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Abstract

Enhancing the instruction-following ability of001
Large Language Models (LLMs) primarily de-002
mands substantial instruction-tuning datasets.003
However, the sheer volume of these imposes004
a considerable computational burden and an-005
notation cost. To investigate a label-efficient006
instruction tuning method that allows the model007
itself to actively sample subsets that are equally008
or even more effective, we introduce a self-009
evolving mechanism DIVERSEEVOL. In this010
process, a model iteratively augments its train-011
ing subset to refine its own performance, with-012
out requiring any intervention from humans or013
more advanced LLMs. The key to our data014
sampling technique lies in the enhancement of015
diversity in the chosen subsets, as the model016
selects new data points most distinct from any017
existing ones according to its current embed-018
ding space. Extensive experiments across three019
datasets and benchmarks demonstrate the ef-020
fectiveness of DIVERSEEVOL. Our models,021
trained on less than 4% of the original dataset,022
maintain or improve performance compared023
with finetuning on full data. We also provide024
empirical evidence to analyze the importance025
of diversity in instruction data and the iterative026
scheme as opposed to one-time sampling. Our027
code will be made publicly available. 1028

1 Introduction029

Large Language Models (LLMs) have demon-030

strated prowess in producing human-aligned re-031

sponse to varied instructions. A pivotal technique032

for enhancing the instruction-following capabilities033

of LLMs is Instruction Tuning, which aligns the034

model with human preferences using data in the035

form of instruction-response pairs.036

While massive instruction-tuning datasets exist,037

their vast quantity poses a significant computational038

burden, and their curation is itself a formidable039

challenge, given the meticulous labor involved in040

1See the Software package accompanying this submission.

annotations. Recent works shed light on data distil- 041

lation, achieving similar or even better alignment 042

performance relying on fewer instruction data, by 043

mining compact subsets from extensive instruction 044

datasets (Zhou et al., 2023; Cao et al., 2023; Chen 045

et al., 2023). However, these works demand tremen- 046

dous supervision from humans or advanced LLMs, 047

such as GPT4 (OpenAI, 2023), for selecting the 048

ideal subset. 049

In contrast, our work introduces DIVERSEEVOL, 050

a novel method featuring a self-evolving mech- 051

anism. In parallel to the approach in Li et al. 052

(2023), DIVERSEEVOL employs an iterative strat- 053

egy, where the model relies on its current embed- 054

ding space to augment its own training data sam- 055

ples that lead to an improved model in the next step. 056

As such, instead of seeking external oversight, DI- 057

VERSEEVOL facilitates the model’s self-evolution, 058

as it actively selects data to refine its own perfor- 059

mance through iterations. 060

Central to DIVERSEEVOL’s design of data selec- 061

tion is the maintenance of high diversity. When 062

curating a subset from a vast dataset, the key 063

challenge is to ensure that this subset is as rep- 064

resentative as possible. This indicates that data 065

points within the subset must be diverse in order 066

to ensure comprehensive coverage and simulate 067

the effect of the entire dataset. Therefore, DI- 068

VERSEEVOL adopts a K-Center-based (Sener and 069

Savarese, 2017) strategy that chooses data points 070

characterized by the highest distance from any ex- 071

isting labeled data. 072

Our experiments span three distinguished 073

instruction-tuning datasets curated by both human- 074

annotation (Conover et al., 2023), and Self- 075

Instruct (Taori et al., 2023; Peng et al., 2023). 076

Consistently, through DIVERSEEVOL, our mod- 077

els, trained on less than 8% of the original datasets, 078

match or outperform baselines trained on the en- 079

tirety of the source datasets across all benchmarks. 080

Furthermore, our investigation yields two cru- 081
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cial findings. First, training dataset diversity is082

paramount for the success of instruction tuning.083

Our method’s emphasis on diversity, quantified via084

the Vendi Score (Friedman and Dieng, 2022), cor-085

relates with enhanced model performance. Second,086

an iterative, evolving data sampling strategy out-087

performs direct, one-shot sampling. This evolution-088

driven approach, characterized by progressive data089

selection based on the model’s current state, offers090

superior training outcomes.091

In sum, our main contributions are three-fold:092

• A self-evolving, efficient data sampling pipeline,093

DIVERSEEVOL that requires significantly less094

data yet matches or surpasses the performance095

of models trained on complete datasets.096

• A quantified demonstration of the essential role097

of dataset diversity in instruction-tuning, empha-098

sizing the link between training data diversity099

and model performance.100

• A revelation that iterative, evolving sampling out-101

performs static, one-time sampling, underscor-102

ing the advantages of progressive data selection103

for model improvement.104

2 Related Works105

Instruction Tuning and Its Efficiency. In-106

struction tuning is paramount for boosting the107

instruction-following capabilities of LLMs, and108

a range of methods have been utilized to curate109

large-scale datasets, extending from human annota-110

tions (Conover et al., 2023; Köpf et al., 2023) to dis-111

tillations from parent LLMs, such as Text-Davinci-112

003 (Taori et al., 2023), GPT-3.5-TURBO (Xu113

et al., 2023a), and GPT4 (Peng et al., 2023). The114

Vicuna dataset (Chiang et al., 2023), originating115

from ShareGPT’s real-world interactions, serves as116

another exemplar in this regard. As the field ad-117

vances, there’s a growing inclination toward refin-118

ing instruction tuning methods for better efficiency.119

AlShikh et al. (2023) shows that the instruction-120

tone is learned rather early without the need of121

training on full-sized dataset. Zhou et al. (2023)122

yields promising results with only 1,000 manually123

curated instruction data. Concurrently, leveraging124

advanced LLMs for instruction data labeling has125

emerged as a trend, with endeavors like Chen et al.126

(2023) using ChatGPT for data rating and filtra-127

tion, and others like Lu et al. (2023) exploring128

diverse sampling based on open-world tag annota-129

tions. However, DIVERSEEVOL conducts diverse130

sampling with only its own supervision by a self- 131

evolving mechanism while above methods necessi- 132

tate external supervision from either humans and 133

more advanced LLMs. 134

Data Sampling Strategies. Our work also draws 135

inspirations from data-centric AI principles, empha- 136

sizing self-automated sampling strategies. These 137

methodologies largely fall into two categories: 138

(1) Uncertainty-based approaches that prioritize 139

datapoints the model’s prediction deems ambigu- 140

ous. Measures of the predictive uncertainty in- 141

clude maximum entropy (Entropy-Sampling, Shan- 142

non, 2001), lowest logits (Least-Confidence, Wang 143

and Shang, 2014), and minimal differences in the 144

likelihood of top two probable labels (Margin- 145

Sampling, Netzer et al., 2011). (2) Diversity-based 146

approaches that focus on a representative subset 147

within the model’s embedding space. Such strate- 148

gies like K-Center-Sampling (Sener and Savarese, 149

2017) and Cluster-Margin (Citovsky et al., 2021) 150

have gained prominence. In this work, we actively 151

experiment above sampling strategies and empiri- 152

cally show that diversity-based sampling benefits 153

the reduction of instruction data the most without 154

harming model performance. 155

3 DIVERSEEVOL 156

In this section, we introduce DIVERSEEVOL, a self- 157

evolved diverse sampling method for the +selection 158

of instruction data. We first introduce instruction 159

data selection as an iterative process (§3.1). Then, 160

we lay out details about our K-Center-based algo- 161

rithm for the selection of training data (§3.2). The 162

overall workflow is illustrated in Fig. 1. 163

3.1 Iterative Instruction Data Selection 164

Our objective is to formalize instruction data min- 165

ing as an iterative process, extracting from a vast 166

source instruction dataset progressively according 167

to a strategy. Given a collection of instruction- 168

response pairs, denoted as Z = {(xi, yi)}i∈N, 169

where each (xi, yi) represents a specific instruction- 170

response pair, we define N = {1, . . . , n} as the size 171

of the initial source instruction dataset. The itera- 172

tive procedure revolves around two data containers: 173

the training data pool Pt up to iteration step t and 174

the container of unselected data points, Qt. At each 175

iteration t, a selection function (i.e., strategy) A de- 176

termines which data points, S = {sj}j∈K, with 177

K = {1, . . . , k}, are integrated into the training 178

data pool Pt+1 for the next step. This expanded 179
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Figure 1: Overview of our iterative DIVERSEEVOL: Starting with an initial training data pool P0 and the remaining
data Q0 from the source dataset, we train a chat model M0 and project all datapoints into its embedding space
EMB0. Leverage K-Center based selection §3.2 in this embedding space, a new set of datapoints S0 is chosen
from Q0 and added to the next training data pool P1 to instrution-tune the next chat model M1. This process is
repeated for T steps, producing progressively augmented training data pool based solely on the model itself, which
is then used to improve a more refined model with improved capabilities.

pool then serves as the training set for the next180

model iteration, Mt+1.181

Beginning with a randomized data pool, P0, to182

train the initial model M0, every subsequent step183

employs model Mt, the current training pool Pt,184

and the comprehensive dataset Z to inform func-185

tion A, which then outputs new data points St to186

be added to the training pool for the next iteration187

Pt+1, as in: St = A(Z, Pt,Mt);Pt+1 = Pt ∪ St.188

Thus, each iteration consists of two operations: 1.189

Deduce new data points St to merge into Pt+1,190

informed by the previously trained model Mt. 2.191

Train the subsequent chat model, Mt+1, with the192

updated data pool Pt+1.193

The efficacy of this approach hinges on the se-194

lection function A that determines the additional195

k data points for each training iteration. As P196

grows both in volume and, crucially, in diversity197

(as stressed by our method, see §3.2), the resulting198

chat model continuously refines its capabilities.199

3.2 Selection Algorithm: K-Center-Sampling200

Central to DIVERSEEVOL is our selection function201

A based on the K-Center-Sampling method (Sener202

and Savarese, 2017), as detailed in Alg. 1. The203

selected subset must aptly represent the broader204

dataset to ensure that models trained on reduced205

subsets rival those trained on the complete dataset.206

Thus, our function A strives to amass a highly di- 207

verse subset of the source dataset, reminiscent of 208

the facility location problem (Wolf, 2011; Wei et al., 209

2013). 210

With a given set of training data points, Pt, func- 211

tion A identifies novel data points St that, when 212

combined with Pt, provide a representative sam- 213

ple of the source dataset. This entails selecting 214

newly added data that is as different as possible 215

from any of the existing data points. The "differ- 216

ence" from existing data points is quantified by the 217

closest distance of a candidate datapoint (i.e., an 218

as-yet unchosen data point from Qt) to any existing 219

training data in Pt. In other words: the distance 220

to its nearest neighboring datapoint Pt. Therefore, 221

our objective for A at iteration t can be succinctly 222

articulated as: 223

Objective: From a candidate pool, choose k 224

data points in such a way that the distances to their 225

respective nearest existing training data points are 226

maximized. 227

max
∑

1≤i≤k

min
j∈Pt

∆(si,pj) (1) 228

Our function aims to designate each of the k 229

new data points as a unique center within the full 230

training pool. Consequently, it seeks to maximize 231

the minimum distance from each new data point 232
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in St to any existing training data point in Pt. As233

formulated below, for k data points to be selected234

from the candidate datapoint pool Qt, we select:235

argmax
i∈Qt

min
j∈Pt

∆(si,pj) (2)236

The embeddings produced by the currently237

trained model Mt guide our selection since the238

distance between samples, denoted as ∆, is com-239

puted based on the output hidden states of Mt after240

average pooling over all token positions, which pro-241

vides a more suitable embedding space for existing242

data. As such, data points added to the training set243

ensure to best supplement the existing dataset ac-244

cording to the model’s current understanding. This245

iterative procedure facilitates the model’s evolu-246

tion, as it incorporates insights from prior iterations247

to refine its performance.248

Algorithm 1: Iterative K-Center-Sampling
for T Steps
Input: Z: entire source dataset; Mpretrain:

foundation LLM; k: budget for new
data points; T : total number of
iterations

Output: Series P = {P0, P1, . . . , PT };
Series M = {M0,M1, . . . ,MT }

Initialize: P0: k data points randomly
sampled from Z; Q0 = Z \ P0

for t = 0 to T − 1 do
Finetune: Mpretrain using Pt to get Mt

Select data points:
initialize: St = ∅; Q′

t = Qt

repeat
s =
argmaxi∈Q′

t
minj∈Pt ∆(si,pj)

St = St ∪ {s}
Q′

t = Q′
t \ {s}

until |St| = k;
Update Pools:

Pt+1 = Pt ∪ St

Qt+1 = Z \ Pt+1

return Series P , Series M

4 Experiments249

In this section, we introduce the experimental250

setup (§4.1), main results (§4.2), and conduct rich251

analyses about the effectiveness of DIVERSEEVOL252

that can be attributed to its central designs of data253

diversity and iterative sampling (§4.3).254

4.1 Experimental Setup 255

Datasets. Three prominent open-source 256

instruction-tuning datasets serve to validate 257

the effectiveness of DIVERSEEVOL. These 258

include both human-annotated data (Databricks- 259

Dolly, Conover et al., 2023) and machine- 260

generated (SelfInstruct-Davinci, Taori et al., 2023, 261

SelfInstruct-GPT4, Peng et al., 2023). Statistics 262

are detailed in Tab. 2. 263

Baselines. As a data sampling method, we in- 264

troduce strong baselines that correspond to chat 265

models directly trained on the full-sized source 266

datasets, including LLaMA-7B (Touvron et al., 267

2023) finetuned on Databricks-Dolly, SelfInstruct- 268

Davinci, and SelfInstruct-GPT4 respectively. For 269

comparison, our K-Center-based method, which 270

prioritizes diversity, is also benchmarked against 271

the following: (1) Random-Sampling: stochasti- 272

cally selects data points at each iteration. (2) Least- 273

Confidence (Culotta and McCallum, 2005): sam- 274

ples data points the current model exhibits least 275

confidence in, measured by the average max- 276

logit value across the predicted token sequence. 277

(3) Margin-Sampling (Netzer et al., 2011): chooses 278

data points whose logits obtained by current model 279

show minimal differences in the likelihood of top 280

two probable tokens. 281

Benchmarks. We test our method on three distinct 282

benchmarks: Vicuna-Bench (Chiang et al., 2023), 283

Koala-Bench (Geng et al., 2023), and Wizardlm- 284

Bench (Xu et al., 2023b) to ensure a extensive eval- 285

uation and help minimize test set biases. Along- 286

side these, we adopt an evaluation framework, as 287

in prior works (Chiang et al., 2023; Dubois et al., 288

2023; Zheng et al., 2023; Xu et al., 2023a), with 289

GPT4-Judge (J) scoring two model responses (tem- 290

plate detailed in Appendix A). We also randomly 291

permute the order of the two answers to counter- 292

act potential position biases in GPT4’s judgement. 293

Specifically, we compare the answers of all chat 294

models (Amodel) to those generated by GPT3.5- 295

TURBO (Achatgpt), a general competitor. We then 296

compute Relative Score (RS) and Win-And-Tie- 297

Rate (WTR) vs. ChatGPT as metrics to assess 298

instruction-following capabilities. 299

• Relative Score (RS) vs. ChatGPT: Compares 300

the chat model’s performance with ChatGPT 301

based on their scores, formulated as: 302

RS =

∑
q∈testset J(A

model
q )∑

q∈testset J(A
chatgpt
q )

(3) 303
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Sampling Strategy Vicuna-Bench Koala-Bench Wizardlm-Bench

RS WTR Nbest RS WTR Nbest RS WTR Nbest

Source Dataset = Databricks-Dolly-15K

*Full Data 73.84 5.00 15011 57.90 3.33 15011 58.73 3.21 15011
Random 73.06 6.25# 700 53.11 3.33* 900 56.02 4.59* 1100
Least-Confidence 46.68 0.00 100 36.01 2.27* 1100 40.08 1.38 800
Margin-Sampling 69.67 3.75 400 52.29 5.00 600 53.53 3.21* 900
K-Center (DIVERSEEVOL) 79.69 20.00 700 62.29 6.67 1100 62.94 8.26 700

Source Dataset = SelfInstruct-Davinci-52K

*Full Data 73.03 2.50 52002 69.50 3.89 52002 61.59 5.05 52002
Random 75.43 7.50* 800 62.33 5.56 900 58.60 5.96* 500
Least-Confidence 64.27 2.50 600 43.27 3.33# 100 49.26 5.05* 500
Margin-Sampling 68.98 2.50* 1000 55.22 2.78 1000 53.98 2.75 1000
K-Center (DIVERSEEVOL) 79.16 7.50* 1000 66.95 6.11* 1100 63.08 7.80* 700

Source Dataset = SelfInstruct-GPT4-52K

*Full Data 90.28 46.25 52002 80.33 10.56 52002 75.00 12.84 52002
Random 90.21 48.75# 500 77.31 12.78 800 71.95 14.68* 1000
Least-Confidence 79.11 17.5* 1100 55.57 4.44# 800 58.33 6.88 100
Margin-Sampling 82.43 33.75# 600 63.10 7.22 1000 65.01 8.26 1000
K-Center (DIVERSEEVOL) 91.69 50.00# 400 79.01 14.44* 1100 73.36 13.76 1000

Table 1: Comparison of the K-Center-based DIVERSEEVOL method with alternative sampling strategies and
"strong" baselines using the full source data. Metrics include relative scores (RS), win-and-tie rate (WTR), and
optimal data sizes (Nbest) behind the peak RS. If the best WTR is obtained with fewer data than Nbest, it is marked
with *, otherwise #. The gray-shaded rows are models using the entire source datasets as strong benchmarks.
The best results are in bold; the second-best is underlined. Our DIVERSEEVOL approach consistently delivers
high-quality results, matching or surpassing the strong baselines, with substantially fewer training samples.

Source Datasets # Samples Annotator/Engine

Databricks-Dolly 15011 human
SelfInstruct-Davinci 52002 Text-Davinci-003
SelfInstruct-GPT4 52002 GPT-4

Table 2: Source datasets used in our experiments.

• Win-And-Tie Rate (WTR) vs. ChatGPT: Mea-304

sures the frequency at which the chat model out-305

performs (WIN) or matches (TIE) the perfor-306

mance of ChatGPT:307

WTR =

∑
q∈testset I(J(Amodel

q ) ≥ J(A
chatgpt
q ))

|testset|
(4)308

Configurations. All our experiments utilize309

LLaMA-7B (Touvron et al., 2023) as the founda-310

tion LLM (Mpretrain). Unless stated otherwise, all311

iterative data sampling begins with an initial pool312

P0 of 100 random samples. It spans T = 10 itera-313

tions with a new data point budget k = 100. For314

instruction-tuning each chat model, we finetune the315

LLaMA model for 3 epochs with the batch size316

set to 128 and the learning rate set to 2 × 10−5.317

The Alpaca-style template (Taori et al., 2023) is318

adopted to prepare input from the instruction data.319

4.2 Main Results 320

Utilizing our DIVERSEEVOL approach, chat mod- 321

els evolve in their instruction-following capability 322

as the training data pool progressively augments 323

through our K-Center-Sampling strategy. 324

Tab. 1 compares our K-Center-based DI- 325

VERSEEVOL method with alternative sampling 326

strategies and strong baselines trained on full 327

source data (*Full Data). The metrics reported 328

include Relative Scores (RS), Win-and-Tie Rates 329

(WTR), and the optimal data sizes (Nbest) associ- 330

ated with peak RS. With the K-Center-based DI- 331

VERSEEVOL strategy, our chat models frequently 332

match or exceed the performance of the strong 333

baselines with far fewer training samples. On the 334

human-annotated source dataset Databricks-Dolly- 335

15K, our method consistently achieves the best RS 336

and WTR across benchmarks, surpassing the base- 337

line finetuned on the entire 15K data by a consid- 338

erable margin with merely 700 or 1100 samples, 339

corresponding to less than 8% data size. On the 340

SelfInstruct-52K data generated by Text-Davinci- 341

003 or GPT4, DIVERSEEVOL achieves similar ef- 342

fects of top performance surpassing the strong base- 343

lines on the majority of metrics using only 2% or 344

less of the 52K source data (≤ 1100 samples). Even 345
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Figure 2: Performance evolution of chat models across various source datasets using our proposed K-Center based
DIVERSEEVOL and alternative sampling approaches. The Y-axis represents relative scores (RS) with respect to
ChatGPT, while the X-axis indicates the number of training samples. The curves demonstrate the rapid proficiency
gains achieved by the DIVERSEEVOL approach, matching or often outpacing strong baselines (*Full Data) trained
on the full dataset with only a significantly small fraction of the data.

on benchmarks where our method does not stand346

out as the best performer, it achieves at least the347

second-best results behind the strong baselines by348

a small margin, such as in the case of RS with the349

highest gap of mere 2.55 on Koala-Bench using the350

SelfInstruct-Davinci source data. This unambigu-351

ously shows the effectiveness and efficiency of our352

proposed DIVERSEEVOL data selection strategy.353

In contrast, other sampling strategies like random354

sampling or confidence-based selection (e.g., Least-355

Confidence, Margin-Sampling as discussed in §4.1)356

tend to underperform or at best only seldom match357

the strong baselines, which largely falls behind DI-358

VERSEEVOL’s overall performance.359

Fig. 2 provides a complementary view to Tab. 1,360

illustrating the exact trajectory of performance evo-361

lution (measured by RS) with iteratively extended362

training data pool. The trend line in this figure363

is revealing. Our K-Center based DIVERSEEVOL364

models (marked in green) start to match or surpass 365

the strong baselines trained on the complete dataset 366

(*Full Data) remarkably quickly, namely in only 367

a few iterative steps, requiring several hundred sam- 368

ples selected from the source dataset. On the source 369

dataset Databricks-Dolly-15K, our method man- 370

ages to match the upper bound-baseline with only 371

600 samples (4%) across test sets. Compared with 372

alternative sampling strategies, our K-Center-based 373

DIVERSEEVOL method also consistently stands 374

out as the top-performing curve, showing better 375

scores throughout the iteration, regardless of source 376

datasets or testing benchmarks. 377

4.3 Analyses 378

We provide further analyses of the two main fac- 379

tors behind the effectiveness of DIVERSEEVOL, 380

namely: diversity of selected datasets, and the dy- 381

namic iteration scheme. 382
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Figure 3: Diversity evolution in the selected training data pool from three source datasets. The Y-axis denotes
the Vendi-Score for measuring diversity, and the X-axis shows increasing data size. The gray line (*Full Data)
represents original source dataset diversity. The contrasting curves highlight our K-center approach’s early and
sustained enhancement of data diversity.

K-Center Vicuna-Bench Koala-Bench Wizardlm-Bench

N 300 700 1100 300 700 1100 300 700 1100

Iterative (DIVERSEEVOL) RS 69.09 79.69 77.90 53.65 58.78 62.29 57.42 62.94 62.15
One-Time Direct Sampling RS 67.38 73.90 73.21 51.42 58.10 57.56 50.94 61.82 60.97

Table 3: Comparison of performance between the dynamic, iterative sampling scheme as in DIVERSEEVOL and
one-time data selection method of directly sampling to a given data size. With the same K-Center selection algorithm,
this table shows that the iterative approach consistently outperforms the method of direct sampling for once across
different data volumes, highlighting the importance of iterative feedback in improving chat model capabilities.

Diversity. Based on the main results reported in383

Tab. 1 and Fig. 2, we believe that maintaining high384

diversity in the training data pool is crucial for a385

successful instruction-tuning dataset. This is also386

exactly the design principle behind our K-Center387

based DIVERSEEVOL that seeks to find the most388

representative subset of a source data pool, consti-389

tuting the most diverse cover of the source dataset390

(§3.2). Given that diversity is a focal point in our391

method, we also explicitly assess data diversity us-392

ing an automatic metric, Vendi-Score (Friedman393

and Dieng, 2022) that measures the datapoint dis-394

tribution’s diversity based on their embeddings’395

similarity matrix. To testify to the pivotal role of396

diversity, we thus conduct empirical analyses from397

the following two angles.398

First, we use the above diversity metric to quanti-399

tatively measure the level of data diversity achieved400

by our K-Center-based method, compared to the401

original dataset diversity and other sampling meth-402

ods. In Fig. 3, we present the Vendi-Score of the403

maintained training data pool Pt at each iteration404

step t, in line with the X-axis in Fig. 2. As shown405

in the figure, our K-Center data selection algo-406

rithm (Alg. 1) significantly boosts the diversity of407

the training data pool at an early stage, surpassing408

the diversity of the original source dataset and all409

other sampling methods. This demonstrates the 410

effectiveness of our K-center-based sampling in se- 411

lecting datapoints that constitute the most diverse 412

cover of the source dataset. 413

Second, to further demonstrate the diversity of 414

the training dataset as a key contributor to model 415

performance, we directly control the Vendi-Score 416

as a diversity variable and report how varying 417

the level of diversity in the training dataset leads 418

to varying instruction-tuned chat model perfor- 419

mance. Using Databricks-Dolly as an example 420

source dataset, we perform independent random 421

sampling, devoid of any algorithmic influence, for 422

multiple iterations to achieve specific Vendi-Scores 423

for predetermined training data sizes. Our exper- 424

iment comprises three distinct training data vol- 425

umes: 300, 700, 1100. For each volume, we target 426

three levels of diversity, measured by Vendi-Score 427

of ranges: [3, 4], [5, 6], and [9, 10]. A negligible 428

deviation of ±0.2 is observed, because larger data 429

sizes make it harder to mine more or less diverse 430

samples given the randomness of the procedure. 431

Subsequently, we train chat models using datasets 432

behind the highest, median, and lowest range of 433

Vendi-Score, representing high, medium, and low 434

data diversity, respectively. In Fig. 4, we show the 435

resulting chat model performance measured by Rel- 436
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Figure 4: Performance of instruction-tuned chat models in relation to Vendi-Score of their training datasets,
illustrating the influence of data diversity. The three distinct curves correspond to training data volumes of 300, 700,
and 1100. A consistent trend of performance enhancement is observed with increased dataset diversity across most
benchmarks, with only minor deviations seen on the Wizardlm-Bench.

ative Score (RS) v.s. ChatGPT in regard to Vendi-437

Score of its training dataset, signifying the level of438

diversity. Each curve represents a controlled total439

training data size. Evidently, the degree of diver-440

sity in the training data pool significantly influences441

the resulting chat model’s performance regardless442

of data volume. We observe an nearly consistent443

boost of chat model performance as we maintain a444

more diverse training data pool almost across test-445

ing benchmarks, except for marginal deviations on446

the Wizardlm-Bench. The sheer elevation of RS447

as a result of increased dataset diversity is striking,448

often reaching over 10 points, especially from the449

very lowest range of Vendi-Score to the medium450

level. This effectively proves data diversity as a451

key factor in boosting instruction-tuned chat model452

capability.453

Dynamic Iteration. Another distinguishing as-454

pect of our methodology is its iterative nature in455

data selection, which we demonstrate is crucial in456

bolstering the chat model’s ability to follow instruc-457

tions. Using the Databricks-Dolly source dataset as458

an example case, we contrast our primary iterative459

approach, where the chat model’s data pool incre-460

mentally expands, against an alternative strategy461

where data is directly sampled at three different462

volumes: 300, 700, and 1100. Both methods em-463

ploy the same K-Center selection method, with the464

initial 100 samples chosen randomly.465

Tab. 3 vividly demonstrates the differences466

in performance. Regardless of the final train-467

ing data size, our proposed iterative approach468

(DIVERSEEVOL), mirroring the results in Tab. 1469

with corresponding Nbest = N , consistently out-470

performs the method of directly sampling the same471

data volume (One-Time Sampling). Notably, while 472

the K-Center sampling technique remains identical 473

across both approaches, the obvious performance 474

variance underscores the pivotal role of iterative 475

feedback. Such signals, derived from the trained 476

chat model at every iterative step, guides subse- 477

quent data selections and establishes a progressive 478

learning mechanism that capitalizes on insights 479

from prior iterations. This contrasts sharply with 480

direct sampling, which misses out on leveraging 481

the experience accrued from past models, leading 482

to suboptimal results. Therefore, our approach en- 483

ables models to truly "evolve" itself over iterations, 484

using insights from previous stages to inform fu- 485

ture training data selection. This iterative feedback 486

loop starkly outperforms a one-off decision-making 487

process, underlining its essential role in enhancing 488

model performance. 489

5 Conclusion 490

We introduced DIVERSEEVOL, a self-evolving 491

method for efficient instruction tuning of LLMs. 492

Relying on an iterative scheme, DIVERSEEVOL 493

progressively improves itself by selecting diverse 494

subsets from vast instruction data using the K- 495

Center strategy without seeking any external super- 496

vision. Empirical results affirm that, with less than 497

8% of the original data size, our method matches or 498

surpasses strong baselines in performance. Future 499

endeavors can delve into leveraging our method 500

on larger instruction datasets for potentially even 501

more refined results. Building upon the foundation 502

laid by DIVERSEEVOL, more advanced algorithms 503

of diverse sampling also promise to enhance model 504

performance further. 505
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Limitations506

The K-Center sampling method in DIVERSEEVOL507

involves computing distances between high-508

dimensional embeddings of datapoints. If the509

source dataset further increases in size, this compu-510

tation may impose a considerable expense on the511

GPU memory. Furthermore, our evaluation out-512

comes rely heavily on GPT4-judge. Despite our513

attempts to obtain a more deterministic result by514

setting the querying temperature to 0, and to ad-515

dress position-bias through two-time querying with516

model responses in alternating positions, the eval-517

uation process may still be influenced by inherent518

biases within the GPT4 model.519

Ethics Statement520

All data, pretrained models, and results are col-521

lected and processed according to the respective522

data and API usage policy. Finetuned models with523

DIVERSEEVOL may create toxic or unsafe contents.524

Therefore, outputs from these models need care-525

ful verification before being applied to real-world526

applications527
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A GPT4-Judge Template648

We conduct automatic evaluation of chat model’s649

performance using GPT4 as judge (§4.1). Given a650

question (i.e., instruction) from test set and answers651

generated by two models, here’s the template we652

used, adapted from (Chiang et al., 2023):653

Template for GPT4-Judge

[Question]
{instruction}

[The Start of Assistant 1’s Answer]
{answer-of-chatbot1}
[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]
{answer-of-chatbot2}
[The End of Assistant 2’s Answer]

[System]
We would like to request your feedback on
the performance of two AI assistants in re-
sponse to the user question displayed above.
Please rate the helpfulness, relevance,
accuracy, level of details of their responses.
Each assistant receives an overall score on
a scale of 1 to 10, where a higher score
indicates better overall performance. Please
first output a single line containing only two
values indicating the scores for Assistant
1 and 2, respectively. The two scores are
separated by a space. In the subsequent line,
please provide a comprehensive explanation
of your evaluation, avoiding any potential
bias and ensuring that the order in which
the responses were presented does not
affect your judgment.

654

Throughout our experiments, the specific model 655

versions of our OpenAI’s API calls are: GPT-3.5- 656

TURBO-0613 and GPT-4-0613. 657
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