η = 1 for t ≥ 1. Specifically, we select Tk and Rk such that:

T0 = 1; Tk+1 = Tk + 2, ∀k ≥ 0; Rk =
∥w(Tk)∥
w2(Tk)

, ∀k ≥ 0.

Recalling our proof for NGD, at the end of Phase I, it holds that w2(1) ∈
[

log 2

4
√

1−γ⋆2
, 3 log 2

4
√

1−γ⋆2

]
and w1(1) = γ⋆. Then we

analyze Phase II. For simplicity, we denote an abosulte constant q = 1 +
√

1− γ⋆2
(
2− e2

√
1−γ⋆2

)/(
2 + e2

√
1−γ⋆2

)
∈

(0, 1).

14
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• (S1). w2(2k + 2) = 1 and ∥w(2k + 2)∥ = Rk hold for any k ≥ 0;

• (S2). w2(2k+2)
w1(2k+2) =

w2(2k+1)
w2(2k+1) holds for any k ≥ 0;

• (S3). w1(2k + 2) =
(

1
q

)k (
w1(2) +

γ⋆

1−q

)
− γ⋆

1−q = eΘ(k).

• (S4). Rk = eΘ(k).

• (S5). w2(t)
w1(t)

= e−Θ(t).

According to the update rule of Algorithm 1, (S1)(S2) hold directly.

Then we will prove (S3). Recalling the update rule, for 2k + 3, it holds that

w2(2k + 3) = w2(2k + 2) +

√
1− γ⋆2

(
2− e2w2(2k+2)

√
1−γ⋆2

)/(
2 + e2w2(2k+2)

√
1−γ⋆2

)
=1 +

√
1− γ⋆2

(
2− e2

√
1−γ⋆2

)/(
2 + e2

√
1−γ⋆2

)
:= q;

w1(2k + 3) = w1(2k + 2) + γ⋆.

Recalling (S2), we have:

w1(2k + 4) = w2(2k + 4)
w1(2k + 3)

w2(2k + 3)
= 1 · w1(2k + 2) + γ⋆

q
=

1

q
(w1(2k + 2) + γ⋆) ,

where 1 +
√
1− γ⋆2

(
2− e2

√
1−γ⋆2

)/(
2 + e2

√
1−γ⋆2

)
∈ (0, 1).

Consequently, a simple calculation can imply (S3):

w1(2k + 2) =

(
1

q

)k (
w1(2) +

γ⋆

1− q

)
− γ⋆

1− q
= eΘ(k), ∀k ≥ 0.

Then using (S1) and (S3), (S4) holds:

Rk = ∥w(2k + 2)∥ =
√

1 + w2
1(2k + 2) = eΘ(k).

By (S1)(S2) and (S3), we have:

w2(2k + 1)

w1(2k + 1)
=

w2(2k + 2)

w1(2k + 2)
=

1

w1(2k + 2)
= e−Θ(2k+2),

which implies (S4).

From the definition of directional convergence, we have:

∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ =

√
2

(
1−

〈
w(t)

∥w(t)∥ , e1
〉)

=

√√√√2

(
1− w1(t)√

w2
1(t) + w2

2(t)

)

=

√√√√√2

1− 1√
w2

2(t)

w2
1(t)

+ 1

 = Θ

(
w2(t)

w1(t)

)
= e−Θ(t).

From the definition of margin, we have:

γ(w(t))− γ⋆ = min
i∈[2]

〈
w(t)

∥w(t)∥ , zi
〉
− γ⋆ =

〈
w(t)

∥w(t)∥ , z2
〉
− γ⋆

15
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=
w1(t)γ

⋆ − w2(t)
√
1− γ⋆2√

w2
1(t) + w2

2(t)
− γ⋆ =

−w2(t)
w1(t)

√
1− γ⋆2 + γ⋆√

w2
2(t)

w2
1(t)

+ 1
− γ⋆

=−
w2(t)
w1(t)

√
1− γ⋆2√

w2
2(t)

w2
1(t)

+ 1
+ γ⋆

((
w2

2(t)

w2
1(t)

+ 1

)−1/2

− 1

)
= −Θ

(
w2(t)

w1(t)

)
−Θ

(
w2

2(t)

w2
1(t)

)

=−Θ

(
w2(t)

w1(t)

)
= −e−Θ(t).

A.2. Useful Lemmas

Lemma A.1 (Margin error and Directional error). Under Assumption 3.1, for any w ∈ Rd, it holds that γ⋆ − γ(w) ≤∥∥∥ w
∥w∥ −w⋆

∥∥∥.

Proof of Lemma A.1.
Let w ∈ Rd and denote i0 ∈ argmin

i∈[n]

yi

〈
w

∥w∥ ,xi

〉
. Then we have:

γ⋆ − γ(w) = min
i

yi ⟨w⋆,xi⟩ −min
i

yi

〈
w

∥w∥ ,xi

〉
=min

i
yi ⟨w⋆,xi⟩ − yi0

〈
w

∥w∥ ,xi0

〉
≤yi0 ⟨w⋆,xi0⟩ − yi0

〈
w

∥w∥ ,xi0

〉
= yi0

〈
w⋆ − w

∥w∥ ,xi0

〉
≤
∥∥∥∥ w

∥w∥ −w⋆

∥∥∥∥ .
Lemma A.2 (Integration of (Soudry et al., 2018; Ji et al., 2020)). For problem (2), Gradient Flow convergences to the ℓ2 max-
margin direction w∗, hence the regularization path also convergences to the ℓ2 max-margin solution: lim

B→∞
w∗

reg(B)

B = w∗.

B. Proofs in Section 5
Proof of Theorem 5.5.
Without loss of generality, we can assume span{x1, · · · ,xn} = Rd. If span{x1, · · · ,xn} ≠ Rd, we only need to change
the proof in the subspace span{x1, · · · ,xn}.
Recall the definition of C(D1, D2;H):

C(D1, D2;H) := {w ∈ span{xi : i ∈ [n]} : D1 ≤ ∥P⊥(w)∥ ≤ D2; ⟨w,w⋆⟩ ≥ H} ,

we further define C(D;H) as:

C(D;H) := {w ∈ span{xi : i ∈ [n]} : ∥P⊥(w)∥ = D; ⟨w,w⋆⟩ ≥ H} .

It holds that

C(D;H) = {hw⋆ +Dv : h ≥ H,v ⊥ w⋆, ∥v∥ = 1} ,

16
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and the following relationship is easy to verified:

C(D1, D2;H) =
⋃

D1≤D≤D2

C(D;H).

In the following steps, we first prove the lower bound for C(D;H), and then prove for C(D1, D2;H).

Step I. Strip out the important ingredients.

For any w ∈ C(D;H), we have:

〈∇L(w)

L(w)
,
P⊥(w)

∥P⊥(w)∥

〉
=

〈∇L(w)

L(w)
,v

〉
=

〈 1
n

∑n
i=1(−yixi) exp(−⟨w, yixi⟩)
1
n

∑n
i=1 exp(−yi ⟨w,xi⟩)

,v

〉
=

∑n
i=1 ⟨v,−yixi⟩ exp (−h ⟨w⋆, yixi⟩) exp (−D ⟨v, yixi⟩)∑n

i=1 exp (−h ⟨w⋆, yixi⟩) exp (−D ⟨v, yixi⟩)
.

(8)

For the numerator of (8), it holds that

n∑
i=1

⟨v,−yixi⟩ exp (−h ⟨w⋆, yixi⟩) exp (−D ⟨v, yixi⟩)

=
∑
i∈I
⟨v,−yixi⟩ exp (−h ⟨w⋆, yixi⟩) exp (−D ⟨v, yixi⟩)

+
∑
i/∈I
⟨v,−yixi⟩ exp (−h ⟨w⋆, yixi⟩) exp (−D ⟨v, yixi⟩)

= exp (−hγ⋆)
∑
i∈I
⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩)

+
∑
i/∈I
⟨v,−yixi⟩ exp (−h ⟨w⋆, yixi⟩) exp (−D ⟨v, yixi⟩)

≥ exp (−hγ⋆)
∑
i∈I
⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩)−

∑
i/∈I

exp (−h ⟨w⋆, yixi⟩) exp (D)

≥ exp (−hγ⋆)
∑
i∈I
⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩)− (n− |I|) exp (−hγ⋆

sub) exp (D) ;

For the denominator of (8), it holds that:

n∑
i=1

exp (−h ⟨w⋆, yixi⟩) exp (−D ⟨v, yixi⟩)

≤
n∑

i=1

exp (−h ⟨w⋆, yixi⟩) exp (D)

=

(∑
i∈I

exp (−h ⟨w⋆, yixi⟩) +
∑
i/∈I

exp (−h ⟨w⋆, yixi⟩)
)
exp (D)

≤
(
|I| exp (−hγ⋆) + (n− |I|) exp (−hγ⋆

sub)

)
exp(D).
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Combining these two estimates, we obtain:〈∇L(w)

L(w)
,
P⊥(w)

∥P⊥(w)∥

〉

≥
exp (−hγ⋆)

∑
i∈I
⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩)− (n− |I|) exp (−hγ⋆

sub) exp (D)

(|I| exp (−hγ⋆) + (n− |I|) exp (−hγ⋆
sub)) exp(D)

=

1
|I| exp(D)

∑
i∈I
⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩)− n−|I|

|I| exp (−h(γ⋆
sub − γ⋆))

1 + n−|I|
|I| exp (−h(γ⋆

sub − γ⋆))
.

(9)

Notice that the term n−|I|
|I| exp (−h(γ⋆

sub − γ⋆)) converges to 0 when h goes to +∞. Thus, we only need to derive the
uniform lower bound for the term ∑

i∈I
⟨v,−yixi⟩ exp (−D ⟨v, yixi⟩)

for any v ∈ {v : v ⊥ w⋆, ∥v∥ = 1}.
Step II. Uniform Lower bound of

∑
i∈I ⟨v,−yixi⟩ exp (D ⟨v,−yixi⟩) for {v : v ⊥ w⋆, ∥v∥ = 1}.

For simplicity, we denote ui := P⊥(−yixi) for i ∈ [n]. It is worth noticing that ⟨v,−yixi⟩ = ⟨v,ui⟩ for any v ∈ {v :
v ⊥ w⋆, ∥v∥ = 1}. Therefore,

∑
i∈I
⟨v,−yixi⟩ exp (D ⟨v,−yixi⟩) =

∑
i∈I
⟨v,ui⟩ exp (D ⟨v,ui⟩) .

First, recalling Assumption 5.4, there exist αi > 0 (i ∈ I) such that w⋆ =
∑

i∈I αiyixi, where
∑

i∈I αi = 1. This
implies: 0 =

∑
i∈I αiui. Thus, we define ki := αiui, then∑

i∈I
ki = 0.

Recalling Assumption 5.4, it holds span{xi : i ∈ I} = span{xi : i ∈ [n]}, which implies that span{ui : i ∈ I} = {v :
v ⊥ w⋆}. Therefore, there exists an absolute constant λmin > 0 such that

∑
i∈I
⟨v,ki⟩2 = v⊤

(∑
i∈I

kik
⊤
i

)
v ≥ λmin, ∀v ∈ {v ⊥ w⋆, ∥v∥ = 1}.

By a rough estimate, it holds that:

∑
i∈I
|⟨v,ki⟩| =

(∑
i∈I
|⟨v,ki⟩|

)2
1/2

≥
(∑

i∈I
|⟨v,ki⟩|2

)1/2

≥
√

λmin, ∀v ∈ {v ⊥ w⋆, ∥v∥ = 1}.

Notice that
∑

i∈I ⟨v,ki⟩ =
〈
v,
∑

i∈I ki

〉
= 0, it holds that∑

i∈I,⟨v,ki⟩>0

⟨v,ki⟩ = −
∑

i∈I,⟨v,ki⟩<0

⟨v,ki⟩ ,
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which means: ∑
i∈I,⟨v,ki⟩>0

⟨v,ki⟩ =
1

2

∑
i∈I
| ⟨v,ki⟩ |.

Consequently, we can do the following estimate for the largest ⟨v,ki⟩:

max
i∈I
⟨v,ki⟩ ≥

1

|{i : i ∈ I, ⟨v,ki⟩ > 0}|
∑

i∈I,⟨v,ki⟩>0

⟨v,ki⟩

≥ 1

|I|
∑

i∈I,⟨v,ki⟩>0

⟨v,ki⟩ =
1

2|I|
∑
i∈I
| ⟨v,ki⟩ | ≥

√
λmin

2|I| , ∀v ∈ {v ⊥ w⋆, ∥v∥ = 1}.

Hence, we obtain the uniform lower bound by the following splitting:∑
i∈I
⟨v,ui⟩ exp (D ⟨v,ui⟩)

=
∑

i∈I:⟨v,ui⟩>0

⟨v,ui⟩ exp (D ⟨v,ui⟩) +
∑

i∈I:⟨v,ui⟩<0

⟨v,ui⟩ exp (D ⟨v,ui⟩)

≥max
i∈I
⟨v,ui⟩ exp (D ⟨v,ui⟩) +

∑
i∈I:⟨v,ui⟩<0

⟨v,ui⟩ exp (D ⟨v,ui⟩)

≥max
i∈I
⟨v,ui⟩ exp (D ⟨v,ui⟩) +

∑
i∈I:⟨v,ui⟩<0

⟨v,ui⟩ exp (0)

≥max
i∈I
⟨v,ui⟩ exp (D ⟨v,ui⟩)−

∑
i∈I:⟨v,ui⟩<0

∥ui∥

≥max
i∈I
⟨v,ui⟩ exp (D ⟨v,ui⟩)− |I|

≥
√
λmin

2|I| exp

(
D

√
λmin

2|I|

)
− |I|, ∀v ∈ {v ⊥ w⋆, ∥v∥ = 1}.

Step III. The final bound.

First, we select

D0 = log

(
4|I|2√
λmin

)
, H0 =

1

γ⋆
sub − γ⋆

log

(
max

{
2(n− |I|)
|I| , 2

})
.

For any D ≥ D0 and h ≥ H0, we have: it holds that:

inf
v∈{v⊥w⋆,∥v∥=1}

∑
i∈I
⟨v,ui⟩ exp (D ⟨v,ui⟩)

≥
√
λmin

2|I| exp

(
D

√
λmin

2|I|

)
− |I| ≥

√
λmin

4|I| exp

(
D

√
λmin

2|I|

)
;

n− |I|
|I| exp (−h(γ⋆

sub − γ⋆)) ≤ 1

2
.

Therefore,

(9) ≥
1

|I| exp(D)

√
λmin

4|I| exp
(
D

√
λmin

2|I|

)
− n−|I|

|I| exp (−h(γ⋆
sub − γ⋆))

1 + 1
2
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≥
√
λmin

4|I|2 exp(−D)− n−|I|
|I| exp (−h(γ⋆

sub − γ⋆))

2
.

Now we select

D1 = D0, D2 = 2D0, H = max

{
H0,

1

γ⋆
sub − γ⋆

(
2D0 + log

(
4|I|(n− |I|)√

λmin

))}
.

Thus, for any D ∈ [D1, D2] and w ∈ C(D;H), it holds that〈∇L(w)

L(w)
,
P⊥(w)

∥P⊥(w)∥

〉

≥
√
λmin

4|I|2 exp(−D)− n−|I|
|I| exp (−h(γ⋆

sub − γ⋆))

2

≥
√
λmin exp(−D)

16|I|2 ≥
√
λmin exp(−2D0)

16|I|2 .

Lastly, we obtain our result:

inf
w∈C(D1,D2;H)

〈∇L(w)

L(w)
,
P⊥(w)

∥P⊥(w)∥

〉
= inf

D∈[D1,D2]
inf

w∈C(D;H)

〈∇L(w)

L(w)
,
P⊥(w)

∥P⊥(w)∥

〉
≥
√
λmin exp(−D)

16|I|2

≥
√
λmin exp(−2D0)

16|I|2 > 0.

C. Proofs in Section 6
C.1. Proof of Theorem 6.1

Proof of Theorem 6.1.
According Theorem 5.5, there exist constants H,D, µ > 0 such that〈∇L(w)

L(w)
,
P⊥ (w)

∥P⊥ (w)∥

〉
≥ µ holds for any w ∈ C(D, 2D;H),

where C(D, 2D;H) := {w ∈ span{xi : i ∈ [n]} : D ≤ ∥P⊥(w)∥ ≤ 2D; ⟨w,w⋆⟩ ≥ H}.
Following the proof of Theorem 5.5, we further define C(D;H) as:

C(D;H) := {w ∈ span{xi : i ∈ [n]} : ∥P⊥(w)∥ = D; ⟨w,w⋆⟩ ≥ H} .

It holds that C(D;H) = {hw⋆ +Dv : h ≥ H,v ⊥ w⋆, ∥v∥ = 1} and C(D;H) ⊂ C(D, 2D;H).

Analysis of Phase I.

Phase I is a warm-up phase. We will prove that at the end of this phase, trained w can be scaled onto C(D;H). First, we
choose the error

ϵ = min

{
D

2H
,
1

2

}
.
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Notice that Theorem C.5 ensures that under Assumption 3.1 and 5.4, the directional convergence of GD and NGD with
η ≤ 1 holds, and the rates are O(1/ log t) and O(1/t),respectively.

Therefore, there exists T ϵ such that
∥∥∥ w(T ϵ)
∥w(T ϵ)∥ −w⋆

∥∥∥ < ϵ, which implies the inner satisfies:〈
w(T ϵ)

∥w(T ϵ)∥ ,w
⋆

〉
=

1

2

(
2−

∥∥∥∥ w(T ϵ)

∥w(T ϵ)∥ −w⋆

∥∥∥∥2
)

> 1− ϵ2

2
.

Therefore, at T ϵ, it holds that:

∥P⊥(w(T ϵ))∥
⟨w(T ϵ),w⋆⟩ =

∥w(T ϵ)− P(w(T ϵ))∥
⟨w(T ϵ),w⋆⟩ =

∥∥∥∥ w(T ϵ)

⟨w(T ϵ),w⋆⟩ −w⋆

∥∥∥∥
=

∥∥∥∥ w(T ϵ)

⟨w(T ϵ)),w⋆⟩ −w⋆

∥∥∥∥ =

∥∥∥∥ w(T ϵ)

⟨w(T ϵ)),w⋆⟩ −
w(T ϵ)

∥w(T ϵ)∥ +
w(T ϵ)

∥w(T ϵ)∥ −w⋆

∥∥∥∥
≤
∥∥∥∥ w(T ϵ)

⟨w(T ϵ)),w⋆⟩ −
w(T ϵ)

∥w(T ϵ)∥

∥∥∥∥+ ∥∥∥∥ w(T ϵ)

∥w(T ϵ)∥ −w⋆

∥∥∥∥ <

∣∣∣∣ ⟨w(T ϵ)),w⋆⟩ − ∥w(T ϵ)∥
⟨w(T ϵ)),w⋆⟩

∣∣∣∣+ ϵ

=

∣∣∣∣∣∣1− 1〈
w(T ϵ)

∥w(T ϵ)∥ ,w
⋆
〉
∣∣∣∣∣∣+ ϵ <

1

1− ϵ2

2

− 1 + ϵ =
ϵ2

2

1− ϵ2

2

+ ϵ <
4ϵ2

7
+ ϵ

≤
(
2

7
+ 1

)
ϵ ≤ 2ϵ ≤ min

{
D

H
, 1

}
.

We choose Tw = T ϵ = Θ(1), and we obtain w(Tw) at the end of Phase I.

Analysis of Phase II.

For simplicity, due to Tw is an constant, we replace the time t to t− Tw in the proof of Phase II. This means that Phase II
starts from t = 0 with the initialization w(0)← w(Tw).

In this proof, we choose

η = µD, Tk = 2k, Rk =
D ∥w(Tk)∥
∥P⊥(w(Tk))∥

, ∀k ≥ 0.

Recalling Algorithm 1, the update rule is:

· · · ;

w(2k + 1) = Rk
w(2k)

∥w(2k)∥ ;

v(2k + 2) = w(2k + 1)− η
∇L(w(2k + 1))

L(w(2k + 1))
;

w(2k + 2) = ProjB(0,∥w(2k+1)∥) (v(2k + 2)) ;

w(2k + 3) = Rk+1
w(2k + 2)

∥w(2k + 2)∥ ;

· · ·

In general, we aim to prove the following statements:

(S1). w(2k + 1) ∈ C(D;H), ∀k ≥ 0.

(S2). ⟨w(2k + 1),w⋆⟩ ≥ 1(√
1− 2µ

)k (⟨w(1),w⋆⟩+ γ⋆

1−√1− 2µ

)
− γ⋆

1−√1− 2µ
, ∀k ≥ 0;

⟨w(2k + 1),w⋆⟩ ≤ 1(√
1− µ2

)k
(
⟨w(1),w⋆⟩+ 1

1−
√
1− µ2

)
− 1

1−
√
1− µ2

, ∀k ≥ 0.
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(S3). D
√
1− 2µ ≤ ∥P⊥(v(2k + 2))∥ ≤ D

√
1− µ2, ∀k ≥ 0.

(S4).
⟨w(2k + 2),w⋆⟩
∥P⊥(w(2k + 2))∥ =

⟨w(2k + 3),w⋆⟩
∥P⊥(w(2k + 3))∥ =

⟨w(1),w⋆⟩
D

eΘ(k).

(S5). Rk+1 = ⟨w(1),w⋆⟩ eΘ(k).

(S6).
∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ =
D

⟨w(1),w⋆⟩e
−Θ(t).

(S7). γ⋆ − γ(w(t)) =
D

⟨w(1),w⋆⟩e
−Θ(t).

Step I. Proof of (S1)(S2).

In this step, we will prove (S1)(S2) by induction.

Step I (i). We prove (S1)(S2) for k = 0. Recalling our analysis of Phase I, it holds that

∥P⊥(w(0))∥
⟨w(0)),w⋆⟩ ≤ min

{
D

H
, 1

}
.

Thus, if we choose R0 = D∥w(0)∥
∥P⊥(w(0))∥ in Algorithm 1, then w(1) = D

∥P⊥(w(0))∥ ·w(0) and w(1) satisfies:

∥P⊥(w(1))∥ =
∥∥∥∥P⊥

(
D

∥P⊥(w(0))∥w(0)

)∥∥∥∥ =

∥∥∥∥DP⊥(w(0))

∥P⊥(w(0))∥

∥∥∥∥ = D;

⟨w(1),w⋆⟩ =
〈

D

∥P⊥(w(0))∥w(0),w⋆

〉
= D

〈
w(0)

∥P⊥(w(0))∥ ,w
⋆

〉
=D

⟨w(0),w⋆⟩
∥P⊥(w(0))∥ ≥

D

min
{

D
H , 1

} = max {H,D} .

which means that (S1) w(1) ∈ C(D;H) holds for k = 0. As for (S2), it is trivial for k = 0.

Step I (ii). Assume (S1)(S2) hold for any 0 ≤ k′ ≤ k. Then we will prove for k′ = k + 1.

First, it is easy to bound the difference between ⟨v(2k + 2),w⋆⟩ and ⟨w(2k + 1),w⋆⟩:

⟨v(2k + 2),w⋆⟩ − ⟨w(2k + 1),w⋆⟩

=η

〈
−∇L(w(2k + 1))

L(w(2k + 1))
,w⋆

〉
Lemma C.1∈ [ηγ⋆, η] = [µγ⋆D,µD].

(10)

Secondly, notice the following fact about w(2k + 3):

w(2k + 3) = Rk+1
w(2k + 2)

∥w(2k + 2)∥ =
D ∥w(2k + 2)∥
∥P⊥(w(2k + 2))∥

w(2k + 2)

∥w(2k + 2)∥

=
D

∥P⊥(w(2k + 2))∥w(2k + 2) =
D

∥P⊥(v(2k + 2))∥v(2k + 2).

(11)

With the help of the estimates above and the induction, now we can give the following two-sided bounds for ⟨w(2k + 3),w⋆⟩.

• Upper bound for ⟨w(2k + 3),w⋆⟩:
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⟨w(2k + 3),w⋆⟩ (11)
= D

⟨v(2k + 2),w⋆⟩
∥P⊥(v(2k + 2))∥

(10)
≤D
⟨w(2k + 1),w⋆⟩+ 1√

1− µ2D
=
⟨w(2k + 1),w⋆⟩+ 1√

1− µ2

induction
≤ 1√

1− µ2

 1(√
1− µ2

)k
(
⟨w(1),w⋆⟩+ 1

1−
√

1− µ2

)
− 1

1−
√
1− µ2

+ 1


=

1(√
1− µ2

)k+1

(
⟨w(1),w⋆⟩+ 1

1−
√
1− µ2

)
− 1

1−
√
1− µ2

.

(12)

• Lower bound for ⟨w(2k + 3),w⋆⟩:

⟨w(2k + 3),w⋆⟩ (11)
= D

⟨v(2k + 2),w⋆⟩
∥P⊥(v(2k + 2))∥

(10)
≥D
⟨w(2k + 1),w⋆⟩+ γ⋆

√
1− 2µD

=
⟨w(2k + 1),w⋆⟩+ γ⋆

√
1− 2µ

induction
≥ 1√

1− 2µ

(
1(√

1− 2µ
)k (⟨w(1),w⋆⟩+ γ⋆

1−√1− 2µ

)
− γ⋆

1−√1− 2µ
+ γ⋆

)

=
1(√

1− 2µ
)k+1

(
⟨w(1),w⋆⟩+ γ⋆

1−√1− 2µ

)
− γ⋆

1−√1− 2µ
.

(13)

Hence, from (12)(13), we have proved that (S2) holds for k + 1.

Moreover, we have the following facts:

∥P⊥ (w(2k + 3))∥ (11)
=

∥∥∥∥P⊥

(
D

∥P⊥(v(2k + 2))∥v(2k + 2)

)∥∥∥∥
=

∥∥∥∥D P⊥(v(2k + 2))

∥P⊥(v(2k + 2))∥

∥∥∥∥ = D,

⟨w(2k + 3),w⋆⟩
(13)
≥ 1(√

1− 2µ
)k+1

(
⟨w(1),w⋆⟩+ γ⋆

1−√1− 2µ

)
− γ⋆

1−√1− 2µ

≥ ⟨w(1),w⋆⟩(√
1− 2µ

)k+1
≥ ⟨w(1),w⋆⟩ ≥ H;

which means that (S1) holds for k + 1, i.e., w(2k + 3) ∈ C(D;H).

Now we have proved (S1)(S2) for any k ≥ 0 by induction.

Step II. Proof of (S3).

In this step, we will prove (S3) directly. For any k ≥ 0, we can derive the following two-sides bounds:

• For the upper bound of ∥P⊥(v(2k + 2))∥, we have:
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∥P⊥(v(2k + 2))∥2 =

∥∥∥∥P⊥(w(2k + 1))− ηP⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)∥∥∥∥2
= ∥P⊥(w(2k + 1))∥2 + η2

∥∥∥∥P⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)∥∥∥∥2
− 2η

〈
P⊥(w(2k + 1)),P⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)〉
=D2 + η2

∥∥∥∥P⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)∥∥∥∥2 − 2ηD

〈 P⊥(w(2k + 1))

∥P⊥(w(2k + 1))∥ ,
∇L(w(2k + 1))

L(w(2k + 1))

〉
≤D2 + η2

∥∥∥∥∇L(w(2k + 1))

L(w(2k + 1))

∥∥∥∥2 − 2ηD

〈 P⊥(w(2k + 1))

∥P⊥(w(2k + 1))∥ ,
∇L(w(2k + 1))

L(w(2k + 1))

〉
Lemma C.1
≤ D2 + η2 − 2ηDµ = D2 + µ2D2 − 2µ2D2 = (1− µ2)D2.

(14)

• For the lower bound of ∥P⊥(v(2k + 2))∥, we have:

∥P⊥(v(2k + 2))∥2 =

∥∥∥∥P⊥(w(2k + 1))− ηP⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)∥∥∥∥2
=D2 + η2

∥∥∥∥P⊥

(∇L(w(2k + 1))

L(w(2k + 1))

)∥∥∥∥2
− 2ηD

〈 P⊥(w(2k + 1))

∥P⊥(w(2k + 1))∥ ,
∇L(w(2k + 1))

L(w(2k + 1))

〉
≥D2 − 2ηD

〈 P⊥(w(2k + 1))

∥P⊥(w(2k + 1))∥ ,
∇L(w(2k + 1))

L(w(2k + 1))

〉
≥D2 − 2ηD

∥∥∥∥∇L(w(2k + 1))

L(w(2k + 1))

∥∥∥∥
Lemma C.1
≥ D2 − 2ηD = D2 − 2µD2 = (1− 2µ)D2.

(15)

Hence, we have proved (S3).

Step III. Proof of (S4)(S5)(S6).

First, we derive two-sided bounds for ⟨w(2k+2),w⋆⟩
∥P⊥(w(2k+2))∥ . For any k ≥ 0, we have:

• Upper bound of ⟨w(2k+2),w⋆⟩
∥P⊥(w(2k+2))∥ .

⟨w(2k + 2),w⋆⟩
∥P⊥(w(2k + 2))∥ =

⟨v(2k + 2),w⋆⟩
∥P⊥(v(2k + 2))∥

(10)
≤ ⟨w(2k + 1),w⋆⟩+ µD

∥P⊥(v(2k + 2))∥

(S2)(S3)
≤

1(√
1−µ2

)k

(
⟨w(1),w⋆⟩+ 1

1−
√

1−µ2

)
− 1

1−
√

1−µ2
+ µD

D
√
1− 2µ

≤⟨w(1),w⋆⟩
D

eΘ(k).

• Lower bound of ⟨w(2k+2),w⋆⟩
∥P⊥(w(2k+2))∥ .
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⟨w(2k + 2),w⋆⟩
∥P⊥(w(2k + 2))∥ =

⟨v(2k + 2),w⋆⟩
∥P⊥(v(2k + 2))∥

(10)
≥ ⟨w(2k + 1),w⋆⟩+ µγ⋆D

∥P⊥(v(2k + 2))∥

(S2)(S3)
≥

1

(
√
1−2µ)

k

(
⟨w(1),w⋆⟩+ γ⋆

1−√
1−2µ

)
− γ⋆

1−√
1−2µ

+ µγ⋆D

(1− µ)D

≥⟨w(1),w⋆⟩
D

eΘ(k).

Additionally, notice

⟨w(2k + 2),w⋆⟩
∥P⊥(w(2k + 2))∥ =

⟨w(2k + 3),w⋆⟩
∥P⊥(w(2k + 3))∥ ,

we obtain (S4):

⟨w(2k + 2),w⋆⟩
∥P⊥(w(2k + 2))∥ =

⟨w(2k + 3),w⋆⟩
∥P⊥(w(2k + 3))∥ =

⟨w(1),w⋆⟩
D

eΘ(k).

Furthermore, Combining (S4) and the following fact

Rk+1 =
D ∥w(2k + 2)∥
∥P⊥(w(2k + 2))∥ =

D ∥v(2k + 2)∥
∥P⊥(v(2k + 2))∥

=D

√
⟨v(2k + 2),w⋆⟩2 + ∥P⊥(v(2k + 2))∥2

∥P⊥(v(2k + 2))∥ = D

√
⟨v(2k + 2),w⋆⟩2

∥P⊥(v(2k + 2))∥2
+ 1,

we can obtain (S5):

Rk+1 = ⟨w(1),w⋆⟩ eΘ(k).

In the same way, we can prove∥∥∥∥ w(2k)

∥w(2k)∥ −w⋆

∥∥∥∥ =

∥∥∥∥ w(2k + 1)

∥w(2k + 1)∥ −w⋆

∥∥∥∥ = 2

(
1−

〈
w(2k + 1)

∥w(2k + 1)∥ ,w
⋆

〉)

=2

(
1− ⟨w(2k + 1),w⋆⟩

∥w(2k + 1)∥

)
= 2

1− ⟨w(2k + 1),w⋆⟩√
⟨w(2k + 1),w⋆⟩2 + ∥P⊥(w(2k + 1))∥2


=2

1− 1√
1 + ∥P⊥(w(2k+1))∥2

⟨w(2k+1),w⋆⟩2

 (S4)
= 2

1− 1√
1 + D2

⟨w(1),w⋆⟩2 e
−Θ(k)


=

D

⟨w(1),w⋆⟩e
−Θ(k),

which means (S6): ∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ =
D

⟨w(1),w⋆⟩e
−Θ(t),

Step III. Proof of (S7). Using Lemma A.1 and (S6), we obtain (S7).

Conclusions.

From our proof of Phase II, we have ⟨w(1),w⋆⟩ ≥ max{H,D}. Taking this fact into (S6)(S7), we obtain our conclusions:∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥ = e−Ω(t);

γ⋆ − γ(w(t)) = e−Ω(t).
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C.2. Proof of Theorem 6.4

The proof of GD is relatively straightforward. In contrast, the proof for NGD is significantly more intricate, necessitating a
more rigorous convex optimization analysis than Proposition 4.1.

For NGD, we still focus on the dynamics of P⊥(w(t)), which is orthogonal to w⋆. Actually, we can prove that there exists
a subsequence P⊥(w(tk)) (tk →∞), which satisfies ∥P⊥(w(tk))∥ = Θ(1). Since the norm grows at ∥w(tk)∥ = Θ(tk)
(Thm C.5), NGD must have only Θ(∥P⊥(w(tk))∥ / ∥w(tk)∥) = Θ(1/tk) directional convergence rate. Furthermore, the
non-degenerated data assumption 5.4 can also provide a two-sided bound for the margin error (Lemma C.2), which ensures
Ω(1/t2k) margin maximization rate. Our crucial point is that the (d− 1)-dim dynamics of P⊥(w(t)) near 0 ∈ span{xi :
i ∈ I} are close to in-exact gradient descent dynamics on another strongly convex loss L⊥(·) with unique minimizer
v⋆ ∈ Rd−1. Moreover, our condition γ⋆w⋆ ̸= 1

|I|
∑

i∈I xiyi can ensure that v⋆ ̸= 0. Therefore, there must exists a
sequence P⊥(w(tk)) which can escapes from a sufficient small ball B(0d−1; ϵ0), which means ∥P⊥(w(tk))∥ = Θ(1).

Proof for GD.
The proof for GD is straightforward.

By Theorem C.7, lim
t→+∞

(
w(t)−w⋆ log t

)
= w̃, where w̃ is the solution to the equations:

η exp (−⟨w̃,xiyi⟩) = αi, i ∈ I.

Step I. P⊥(w̃) ̸= 0.

If we assume P⊥(w̃) = 0, then there exists c > 0 such that w̃ = cw⋆.

Notice that for any i ∈ I, ⟨w⋆,xiyi⟩ = γ⋆. Therefore, there exists c′ > 0 such that αi = c′ for any i ∈ I. Recalling
w⋆ =

∑
i∈I αixiyi, we have w⋆ = c′

∑
i∈I xiyi, which implies w⋆ = 1

|I|γ⋆

∑
i∈I xiyi. This is contradict to our

condition γ⋆w⋆ ̸= 1
|I|
∑

i∈I xiyi.

Hence, we have proved P⊥(w̃) ̸= 0.

Step II. The lower bound.

Recalling lim
t→+∞

(
w(t)−w⋆ log t

)
= w̃ and our results in Step I, there exists T0 > 0 such that

∥w(t)−w⋆ log t− w̃∥ ≤ ∥P⊥(w̃)∥
2

, ∀t ≥ T0.

Using the fact ∥P⊥(w)∥ ≤ ∥w∥, we have

∥P⊥(w(t))− P⊥(w̃)∥ ≤ ∥w(t)−w⋆ log t− w̃∥ ≤ ∥P⊥(w̃)∥
2

, ∀t ≥ T0,

which implies

∥P⊥(w̃)∥
2

≤ ∥P⊥(w(t))∥ ≤ 3 ∥P⊥(w̃)∥
2

, ∀t ≥ T0.

Recalling Theorem C.5, it holds that ∥w(t)∥ = Θ(log t). Then, a direct calculation ensures that:∥∥∥∥ w(t)

∥w(t)∥ −w⋆

∥∥∥∥2 = 2− 2
⟨w(t),w⋆⟩
∥w(t)∥

=2− 2
⟨w(t),w⋆⟩√

⟨w(t),w⋆⟩2 + ∥P⊥(w(t))∥2

=2− 2√
1 + ∥P⊥(w(t))∥2

⟨w(t),w⋆⟩2
= Θ

(
∥P⊥(w(t))∥2

⟨w(t),w⋆⟩2

)
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=Θ

(
∥P⊥(w(tk))∥2

∥w(t)∥2 − ∥P⊥(w(t))∥2

)
= Θ

(
1

log2 t

)
,

which implies the tight bound for the directional convergence rate:
∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥ = Θ
(

1
log t

)
. Moreover, with the help

of Lemma C.2, we have the lower bound for the margin maximization rate: γ⋆ − γ(w(t)) = Ω
(

1
log2 t

)
.

Proof for NGD.
NGD is more difficult to analyze than GD due to the more aggressive step size, and we need more refined convex optimization
analysis.

Without loss of generality, we can assume span{x1, · · · ,xn} = Rd. This is because: GD, NGD, and PRGD can only
evaluate in span{xi : i ∈ [n]}, i.e. w(t) ∈ span{xi : i ∈ [n]}. If span{x1, · · · ,xn} ≠ Rd, we only need to change the
proof in the subspace span{x1, · · · ,xn}. For simplicity, we still denote zi := xiyi (i ∈ [n]).

With the help of Theorem C.5, the upper bounds hold: γ⋆ − γ(w(t)) ≤
∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥ = O(1/t). So we only need to

prove the lower bounds for γ⋆ − γ(w(t)) and
∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥.

Proof Outline.

We aim to prove the following claim:

there exists constant T0 > 0 and ϵ0 > 0, such that:
for any T > T0, there exists t > T s.t. ∥P⊥(w(t))∥ > ϵ0.

If we can prove this conclusion, then there exists a subsequence w(tk) satisfying tk+1 > tk, tk →∞, and ∥P⊥(w(tk))∥ >
ϵ0. Recalling Theorem C.5, ∥w(tk)∥ = Θ(tk). Therefore, it must holds

∥∥∥ w(tk)
∥w(tk)∥ −w⋆

∥∥∥ = Ω(1/tk).

Proof Preparation.

For simplicity, we denote the optimization problem orthogonal to w⋆ as

min
v

: L⊥(v) =
1

|I|
∑
i∈I

exp (−yi ⟨v,P⊥(xi)⟩) ,v ∈ span{P⊥(xi) : i ∈ I}.

In this proof, we focus on the dynamics of P⊥(w(t)), satisfying:

P⊥(w(t+ 1)) = P⊥(w(t))− ηP⊥

(∇L(w(t))

L(w(t))

)
=P⊥(w(t))− ηP⊥

(
1
n

∑n
i=1 e

−⟨w(t),zi⟩zi
1
n

∑n
i=1 e

−⟨w(t),zi⟩

)

=P⊥(w(t))− η

∑n
i=1 e

−⟨w(t),zi⟩P⊥(zi)∑n
i=1 e

−⟨w(t),zi⟩ .

With the help of Theorem C.6, we know that

(L1) the minimizer v∗ ∈ span{P⊥(xi) : i ∈ I} (of L⊥(·)) is unique.
(L2) there exists an absolute constant C > 0 such that ∥P⊥(w(t))− v⋆∥ ≤ C, ∀t;
(L3) there exists µ > 0 such that L⊥(·) is µ-strongly convex in {v : ∥v∥ < C + ∥v⋆∥};

It is also easy to verify the L-smoothness:

(L4) there exists L > 0 such that L⊥(·) is L-smooth in {v : ∥v∥ < C + ∥v⋆∥}.
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Step I. The minimizer v⋆ ̸= 0.

If v⋆ = 0, then ∇L⊥(0) = 0, which implies

0 =
1

|I|
∑
i∈I

e0P(zi) =
1

|I|
∑
i∈I
P(zi).

Therefore,

1

|I|
∑
i∈I

zi =
1

|I|
∑
i∈I
⟨zi,w⋆⟩w⋆ +

1

|I|
∑
i∈I
P(zi)

=
1

|I|
∑
i∈I

γ⋆w⋆ = γ⋆w⋆,

which is contradict to γ⋆w⋆ ̸= 1
|I|
∑

i∈I zi.

Step II. The gradient error near 0 ∈ span{P⊥(xi) : i ∈ I}.
Notice that the update rule of P⊥(w(t)) can be written as

P⊥(w(t+ 1)) = P⊥(w(t))− ηP⊥

(∇L(w)

L(w)

)
= P⊥(w(t))− η

(
∇L⊥(P⊥(w(t))) + ϵ(w(t))

)
.

In this step, we will prove: there exists ϵ0 > 0 and R0 > 0 such that the gradient error

∥ϵ(w)∥ =
∥∥∥∥P⊥

(∇L(w)

L(w)

)
−∇L⊥(P⊥(w))

∥∥∥∥ ≤ 1

2
∥∇L⊥(P⊥(w))∥

holds for any w satisfying ⟨w,w⋆⟩ > R0 and ∥P⊥(w)∥ < ϵ0.

Step II (i). For some ϵ1 > 0, ∥∇L⊥(v)−∇L⊥(0)∥ < 1
8 ∥∇L⊥(0)∥ for any v ∈ B(0; ϵ1).

Notice that Step I ensures∇L⊥(0) = 1
|I|
∑

i∈I P(zi) ̸= 0. We choose

ϵ1 = min

{∥∇L⊥(0)∥
8L

,C + ∥v⋆∥
}
.

Then for any v ∈ B(0, ϵ1), then (iv) (L-smooth) ensures that:

∥∇L⊥(v)−∇L⊥(0)∥ ≤ L ∥v − 0∥ < Lϵ1 ≤
1

8
∥∇L⊥(0)∥ .

Step II (ii). For some ϵ2 > 0 and R0 > 0,
∥∥∥P⊥

(
∇L(w)
L(w)

)
−∇L⊥(0)

∥∥∥ ≤ 1
8 ∥∇L⊥(0)∥ holds for any w satisfying

⟨w,w⋆⟩ > R0 and ∥P⊥(w)∥ < ϵ2.

Due to ∥∇L⊥(0)∥ /16 ̸= 0, using Lemma C.3, there exists ϵ2 > 0 and R2 > 0 such that: for any w satisfying
⟨w,w⋆⟩ > R0 and ∥P⊥(w)∥ < ϵ2, it holds that:∥∥∥∥P⊥

(∇L(w)

L(w)

)
−∇L⊥(0)

∥∥∥∥
=

∥∥∥∥∥
∑n

i=1 e
−⟨w,zi⟩P⊥(zi)∑n

j=1 e
−⟨w,zj⟩ − 1

|I|
∑
i∈I
P⊥(zi)

∥∥∥∥∥
≤
∥∥∥∥∥
∑n

i=1 e
−⟨w,zi⟩P⊥(zi)∑n

j=1 e
−⟨w,zj⟩ −

∑
i∈I e−⟨w,zi⟩P⊥(zi)∑

j∈I e−⟨w,zj⟩

∥∥∥∥∥
+

∥∥∥∥∥
∑

i∈I e−⟨w,zi⟩P⊥(zi)∑
j∈I e−⟨w,zj⟩ − 1

|I|
∑
i∈I
P⊥(zi)

∥∥∥∥∥
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Lemma C.3 (iii)(iv)
≤ ∥∇L⊥(0)∥

16
+
∥∇L⊥(0)∥

16
=
∥∇L⊥(0)∥

8
.

Step II (iii). Based on Step II (i) and (ii), we can select

ϵ3 := min{ϵ1, ϵ2}, R0 := R0.

Then for any w satisfying ⟨w,w⋆⟩ > R0 and ∥P⊥(w)∥ < ϵ3, it holds that:

∥ϵ(w)∥ =
∥∥∥∥P⊥

(∇L(w)

L(w)

)
−∇L⊥(P⊥(w))

∥∥∥∥
≤
∥∥∥∥P⊥

(∇L(w)

L(w)

)
−∇L⊥(0)

∥∥∥∥+ ∥∇L⊥(0)−∇L⊥(P⊥(w))∥
Step II (i) and (ii)

≤ ∥∇L⊥(0)∥
8

+
∥∇L⊥(0)∥

8
=
∥∇L⊥(0)∥

4

Step II (i)
<

∥∇L⊥(P⊥(w))∥
2

.

Step III. The proof of the main claim.

From Theorem C.5, we know ∥w(t)∥ = Θ(t) and
∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥ = O(1/t). Therefore, there exists T0 > 0 such that
⟨w(t),w⋆⟩ > R0 holds for any t > T0 (where R0 is defined in Step II). Additionally, we choose

ϵ0 := min

{
ϵ3,

1

2
∥v⋆∥

}
,

where ϵ3 is defined in Step II.

Consequently, in this step, we aim to prove: there exists constant T0 > 0 and ϵ0 > 0, such that: for any T > T0, there exists
t > T s.t. ∥P⊥(w(t))∥ > ϵ0.

Given any T > T0, now we assume that ∥P⊥(w(t))∥ < ϵ0 holds for any t > T .

Recalling Theorem C.6, it ensures that L⊥(·) is µ-strongly convex in B(v⋆;C)− B(v⋆; δ) for some µ > 0. Therefore,

∥∇L⊥(w)∥ ≥ µ ∥v − v⋆∥ ≥ µδ, ∀v ∈ B(v⋆;C)− B(v⋆; δ).

By our result in Step II, for any t > T , the gradient error holds that∥∥∥∥P⊥

(∇L(w(t))

L(w(t))

)
−∇L⊥(P⊥(w(t)))

∥∥∥∥ ≤ 1

2
∥∇L⊥(P⊥(w(t)))∥ .

Hence, by setting η ≤ 1/9L, the loss descent has the following lower bound: for any t > T ,

L⊥(P⊥(w(t)))− L⋆
⊥ = L⊥

(
P⊥(w(t− 1))− ηP⊥

(∇L(w(t− 1))

L(w(t− 1))

))
− L⋆

⊥

Lemma D.3
≤ L⊥ (P⊥(w(t− 1)))− L⋆

⊥ − η

〈
∇L⊥(P⊥(w(t− 1))),P⊥

(∇L(w(t− 1))

L(w(t− 1))

)〉
+

L

2
η2
∥∥∥∥P⊥

(∇L(w(t− 1))

L(w(t− 1))

)∥∥∥∥2
=L⊥ (P⊥(w(t− 1)))− L⋆

⊥ − η ∥∇L⊥(P⊥(w(t− 1)))∥2

− η

〈
∇L⊥(P⊥(w(t− 1))),P⊥

(∇L(w(t− 1))

L(w(t− 1))

)
−∇L⊥(P⊥(w(t− 1)))

〉
+

L

2
η2
∥∥∥∥P⊥

(∇L(w(t− 1))

L(w(t− 1))

)∥∥∥∥2
≤L⊥ (P⊥(w(t− 1)))− L⋆

⊥
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− η

(
∥∇L⊥(P⊥(w(t− 1)))∥2 − 1

2
∥∇L⊥(P⊥(w(t− 1)))∥2

)
+

Lη2

2

(
3

2

)2

∥∇L⊥(P⊥(w(t− 1)))∥2

≤L⊥ (P⊥(w(t− 1)))− L⋆
⊥ − η

(
1

2
− 9ηL

8

)
∥∇L⊥(P⊥(w(t− 1)))∥2

≤L⊥ (P⊥(w(t− 1)))− L⋆
⊥ −

3η

8
∥∇L⊥(P⊥(w(t− 1)))∥2

Lemma D.3
≤ L⊥ (P⊥(w(t− 1)))− L⋆

⊥ −
3η

8
· 2µ (L⊥ (P⊥(w(t− 1)))− L⋆

⊥)

≤
(
1− 3ηµ

4

)
(L⊥ (P⊥(w(t− 1)))− L⋆

⊥)

≤ · · ·

≤
(
1− 3ηµ

4

)t−T

(L⊥ (P⊥(w(Tϵ)))− L⋆
⊥) .

Hence, there exists time t > T such that L⊥ (P⊥(w(t)))− L⋆
⊥ < µϵ0

4 .

On the other hand, the strong convexity and Lemma D.3 implies that

L⊥ (P⊥(w(t)))− L⋆
⊥ ≥

µ

2
∥P⊥(w(t))− v⋆∥ ≥ µ

2
(∥v⋆∥ − ∥P⊥(w(t)∥)

>
µ

2
(∥v⋆∥ − ϵ0) ≥

µϵ0
4

.

Thus, we obtain the contradiction. Hence, our main claim holds.

Step IV. Final Lower bound.

From our result in Step III, there exists a subsequence w(tk) satisfying tk+1 > tk, tk → ∞, and ∥P⊥(w(tk))∥ > ϵ0.
Recalling (L2), it holds that ∥P⊥(w(tk))∥ ≤ C + ∥v⋆∥. Therefore, ∥P⊥w(tk)∥ = Θ(1).

Recalling Theorem C.5, it holds that ∥w(tk)∥ = Θ(tk). Then, a direct calculation ensures that:

∥∥∥∥ w(tk)

∥w(tk)∥
−w⋆

∥∥∥∥2 = 2− 2
⟨w(tk),w

⋆⟩
∥w(tk)∥

=2− 2
⟨w(tk),w

⋆⟩√
⟨w(tk),w⋆⟩2 + ∥P⊥(w(tk))∥2

=2− 2√
1 + ∥P⊥(w(tk))∥2

⟨w(tk),w⋆⟩2
= Θ

(
∥P⊥(w(tk))∥2

⟨w(tk),w⋆⟩2

)

=Θ

(
∥P⊥(w(tk))∥2

∥w(tk)∥2 − ∥P⊥(w(tk))∥2

)
= Θ

(
1

∥w(tk)∥2 − ∥P⊥(w(tk))∥2

)
= Θ

(
1

t2k

)
,

which implies the tight bound for the directional convergence rate:
∥∥∥ w(tk)
∥w(tk)∥ −w⋆

∥∥∥ = Θ
(

1
tk

)
. Moreover, with the help of

Lemma C.2, we have the lower bound for the margin maximization rate: γ⋆ − γ(w(tk)) = Ω
(

1
t2k

)
.

Hence, we have proved Theorem 6.4 for NGD.
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C.3. Useful Lemmas

Lemma C.1. Under Assumption 3.1, it holds that

γ⋆ ≤
〈
−∇L(w)

L(w)
,w⋆

〉
≤ 1, γ⋆ ≤

∥∥∥∥∇L(w)

L(w)

∥∥∥∥ ≤ 1, ∀w ∈ Rd.

Proof of Lemma C.1. For any w ∈ Rd, we have:

〈
−∇L(w)

L(w)
,w⋆

〉
=

1
n

n∑
i=1

e−yi⟨w,xi⟩yi ⟨w⋆,xi⟩

1
n

n∑
i=1

e−yi⟨w,xi⟩
≥

1
n

n∑
i=1

e−yi⟨w,xi⟩γ⋆

1
n

n∑
i=1

e−yi⟨w,xi⟩
= γ∗,

〈
−∇L(w)

L(w)
,w⋆

〉
=

1
n

n∑
i=1

e−yi⟨w,xi⟩yi ⟨w⋆,xi⟩

1
n

n∑
i=1

e−yi⟨w,xi⟩
≤

1
n

n∑
i=1

e−yi⟨w,xi⟩

1
n

n∑
i=1

e−yi⟨w,xi⟩
= 1.

For the lower bound of ∥∇L(w)/L(w)∥, it holds that∥∥∥∥∇L(w)

L(w)

∥∥∥∥ ≥ 〈−∇L(w)

L(w)
,w⋆

〉
≥ γ⋆.

For the upper bound of ∥∇L(w)/L(w)∥, it holds that

∥∥∥∥∇L(w)

L(w)

∥∥∥∥ =

∥∥∥∥∥∥∥∥−
1
n

n∑
i=1

e−yi⟨w,xi⟩yixi

1
n

n∑
i=1

e−yi⟨w,xi⟩

∥∥∥∥∥∥∥∥ ≤
1
n

n∑
i=1

e−yi⟨w,xi⟩ ∥yixi∥

1
n

n∑
i=1

e−yi⟨w,xi⟩
≤ 1.

Lemma C.2 ((Two-sided) Margin error and Directional error). Under Assumption 3.1 and 5.4, if w satisfies
∥∥∥w⋆ − w

∥w∥

∥∥∥ <

(γ⋆
sub − γ⋆)/2 (where γ⋆

sub = min
i/∈I
⟨w⋆, zi⟩), then it holds that

γ⋆

2

∥∥∥∥w⋆ − w

∥w∥

∥∥∥∥2 ≤ γ⋆ − γ(w) ≤
∥∥∥∥w⋆ − w

∥w∥

∥∥∥∥ .
Proof of Lemma C.2.
This lemma is an improved version of Lemma A.1. The second “≤” is ensured by Lemma A.1, and we only need to prove
the first “≤”. For simplicity, we still denote zi := zi, i ∈ [n].

Step I. γ(w) = mini∈I
〈

w
∥w∥ , zi

〉
.

For any i ∈ [n], we have ∣∣∣∣⟨w⋆, zi⟩ −
〈

w

∥w∥ , zi
〉∣∣∣∣ ≤ ∥∥∥∥w⋆ − w

∥w∥

∥∥∥∥ <
γ⋆
sub − γ⋆

2
,

which implies ⟨w⋆, zi⟩ − γ⋆
sub−γ⋆

2 <
〈

w
∥w∥ , zi

〉
< ⟨w⋆, zi⟩+ γ⋆

sub−γ⋆

2 . Furthermore,〈
w

∥w∥ , zi
〉

< γ⋆ +
γ⋆
sub − γ⋆

2
=

γ⋆
sub + γ⋆

2
, i ∈ I;
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w

∥w∥ , zi
〉

> γ⋆
sub −

γ⋆
sub − γ⋆

2
=

γ⋆
sub + γ⋆

2
, i /∈ I.

Therefore, it holds that

γ(w) = min
i∈[n]

〈
w

∥w∥ , zi
〉

= min
i∈I

〈
w

∥w∥ , zi
〉
.

Step II. The lower bound for γ⋆ − γ(w).

From the result in Step I,

γ⋆ − γ(w) = γ⋆ −min
i∈I

〈
w

∥w∥ , zi
〉

= max
i∈I

(
γ⋆ −

〈
w

∥w∥ , zi
〉)

=max
i∈I

(
⟨w⋆, zi⟩ −

〈
w

∥w∥ , zi
〉)

= max
i∈I

〈
w⋆ − w

∥w∥ , zi
〉
.

Recalling Assumption 5.4, w⋆ =
∑

i∈I αizi, where αi > 0 and 1/γ⋆ =
∑

i∈I αi. Thus, for every αi > 0, we have

αi(γ
⋆ − γ(w)) = αi maxi∈I

〈
w⋆ − w

∥w∥ , zi
〉

, which ensures:(∑
i∈I

αi

)
(γ⋆ − γ(w)) =

(∑
i∈I

αi

)
max
i∈I

〈
w⋆ − w

∥w∥ , zi
〉

≥
∑
i∈I

αi

〈
w⋆ − w

∥w∥ , zi
〉

=

〈
w⋆ − w

∥w∥ ,
∑
i∈I

αizi

〉

=

〈
w⋆ − w

∥w∥ ,w
⋆

〉
= 1−

〈
w

∥w∥ ,w
⋆

〉
=

1

2

(
2− 2

〈
w

∥w∥ ,w
⋆

〉)
=
1

2

∥∥∥∥w⋆ − w

∥w∥

∥∥∥∥2 .
Hence, we obtain:

γ⋆ − γ(w) ≥ 1

2
∑

i∈I αi

∥∥∥∥w⋆ − w

∥w∥

∥∥∥∥2 =
γ⋆

2

∥∥∥∥w⋆ − w

∥w∥

∥∥∥∥2 .

Lemma C.3. For any ϵ > 0, there exists δ ∈ (0, 1) and R > 0, such that for any w satisfying ∥P⊥(w)∥ < δ and
⟨w,w⋆⟩ > R, it holds that

(i).

∣∣∣∣∣
n∑

i=1

e−⟨w,zi⟩ −
∑
i∈I

e−⟨w,zi⟩
∣∣∣∣∣ < ϵ

∑
i∈I

e−⟨w,zi⟩;

(ii).

∥∥∥∥∥
n∑

i=1

e−⟨w,zi⟩P⊥(zi)−
∑
i∈I

e−⟨w,zi⟩P⊥(zi)

∥∥∥∥∥ < ϵ
∑
i∈I

e−⟨w,zi⟩;

(iii).

∥∥∥∥∥
∑n

i=1 e
−⟨w,zi⟩P⊥(zi)∑n

j=1 e
−⟨w,zj⟩ −

∑
i∈I e−⟨w,zi⟩P⊥(zi)∑

j∈I e−⟨w,zj⟩

∥∥∥∥∥ < ϵ;

(iv).

∥∥∥∥∥
∑

i∈I e−⟨w,zi⟩P⊥(zi)∑
j∈I e−⟨w,zj⟩ − 1

|I|
∑
i∈I
P⊥(zi)

∥∥∥∥∥ < ϵ.

Proof of Lemma C.3.
For simplicity, in this proof, we still denote zi := xiyi (i ∈ [n]) and γ⋆

sub := min
i/∈I

〈
w

∥w∥ , zi
〉

. And we are given an ϵ > 0.

Without loss of generality, we can assume δ < 1.
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Proof of (i).

Notice the following two estimates:∑
i/∈I

e−⟨w,zi⟩ =
∑
i/∈I

e−⟨w,w⋆⟩⟨w⋆,zi⟩e−⟨P⊥(w),zi⟩

≤
∑
i/∈I

e−⟨w,w⋆⟩γ⋆
sube−⟨P⊥(w),zi⟩ ≤

∑
i/∈I

e−⟨w,w⋆⟩γ⋆
sube∥P⊥(w)∥,

∑
i∈I

e−⟨w,zi⟩ =
∑
i∈I

e−⟨w,w⋆⟩⟨w⋆,zi⟩e−⟨P⊥(w),zi⟩

=
∑
i∈I

e−⟨w,w⋆⟩γ⋆

e−⟨P⊥(w),zi⟩ ≥
∑
i∈I

e−⟨w,w⋆⟩γ⋆

e−∥P⊥(w)∥.

Then for any δ > 0, R>0, and w satisfying ∥P⊥(w)∥ < δ and ⟨w,w⋆⟩ > R, we have:∑
i/∈I e−⟨w,zi⟩∑
i∈I e−⟨w,zi⟩ ≤

∑
i/∈I e−⟨w,w⋆⟩γ⋆

sube∥P⊥(w)∥∑
i∈I e−⟨w,w⋆⟩γ⋆e−∥P⊥(w)∥

≤n− |I|
|I| exp (−⟨w,w⋆⟩ (γ⋆

sub − γ⋆) + 2 ∥P⊥(w)∥)

≤n− |I|
|I| exp

(
−
(
1− δ2

2

)
∥w∥ (γ⋆

sub − γ⋆) +
√
2δ ∥w∥

)
=
n− |I|
|I| exp

(
−∥w∥

((
1− δ2

2

)
(γ⋆

sub − γ⋆) +
√
2δ

))
≤n− |I|
|I| exp

(
−⟨w,w⋆⟩

((
1− δ2

2

)
(γ⋆

sub − γ⋆) +
√
2δ

))
.

Due to γ⋆
sub − γ⋆ > 0, there exist constants δ1 > 0 and R1 > 0 such that: for any w satisfying ∥P⊥(w)∥ < δ1 and

⟨w,w⋆⟩ > R1, it holds
∑

i/∈I e−⟨w,zi⟩∑
i∈I e−⟨w,zi⟩ < ϵ, which means (i) holds.

Proof of (ii).

Based on the proof of (i), there exists δ1 > 0 and R1 > 0 such that: for any w satisfying ∥P⊥(w)∥ < δ1 and ⟨w,w⋆⟩ > R1,

it holds that
∑

i/∈I e−⟨w,zi⟩∑
i∈I e−⟨w,zi⟩ < ϵ, which means

∥∥∥∥∥∥
∑
i∈[n]

e−⟨w,zi⟩P⊥(zi)−
∑
i∈I

e−⟨w,zi⟩P⊥(zi)

∥∥∥∥∥∥ =

∥∥∥∥∥∑
i/∈I

e−⟨w,zi⟩P⊥(zi)

∥∥∥∥∥
≤
∑
i/∈I

e−⟨w,zi⟩ < ϵ
∑
i∈I

e−⟨w,zi⟩.

Proof of (iii).

From the results of (i)(ii), for ϵ/2, there exists δ2 > 0 and R2 > 0 such that: for any w satisfying ∥P⊥(w)∥ < δ2 and
⟨w,w⋆⟩ > R2, ∣∣∣∣∣

n∑
i=1

e−⟨w,zi⟩ −
∑
i∈I

e−⟨w,zi⟩
∣∣∣∣∣ < ϵ

2

∑
i∈I

e−⟨w,zi⟩;∥∥∥∥∥
n∑

i=1

e−⟨w,zi⟩P⊥(zi)−
∑
i∈I

e−⟨w,zi⟩P⊥(zi)

∥∥∥∥∥ <
ϵ

2

∑
i∈I

e−⟨w,zi⟩;
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Therefore, we have∥∥∥∥∥
∑

i∈[n] e
−⟨w,zi⟩P⊥(zi)∑

j∈[n] e
−⟨w,zj⟩ −

∑
i∈I e−⟨w,zi⟩P⊥(zi)∑

j∈I e−⟨w,zj⟩

∥∥∥∥∥
≤
∥∥∥∥∥
∑

i∈[n] e
−⟨w,zi⟩P⊥(zi)∑

j∈[n] e
−⟨w,zj⟩ −

∑
i∈I e−⟨w,zi⟩P⊥(zi)∑

j∈[n] e
−⟨w,zj⟩

∥∥∥∥∥
+

∥∥∥∥∥
∑

i∈I e−⟨w,zi⟩P⊥(zi)∑
j∈[n] e

−⟨w,zj⟩ −
∑

i∈I e−⟨w,zi⟩P⊥(zi)∑
j∈I e−⟨w,zj⟩

∥∥∥∥∥
≤ ϵ

2

∑
i∈I e−⟨w,zi⟩∑
j∈[n] e

−⟨w,zj⟩ +

∥∥∥∥∥∑
i∈I

e−⟨w,zi⟩P⊥(zi)

∥∥∥∥∥
∣∣∣∣∣∣
∑

j∈I e−⟨w,zj⟩ −∑j∈[n] e
−⟨w,zj⟩(∑

j∈I e−⟨w,zj⟩
)(∑

j∈[n] e
−⟨w,zj⟩

)
∣∣∣∣∣∣

≤ ϵ

2

∑
i∈I e−⟨w,zi⟩∑
j∈[n] e

−⟨w,zj⟩ +
ϵ

2

∥∥∑
i∈I e−⟨w,zi⟩P⊥(zi)

∥∥∑
j∈[n] e

−⟨w,zj⟩

≤ ϵ

2
+

ϵ

2
= ϵ/2.

Proof of (iv).

There exists δ3 > 0 such that: for any w satisfying ∥P⊥(w)∥ < δ3,∣∣∣e−⟨P⊥(w),zi⟩ − 1
∣∣∣ ≤ 2 |⟨P⊥(w), zi⟩| < 2 ∥P⊥(w)∥ < ϵ/4.

Then we have ∣∣∣∣∣∣
∑
j∈I

e−⟨P⊥(w),zi⟩ − |I|

∣∣∣∣∣∣ ≤
∑
j∈I

∣∣∣e−⟨P⊥(w),zi⟩ − 1
∣∣∣ ≤ ϵ|I|/4.

Thus, we can derive:∥∥∥∥∥
∑

i∈I e−⟨w,zi⟩P⊥(zi)∑
j∈I e−⟨w,zj⟩ − 1

|I|
∑
i∈I
P⊥(zi)

∥∥∥∥∥
=

∥∥∥∥∥
∑

i∈I e−⟨w,w⋆⟩⟨w⋆,zi⟩e−⟨P⊥(w),zi⟩P⊥(zi)∑
j∈I e−⟨w,w⋆⟩⟨w⋆,zj⟩e−⟨P⊥(w),zj⟩ − 1

|I|
∑
i∈I
P⊥(zi)

∥∥∥∥∥
=

∥∥∥∥∥e−⟨w,w⋆⟩γ⋆ ∑
i∈I e−⟨P⊥(w),zi⟩P⊥(zi)

e−⟨w,w⋆⟩γ⋆
∑

j∈I e−⟨P⊥(w),zj⟩ − 1

|I|
∑
i∈I
P⊥(zi)

∥∥∥∥∥
=

∥∥∥∥∥
∑

i∈I e−⟨P⊥(w),zi⟩P⊥(zi)∑
j∈I e−⟨P⊥(w),zj⟩ − 1

|I|
∑
i∈I
P⊥(zi)

∥∥∥∥∥
=

∥∥∥∥∥∑
i∈I

(
e−⟨P⊥(w),zi⟩∑
j∈I e−⟨P⊥(w),zj⟩ −

1

|I|

)
P⊥(zi)

∥∥∥∥∥
≤
∑
j∈I

∣∣∣∣∣ e−⟨P⊥(w),zi⟩∑
j∈I e−⟨P⊥(w),zj⟩ −

1

|I|

∣∣∣∣∣
≤
∑
j∈I

∣∣∣∣∣ e−⟨P⊥(w),zi⟩∑
j∈I e−⟨P⊥(w),zj⟩ −

1∑
j∈I e−⟨P⊥(w),zj⟩

∣∣∣∣∣+∑
j∈I

∣∣∣∣∣ 1∑
j∈I e−⟨P⊥(w),zj⟩ −

1

|I|

∣∣∣∣∣
≤
∑
j∈I

ϵ

4
∑

j∈I e−⟨P⊥(w),zj⟩ +
∑
j∈I

ϵ|I|
4
∑

j∈I e−⟨P⊥(w),zj⟩|I|
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≤
∑
j∈I

ϵ

4(1− ϵ)|I| +
∑
j∈I

ϵ

4(1− ϵ)|I| =
ϵ

2(1− ϵ)
< ϵ.

The final results.

We choose δ = min{δ2, δ3} and R = R2. From our proofs above, (i)∼(iv) all hold for any w satisfying ∥P⊥(w)∥ < δ and
⟨w,w⋆⟩ > R.

Lemma C.4 ((Ji et al., 2020)). Under Assumption 3.1, let w(t) be trained by GD (3) with η ≤ 1/2 starting from w(0) = 0,
then GD converges to the max-margin direction:

lim
t→+∞

w(t)

∥w(t)∥ → w⋆.

Lemma C.5 (Theorem 4.3, (Ji & Telgarsky, 2021)). Under Assumption 3.1 and 5.4,

(I) (GD). let w(t) be trained by GD (3) with η ≤ 1 starting from w(0) = 0. Then
∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥ = O(1/ log t) and

∥w(t)∥ = Θ(log t).

(II) (NGD) let w(t) be trained by NGD (4) with η ≤ 1 starting from w(0) = 0. Then
∥∥∥ w(t)
∥w(t)∥ −w⋆

∥∥∥ = O(1/t) and

∥w(t)∥ = Θ(t).
Theorem C.6 (Theorem 4.4, (Ji & Telgarsky, 2021)). Under the same conditions in Theorem C.5, let w(t) be trained by
NGD with η ≤ 1 starting from w = 0. Then

(i) L⊥(·) has a unique minimizer v⋆ over span{P⊥(xi) : i ∈ I};
(ii) L⊥(·) is strongly convex in any bounded set;

(iii) there exists an absolute constant C > 0 such that ∥P⊥(w(t))− v⋆∥ ≤ C, ∀t.
Theorem C.7 (Theorem 4, (Soudry et al., 2018)). Under Assumption 3.1 and 5.4, let w(t) be trained by GD (3) with η ≤ 1
starting from w(0) = 0. If we denote ρ(t) = w(t)−w⋆ log t, then

lim
t→+∞

ρ(t) = w̃,

where w̃ is the solution to the equations: η exp (−⟨w̃,xiyi⟩) = αi, i ∈ I.

D. Useful Inequalities
Lemma D.1. (i) For any x ≥ 0,

√
1 + x ≤ 1 + x

2 ; (ii) For any 0 ≤ x ≤ 1/3,
√
1 + x ≥ 1 + x

3 .

Lemma D.2. For a fixed γ ∈ (0, 1), consider the function h(x) = x + 2(1 − γ2)
(

2
1+ex − 1

)
, x ∈ R. Then h′(x) > 0

holds for any x ∈ R.

Proof of Lemma D.2.

h′(x) = 1− 4(1− γ2)ex

(1 + ex)2
≥ 1− 4(1− γ2)ex

(2ex/2)2
= γ2 > 0, ∀x ∈ R.

Lemma D.3 ((Bubeck et al., 2015)). Let the function f(·) : S → R be both L-smooth and µ-strongly convex on some
convex set S ⊂ Rd (in terms of ℓ2 norm). If the minimizer w⋆ ∈ int(S) with f⋆ = f(w⋆), then for any w,w1,w2 ∈ S, it
holds that:

f(w1) ≤ f(w2) + ⟨∇f(w2),w1 −w2⟩+
L

2
∥w1 −w2∥2 ;
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f(w1) ≥ f(w2) + ⟨∇f(w2),w1 −w2⟩+
µ

2
∥w1 −w2∥2 ;

f(w)− f⋆ ≥ µ

2
∥w −w⋆∥ ;

∥∇f(w)∥2 ≥ 2µ(f(w)− f⋆).

E. Experimental Details
E.1. Experimental details on two synthetic datasets

• Dataset I. We set γ⋆ = sin(π/100) and n = 100. Then we generate the dataset by setting x1 = (γ⋆,
√
1− γ⋆2),

x2 = (−γ⋆,
√
1− γ⋆2), and generate xi ∼ Unif

(
S1 ∩ {x : |x1| ≥ γ⋆}

)
randomly for i ≥ 3. As for the label, we set

yi = sgn(x1).

• Dataset II. We set γ⋆ = sin(π/100) and n = 100. Then we generate the dataset by setting x1 = (γ⋆,
√

1− γ⋆2),
x2 = (−γ⋆,

√
1− γ⋆2), and generate xi ∼ Unif (B(0, 1) ∩ {x : |x1| ≥ γ⋆}) randomly for i ≥ 3. As for the label,

we also set yi = sgn(x1).

• PRGD. We follow the guidelines provided in Theorem 6.1. For the Warm-up phase, we use GD as the Warm-up Phase
for 1000 iterations, and then turn it to PRGD. For the second Phase, we employ PRGD(exp) with hyperparameters
Tk+1 − Tk ≡ 5, Rk = R0 × 1.2k. To illustrate the role of the progressive radius, we also examine PRGD(poly)
configured with Tk+1 − Tk ≡ 5, Rk = R0 × k1.2, where the progressive radius increases polynomially.

The numerical results and comparison of different algorithms are shown in Figure 6 and Table 2.
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(a) Dataset I

−1 0 1
−1.0

−0.5

0.0

0.5

1.0

0 50 100
iter t

10−6

10−5

10−4

10−3

10−2

10−1

m
ar

gi
n

er
ro

r
γ
∗
−
γ

(w
(t

))

GD

NGD

PRGD(exp)

PRGD(poly)

0 2000 4000
iter t

10−6

10−5

10−4

10−3

10−2

10−1

m
ar

gi
n

er
ro

r
γ
∗
−
γ

(w
(t

))

GD

NGD

PPGD(exp)

PPGD(poly)

(b) Dataset II

Figure 6: (The detailed version of Figure 3) Comparison of margin Maximization rates of different algorithms on two synthetic datasets.
(left) The visualization of two 2d synthetic dataset. The yellow points represent the data with label 1, while the purple points corresponds
to the data with label 1; (middle)(right) The comparison of margin maximization rates of different algorithms on the corresponding dataset
at small and large time scales, respective
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Table 2: The number of iterations needed to achieve the same margin error on the sythetic datasets.

GD NGD PRGD(exp) PRGD(poly)
margin error 1e-6, Dataset I +∞ 12,508 106 142
margin error 1e-4, Dataset II +∞ 5,027 94 95

E.2. Experiments Details for VGG on CIFAR-10

Following Lyu & Li (2019), we examine our algorithm for the homogenized VGG-16. We explored the performance of the
VGG-based neural network for image classification tasks on CIFAR-10.

Our experimental setup involved a modified VGG architecture implemented in PyTorch. The homogeneity requires that
the bis term exists at most in the first layer (Lyu & Li, 2019). Specifically, the network’s architecture comprised multiple
convolutional layers without the bias terms, followed by ReLU activations and max pooling. The classifier section consisted
of three fully connected layers with ReLU activations and dropout, excluding bias in linear transformations.

The network was trained using a batch size of 64, with the option to enable CUDA for GPU acceleration. Weight initialization
was conducted using Kaiming normalization for convolutional layers and a uniform distribution for linear layers. The model
was trained and evaluated using a custom DataLoader for both the training and test datasets. We used a base learning rate of
1× 10−3, a momentum of 0.9, and a weight decay of 5× 10−4. For the loss-based learning rate used in NGD and PRGD,
we use the strategy in Lyu & Li (2019). Additionally, for ∥θ∥ in the PRGD regime, we use the ℓ2 norm of the parameters of
all layers. And we configured PRGD with Tk = 3000×

(
2 + k

3000

)3
, Rk = min

(
R0 ×

(
2 + k

3000

)0.2
, 1000

)
.
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